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Abstract

Game theory has expanded far and beyond its original con-
texts into all manner of subjects. There are still many unsettled
questions at both ends of the spectrum of applied, normative
uses, and theoretical, descriptive inquiry. A wide range of scien-
tific inquiry explores the domain of games for various purposes
from that of pure play to serious business, and all of the many
combinations thereof. Among these, game refinement theory is
a child of the computer chess problem, and a close relative of
artificial intelligence for games.

Survey work of game theory, game refinement theory, the
game progress model, and functional brain imaging for gamers
during gaming is briefly undertaken throughout the relevant sec-
tions. The introductory chapter presents considerations on the
study of recreational games and strategic interplay, and some
of the problems facing game refinement theory. Namely, there
is a lack of experimentation to test the theory that information
accelerates in the mind of players and observers as the game
progresses.

In Chapter 2, game theory as the game player’s paradigm
is discussed. Some of the tools which have been adopted for
use in the study of recreational gaming are examined, and game
refinement theory is explained in the framework of its theoretical
relatives.

In Chapter 3, game refinement theory as the game maker’s
paradigm is discussed. Past studies of the state of AI for board
games are mentioned and updated. The game refinement model
and prior works are broken down, and game refinement values
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for various games and game types are compared. Also, recent
work in the search for reasonable quantities to relate the model
of discrete board game measures to that of continuous movement
games is presented. The results of sub-studies and experiments
relating discrete elements of non-discrete games in the board
game format are considered. A bridging principle is now sought
for guidance to help prove the acceleration of information in the
brain during games. Game information dynamic theory makes a
bold claim that information flow is governed by physical laws of
motion. Without denying or supporting this claim, it is explored
briefly with consideration on the principle bridging information
and hydrodynamics.

Preliminary work in functional brain measurement of gamers
during gaming is presented in Chapter 4 with potential for be-
coming a useful component of verification for game refinement
theory. The intersection of fNIRS brain measurement and games
is an expanding field with excellent potential for game scien-
tists. Prior studies have been carried out within the established
protocols and frameworks of cognitive neuroscience. The well-
developed model of games as a vehicle of experimentation for
neuroscientists is being established, and games are recommended
for those engaged in brain studies, as with brain activity mea-
surement for those in the research of AI and games.

Lastly, results and implications from observations in contin-
uous movement games are discussed along with the fitness of the
model. Rule changes in most of the observed games show game
refinement values for continuous movement games gravitating
towards that seen in early work in board games. Theorists have
been careful not to venture why the phenomenon of a game re-
finement window appears, noting a dearth of knowledge of the
physics of information in the mind. Game information dynamics
proposes that information might have measurable physical prop-
erties. Considering both these thoughts, the next experiments
using functional brain imaging are outlined with the intention of
capturing evidence of game information accelerating at game’s
end in the brains of gamers.

Keywords: game theory, game refinement theory, sports, brain imaging,
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Chapter 1

Introduction

1.1 The Role of Games

Play is an artifact of society that precedes culture and even transcends
species. It is supposed that the necessary condition of being able to form
rules logically places the existence of games before human civilization itself
[39]. Evidence of games, sometimes quite elaborate, have been found among
the most ancient of civilizations, and pretty much anywhere humans go [8].
Not only the hunting game, combatives and the sometimes deadly stadium
games, but also the more benign leisure sports, dice and board games have
developed steadily with mankind [107] [109]. Many games and variations
have been enjoyed by elite and common peoples throughout civilization.
Games have a strong civilizing influence, and in turn, games change to
meet the sophistication of the players and watchers.

There are several established frameworks for evaluating the decisions
and the information in games. For the purposes of this study they are re-
ferred to collectively as the game sciences; among them are game theory and
game refinement theory. Game theory concerns foremost with the optimiza-
tion of individual player strategy. Game refinement theory was developed
after several decades of game theory to consider the optimization not of
individual play, but rather to consider the optimization of games. Game
refinement theory shows that the evolution of board games is related to
the complexity and delivery of game information, and also proposes that
information accelerates at game’s end. What each of these admittedly quite
different approaches have in common is their aim of a better understanding
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of the decision-making process under varying states of uncertainty. Original
game theory suffered from a distrust or misunderstanding of experimental
verification, while its pioneers continued to develop more and more games
and models. Although there may have been some small dissatisfaction with
it, for over 40 years expected utility theory provided the basic proof for one
of game theory’s necessary assumptions. A player is assumed to be rational,
which in one sense means that if presented games with identical payoffs, the
player should make the same choice each time. What was found in Kah-
neman and Tversky’s experiment in 1979 [54], however, was that players’
choices are highly dependent upon context in which they are presented. This
discussion of rationality leads to the normative branch, which has derived
many new discoveries from experimentation with games, perhaps especially
since [54].

Claude Shannon is often credited as the father of the information age,
but he also began the age of computer gaming with a 1950 paper outlining
a sample evaluation function for chess. What ensued was said to be the
world’s longest running computer experiment, concluding (more or less) in
1997 with the triumph of Deep Blue over Gary Kasparov. Now with the
benefit of time passed, the so-named Computer Chess Challenge appears
like a crucible for the richness of scientific and computing resources and
brilliant minds that worked on, and were developed by it. Because of its
development with the computer chess problem, recreational game science
was almost synonymous with AI in the latter half of the 20th century. Hav-
ing begun from the perspective of the board game, game refinement theory
pursues a line of inquiry into the study of game information comprising all
games. AI for games is best considered along with game refinement theory
in the game maker’s paradigm. Both are concerned with the final product
of enjoyability for players, and both require the dissection and accounting
of whole games from the point of view of the game designer. While the pio-
neers of computer gaming and game refinement theory have not been averse
to experimentation, it can be seen that game refinement theory requires a
different kind of experimentation in order to verify its claims and expand
into stronger, more general applications.

In the centuries and millennia of chess’ history, several main and many
minor variants developed across wide swathes Asia and Europe. Only a few
out of many remain [69]. As it was shown in Iida et al. [42] the surviving
variants had undergone long processes of sophistication of game rules and
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customs. They were optimized for entertainment which made the depth of
look-ahead more critical to the game outcome [16]. Like tic-tac-toe, games
lacking sufficient complexity quickly lose their appeal. Of course the oppo-
site problem also exists, and experienced players have noted that excessively
complex games also cease to be interesting at some point. This concept was
further explored with incongruity theory applied to games by Lankveld, et
al. [59]. The process called game sophistication [16], according to the met-
ric called game refinement, offers chess as a model for well-balanced search
space complexity and depth of look-ahead optimized for entertainment.
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1.2 Problem Statement

Trying to select from among the trove of possible metrics of a game is a
durable problem for sports statisticians. Those making evaluations might
be coaches, players, parents, or maybe a fan trying to decide whether or
not to spend part of her paycheck on a ticket to a game. Regardless of be-
ing high level professionals or local recreational enthusiasts, often pride or
money are at stake–even small amounts of which have proven to be worthy
of strictest competition. It is essential to have good data and methods in
order analyze and be able to make good decisions based on those measures.
To take the sport of hockey for example, there are dozens if not hundreds
of different actions which can be measured, and used for evaluation. Such
actions could be the number of occurrences of attempting a goal, or of block-
ing an attempt. Those measures can then be correlated with the number of
wins and losses among a number of games to test their “winning-ness” or
“losing-ness.” Linear regression models are used to evaluate those measures
[15] to see whether they are strongly or weakly related to winning or losing,
or not related at all. While this in itself cannot show that more occurrences
of some measure causes more wins or losses, it seems easy enough to find
the correlation of the winningness or losingness of an action, e.g. blocking
or taking shots, to another knowable quantity such as goals scored or games
won. It should be obvious that this can be a useful technique for helping to
evaluate player or team behavior. In the case of game refinement theory, a
function of two knowns (breadth and depth of game information) produces
a third metric related to something a bit more elusive, a measure for game
entertainment. Discovering the fitness or lack of fitness for this third metric
called game refinement or sometimes GR, sometimes simply R, is not as
easy. The game refinement measure has been in use for nearly 15 years,
primarily in the realm of board games. Assuming that the new measure is
fit one, Can the logistic model of game uncertainty be developed
for board games be applied more generally? In order to answer this
question, appropriate measures for the breadth and depth of game for new
game types must be decided and evaluated for efficacy.

The game information dynamic model [47] offers a bridge between physics
and information, based on correspondences of physical flows of, e.g. water
or photon particles, and flows of data particles comprising information. It
has been stated by researchers of game refinement theory that there is a
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deficit of understanding how physics of information operate, especially in
the difficult-to-observe inner space of the brain. Functional brain imaging
and theoretical advancement such as the game information dynamic model
are proposed for pointing the way to a better game refinement theory. Are
there any intersections of the theoretical world of all game sciences
(including game theory, game refinement theory and others) with
the applied world of functional brain imaging that could indicate
a promising goal for these studies? One that leads to a bridge
between information and mind?

Recently, functional brain activity measurement of players during gam-
ing (henceforth BAMING) has been showing gains in several fields. Since
the beginning of the new millennium, findings from BAMING have led to
better models of cognition, deeper understanding of social behavior, more
and better maps of human brain connectivity and function, and improved
methods and analytics. A few mentionable works include brain measure-
ments during currency auctions [28], reciprocity in the context of a prisoner’s
dilemma [71] [86], the ability of players to perform under stress [52], and
various recreational gaming functional brain studies, like as in Mathiak et
al. [62], Matsuda and Hiraki [63], and Saito et al. [89]. There are many
implications for these advancements in brain-to-machine interfaces, affec-
tive gaming, neural connectivity studies, and research on the disabled, to
name a few [38] [64] [79] [101] [99] [106]. Each one urges caution in mak-
ing the correct conclusions about results from fNIRS, while recognizing the
potential pitfalls for this very promising but nascent technology. One of
the most basic goals of these and most brain studies has been identifying
regions of interest (ROI) by measuring neural activation with reference to
various cognitive tasks. Advances in the field of functional brain imaging
now permit the transition to more dynamical assessments than merely map-
ping the activated regions [25] [79] [83]. In one sense, the present research
proposes to continue on that same path. In another sense, prior studies
have tended to focus on finding some effects of video gaming, or achieving
greater understanding of the psychology of players through the study of
games [63] [70] [89], while the present work proposes the study of play and
game information in order to achieve a greater understanding of games.

Grether et al. contains a call for functional brain experiments in eco-
nomic games [28] which also extends well to recreational games as reason-
able proxies for general gaming behavior. Functional brain measurement
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of human players can provide valuable evidentiary support for game refine-
ment theory. A long-discussed point of study is that of critical positions
in games [55]. In chess for example, any turn in a game which is apt to
determine the game outcome is generally referred to as a critical position.
More specifically, on a game tree, the critical position is that node which
leads to the inevitability of an outcome, such as a win, a loss, or a draw.
Critical positions are, as suggested, a moment of crises. In the mind of the
game player the critical position is the moment when that crises manifests.
Critical positions hold significance in many areas in human behavior. It can
be expected that in the mind of the player, the arrival of a critical position
marks a moment of change from a player’s focus on evaluating and deciding
moves to something else, namely resignation or victory.

A pre-requisite to being able to investigate the happenings in the mind
during critical positions will be the ability to time those positions in the
game player vis-a-vis the game tree, steps, or temporal time of the game.
Game refinement theory hypothesizes that the branching factor, the depth
(length) of game (perhaps the most basic measure of the quantity of game
information) and any changes to the velocity with which that information
flows are directly related to the entertainment value of the game. It is be-
lieved that wins and losses in recreational games correlate with the powerful
emotional signals found in association with monetary gains and losses [10].
Particularly for this study’s purpose, the acceleration of information near
game’s end culminates when the certainty of game outcome reaches some
reasonable level.

Merely reaching that “reasonable” level of information of game outcome
belies the nature of the endgame somewhat, given that this passage almost
always occurs in the presence of a steep sweeping curve (as in Figure 1.1,
Logistic Model of Game Progress, and Figure 4.4 Uncertainty of Game
Outcome). The convex polynomial curve in Figure 1.1 is regarded as the
acceleration of information, increasing rapidly near game’s end. This is
discussed in greater detail in Sections 3.1.1 and 3.2. about the model.
Previous discussions raise a serious question relevant to these propositions;
How do the physics of information operate, e.g. in the brains of
gamers? This remains an open question, and a question motivating this
avenue of inquiry.

To date, there have been no studies done presenting any direct phys-
ical evidence of a causal relationship between information acceleration at
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Figure 1.1: (Left)The Logistic Model of Game Progress
(Right) An area of interest under the curve
[45]

endgame and rising excitement or entertainment in players or observers.
This study contains preliminary theoretical and experimental work, and
identifies a way towards validating one of the principle claims of game re-
finement theory, that information accelerates in the mind near game’s end.
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Chapter 2

Game Theory–The Player’s
Paradigm

Game theory proffers a complex of utility matrices in the aim to evaluate
optimal strategies for individual players, while game refinement proposes
measures of informational complexity of games for extrapolating informa-
tion about entertainment optimization. The original is argued to be a logi-
cal, mathematical expression, a tautology by some, or a messy interpretation
of normative terms by others. The context of game refinement remains al-
most exclusively in the realm of zero-sum (or nearly zero-sum) recreational
game constructs. Yet, game refinement theory is undeniably restrained by
the subjectivities in its core objective to identify or measure the key ingre-
dients of human enjoyability in games. Game refinement theory is distinct
from original game theory in its fundamental approach. Nonetheless there
are some important cross-overs between the two. Since game refinement
theory comes about more or less directly from game theory, it will be useful
to start with a brief review of the first in order to identify those common-
alities, or at the very least to identify what game refinement theory is not.
Also, many of the tools developed under game theory are now the tools used
in game refinement theory, therefore a closer examination of them is taken
here.

9
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2.1 A Brief Connecting History of Game Theory
and Recreational Game Studies

Renowned mathematician John von Neumann’s genius was already well
known in American academia by the 1930’s when he was a colleague of
Albert Einstein at Princeton University. It would be difficult to overstate
von Neumann’s influence. Von Neumann’s ground-breaking work in fluid
dynamics, set theory, linear programming, geometry, lattice networks, com-
puting, nuclear weapons, rocketry, military and political strategy continues
to touch or threaten every life on Earth. Together with economist Oskar
Morgenstern, he published the formative Theory of Games and Economic
Behavior in 1944. Scientific approaches to gaming had already been at-
tempted years before, for example by Ernst Zermelo, Emile Borel and von
Neumann himself. Combining Morgenstern’s insight on economic philoso-
phy and von Neumann’s innovations in mathematics, they vastly expanded
the applicability of games in a wide range of studies. Game theory continues
as a dynamic and still expanding field of study today. Serious considera-
tion of game theory was sporadic among economists of the day however,
prolonging its further development [73].

The following analogy of Charles Darwin and the theory of evolution
neatly summarizes von Neumann’s contribution to game theory: Darwin did
not invent the concept; he defined the mechanism called “natural selection”
which made the theory of evolution work. In the same way, while von
Neumann and Morgenstern did not invent the scientific study of games or
strategy, their introduction of cardinal utility functions revolutionized the
study of strategic interaction in games. They discovered a way to compute
utility functions that made game theory workable. Also, by the virtue of
identifying players’ utility in games as the same sense of utility used in the
study of economy, an important connection to economic philosophy was
established. As it is defined for use in games, utility is the degree and
quantity of enjoyment, or winning-ness, an agent derives from a gaming
position. A utility function is a matrix of player preferences, i.e. a player’s
preference for one position compared to others.

Game variables are either parametric or non-parametric. Parametric
variables tend to be static or at least linear, but non-parametric ones re-
quire a player to anticipate (and model) the actions of another player’s
response. One of the important developments from game theory is the way
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this difference between knowns and unknowns is treated. The idea of car-
dinal utility functions also was not new, and had already had a long and
controversial past in other economic studies [108]. Whether von Neumann’s
utility functions are truly cardinal, or merely complications on ordinal util-
ity functions endures as another subject for argument. Von Neumann and
Morgenstern re-introduced the concept of the cardinal utility function as
a method for forecasting an agent’s probability of choosing any particular
move in the game scenario. By cardinal utility, estimates of players’ pref-
erences about the choices in a game as the inputs are used to devise an
index of utility for a player’s options, which form the values of an individual
agent’s cardinal utility function. They are cardinal because beyond just the
degree preference of ordinal utility, cardinal utility functions also enumerate
a quantity, the amount of preference for outcomes, as derivatives of possible
future outcomes, e.g. new positions and probabilities for winning or losing
in a game. Beyond the complete subjectivity of trying to measure individ-
ual preferences, even an approximately objective scale for the preferences of
any one individual gaming agent will likely differ from agent one agent to
another. Perhaps most importantly, while utility functions can sometimes
offer accurate measures of player preference, they cannot be counted on to
accurately predict an agent’s likelihood to choose once expectations for com-
peting agents’ preferences and choices come into consideration. Nonetheless
the usefulness of utility functions as an indicator of preference, if not always
as a predictor of actual choice, is well accepted.

In game theory the basic assumptions are that players are rational, self-
interested and maximizing agents. As simple or self-evident as those as-
sumptions may seem, even these are not without equivocation. The concept
of rationality is often considered to be a uniquely human quality, yet games
as defined in game theory are also used to describe the choices made by
non-human agents such as other animals, corporations, herds or computers.
There are any number of definitions for just what, exactly, rationality en-
tails. By most definitions, rationality requires a will to act with intention
toward some goal, a desired result. This definition can still work for game
theory with a minimum of stretching of the notion of “intention,” as long as
autonomous action is present. That is to say that if an amoeba, for exam-
ple, moves to engulf a smaller object, then can we fairly assume it has a will
to eat it? It is simply a different standard from the moralist’s requirements
for rationality.
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2.1.1 Some Game Theory Games

The zero-sum game is a formalization of the economics of a pie-cutting
problem. In the case of a fixed number of parties dividing a finite good, one
party’s gain is another party’s loss. There exists an argument that there are
no instances of the zero-sum game in human interaction. Being as we are
at very least complicated social creatures embodying many externalities in
the form of competing utilities, preferences and objectives, truly zero-sum
games may be possible only in theory. Assume then for example, two very
hungry agents who have never met each other, who in fact cannot even
see each other, and will never meet again, with an opportunity to divide a
small pie. (Assume also that neither will use the knife against the other!)
In a case like the pie-cutting example above, there is understood to be a
close approximation of the zero-sum dynamic. Each of these examples has
in-common that they can be evaluated as one-shot games between anony-
mous, self-interested and self-maximizing agents in a zero-sum situation. In
a mathematical sense, recreational games are zero-sum, but in the psycho-
logical sense recreational game players are expected to receive the benefit of
social enjoyment and healthful mental or physical exercise even when they
lose. Then there are many situations which are not zero-sum; those games
with net payoffs of more than or less than zero. Almost any trade is sum-
positive–the parties to a trade enjoy the division of what becomes for them
a larger pie, due to the surplus of utility. In the cases of pollution, crime,
punishment and much of politics, parties experience the division of negative
goods which is sum-negative, i.e. a choice of the lesser evils. Game the-
ory triumphs of recent years include the modelling for complicated auctions
and bids, lotteries, traffic flows and the division of rights to public utility
services.

Games can be as simple as a situation with two interdependent decision
makers, each with one decision to make, and each with two options, seek-
ing to maximize his own benefit or minimize his own harm. Each player’s
choice has an effect on the other player(s). Such a one-shot puzzle can
be represented with a four-square decision graph called a payoff matrix,
as in the prisoner’s dilemma shown in Figure 2.1. The prisoner’s dilemma
is a member of this simplest, one-shot game. What defines the prisoner’s
dilemma is not the variables or the roles assigned to the players but the pay-
off structure. The agents playing “Column” or “Row” can be two companies
competing in a market, office mates engaging in some subterfuge, drivers



13

on the road preparing to negotiate an intersection or what have you. The
form of the prisoner’s dilemma just happens to lend itself to many moral
decision problems, otherwise known as social dilemmas, because the payoff
structure provides some conflict for the agents making the decision. In the
original example, two players who would normally be cooperative with each
other find themselves in the following predicament: a pair of suspects in
a crime, “Row and Column” have both promised to play “Co-operate.” If
they both honor their promise, they will each receive a utility of say, “2”
(i.e., less punishment). However, they choose simultaneously or without
the information of the other’s move, so there is a substantial risk in the
case that one honors their promise, and the other does not. Additionally,
there is substantial incentive NOT to honor the promise (despite that doing
so is a violation of the agreement, and substantially decreases the other’s
utility). If the other player chooses Co-operate, one’s utility increases, and
in either case, each individual player’s payoff, regardless of what the other
player chooses, is better if they do not honor their promise. Mathematically,
the only rational choice for each player is to choose “Defect” which is the
equilibrium position. (Of course each player would be better off, and they
would also be better off as a group if both players choose to honor their
promise to each other, but the information of the other’s decision is not
known until afterwards.)

The prisoner’s dilemma strikes many people as ironic the first time they
see it, because the mathematically correct payoff structure gets the players
less utility than what they could get by simply cooperating. A real world
example of a prisoner’s dilemma can be seen in the interactions of players in
oligopolic competition, a notoriously unstable structure of interdependence
and confidence, with many unilateral and bilateral defections. The United
States’ airlines industry provides several samples for study, such as [9] [60]
and [81] to name a few.

Among the first instances of the political use of game theory was by
its founder. The United States government and the U.S. Air Force heavy
RAND Corporation strongly supported game theory research for the use of
developing a nuclear war policy. Incidentally, von Neumann was not only a
lead developer of today’s chief of all weapons of mass destruction, but also a
formative American military policy maker regarding the use of that power.
Von Neumann applied his concepts of games to the very real world of the
Cold War arms race, and was the one to coin the phrase “mutually assured
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destruction” (MAD). Von Neumann advocated for the annihilation of Kyoto
as a member of Manhattan Project’s target selection committee and later
for a nuclear attack on the USSR [29]. To summarize Don Ross, MAD was
poorly modeled on a one-shot prisoner’s dilemma game, which would be a
highly simplified representation of the complex reality of World War Two
and the Cold War. In the case of the MAD paradox, noting the executives
of the U.S.A. and U.S.S.R. for the players, assign “Don’t Shoot” for the Co-
operate decision, “Shoot” for the Defect decision. Some reasonable values
of consequences for four basic MAD outcomes can be gathered, based on
the following assumptions:

1. That the executives’ motives, and those of the nations they represent,
are the same.

2. That it was already well understood by executive decision makers by
the time of the invention of MAD in the early 1950’s (when multiple
nuclear players were producing multiple delivery systems) that “lim-
ited nuclear strikes” were always an unlikely scenario.

3. That one likely response to a nuclear attack by any nuclear-armed
player is to issue their best immediate, all-out, total nuclear counter-
attack.

4. That any nuclear attack and counter-attack would have a relatively
high possibility to result in profound world-wide catastrophic destruc-
tion, especially to that of both attacker and counter-attacker nations.

There are arguments against each of these points, but after all they
are assumptions. The fourth assumption might be mitigated by defensive
actions such as anti-missile systems, or effective underground bomb shelters.
However, since extensive environmental damages to vital air, water and crop
resources are also likely, the fourth assumption is not an unreasonable one.

The result is the MAD deterrent of von Neumann’s invention, as it was
supported by then-Defense Secretary Robert McNamara. A payoff schedule
for nuclear war between the two Cold War powers like the one in Figure
2.1, shows an important difference from the prisoner’s dilemma. In the
prisoner’s dilemma, defection is the dominant strategy. In MAD, defection
results in mutually assured destruction, the opposite of a prisoner’s dilemma
strategy. The incentive to defect from the nuclear detente either bilaterally
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Figure 2.1: (Left) A prisoner’s dilemma/social dilemma type matrix
(Right) Payoff matrix for a Cold War nuclear attack

or unilaterally is prohibitive, and provides the equilibrium position of Don’t
Shoot as the only choice with positive utility for either player. The theo-
retical outcome (as well as the actual outcome thus far in history) presents
as the equilibrium position of a solvable game. (Bearing in mind players
do not always necessarily choose their optimal moves.) Meanwhile, the ex-
treme costs of MAD in terms of military expenditures for the player nations
of U.S.A. and U.S.S.R. alone, and the fighting of several proxy wars (Iran,
Greece, Korea, Indochina and Vietnam, Cuba, Afghanistan, etc.) have led
to some devastating consequences for both players and non-players.

There are alternative valuations which allow for the presentation of Cold
War nuclear policy in a Prisoner’s Dilemma (e.g. replacing “arm” or “don’t
arm” to provide credible and balanced threats). Once the large scale produc-
tion of nuclear armaments had become a real possibility soon after WWII,
there was little question of whether the capable parties would produce and
maintain them. The real questions beyond whether or how to use the bombs,
if ever, were about what scales their system deployments should be taken–
primarily questions of funding and administration.

As with many theories, game theory is occasionally cited for justifica-
tion for the actions and agendas of various interests and individuals. “A
wise cynic might suggest that the operations researchers on both sides were
playing a cunning strategy in a game over funding...cooperating with one
another in order to convince their politicians to allocate more resources to
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weapons.” Except in presentation, it is not likely that MAD, at least not as
a prisoner’s dilemma, was ever a serious national war policy. In a prisoner’s
dilemma, the only mathematically correct decision would be to try to strike
first, using the fullest available catastrophic force [88]. MAD is an extreme
counter-example to the proposal that games are a trivial concern, and an
example how costly some games can be.

2.1.2 Experimentation Early in Game Theory

During the first three decades of game theory, theorists worked on expan-
sion, producing cross-over studies in economic behavior, war strategy, diplo-
macy, evolutionary biology and more. During that time, few experiments
were conducted to verify the theory, or for that matter in economics gen-
erally [87]. Eventually though it became clear that individuals choose in
ways counter to that predicted in games too frequently to be considered
anomalies. This apparent lapse of self-interest in games has been called
“altruism,” such as in the case of making a move that is costly to oneself
for the purpose of reciprocating goodwill or punishing the ill-will of other
players. Nash’s equilibrium [72] received attention from statisticians like
McKelvey and Palfrey [65] to address probabilistic variability, offering the
quantal response model. Recent decades have produced experiments lead-
ing to many substantial refinements in game theory, utility theory, and the
assumption of rationality [3] [6] [10]. The 2000’s are a heyday for game
theory experimentation. As it turns out, one-shot games are not actually
very common, with repeated games being more the rule, whether in the
marketplace, diplomacy, or on the chess board. This simple fact alone af-
fects games in a number of most significant ways. In addition to the raft of
refinements, a few serious refutations such as that of Francesco Guala [30]
have also been made.

Since the beginning of serious experimental inquiry into applied games,
game theory has been making remarkable insights on such phenomena as
reciprocity, punishment, reputation, sensitivity to initial conditions and a
taste for fairness. The heterogeneity of subjective individual, social and
cultural traits has surprised game theorists at times, at times contradicting
well-accepted theories such as expected utility and Nash equilibrium as pre-
dictors of actual behavior [6],[33] [54]. These discoveries have necessitated
key refinements in order to fit the theory to the reality. Human players
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are extremely sensitive to the gaming environment and rules, and display
a wide range of divergent values and attitudes [21]. Players often gamble,
make mistakes, or choose “wrong”ly for their apparent objectives [6] [13]
[54] [84]. Also, preferences are unstable over time, and depend heavily on
prior experiences [21] [34]. Brain measurement experiments of players en-
gaged in social dilemma and other economic games have been well underway
for over a decade [10] [86].

In his ground-shifting Behavioral Game Theory: experiments in strate-
gic interaction, Colin Camerer [13] summarizes the defense of some game
theorists to game theory refuters “If people don’t play the way theory says,
their behavior has not proved the mathematics wrong,” he says, “any more
than finding that cashiers sometimes give the wrong change disproves arith-
metic.” However, this is only true in the strictest of descriptive terms. If
it is not already obvious, the inaccuracy of this analogy is that arithmetic
is not a study in how cashiers behave. Normative game theory is, however,
a study of behavior in games, often human behavior, and an application of
the concept of rationality. Only in so far as game theorists are not trying
to predict, engineer, or model any behavior or economic activity is theirs a
purely mathematical concern [30] [31].

Quoting from Camerer, “It is important to distinguish games from game
theory” [13]. Game refinement theory tends towards the former category,
but recreational game sciences like game AI and game refinement theory are
another kind of game theory. In game refinement theory, theorists want to
discern the meaning of the discrete game information comprising the build-
ing blocks, nuts and bolts that hold up all games. Game refinement theory
seeks an answer to the question it has raised; How does the complexity of
a game’s information affect players’ or observers’ involvement in the game?
Prior research seems to show a correlation between the two. It is not enough
for us to say this is true because it is mathematically sound. Prior research
shows that some board games share a window of refinement values. Sim-
ilarly, it would not be enough to say that this is sensible, even if it seems
to be so. Firm numbers are required, and sound logic must be in place to
produce a result of any lasting value. This study proposes that, like game
theory, game refinement theory stands to benefit from a new experimental
approach.
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2.1.3 Preferences, Utility Curves, Trees

Cardinal utility functions describe fully known information, such as that in a
complete game tree. They also provide the mathematical basis for opponent
modeling used in recreational gaming and artificial intelligence (AI). When
the whole tree, and utility index are not known, or are impractical, heuris-
tic searches employ evaluation functions, which are faithful representations
of the utility functions. In turn, knowledge of the opponent’s evaluation
functions form the heart of opponent modelling [11] [24] [40] [41]. A player
who correctly estimates an opponent’s proclivities puts him/her/itself at a
distinct advantage in any game. Opponent modelling works well in com-
puter games or recreational games, where the rules are tightly constrained,
well defined and relatively simple. Trying to identify and measure players’
preferences is considerably more difficult where the wider spectrum of hu-
man relations are concerned. (For example the potentially endless loop of
calculations beginning “I think that you think, that I think that you think,
that...”) As noted by Ross [88] people should understand that “game theory
isn’t useful for modelling every possible empirical circumstance that comes
along.”

The extensive form game tree is a powerful analytical tool for mapping
the multitude of possible decisions in a game. The game tree in Figure
2.2 is similar to the extensive form game tree developed for game theory,
only the payoffs are positions, which lead to new position potentials in
the next ply. It starts by showing what happens if player X makes one
of three typical moves, and what O can do in response. Each play and
each position can be evaluated mathematically with an evaluation function.
Despite its simple appearance, the game tree actually contains quite a bit
of information, and it expands geometrically, as shown above. It shows the
state-space complexity for a finite number of players for the length of the
game, including its outcome, and path delineated to that conclusion. A
complete tree contains the information of each player’s knowledge of each
other’s past, present, and possible future moves. So for a solved game, a
complete tree can be shown, down to the end moves, for each possible game.
This opens the possibility for reverse-induction analysis. Prior knowledge
of the game, the values of the various positions, especially those likely to
lead to a win, a loss, or a draw will determine the valuations (preferences)
of moves, and the knowledge of arrival of a critical position in the game.

Here is a partial game tree for a tic-tac-toe game (Figure 2.2). In tic-
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Figure 2.2: An extensive form game tree
[110]

tac-toe, players take turns, expressed by either X’s or O’s potential moves
on each alternating ply. This one is a perfect information tree up to the end
of the second move. Each layer of the tree is a “ply” and each unique posi-
tion with the score/payoff for each player is a “leaf,” or node, on the tree.
In the example, players take turns and see their opponent’s decisions, and
understand the remaining moves available to each player. The search-space
complexity (average number of decisions, and the number of those decisions
to be made) and the form of the game tree is not always so simple. In
simultaneous games, information of the other’s move is unknown until af-
ter the moves of both (all) players is revealed. Hence, simultaneous games
are a form of imperfect information. (Simultaneous moves can be shown in
the game tree, e.g. by the removal of the other information, with a dotted
line between nodes, or an oval encircling simultaneous moves.) Similarly,
in games with an element of chance, such as rolling the dice in backgam-
mon, drawing tiles from a bag of Scrabble letters, drawing cards in poker.
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The latter two examples involve both chance, and imperfect information of
other’s letters or cards.

Game Theory provides a good framework for examining complex deci-
sions involving competing agents by using game matrices and game trees
to map the decisions of game playing agents. The quantity of information
on a game tree gets out of control quickly. Consider that a complete game
tree contains every iteration of every possible move and response for the
duration of a game. A game for which every possible game tree can be
created is a solved game. Even the most awesome computers at the time
of this writing are not capable of completely graphing some games due to
the phenomenal size of their game trees. For imperfect information games,
a heuristic process such as abstraction can be used, although this requires
making some assumptions and is not perfect [90]. Among perfect informa-
tion games, chess, shogi and “go” for example, are too big to be solved.
Some moves are repetitious, i.e. symmetrical moves or illegal moves, but
for simplicity’s sake, here are a few examples (Table 2.1). By comparison,
it has been considered that there are about 1026 nanoseconds in cosmic
history, or about 1080 atoms in the universe.

Table 2.1: Size of some board game trees
[35] [112]

Game B D BD nodes

Tic-tac-toe: 4 9 105

Checkers: 2.8 70 1031

Western Chess: 35 80 10123

Chinese Chess: 38 95 10150

Shogi: 80 115 10218

Go: 250 208 10360

The use of these tools for computation and game-like consideration of
problems has been a major contributor to the gains in divergent fields in
recent decades, including computer hardware and programming, strategic
decision-making for politics, finance, economics, and even for the study
of games themselves. Game theory has provided a host of new topics and
applications. Today game theory is a multifarious hybrid science benefitting
from the gains in programming and (AI) which it helped to foment. It is
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reasonable to expect valuable new insights from the continued study of
games.

Many of the discussions about the assumptions of rationality and self-
interest, altruism and moral dilemmas posed in normative game theory do
not appear as topics for recreational games, which occupy the remaining
part of this work. Board games are objectively simple, usually two-agent,
zero-sum games, or a close approximation of zero-sum games. These have
a clear objective and tightly constrained number of variables, providing
know-able search complexity and informational game length. Hundreds of
years before von Neumann’s treatise and the coining of the phrase “game
theory,” game masters of antiquity were cataloging their knowledge of plays
and strategies in board games, such as those by Lucena in chess [12], and
Ohashi or Kanju in shogi. There were many more than these, and they are
also the philosophical antecedents to the computer chess problem, and to
game refinement theory.



22



Chapter 3

Game Refinement
Theory–The Maker’s
Paradigm

Attempting to completely separate normative and descriptive game the-
ory constructs would be illusory. Like game theory, the computer chess
challenge and game AI, game refinement theory is first of all a systematic,
mathematical treatment of games very much on the cut-and-dry (descrip-
tive) side of things. However, other reasons for pursuing game refinement
are the implied human factors, art, entertainment, and emotions, which
are very much definitions of rationality, hence normative. Game refinement
theory attempts to provide measurability to entertainment factors, as well
as interpreted game data and philosophical reference. Until now, experi-
mentation in game refinement theory has relied primarily upon modelling,
interpretation of game data, and surveys. These have produced such results
as the identification of fundamental game patterns [46], the game progress
curve [46], evaluation of players’ winning-ness or losing-ness using normal-
ized advantage [47], tsume shogi problem composition [51] and even more
ambitious discussions such as player and observer attitudes towards fair-
ness [45], game entertainment, evolution, and design. It has been seen that
games are uniquely positioned to elicit such things as the great potential
of computers, as well as the joy of victory and the agony of defeat. Game
refinement theory is an endeavor that, in time, will lead to the development
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of a computational model with stronger, more general capabilities.
Studies of strategic decision making in the framework of games with

focus on mathematical models of conflict and cooperation between players
have been in progress for a long time. AI and the computer chess prob-
lem developed quickly after and along with game theory. From within this
tradition game refinement theory was proposed as a measure of entertain-
ment optimization for game creators. The logistic model of game progress
was created for the domain of board games, but it may also be useful for
other game types. If so, the expansion to other game types could imply
a more universal meaning. The theory relies on a measure of search-space
complexity to explain the evolutionary outcomes of rule changes in chess,
and becomes the subject of consideration for the next few pages.

3.1 Related Works

Yannakakis reviewed the state of game AI development for game develop-
ment in [111]. Player experience modeling, procedural content generation,
and massive scale game data mining are identified as three flagships of
present-day AI research. It is interesting to note that the game AI men-
tioned in [111] is of a different character from that of board games, which it
is said “can only be algorithmic with respect to a certain aim (i.e. how to
play a board game) in constrained board game spaces.” This point of view
purposely excludes board games from the field of game AI. It is of interest
that related to this research, objective player experience modeling still seeks
a biofeedback interface to acquire players’ data, most of which are still too
obtrusive, too slow, or otherwise not yet commercially viable for gameplay.

As it was stated by Yannakakis, one of the main points of divergence of
computer game AI and board game research is constrained playing spaces.
On this avenue, Allis published a chart in 1994 [1] comparing the strength
of game AI among the original 15 Computer Game Olympiad games, and
making predictions for further development, based on the complexity and
perfect or imperfect nature of the games. Comparing this update with the
update in van der Herik [35] and the original from Allis, there are several
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instances of no definitive movement up the chart 10 years or longer (Othello,
backgammon, 10 x 10 draughts, bridge, go). Others have moved up one level
(shogi, chess, 8 x 8 checkers). Also, to the list of solved games can now be
added checkers [91] and Scrabble, which appears with an * because, like
poker, it is an incomplete information game with an element of chance, but
it has been solved to the degree possible. Further gains are still possible
for the stochastic game aspects. Computer shogi rose to notoriety and
world champion level under several computer players, including TACOS,
prompting a years-long ban on shogi masters playing against computer shogi
systems in 2005. According to Iida, shogi has been gaining steadily, and now
on or near a World Champion level. Advances in “go” are restrained by a
relatively large branching factor. According to Viennot [104] computer go is
ranked as a strong 3rd or 4th dan amateur, or possibly as high as a low-level
professional. Despite the optimistic predictions of many, twenty years after
Allis’ search for solutions, there are still many games in which humans still
prevail, and much work to be done if they are to be solved. Table 3.1 shows
the relative strength of game computers in some popular parlor games as of
2014. Games which have not moved up the chart since 1994 are in italics.
Games which are new to the chart are below the line.

3.1.1 Early Works, and the Model of Chess

In 2003 Iida, Takeshita and Yoshimura [42] wanted a new measure to eval-
uate evolutionary and entertainment factors in the history of chess. They
were the first to create a game-strategic-complexity measure for that pur-
pose. As measures the informational complexity of a game, various standard
metrics are available. State-space complexity (the number of possible legal
moves) and decision complexity (which entails interpretation of rules and
comparison of strategies and games across types) were considered too prob-
lematic. Search-space complexity (the size of the search tree, where breadth
of game B is the average number of possible moves, and the depth of game
D) is expressed BD. This was considered as a reasonable measure with
a good indication of a game’s decision complexity, but with more general
applicability from game to game. Search-space over decision complexity is
also supported in van der Herik [35]. Subsequently it was reasoned that the
number of plausible moves is far greater than the number of moves a player
actually considers making which, in the case of chess (B = 35), was actually



26

Table 3.1: Level of AI in games 2014
[1] [35] [104]

Solved Superhuman World
Champion

Grandmaster Amateur

renju chess 10x10
draughts

bridge arimaa

Connect-
Four

Gipf Chinese
chess

go

Qubic Othello
go-moku backgammon
awari
nine-men’s-
morris

kalah Lines of Action shogi poker
8x8 checkers bao 11x11 hex
Scrabble* Amazons

found to be close to the square root of 35 on average. It is assumed that
extinct games must be less entertaining than current games (at least in the
opinion of current players), else they would still be in play, and therefore
the following equation was proposed as a measure of game entertainment:

E(G) =
D√
B

(3.1)

Iida et al. [42] proposed the logistic model of game uncertainty. Iida
and Yoshimura [43] and Majek and Iida [61] defined the information of the
game as the amount of solved uncertainty x(t) where the constant n is a
parameter based on the difference of skill between the two players in the
game, and x(0) = 0 and x(D) = B. Note that 0 ≤ t ≤ D and 0 ≤ x(t) ≤ B.
The equation implies that the rate of increase in the solved information x′(t)
is proportional to x(t) and inversely proportional to t. D is the depth of the
game tree, of informatical length of game, not the temporal game length.

From this was derived the (other) original model of game refinement in
[43], which forms the basis of the model used to analyze games in this paper.
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√
B

D
(3.2)

3.2 The Model

In so far as it is practical, observations in game refinement theory are drawn
from championship, expert-level games. As is shown, the assumption of
perfect, or near-perfect play helps to mediate the inefficiencies of less-than-
perfect game play. Fundamentally, games are comprised of information.
It is the spontaneous composition of that information which provides the
outcome. The model of game progress as discussed in previous pages was
revisited by this author, and refined in Sutiono et al. [98], and is outlined
in the following paragraphs:

In games such as football or basketball, the temporal length of game
is determined by elapsed time, i.e. ninety or sixty minutes, while scoring
determines the outcome of winner and loser. The scoring rate is calculated
by determining (a) goals scored and (b) elapsed time, or alternatively, the
steps/attempts required to achieve (a). Game speed is determined by the
number of successful shots (goals), where the number of attempted shots is
the average number of steps required, or depth of game. For other games
such as volleyball and tennis where the number of goals required to win is
pre-determined in the rules of the game, the total number of points for both
teams is the number of steps.

Let G and T be the average number of successful shots and the average
number of shots per game, respectively. Having full information of the game
progress, i.e. after its conclusion, game progress x(t) will be given as a linear
function of time 0 ≤ t ≤ T and 0 ≤ x(t) ≤ G, as shown in Equation (1)

x(t) =
G

T
t (3.3)

shown graphically as the linear function “game progress” in Figure 1.1.
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Only a very boring game would progress in a linear fashion however, and
most of course do not. Therefore, it is reasonable to assume a parameter
n, based on the perception of game progress prior to completion. When
the information of the game is known (i.e., after the end of the game) and
the value of n is 1 then the game progress curve appears as a straight line.
In most games, especially in competitive ones, much of the information is
incomplete, the value of n cannot be assumed, and therefore game progress
is a steep curve until its completion, along with B, D, x(t) and t, just prior
to game’s end.

x′′(T ) =
Gn(n− 1)

Tn
tn−2 (3.4)

which is to say,
G

T 2
n(n− 1) (3.5)

Suppose that, to the degree game information can be effectively pro-
cessed, the greater G

T 2 becomes, and the more exciting the game becomes
for players and observers. Too little game information acceleration may be
easy for human observers and players to compute, and becomes boring. At
some point however too much game information acceleration surpasses the
entertaining range and enters frustration, and at some point beyond that
could become overwhelming and incomprehensible. G

T 2 or its root square is
used as a measure of game refinement or GR-value.

GR =

√
G

T
(3.6)

Furthermore, it has been observed that, of those games which have survived
long periods of evolution and variation, many have similar GR values under
this model (as in Table 3.2).

It is important to note that although the GR-values of many games and
sports tend to gravitate toward a certain number, the findings are not pre-
scriptive. Checkers, with its small branching factor, would seem to be one
exception to the rule. Moreover, the mechanism of any possible underlying
phenomenon that may exist is not certain. However, these and other obser-
vations from across game types may imply that informational complexity
and its rate of flow in games is directly tied to game entertainment, and that
many of those games we have analyzed tend toward a similar measure of
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Table 3.2: Game refinement values of board games

Game B D GR

chess 35 80 0.074

shogi 80 115 0.078

Chinese chess 38 95 0.065

go 250 208 0.076

8x8 checkers 2.8 70 0.024

that information. In cases such as volleyball [100] and badminton, the game
progress model shows that recent rule changes in those sports are moving
GR-values in the direction of the typical GR-value window and therefore
seem to provide more evidence in favor of the theory.

It has long been understood that games continually evolve in order to
maintain fairness, safety, or enjoy-ability for players and spectators. Ac-
cording to what is known from these and previous studies, in those games
which are the surviving variants of long processes of sophistication, game
information often arrives in approximately 0.07 to 0.08 GR-value. Game
refinement theory hypothesizes that 0.07 to 0.08 GR-value is optimally ac-
cessible both for play and observation, although we can only speculate why
this may be. Perhaps below this value, as in the case of side-out volleyball
or best-of-five tennis matches, players or spectators experience a lack of ex-
citement while awaiting the arrival of new game information. Above this
value, such as in the case of side-out 3 x 15 scoring in badminton (described
in section 3.7), they might find the game information moving along too fast
to fully appreciate, and some of the potential enjoyment of the game is lost.
Among the shortcomings of this approach are that individuals’ and soci-
eties’ tastes vary from group to group, and change over time. What may
be an optimal GR-value today may not be optimal in the future. Since the
theory has been heretofore restricted to analyzing only a narrow spectrum
of all game information, it is quite limited. Implementing some testing and
verification processes, such as a brain imaging study to test aspects of game
refinement theory (the topic of Chapter 4) or expanding the model to in-
clude other aspects of game information, for example, could help develop
the theory into a stronger, more general theory.
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3.3 Continuous Movement Games

The following section is an extension of the work presented in

Nossal, N., and Iida H. (2014). Game Refinement Theory and its ap-
plication to score limit games. IEEE Games and Entertainment in Media
2014, Toronto, Canada, October 22-24, 2014.

Recent studies have considered the difference between game information
in board games and other type games, like those with continuous movement
such as video games and sports. Game refinement theory proposes that a
measurable quantity of game design exists, implying a value of entertain-
ment, using the relationship between a game’s search-space complexity and
the length or depth of game. The original model was derived from studies of
historical chess types, and was restricted to discrete, alternating movement

board games like mah jong and go. The model offered
√
B
D as having some

relation to a game’s entertainment and evolutional longevity.

Diah et al. devised experiments for a Pac-man-playing robot using the
number of pellets and power pills on levels 1 and 2 of the Ms. Pac-Man
game board as B, and the number of movements of the Ms. Pac-Man char-
acter on the board as D [19]. The finding of 0.045 for GR seems satisfactory
as a result for the relatively simple, repetitive nature of the game. For a
very different and much older type of arcade machine, Chiewvanichakorn et
al. [14] investigated play and payout data for the crane, or claw type game
known as UFO Catcher, and compared several different machines from Thai-
land and Japan. Chiewvanichakorn identified the average number of plays
recorded and the frequency of payouts per cost of playing, respectively, as
the measures of B and D. This is fundamentally a different kind of game
because of the element of chance, and the presence of prizes meeting the
basic definition of gambling. The work done analyzing the game refinement
of the crane game bears many implications for other gambling games. Ex-
periments were conducted in Japan and Thailand, and the results, based on
the exchange difference of the two countries’ currencies, are shown in Table
3.6.



31

3.3.1 Considerations on the Model: Three Approaches

Sutiono showed that the model could be migrated to other game types and
used G and T for the breadth and depth of game. For game refinement
theory to work in the realm of continuous action games, it is necessary
to find appropriate representations of the G and T values. In chess there
are numerical values for board positions, piece values, and declinations of
a game tree. The graphing of chess games is fairly well researched and
understood as a result of long and intense periods of its development and
study of play. Then video and arcade type games, while though they be
of continuous action, are comprised of mercifully discrete, measurable game
information which after some interpretation, it is possible to compare. For
the simultaneous, continuous action sports which follow, a bit more special
consideration is required. Finding faithful representations of depth and
branching factors in the game is not as intuitive as for board games. To be
considered using the model, continuous games must be greatly simplified,
with interpretation focusing only on the most basic numerical expressions
of what is actually an appalling complex of human and game factors. Even
a relatively small set of discrete variables becomes unmanageable without
the use of powerful computers (as in Table 2.1).

Higuchi first attempted an application of game refinement theory to a
non-board game, as reported in Diah et al. [18]. Initially, two approaches
were considered for applying game refinement theory to football (Am. soc-
cer). The results for both approaches were very similar to that of a quite
different set of games like chess, in the neighborhood of R = 0.07 to 0.08.
Coincidentally, applying the game progress model by Sutiono yeilded ap-
proximately the same result for football, which is the value reported in
Table 3.6. Using either of these quite different measures yielded the same
GR-value. The excess of convening GR-values from different approaches to
the model presents an unusual predicament of having to decide which of the
approaches is right, if not all, or perhaps none of them. Anyone can use
any model they want to get some pre-determined result. The question now
becomes whether one of these models is an accurate representation of the
same measure in the different game types.
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3.3.2 Board Game Approach

In Diah et al. [18] the approach of Higuchi was first considered, which offers
the idea of football as a chess-like game. Based on the board (field) size in
terms of the number of players on the field plus the option to shoot as a
measure of decision complexity, B was set at 11. The temporal length of
football games is 90 minutes, though we chose to consider a more functional
relationship to number of potential pass receivers. T was derived by the
number of average passes per each shot. The average number of passes per
shot in a UEFA Champions League game that year was 41.18. The result
was very near that of chess and other sophisticated board games of past
studies.

√
11

41.18
= 0.081 (3.7)

3.3.3 Round-Match Approach

In the same paper, as a method to derive some meaningful correspondence
of the round-match in chess to that of the singular football game, a round-
match approach was considered. To do so, the football game was compart-
mentalized into sub-games, each of which culminates in a shot-on-goal. The
average number of shots taken in a UEFA game is 22, so an average football
game would have 22 sub-games. The chance of winning the sub-game is a
win/lose situation for the scorer and score-ee, or a draw in the case of a
save. Therefore the value of B in the sub-game would be 3. We get a GR
of

√
3

22
= 0.079. (3.8)

For the type of sports which are defined by a pre-determined G value,
i.e. score-limit games, a modified round-match approach was applied. Such
games include but are not limited to most of the service type games (vol-
leyball, tennis, badminton, etc.). In this approach developed in [100] and
modified slightly in this thesis (see also Section 3.7), G is considered as
the total winning points in the game (match), however a work-around is
needed to provide an accurate value of the length of game. For this, the
total number of points played for both sides provides the number of tries T .
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3.3.4 Time Limited Approach

Consider then a time-limited approach, applying Sutiono’s game progress
model, with G = 2.64 the average number of goals (using again the UEFA
data from Diah, et al.) and T = 22 the average number of shots taken per
game. The result √

2.64

22
= 0.073 (3.9)

was derived with this simple approach.

3.3.5 A Note on the Non-Interchangeability of Approaches

Football may be an unusual case. Each of the methods conceived for mea-
suring game refinement of football produced similar results. Not only does
the time-limited approach, but also the board game and round-match ap-
proaches each result in the football GR in a range from roughly 0.07 to 0.08.
Whether this is a meaningful coincidence or not, for the time it is seen fit to
apply successful attempts (i.e. goals) and shot attempts as B and D (G and
T). Controlling for the particulars of divergent game types (such as drawing
a logical comparison between the branching factor in chess and the number
of passing options in football, for example) might hold promise when equal
comparisons are available. However, even for many high-level competitions
of some sports, statistics for variables such as passes completed are not
available, rendering this anaysis of transferability between sports types yet
more difficult. Statistics for passing in the National Basketball Association
and National Hockey League are said to be coming in 2015-2016. Prior to
the advent of those more sophisticated tracking and statistics however, it is
possible to make some educated guesses.

Jimmy Coverdale [17] provides data of passing in the 2014 professional
basketball finals. Although it is a narrowly defined sample, we can use it
to estimate what might happen in a board game approach to basketball.
Coverdale counted 380 passes made by the San Antonio Spurs. Using the
board game application of the model as it was applied to football above,
substitute five as the number of pass or shoot options to obtain G, and the
quotient of passes and average shots [98] to obtain T .

√
5

380/85
= 0.500 (3.10)
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To apply a board game approach to volleyball, for example, consider
that players have six pass or shoot options. Since each side may only touch
the ball a maximum of three times, including the shot to the other side,
then the average number of passes must be less than two. For argument,
let us say 1.7. A rough average of FIVB [23] tournaments suggests that
about 45 rallies occur per game in Olympic level volleyball (‘set’ in the
new volleyball parlance), or slightly less in beach volleyball. The number
of exchanges from side to side per each rally does not seem to be recorded
anywhere, unfortunately. If we could assume an average of three exchanges
per rally, then the number of passes per game (set) would be 382. Assuming
a match length average of 4.25 games (sets), approximately 975 passes per
volleyball match is possible. Now what represents the number of attempts
in volleyball? Probably that number of exchanges that was assumed to be
three, which can be used to divide the total number of average passes. We
get

√
6

325
= 0.0075 (3.11)

Similarly, consider what happens when the modified round-match ap-
proach of score-limit games is applied to some time-limited sports. In the
case of football, let us assume some likely winning scores and total scores of
an average 1.6, and 2.65 respectively. Applying the modified round-match
approach used for score-limited games to football, we get

√
1.6

2.65
= 0.477 (3.12)

In the case of hockey, take some likely winning scores and total scores of
an average 3.25, and 5.5 respectively. Applying the modified round-match
approach used for score-limited games to football, we get

√
3.25

5.5
= 0.328 (3.13)

When we apply the model for round-match type games (as in volleyball
or other service sports, described in sections 3.6 and 3.7) to some plausible
values in other game types like football, GR values present no discernable
pattern. It may not make sense to use the modified round-match approach
used for score-limit sports to measure football though. Recall that the



35

reason for using average total goals as T in the case of score-limit games
is as a proxy for average shots or depth of game. A statistic for attempts
in football exists, hence no proxy is required. Another way to look at this

might be to notice the natural tendency of the model
√
G
T when it is applied

to some typical game scores. That is, one approach may normally produce
GR values in the expected range with the high-scoring service sports, but
not with low-scoring time-limited sports. While the model may yet have
some relevance, it does not apply universally between game types without
some consideration. Within game types, results tend to fall within the same
approximate balanced range as with chess and other sophisticated board
game types previously measured.

To derive game progress, the breadth and depth of most game types
can with some minimal extrapolation be interpreted in terms of attempts
(tries) and successful attempts (goals). Two approaches employing measures
of tries and attempts are round-match and time limited approaches. As
applied to continuous movement sports, these two appear to provide the
most sensible measures of GR across game types. Game refinement analysis
of several games by one of these two approaches, depending on each game’s
fundamental grouping, follows in sections 3.4 to 3.8.

3.4 Hockey

The modern game of hockey (also known as “ice hockey”) originated on the
many frozen streams and ponds of Canada in the latter half of the 19th
century. The codification of its rules for the professional level was taking
place over 100 years ago, followed with a long and ongoing process of game
sophistication. Many of the recent changes in the National Hockey League
(NHL) rules of hockey directly affect the sport’s GR-value. As has been
shown by the author of QuantHockey.com [82] the number of shots taken
per professional hockey game has been remarkably stable at around 60 per
game since the keeping of those records in 1967. Goals per game, and the
balance between offensive and defensive systems have gone through several
cycles, but historically the winningest ways favor a strong defense. The
most recent high-scoring era began in the 1980’s with huge goal producing
forwards like Wayne Gretzky, Marcel Dionne, and Mike Bossy. Goals per
game averaged in the high 7 to 8 points range. Applying the time limited
game approach, a relatively stable value for game refinement throughout
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the history of the NHL can be seen in Table 3.3.

This dynamic presents another interesting challenge to game refinement
theory. Given the endurance of the 60-shot average per hockey game, goals
per game will be the more independent of these two variables. This happens
to be the opposite in golf, where the number of holes G is fixed at 18, with
only the number of tries D as unknown.

There has seemingly always been a great deal of discussion about scoring
rates in exhibition hockey. Judging from the vast amount of commentary
on the subject, the enduring opinion would seem to be that high-scoring
games are more exciting and desirable than low-scoring games. Among the
many commentators, rarely is it ever proposed that the tension created by
frustrated scoring efforts also creates excitement, or that low-scoring games
can ever be as entertaining as high-scoring games. According to Sports
Illustrated “Many players told SI last month that they didn’t think lack of
scoring was an issue in the game today, but conceded that it was something
to consider in the future.” At the same time [All-Star player] Patrick Kane
acknowledges “There’s probably two things the fans love seeing most, goals
and fights” [58].

A brief review of rule changes in the NHL since the League’s creation in
1917 shows that the League has often made rulings to maintain the balance
in favor of higher scoring. Defensive technology seems to rise without much
extra assistance. In the mid-1990’s teams increasingly began playing an
improved defensive strategy called the “neutral zone trap,” and as a result
game scores again languished. Fans and officials were troubled, and a num-
ber of changes were proposed to change the relative size of the goal area,
and offensive:neutral zones on the playing surface. Both items directly affect
the balance of offense-defense in hockey. First consider the relative size of
open space in the 6 x 4 foot (1.8 x 1.2 m) hockey net. The people who play
hockey today are bigger than they were 100 years ago, but the size of the
opening between the goalposts and crossbar have not changed. NHL players
are an average of 2 inches (5 cm) taller than in 1970 [36]. The League has
been reluctant to make any adjustments to the size of goal frames, how-
ever; goalkeepers’ equipment has also been steadily improving and growing
bigger to protect the players from injury. The NHL decided that some
of these equipment modifications (e.g. longer catch gloves, bigger blocker
pads, webbed jersey sleeves, and the ever-increasing leg pads) were good for
stopping pucks, but not related to protection. Since the identification of the
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Table 3.3: Game refinement values for NHL hockey
[82]

Season G T GR

1919-20 9.521 60 (est.) 0.051 (est.)

1928-29 2.918 60 (est.) 0.028 (est.)

1939-40 4.988 60 (est.) 0.037 (est.)

1949-50 5.469 60 (est.) 0.039 (est.)

1959-60 5.895 60 (est.) 0.040 (est.)

1969-70 5.809 65.518 0.037

1979-80 7.025 58.792 0.045

1989-90 7.368 60.530 0.045

1999-2000 5.492 55.950 0.042

2005-06 6.050 59.954 0.041

2006-07 5.758 59.966 0.040

2007-08 5.440 58.126 0.040

2008-09 5.695 60.404 0.040

2009-10 5.531 60.624 0.039

2010-11 5.464 60.778 0.038

2011-12 5.320 59.496 0.039

2012-13* 5.307 58.284 0.040

2013-14 5.343 60.076 0.038

2014-15 5.324 59.834 0.039
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so-called “goal draught” and the “Dead Puck Era” of recent seasons, the
legal size of goalie uniforms, leg pads and gloves has been reduced several
times, and remains under strict scrutiny. The rules must allow fairness to
offensive play but without exposing goaltenders to undue risk. The second
item deals with the sizes of the two offensive zones, and the intervening
neutral zone on the playing surface. The neutral zone was reduced twice,
from 58 to 54 feet in 1998, and again from 54 to 50 feet in 2006. Offensive
zones increased from 70 to 75 feet each. Changes to the size of the board
(or field, or ice) are a factor in game refinement.

Low GR values might be interpreted as support for hockey’s reputation
as a game that is inaccessible for the casual spectator. The pace is more
than double that of field games like soccer, on a surface area of less than one-
quarter (1560m2 : 7140m2). Casual spectators and uninitiated fans typically
complain that the puck is too small and fast-moving to see. Probably the
depth of look-ahead and fast changes require a higher level of involvement
than other sports, but the goal scoring event is easy for everyone appreciate.
The League is aware and actively attempting to raise the number of goals
per game, but without harming the fundamental nature of the game it is a
difficult task. Knowingly or unknowingly, they are also attempting to raise
the hockey GR.

3.5 Golf

The model described in the previous sections is used to evaluate the scoring
systems of golf, volleyball and tennis. There are several points unique to the
golf game which have been considered without coming to a definitive conclu-
sion using game refinement theory. In golf, as in tennis and volleyball, the
length of game is determined already before play begins. According to the
International Golf Federation’s History of Golf webpage, the Old Course at
Saint Andrews, Scotland redesigned to an 18 hole course in 1764–this would
become the recognized format for golf around the world [49]. Archeological
and historical evidence indicates that golf is a game that has been played
continuously for several hundred years. International standardization of
such items as yardages for golf links and “par” values, expected scores for
expert level play, was completed after the First World War. Golf is unique
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Table 3.4: Game refinement values for professional golf

2014 Championship Leaders [80] G average T GR

PGA par 18 71 0.060

Top 73 18 69.96 0.061

Rory McIlroy 18 67 0.0633

Phil Mickelson 18 67.25 0.0631

If perfect play 18 54 0.079

in that, while the number of holes in one round has traditionally been fixed
at 18, rather than the player earning the most points, it is the player who
accomplishes the course with the fewest number of tries or “strokes” who
wins. In this case it is T and not G which will determine winner or loser.
It was unclear whether this could pose a problem for evaluating with the
model, but at least in one instance when we see the result of refinement
values for golf, they are like those of previously studied game types.

The final scores for the top finishers were evaluated after completion of
the PGA Championship of 2014 at Valhalla Golf Club [80]. The course is a
par 71 and the championship consisted of four rounds, for a total score of
284. Most of the 73 leaders were slightly under par, by an average of one
shot per round. G can be set at can set G = 18 and T = 71 to find the
expected game refinement value of the golf game at GR = 0.060 assuming
par. The actual values for leaders is a few shots lower, as shown in Table
3.4. It is not expected that refinement values for golf will change, even given
some very remarkable jump in the training and skill of professional golfers.
For example, under our model, a world record-breaking score of, say 54,
produces a GR value only slightly above that of chess. PGAs have also
been very careful about admitting even slight technological advancements
(whether belly-putters, deep U-grooves on a club’s face, or otherwise) and it
is likely that changes in equipment specifications present the only possibility
for significantly lower golf scores.

Equation 3.7 shows the highest plausible GR-value for a “perfect round”
of golf under this model.

√
18

54
= 0.079 (3.14)
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These results appear to be consistent with the results from other games
under the model. It needs pointing out that this application differs from
other score-limited sports in that one round of golf is considered a game,
whereas the other sports were considered in the match. To consider golf in
the match context using the model as applied above, the result is substan-
tially lower:

√
72

216
= 0.039 (3.15)

for completely perfect play, or

√
72

284
= 0.030 (3.16)

for par.

This identifies two problematic questions for this use of the game progress
model for golf. Badminton, table tennis, volleyball, and tennis are the same
in that the match consists of games, or games and sets which are normally
completed on the same day. Therefore, if the model as used above is a valid
one, should not golf matches which are commonly played over four rounds
not on the same day to be considered to be one game? Or, are the individual
rounds of golf one game? It would seem, and the results above would seem
to support, that golf matches of this kind are composed of separate events.
Golf, like chess, is a game which has clearly been optimized over many cen-
turies of sophistication, and there is little denying its entertainment, at least
for players. If one can ignore that 4 rounds’ scores are cumulative in the
match, then perfect or nearly perfect play in golf supports the use of this
model with a GR value in or very near the window previously observed for
other game types, but if not, there are still other explanations which could
account for the low GR. If golf, like in hockey, is a niche sport which may
be optimal for players but not for observers, then the lower GR value is
probably accurate.

3.6 Tennis

According to the 2015 International Tennis Federation Handbook [50] stan-
dard scoring of a tennis game proceeds as follows: (0) also “love;”(15) First
Point; (30) Second Point; (40) Third Point (with a tie at 40 being known
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as a “deuce;” and Fourth or Game Point, except in the case of a deuce,
in which case this point becomes known as Advantage. This ensures that
games must be won by a margin of at least two points (and in the case of
a deuce, by two consecutive points). There is some ambivalence, however,
since the rules of tennis are open to several alternative scoring methods.
Under the “No-Ad” or “tiebreak” scoring alternative to the advantage rule,
a game proceeds to a decisive game point directly from a deuce. Similarly,
a set of at least six games must be won by a margin of two games under
Advantage Set rules, with no limitation to the number of games required.
Alternatively in a tiebreak set, winners are determined within a maximum
of 13 games. Matches too can be comprised of best-of-three or best-of five
(providing a two-game lead), or any of several alternative Short Sets (first
to win four, provided a two-game lead) and tiebreak match systems. Let us
consider some of the major differences between the top level tennis events
by applying a round-match approach of the model.

The Wimbledon, U.S. Open, French Open, and Australian Open are the
best known annual tennis events. These tournaments employ best-of-five
set matches for men’s singles and doubles, and best-of-three set matches
for women’s and mixed tournaments. All four tournaments now employ
the tiebreak rules, except in the fifth (final) set, which only the U.S. Open
allows to be decided in a tiebreaker. Masters 1000 includes: Indian Wells,
Miami, Monte-Carlo, Madrid, Rome, Canada, Cincinnati, Shanghai, and
Paris Masters, all of which are played in the best-of-three, tiebreak format.
For the purpose of comparison to the other formats we only need consider
only the data of Masters 1000 Men’s. The intended research requires com-
plete point score totals for the matches, which are not published on ITF.
While IBM SlamTracker tracks point totals per player, their dataset is not
available for independent research. Observations are taken from data of re-
cent years’ four major world tournaments “the Majors,” and Masters 1000
tournaments as they were found on a popular gambling website [102]. The
data consists of total points for the winning side, and total match points for
every Majors (also “Grand Slam”) tournament match from 2004 to 2014,
5080 matches; and Masters 1000 Men’s tournaments from 2006 to 2014,
4536 matches.

Best-of-five matches seem to appear only in the domain of men’s Major
tournaments. Most competitions are decided in best-of-three, including
mixed doubles, women’s, and all Masters 1000 events. Of the many proximal
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or distal reasons which could be imagined for having a best-of-five for men’s
competition in the Majors, perhaps tradition or the test of endurance might
receive the most mention. The topic seems to be under somewhat vigorous
discussion in the tennis community. Many good arguments exist on both
sides of course, so the discussion here will be confined to the mathematical
realm. However, it is interesting that two typical arguments, one of each
for and one against the 5-set match, are of a mathematical nature. One
states that the best-of-five is more interesting than a best-of-three contest,
because best-of-three format (say, Player A vs. Player B) can produce only
four distinct three-set outcomes: ABA, ABB, BAA and BAB. A five-set
match, on the other hand, has 12 possible set outcomes, creating a host of
ways momentum can twist and turn over the course of several hours [94].
Opposite this, it is opined that best-of-five-set matches have little effect on
outcome in men’s tennis [67], with Miller citing that only about 2.5 to 3.5
percent of game outcomes change between the third and fifth sets.

From a game refinement standpoint, it can be seen that the GR-values
of best-of-three competitions more closely conform to the GR-values found
in other games under the model than do best-of-fives. This is clearly the
greatest difference in the measures of game refinement among the tourna-
ments. It can also be noticed that, although it is true that there is a gender
difference to consider between best-of-three and best-of-five contests in the
Majors, the GR-value for men’s best-of-three contests in the Masters 1000
are quite nearly the same as those for women’s in the Majors. For the eight
years of observation from Masters 1000 matches, we found a GR-value of
0.064, while those for the three-set Majors ranged from 0.062 to 0.064. For
this reason we believe that the difference in GR-values between best-of-three
and best-of-five-set competition is not attributable to gender.

Except for the separation between three-set and five-set matches, the
next greatest divider of GR-values among tennis championships is proba-
bly the tiebreak final sets used only in the U.S. Open. The purpose of the
advantage point and advantage set rules was to assure a certain margin for
victory by requiring consistency and endurance from competitors. Because
of this fact, the length of tennis matches played under advantage rules are
unknowable and potentially interminable. In the most extreme example,
the Isner-Mahut match at Wimbledon in 2010 played out over 11 hours,
including eight hours tied in the final set. One could suppose that uncon-
trollability of game length was tolerated or preferable in the game context



43

Table 3.5: Game refinement values for professional tennis tournaments

Association Rules Tournament Surface Avg.G Avg.T GR

ATP (Men) 5 tiebreak
sets

U.S. Open Hard 105.4 193.3 0.053

No T/B final Australian
Open

Hard 119.8 218.9 0.05

No T/B final French
Open

Clay 119.5 217.9 0.05

No T/B final Wimbledon Grass 122.8 226.6 0.049

WTA(Women)3 tiebreak
sets

U.S. Open Hard 77.9 138 0.064

No T/B final Australian
Open

Hard 77.53 139.4 0.063

No T/B final French
Open

Clay 77.4 139.4 0.063

No T/B final Wimbledon Grass 77.96 140.8 0.062

Masters(Men) 3 tiebreak
sets

(all) (all) 82.37 141.8 0.064
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of tennis’ past, though apparently that is no longer so. No-ad (tiebreak) al-
ternative scoring eliminates this tradition, and much of the unpredictability
of match length. As can be seen in Table 3.5, among the Majors the U.S.
Open has the shortest and lowest-scoring matches, and the highest game
refinement value, though the difference is slight.

3.7 Other Score Limited Games

Observations on table tennis and badminton are taken from the author’s
recently presented paper [75]. In the case of volleyball, observations are
borrowed from Takeuchi, et al. [100], which uses game refinement theory to
study the effects of several changes made to the game of volleyball.

Volleyball was switched from a side-out scoring system to the rally point
system in 2000. Prior to the institution of the rally point system, only the
side serving could win a point. It can be safely assumed that the primary
impetus for this change was to make volleyball game length more predictable
for the purpose of television programming. Side-out games were won by the
first team reaching 15 points with a minimum 2-point advantage. It was
predicted that the use of rally point scoring would significantly speed up
game progress, so along with faster games, higher scoring was introduced.
The points required for a win were initially doubled to 30, and the 30-point
rally system was employed from 2001 to 2007, then backed down to 25 points
in 2008. Experimentation with the volleyball scoring system provided three
distinct opportunities for applying the model. Although Takeuchi created
reasonable estimates based on average winning rates to compare rally point
with side-out rules, his estimate failed to take into account that volleyball
is a round-match type game consisting of best-of-five contests. Assuming
an average length of match of, say, 4.25 sets (games) per match shows that
the rally point system raises the game refinement value over side-out from
0.036 to 0.055.

In badminton a best-of-three, 15-point side-out scoring system (3 x 11
for women’s singles) was employed until 2005 [75]. As in pre-2000 volleyball,
only the server can score the point. If the service side loses the rally, no
point is awarded, and the service passes to the other side. Under the new
rally point system in badminton, the side which wins the rally gets the point,
regardless of service. Game length is 21 points, with a minimum 2-point
advantage. Average winning scores G and total scores T in men’s singles



45

under both systems were compared. Game refinement for the two variants
differs significantly, indicating the change of game progress as affected by the
change in scoring. The result shows that the changes in badminton service
and scoring has brought the GR-value of badminton nearer to that of chess
and the model considered previously in other games and game types.

Table tennis already used a rally point system prior to 2001 when the
game was switched from a 21-point win to an 11-point system. Several
equipment changes to both paddle and ball were then instituted, and in
2008 a doubles event was added. First, the game refinement value of table
tennis prior to 2001 was already in the window of 0.07 to 0.08. Second,
the net effect of changes to equipment, scoring, and match length on game
refinement was nil. Also, the newly introduced team event is significantly
lower than for the other events. While the introduction of the doubles event
allows more players to join the tournament, the significantly lower GR value
foretells some adjustments to come to the doubles’ format.

3.8 Results

The histories of several games were reviewed, and the most recent rule
changes and subjects of discussion were considered for the purpose of eval-
uating them as gaming systems under the model of game progress. The
reason for doing so was to find a transferrable game information metric
from board type to other type games. Several approaches were evaluated
to approximate the most accurate and reasonable value of the game search
tree for use with the model. For the arcade games a board game approach
identifies a number of choices and movements on the game board, although
the crane type game UFO Catcher also incorporated an economic element
for comparison of two countries’ versions of the same game. More generally,
goals and tries were applied as branching factor and depth of game for both
time limited and score limited games, though with a significant difference in
their interpretation. As one-shot games, time limited games were evaluated
in the time limited approach as in the case of football [18]. Score limit games
were evaluated with the round-match approach since scores accumulate over
the course of several rounds. The evaluation of golf was less conclusive, due
to the ambiguity of scoring for rounds or matches. Preliminary work with
hockey seems to support the use of this metric, at least according to the
dominant narrative regarding a “goal drought” in recent seasons. While the
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number of shots per NHL hockey game holds relatively stable, and the per-
centage of successful shots only slightly less stable over time, it can be seen
that raising the GR value of hockey entails a significant increase of goals
(or some remarkable new advancement leading to increased shot accuracy).
To increase the number of goals per game without completely upsetting the
long and cherished sophistication process requires further changes to the of-
fensive balance such as stricter rule enforcement (more or longer penalties),
increasing offensive zones and opportunities to shoot, available shooting
area (i.e. by limiting goaltender pads’ size), or larger goal frames. Most of
these have already been done at least to some degree, though the League
acts conservatively, incrementally most of the time. These results do not
imply that it is necessary or preferable to impose any changes, but just that
it can be seen that doing so would likely raise the GR of hockey closer to
that of other “sophisticated” games. FIDE (chess), UEFA (football), and
pretty much all of the other governing boards of games and sports exhibit
the same cautious approach as the NHL with regards to the sophistication
processes in their hands.

A pattern of service-type games eschewing their traditional scoring sys-
tems seems to have been established with the switch in volleyball from
side-out scoring to the rally system in 2000, and badminton and table ten-
nis following up with major changes soon after. The primary reason for
the changes to scoring systems has been to make those score-limited sports
easier to televise, and easier for casual spectators to follow. Knowingly or
unknowingly, the governing boards of many sports have also been actively
involved in controlling the breadth and length of their respective games.
Prior to 1974 the U.S. Open and French Open were played on grass courts,
which have been known for their fast, sometimes slippery surfaces, and given
to a particular type of game play. The last remaining Major to continue the
tradition of grass courts, the Wimbledon has acted to harden the under-
layment and slow the upper surface. Perhaps more significantly, in terms
of game refinement theory, from 1980 tiebreak sets were introduced to the
Majors except in the final set, which only the U.S. Open allows by tiebreak.
Tennis is among the older, and more conservatively controlled sports, but
we see these increments moving tennis closer toward a 0.07 GR-value. The
GR-value of volleyball rose from 0.036 to 0.055, attributable to the switch
to rally-point scoring. Badminton’s GR-value fell from 0.121 to 0.086 in re-
sponse to service and scoring changes, and table tennis, which started with
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Table 3.6: Summary of GR values of various games

Approach Game G T GR

board game Ms. Pac-Man [19] 244 345 0.045

hybrid* UFO Catcher Thailand [14] 0.367* 10.65* 0.057

hybrid* UFO Catcher Japan [14] 0.967* 13.30* 0.074

time limit basketball [98] 36 82 0.073

time limit football (soccer) [18] 2.64 22 0.073

time limit hockey 5.34 60.08 0.039

round match tennis 82.37 140.8 0.062

round match golf 18 67 0.063

round match volleyball [100]

– (old) 5 x 15 side-out system 63.25 223.2 0.036

– (new) 5 x 25 rally point system 106.25 187 0.055

round match badminton [74]

– (old) side-out 3 x 15 system 30.07 45.15 0.121

– (new) rally point 3 x 21 system 46.37 79.34 0.086

round match table tennis [74] 54.86 96.47 0.077

*UFO Catcher contains stochiastic variables not found in the other games.
Number of plays P for G were evaluated with playing cost per win cT as T

GR around 0.075, did not deviate significantly from that value as a result of
reduced game scores balanced with game speed changes due to equipment
modifications.

While these findings are not prescriptive, observations from other sports
and across game types imply that informational complexity and its rate
of flow in games is directly tied to game entertainment, and that sophisti-
cated games will tend toward a similar measure of that information. Games
continually evolve in order to maintain fairness, safety, or enjoy-ability for
players and spectators. In the case of score-limited sports, evaluation with
the game progress model seems to prove that many of the changes in rules,
particularly scoring systems, result in game refinement values nearer to
those found previously in other-type games.
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3.9 Game Information Dynamics

The following section is an abridged version of the work contained in

Iida, H., Nakagawa, T., and Nossal, N. (2012). Certainty of patient survival
with reference to game information dynamic model, Open Journal of Pre-
ventative Medicine 2-4, 490-498.

In other previous works [47] [46], the notion of a physical “information
flow” was explored. The game information dynamic model suggested cor-
respondences between physical and the theoretical world of information.
Game information dynamics takes for it basis of comparison the boundary-
layer theory of Schlicting [92], and proposes approximately the following
argument:

• Data has at least some mass.

• Information is comprised of data.

• Therefore, information has mass.

The theory then draws correspondences between physical fluid in the
boundary-layer theory, and information in the mind. The theory is subject
to an equivocating “if” information in fact has mass, or whether information
is strictly formless–a concept only, completely separate from the physical
universe, of which data is merely a representation.

“In the present study, information of game outcome represents the data
which is certainty of the game outcome, and so the present information
might correspond to Rauterbergs sixth interpretation. It may be evident
that information before and after the reception of a message is not the same.
There are two possible dynamical views of information (incorporating force
or energy); firstly, information flows, secondly, information is entropy. The
gap between the two viewpoints is not small in practice: the former consid-
ers that information is tractable within physics, but the latter views that
information is beyond physics, even though there is some relation to it. If
information flows, it may be natural to consider that motion of information
particles having mass is governed by the basic equations for fluid mechanics.
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The dependent variables in fluid mechanics are velocity, pressure, tempera-
ture and density, all of which depend on the position and time. These are
considered to be related to information in games for example. We consider
that information is produced as the result of motion of information parti-
cles. Solso shows that motion of visualized fluid particles is detected by the
eye through light, having enormous high speed (3x1010cm/s), and is almost
instantaneously mapped on the retina of the eye. We consider that during
this process, through fluid particles are transformed into information parti-
cles. The eye and brain work together in collecting light and in processing
the information particles.

“The eye collects light and passes it to the neural network in the brain,
which processes it and then redirects the eye to scan elsewhere. Visual
signals from the physical dimensions enter the eye as light and are normally
recorded on the retina as two-dimensional images. The brain interprets two-
dimensional visual images as having three-dimensions by use of contextual
cues and knowledge of the world as gained through a lifetime of experience.
Electromagnetic signals or photons due to light carrying the information
on the motion of visualized fluid particles are converted to electrochemical
signals and passed along the visual cortex for further processing in other
parts of the cerebral cortex. It is, therefore, considered that flow in physical
world can be faithfully transformed to that in eye and brain (referred to
informatical world here after). If a flow phenomenon due to the motion
of fluid particles in physical world can model an information phenomenon,
the latter must be caused by the same motion of information particles in
informatical world. Thus, in this study it is essential to find correspondences
between a flow and information phenomena.”

“Imagine that the assumed flow is visualized with neutral buoyant par-
ticles, for example. Motion of the visualized particles is detected by the
eye almost instantaneously through the light having enormous high speed
(3x1010cm/s) and is mapped on our retina, so that during these processes,
motion of fluid particles is transformed into information particles. This is
why motion of the fluid particles is intact in the physical world, but only
the reflected light, or electromagnetic wave consisting of photons can reach
the retina. The photons are then converted into electrochemical particles
and are passed along the visual cortex for further processing in parts of the
cerebral cortex. The photons and/or electrochemical particles can be con-
sidered to be information particles. It is, therefore, natural to expect that
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flow in the physical world is faithfully transformed to that in the informat-
ical world. During this transformation, flow solution in the physical world
changes into the information in the informatical world” [47].

From Newton’s second law (F = ma) game refinement theory asks, what
are the correspondences of force, mass and acceleration in the light speed
world of information? There is already a significant take-away. However
slight, if information has any mass at all, then it can be shown to flow
not only metaphorically, but in the same manner as fluid, possibly even
governed by the very same laws. The ramifications are far-reaching, and
unfortunately far beyond the scope here today.
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Figure 3.1: Correspondences of physical world and informatical world in the
game information dynamic model
[47]
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Chapter 4

Towards Verification with
BAMING

This chapter is an updated and abridged version of work previously pub-
lished in

1. Nossal, N. (2015). Brain Activity Measurement in Gaming: BAM-
ING, International Review of Management and Business Research 4-
2-1, 373-386.

2. Nossal N., Tsuchiyama, N., Hidaka, S., and Iida, H. (2012). fNIRS
survey of brain function at the moment of winning. IPSJ Symposium,
6, 179–182.

In light of the preceding chapters, it has been considered that some
additional laboratory experimentation might be necessary or useful for ex-
panding upon and affirming the basic concepts of game refinement theory.
What follows is survey work in the science of brain imaging of gamers dur-
ing gaming (BAMING), with some preliminary work in the use of BAMING
to describe the correlation of activation in the gamers brain regions of in-
terest with the arrival of the critical position in a game. Critical positions
were discussed in the context of original game theory for their relevance to
the tools of game sciences, and identified as an interesting point of study
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bearing some relation on one of the bases of game refinement theory: the
acceleration of game information in the end game.

Neuroanatomy is a mature field where research has advanced to the
finest details of the most microscopic levels of function and connectivity.
The science of functional brain activity measurement is a sub-field still in
its infancy where researchers are focused mainly on identifying the loca-
tions of neural activation under various cognitive stimulation. Advances
are progressing and accumulating at a steady pace. University of Wash-
ington researchers Rao and Stucco [4] posted an experimental result online
purporting to show the first instance of the use of a human brain-to-brain in-
terface. Though some peers were understandably critical of their method of
publication, Rao and Stucco at least showcased an interesting development
with major implications for therapeutic use, using electroencephalography
(EEG) and a transcranial magnetic stimulation device. See also Grau et al.
[27] for more about advances in brain to brain interfaces.

4.1 Brain Imaging

Technologies like fMRI, positron emission tomography (PET) and x-ray
computed tomography (CT or CAT scan) provide excellent spatial resolu-
tion and the ability to show oxygenation or metabolic processes in action,
even deep within the basal structures of the brain, however the sensitivity
and massive configuration of the hardware renders the subject immobile. So
while those are superior qualities for medical purposes and research, fMRI,
PET and CT present special challenges for research on people during normal
activities. What fNIRS loses in terms of depth of measurement and spa-
tial resolution, it makes up for with superior usability, mobility and safety
to subjects and operators. At the time of this writing, scientists wanting
to image the functional brain during any activity requiring more than fa-
cial, ocular or the most minimal of head movements need EEG or fNIRS.
Only fNIRS can image cortical blood-oxygen level dependent (BOLD) sig-
nal changes of mobile participants. Marco Ferrari and Valentina Quaresima
[22] have noted in their review of the history of fNIRS for brain measure-
ment that “Hitachi has introduced two battery operated wearable/wireless
systems suitable for performing fNIRS measurements on adult [prefrontal
cortex] PFC; i.e. a 22-channel in 2009 (WOT) and a 2-channel in 2011
(HOT 121B). Both instruments are currently only available in Japan.” The
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Figure 4.1: Full mobility 22-channel fNIRS array
(courtesy Fujinami Laboratory, JAIST School of Knowledge Science)

Hitachi WOT-220R wireless fNIRS headset is shown in Figure 4.1. With
temporal resolution of 5 Hz and analytical capability sufficient for produc-
ing cortical activation maps, measurements can be interpreted graphically,
or with reference to an average brain (Figure 5.2).

Frans Jobsis discovered that near infrared light could penetrate skin,
bone and most tissues of the human body except hemoglobin, which absorbs
some. Neurons, despite their large energy requirement, do not store oxygen
and glucose. During activation neurons receive these from the blood. Neural
activation causes increased flow of oxygenated blood to the active areas as
well as increasing the flow of deoxygenated blood from the active areas, i.e.
neuro-vascular coupling.

The development of fNIRS and functional magnetic resonance imaging
(fMRI) for brain imaging are tied to the discovery of the BOLD signal in
1990. In that year, Seiji Ogawa and colleagues [77] discovered that minute
fluctuations in blood oxygen levels could be used to effectively measure,
among other things, the functioning of the brain during MRI. Being able to
detect the BOLD signal also forms the basis of fNIRS. Villringer and Chance
[105] recognized that “optical measurements could be performed in walking
people or under other natural conditions that are not easily accessible by
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Figure 4.2: Images of fNIRS data on average brain
(courtesy Hideo Shinagawa, Institute of Social and Economic Research,

Osaka University)
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other functional methods.” Mobility, ease of use, and accessibility are prime
factors both for cognitive experimentation, and for user interfaces.

4.2 Functional Brain Measurements of Gamers Dur-
ing Gaming (BAMING)

BAMING (Figure 4.3) is the intersection of the physical world of brain mea-
surement of gamers, and the informatical world of games and information.
Development is growing along all axes, and the middle line (BAMING) could
be of particular interest for the development of game refinement theory. The
neuroscience side, with exciting new projects like the ambitious attempt to
map the entirety of neural interconnectivity, the Human Connectome, is
itself a cross-study of applied theoretical graph theory and neuro-anatomy
[32] [96] [95]. On the more theoretical side of BAMING, Games-with-a-
purpose, where players’ inputs to an ostensibly recreational game are used
for inputting to some other purpose of the game designer [2] and serious
gamers learn vital skills, e.g. in game simulations [7]. The building of
brain-machine interfaces (BMIs) is an exciting new area of discovery, iden-
tified by Matthews et al. [64] as best served by fNIRS. At the same time
most fNIRS researchers recognize that fNIRS is not yet a mainstream BMI
technology, and has yet to be fully exploited [64] [20]. Prior experiments
in BAMING centered on economic gamers and recreational gamers in other
contexts appear on parallel axes between the more theoretical line of this
BAMING project, and the more applied science of brain activity measure-
ment. The seemingly unanimous opinion of researchers in fNIRS and in
gaming is that there is that there is a need for more experiments in both
fields. We recognize this to be an opportunity for rapid progress in the field
of fNIRS for theoretical gaming.

4.3 Survey of BAMING Experiments

Studies of players of recreational games with fNIRS began in the middle
of the previous decade. Matsuda and Hiraki [63] reported 21 five-minute
long trials of 13 right-handed 7-14 year olds playing either one or both of
two different video game types–a fighting type, and a puzzle type. They
found decreasing oxyHb during the game in children, but had also reported
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A research map of BAMING related fields. The y axis Brain Measurement
of Gamers is part of the physical world, while the x axis Game Sciences,
starting with expected utility theory and game theory is theoretical. In
between are some of the applications derived from or directly related to
the two, including those currently under construction (dashed line) such as
the Brain Connectome, affective gaming, strong AI, and general gaming.

Figure 4.3: BAMING
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the same in adults in their previous study referenced in the same work.
Nagamitsu et al. [70], responding to fears of the general public that video
gaming could be detrimental to the human brain, performed nine trials on
six children and six adults (three male, three female per group) during a
hand-held video game. While Nagamitsu does not report any necessarily
detrimental effects, the result adds to the body of evidence we seek to build
for understanding the substrates of neural connectivity and interaction dur-
ing games. They reported a possible age-dependent difference in the Hb
oxygenation of the dorsolateral PFC (positive for adults, negative for chil-
dren) which in hindsight also suggests a top-down modulation for the adult
players but not for children.

In 2008, Audrey Girouard led a group of computer scientists and biomed-
ical engineers from Tufts University to produce a ground breaking result in
brain activity measurement of humans during gaming [25]. They sought to
prove, using a two-channel fNIRS device and the NASA Task Load Index,
that researchers could determine whether a subject was at rest, playing
an easy version of Pac-Man, or a difficult version of Pac-Man. They re-
ported that indeed they could determine with 94 percent accuracy whether
a player was resting or playing, and 61 percent accuracy whether the player
was playing the difficult version or the easy version. While this experiment
was not the first brain measurement during gaming experiment ever, the
attempt to measure differences in stress intensity of a player’s experience
using brain oxygen level dependent signals was largely successful. In some
regards, it might seem like a very modest advance–using both user-reported
and brain measurement data, with a wide margin of error it could be deter-
mined whether a person was playing the easiest, or the most difficult setting
on Pac-Man. Another way to look at this result however could be amazing:
Using fNIRS technology, the Tufts group could, to an extent, measure how
the player was feeling or thinking during a 30 second window, which signifies
the earnest beginnings of measuring human mental experience. Using the
improved fNIRS and other technology, such as EEG or heart/respiratory
rates, with confirmation by self-reporting, it could be very interesting, and
useful to see how far that margin of error can be mitigated, and to see
more and finer distinctions in functional brain measurement during gaming
activity. Refinements on the method could be used to help find the mea-
surable similarities believed to exist among players, as the result of various
game dynamics such as information acceleration at the time of experiencing



60

Entertaining games have a great deal of uncertainty until the final moments
of the game. Steadily progressing uncertainty of game outcome, like the
roughly 45◦ curves, and games which progress quickly to certainty of game
outcome (concave curves) are less entertaining.

Figure 4.4: Uncertainty of game outcome

[46](by permission)

a critical position.

Since the Girouard experiments, several more studies have been pub-
lished in a similar direction. Hoshi et al. [38] published results suggesting
the possibility of recognizing emotional states, i.e. pleasant or unpleasant,
using fNIRS. The work of identifying brain regions related to emotional
responses using fNIRS is in its very beginnings, and seems to be gaining in-
terest [68] [20] [56]. More recently Ono et al. [79] conducted four trials each
of 26 adults while playing a dance game Dance Revolution, measured in the
left side frontopolar cortex (FPC) and left middle temporal gyrus (MTG).
Ono reported a remarkable separation of game (dance) performance in rela-
tionship to frontopolar oxyHb and sustained oxyHb in the middle temporal
gyrus, with the lower performing players recording higher FPC, and lesser
MTG activation, and high performers having decreased “suppressed” FPC
and more persistent MTG activation, as evidenced by oxyHb.
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It is necessary for operators of brain imaging platforms to develop “x-ray
type knowledge” [85] of all the brain’s structures, similar to that of neurosur-
geon. To highlight the relationship of the outer surfaces with the underlying
cortical structures, the cranium is removed from the supraorbital process
and along the zygomatic arch and down the zygomatic process. The coro-
nal suture, superior temporal line, and pterion are replaced as landmarks.

Figure 4.5: A visual for the alignment of the mobile wireless fNIRS headset
on living subjects over regions of interest (ROI).
(photo by Nathan Nossal, courtesy Dr. Albert L. Rhoton Neuro-
Microanatomy Laboratory)
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Nossal et al. [74] attempted a BAMING experiment designed to mea-
sure, control and analyze fNIRS data for a player engaged in gaming. The
experiment identified the objective for that observation; a critical position
in gaming, as well as several design and implementation challenges. We
refer to the recognition of players’ arrival at a critical position as a Wakatta
Moment, because of the Japanese word meaning “understood” or “got it.”
The Hitachi WOT-220R wearable infrared laser topography headset and
associated hardware and software were employed.

It tends to be helpful for game experimental subjects to be analytically
skilled, highly motivated, and playing a game which is well-understood and
practiced before proceeding. In early game theory experimentation, albeit
in the more traditional normative economic games, insensitivity to player
motivation or incentives, and failures to present the game for maximum
elicitation of the target behavior often led to specious results (i.e. without
getting players to participate fully or realistically) [13]. Still, the same prin-
ciples apply, with the exception that only a controlled familiarity with the
puzzle, rather than practice was allowed, as will be shown. A game with
the following characteristics was sought:

• one player alone can play

• has a time limit for completion

• has an incentive for winning

• is fun or interesting to play

• has never been played by the subject

A puzzle in the shape of an unfolding Kepler polyhedron (a star) was
selected. The star can be inverted and reassembled in a new color, at
which position the puzzle is solved. Strictly speaking, the solving of a
puzzle does not make a “game,” but a one-player game can be created from
most any activity if a time constraint is imposed. A (rather generous) time
constraint of four minutes was imposed. It would be considerably simpler
to identify a moment of winning, it was thought, so the time constraint
was chosen assuming that all participants would complete. To increase
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motivation, participants were informed that winners would receive a very
modest prize. Prizes were later revealed to be packets of cookies, trinkets,
or gift certificates worth about 200-300 Japanese yen (2-3 USD).

Participants were shown the puzzle, and asked if they had ever seen
it before or did they know how to solve it. As long as the answer was
“no,” participants were told that at the start of the clock, they would
receive the puzzle, which they were to disassemble, and reassemble in a
new color. Eleven participants wore the headset for measurement of oxy-
genation/deoxygenation in their frontal cortices while they played a simple
one-player puzzle game. Once the information of winning (or losing) was
presented, a neural response was expected to be discernable in the oxygena-
tion record within a few seconds of stimulus. According to spontaneous
utterances of participants such as “Oh! Is that it?” as well as a post-trial
survey, ten out of the eleven participants did not realize they were close to
solving the puzzle. Four were even unsure of having solved it even a few
seconds after completion. Data was selected from a ten second period five
seconds prior and five seconds post event stimulus of a “Wakatta Moment”
or, in the case of no discernable “Wakatta” moment, the moment of solving
the puzzle. Channels 11 and 12 (over the longitudinal fissure and parts of
the left and right superior frontal gyri) were selected for analysis. Numeri-
cal waveform data (Figure 4.6) obtained from the WOT-220 was analyzed.
Linear least-squares were applied to the eleven data sets. 6 rising and 5
declining oxygenation patterns were found in the data analyzed. Average
oxygenation from the eleven records is shown in the Figure.

Post-data analysis it was determined that non-uniformity of the time
of stimulus compromised the ability to reliably compare records from one
participant to another. This fact was determined to preclude the reaching of
any significant results in the experiment, and work to assess group average
oxygen change with the removal of individual means was stopped. Although
conclusive fNIRS evidence of that Wakatta Moment was not immediately
found in the first trial, the experience positions any like-minded group of
game researchers or brain researchers to carry out the next attempt to
substantiate the moment of recognition of winning/losing in the human
player’s brain.
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Oxygenation values for 11 participants (Columns 1-11) and the mean aver-
age (Column 12) for Channel 12 of the WOT-220 Wireless fNIRS System.
Five values are recorded per second.

Figure 4.6: Raw waveform data captured by the WOT-220 fNIRS system
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The figure below shows the mean average O2 Mol/L (y-axis) and time in 50
increments of 0.2 seconds (x-axis); 10 seconds total.

Figure 4.7: Average oxygenation during the 5 seconds pre- and post- solu-
tion of a puzzle under time constraint
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4.4 BAMING and Game Refinement Theory

It has been asked why anyone should bother with a new brain imaging ex-
periment, when we could simply ask gamers “Did you feel excited at that
time?” and such questions. Indeed, the gamers should be asked this, but
few participants are capable of answering precisely which part of their brain
was doing the work, or which stimuli might correlate to the changes in brain
activation. It is hoped that brain imaging studies will shed some light on
this question, and prove or disprove what has been hypothesized about the
reaction of gamers during game progress, by elucidating a statistically sig-
nificant brain oxygen pattern simultaneously with the arrival of information
of the game outcome.

Players must self-evaluate during the course of games. It is believed that
the acceleration of information at game end has a direct effect on the state of
players (or observers). Game refinement theory hypothesizes that this is also
a decisive measure of a game’s entertainment, as evidenced by a close game,
undecided until the very last move provides more tension and excitement
than a blowout victory by one clearly superior side. Furthermore, it is
presumed that the marked area under the curve in the Figure 1.1 (right
side) is an approximation of a final and decisive critical position of the
game. This hypothesis can be strengthened by finding the information of
gamers’ experience, whether in terms of time, duration, or intensity. As Iida,
Sutiono, Takeuchi and others have stated, there is a deficit of knowledge
of the “physics of [information in] the mind.” Work using fNIRS in games
promises to widen that vista. A functional brain survey of the players to find
the critical moment of cognition could also be useful for understanding the
time and the location in the brain that players are thinking or feeling about
this impending result in end games. Any experimental result identifying the
area of brain activation at the arrival of the critical position would certainly
hold value for both disciplines. On a game tree, the critical position is that
node which leads to the inevitability of an outcome, such as a win, a loss,
or a draw. In the mind of the player the critical position is the moment
when that crises manifests. It can be expected that in the mind of the
player, the arrival of a critical position marks a moment of change from a
player’s focus on evaluating and deciding moves to something else, namely
resignation or victory. We expect results that will indicate a change from
high-level, top-down regulatory mechanisms during play, as per Ono et al.
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[79], with a return to more middling levels after most of the information of
winning or losing is presented.

In the case of chess, the depth of lookahead would be a factor compli-
cating enough to render the experiment rather difficult, if not useless. A
great player might envision some 20 or more plies beyond the present board.
Correlating the informatical critical position and the player’s recognition of
the fact would be an amazing yield, if it could be done! Instead, a game
with only a few plies, where the arrival of the critical position is either a)
controlled by the design or the administrator of the experimental game, or
b) well-enough defined so that it is exact and unequivocal. At this early
juncture in the study attempting to synthesize the uses of various sciences,
it seems wise to strive for simplicity and economy.

Information of the game and its outcome is encoded somewhere in the
brain. Girouard et al. [25] proved this dramatically with the successful use
of fNIRS to evaluate player experience of a Pac-Man game. We know that
the critical moment must come when players (or observers) greet victory
and acknowledge defeat. We suppose that this moment comes just prior to
the end of game after delivery of the information of the final critical po-
sition, and that the event manifests physically in the forebrain as well as
autonomic structures. It is likely to also include the calming responses of the
parasympathetic nervous system, as like in a post-acute stress response [53]
[78]. The primary neural actors for that response, the amygdala, hypotha-
lamus and pituitary gland are too deep in the brain to be directly measured
by fNIRS, however we are also interested in the significations of that event
in the areas of the outer cortex. fNIRS can detect BOLD signal changes
in the outer cortical areas of the forebrain where it has been shown to be
effective for locating indicators of higher cognition, and emotion [22] [97].
There are also several other well-known biological indicators for excitement
such as heart and breathing rates, sphincter flexion, pupil dilation and va-
sodilation. Monitoring these in the game player with the event stimulus of a
controlled critical position will provide the opportunity to identify these in
the player experience, as well as the opportunity to categorize player BOLD
signal responses among players. Successful experimentation in this direction
would naturally lead to bigger and better things, such as possibly experi-
mentation leading to more understanding of the physics of information flow
inside the human brain.

The PFC presents good measurability for “emotionally-charged tasks”
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[97], such as the event of winning or losing a game. The 22 channel WOT-
220 is presumed to be capable of measuring any of 22 channels extending
in a semi-circle, roughly from the frontal to the temporal poles. The outer
channels 1-4 and 19-22 often fail to record reliable data however, possibly
due to the presence of hair, or gaps caused by the curvature of the headset
over players’ crania. In our experience without shaving participants’ heads,
the reliably measurable regions of the cranial surface are over the frontopolar
(FP), orbital (O), ventrolateral (VL), dorsolateral (DL), and ventral ante-
rior (VA) PFC. The VLPFC, the DLPFC, or the OFC are known regions
relating to higher planning, decisions, rewards, and in the case of the OFC
and VLPFC, inhibition of surprise, fear and sensory inputs [37]. Each of
these regions could hold interest for the task, and additionally the superior
frontal gyrus (SFG) has been identified in Connectomic studies as a hub of
connectivity for the whole brain [26]. Using the wireless headset (in Fig-
ure 4.1), an upward adjustment of 4 centimeters on the average wearer’s
forehead permits measurement of the SFG and much of Brodmann area
9. Channels 6 and 18 are positioned to monitor the right and left VLPFC
respectively, and channels 9 and 15 can monitor the region over the OFC.



Chapter 5

Conclusions and Future
Work

Earlier it was asked; Can the logistic model of game uncertainty
developed for board games be applied more generally, such as to
video games, continuous movement parlor games or sports?

In connection with this thesis, several games and sports were reviewed
and analyzed under the game refinement theory model of game progress.
Although the original measure, and the modified version of game refine-
ment for continuous games and sports is rather simple, it was found to be
applicable to other game types. Using the model of game progress indeed
produces game refinement values for some continuous movement games that
are in or near the window of game refinement of sophisticated board games
from studies past. Several approaches were attempted, and tentatively it
was found that the number of tries and goals as relative measures of the
branching factor and depth of game could be used across several different
games and game types. Extending the model of game progress in this way
requires a simple approach, holding all other things equal. Still, clear and
intuitive measures for G and T are not always readily available for every
game, and not all of the attempts yielded the expected results.

The question encountered while trying to decide whether to score for
rounds or matches in golf is a good example. The process of sophistication
spanned centuries and continents, and would appear to be sufficient if not
ideal for this purpose. At least to the degree that games can be fully evolved,
game information in golf would seem to have little room left for change.
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The number of holes per round and the ideal number of tries to achieve
this have both been long-ago determined, with no major changes being
expected. Assuming the perfect round score for golf validates our method
in the case of golf, however departing from the method exactly as it was
applied to other score limited games could portend some trouble with the
model. Likewise, trying to apply the model rigidly seems to produce a value
of game refinement that does not pass the sniff test in the case of golf.

The measures we seek relate to the informational complexity of games
and their respective trees, and any meaning those measures can provide us
for analyzing the entertainment and evolution of games. The use of defined
terms “sophistication” and “refinement” have other uses in English which
can be quite emotional and connotative. Although there is some slight con-
nection intended with the originals, obviously they are not interchangeable.
While assisting with the analysis of game refinement in the case study of
tennis, one tennis aficionado confessed a feeling of great shock and dis-
appointment that his beloved sport registered GR values only in the low
range of 0.050 to 0.064. It is necessary to stress that the findings are only
descriptive, not prescriptive. Prior observations imply that informational
complexity and its rate of flow in games is directly tied to game entertain-
ment, and that sophisticated games will tend toward a similar measure of
that information. This is not the same as saying “Tennis is not a fully so-
phisticated game” or “Tennis is less entertaining than U.F.O. Catcher” or
any such affects.

Preliminary work with hockey seems to support the use of this metric,
at least according to the dominant narrative regarding a “goal draught” in
recent seasons. While the number of shots per NHL hockey game holds
relatively stable, and the percentage of successful shots only slightly less
stable over time, it can be seen that raising the GR value of hockey entails
either a significant increase of shots, or increased shot accuracy. To increase
the number of goals per game without completely upsetting hockey’s long
and cherished history will require further changes to the offensive balance.
A few solutions are known to be under consideration such as stricter rule
enforcement (more or longer penalties), increasing the offensive zones and
opportunities to shoot, and increasing the available shooting area, i.e. lim-
iting goaltender pads’ size or increasing the size of goal frames. With the
single exception of increasing goal frames, each of the foregoing offense-
favoring rule changes have already been attempted. Seen through the lens
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of game refinement theory, it is understood that acting to increase offense
in the NHL would likely raise the measure of GR in hockey closer to that
of other games.

There is some tension inherent in the proposition that offense, or at
least scoring, needs to increase in order to raise entertainment in hockey.
What fans seem to want (more fighting and more scoring, according to one
professional) may be at odds with that which produces winning teams with
statistical regularity, namely a strong defense. Similarly among boxing afi-
cionados, it is said that an impenetrable defense (recently that of Floyd
Mayweather) trumps a superior offense (Mayweathers erstwhile opponent
Manuel Pacquiao). Those same fans also claim to prefer to watch more
daring, offense-oriented boxing matches. At heart is the question–which is
more entertaining, a high-scoring hockey team, or a hockey team with a
high winning rate? Unfortunately, the model of game progress, although
it can tell a value for game refinement, has no method for evaluating com-
peting factors like this. The NHL, like most governing bodies, tends to act
conservatively and incrementally in addressing its concerns. FIDE (chess),
UEFA and FIFA (football), and the other sport and game leagues must use
the same cautious approach as the NHL in regards to the delicate balance
of managing the sophistication processes in their hands.

Games continually evolve in order to maintain fairness, safety, or enjoy-
ability for players and spectators. In the case of score-limited sports, eval-
uation with the game progress model seems to prove that many of the
changes in rules, particularly scoring systems, result in game refinement
values nearer to those found previously in other-type games. A pattern
of service-type games eschewing their traditional scoring systems seems to
have been established with the switch in volleyball from side-out scoring
to the rally system in 2000. Badminton and table tennis followed with
major changes soon after. The primary reason for the changes to scoring
systems is to make those score-limited sports easier to televise, and easier
for casual spectators to follow. Whether knowingly or unknowingly, the
governing boards of these sports have been actively involved in controlling
the breadth and length of game of their respective games. Prior to 1974 the
U.S. Open and French Open were played on grass courts, which have been
known for their fast, sometimes slippery surfaces, and given to a particular
type of game play. The last remaining Major to continue the tradition of
grass courts, the Wimbledon has acted to harden the underlayment and slow
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the upper surface. Perhaps more significantly, in terms of game refinement
theory, from 1980 tiebreak sets were introduced to the Majors except in the
final set, which only the U.S. Open allows by tiebreak. Tennis is among
the older, possibly more conservatively controlled sports, but we see these
increments moving tennis closer toward a 0.07 GR-value. The GR-value of
volleyball rose from 0.036 to 0.055, which this work attributes directly to
the switch to rally-point scoring. Badminton’s GR-value fell from 0.121 to
0.086 in response to service and scoring changes, and table tennis, which
started with GR around 0.075, did not deviate significantly from that value
as a result of reduced game scores balanced with game speed changes due
to equipment modifications.

A prospective route toward the expansion of game refinement theory in
an experimental vein was discussed. Previously it was asked; Are there
any intersections of the theoretical world of all game studies, in-
cluding game theory, game refinement theory and others, with
the applied world of functional brain imaging that could indicate
a promising goal for these studies? One that leads to a bridge
between information and mind? fNIRS presents as a promising new
technology for brain to game interfaces and also for cognitive game re-
search. One or more new experiments could be done to replicate, verify and
improve the result of Girouard et al., distinguishing the difficulty levels of
play. Using mobile fNIRS along with heart rate, blood pressure, and video
monitoring, it should be possible to match or exceed their 61 percent suc-
cess rate for differentiating between high and low difficulty. The inclusion
of cross-physiological measures and an abbreviated form of the NASA-TLX
or similar questionnaire could also be used to help interpret the results.

We propose a survey of 20 Japanese, or Japanese and American game
players. The experimental vehicle will be able to isolate the particular
moments and parameters of game progress, and the areas of the brain, and
stimuli to be measured. A well-controlled game in terms of game progress
such that the progression from opening to mid-game, end-game and win
or lose is optimal, and could be achieved in a number of ways, such as
with a prisoner’s dilemma with approval stage or a T-puzzle. Previous
studies have used a timer to start and stop a continuous-play game. In
order to better elicit the effects of winning or losing, a step-based event
stimulus could be used to construct discrete sets of game information. A
four or five-move game culminating in a decisive win or lose in the final
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step will be used, and the rules clearly explained to participants shortly
before testing. In the well-controlled time frame, a tolerance of less than
3 seconds deviation from the norm is expected. It has been noted that
3 seconds is the approximate time required to convert neural responses to
measurable oxygenation/deoxygenation patterns in the fNIRS medium. The
information of winning or losing is the stimulus. Return to base should be
expected within 30 seconds of the stimulus.

How do the physics of information operate, e.g. in the brains of
gamers? This remains an open question, and a question which motivates
this avenue of inquiry. The fields of functional brain imaging, theoretical
neuroscience, and experimental cognitive research are in states of very high
production. New approaches to data, new advances in optics and imaging,
and theoretical advances seem to be combined for an explosive growth of
knowledge now and in the future. Attempting to graph all neural connec-
tivity [95] and the study of information flow dynamics in the brain (and a
paper by that name) [83] have recently begun. There is reason to be opti-
mistic that the advancement from brain mapping to checking on how the
brain works and what information is could be on the near horizon.

The critical position on a game tree has relevance beyond chess or tennis,
or any other game, crossing into numerous other fields of thought, decision-
making and human endeavor. Game refinement theory comprises many
attempts to interpret the relationship of information complexity in games
and the human experience. The methods available are simplistic, and based
on assumptions which require more and more qualification of the results.
Assumptions bring noise. This is a beginning, based on a few intuitions and
observations, not yet an end by far. The support derived from BAMING
tends to raise more questions than it answers, but going forward into a
new period of vigorous and fearless experimentation promises much for the
future game refinement theory.
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Appendix A

Experimental Design

This is a the outline of an experiment for finding any correlation of an in-
formatical critical position and a cognitive critical position in a T-puzzle.

If necessary, proceed to wider survey of literature:

-More/different papers on T-Puzzle (e.g. Wajima, Abe, and Nakagawa)

-A paper on analysis (e.g. Tanaka, Katsura and Sato)

Premises:

* More than analysis, measurement, design must be correct (It’s OK to get
help with analysis, measurement.)

** Good design, which produces any result will prove something valuable
(but, poor design which produces any result “good” or “bad” still proves
nothing)

*** Is likely to collect analyze-able, statistically significant data of the as-
sociated brain activity (or alternatively, associated eye movement) around
a Wakatta Moment.

Definitions:

The Wakatta Moment–This requires a clear working definition, not arbi-
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Figure A.1: T-puzzle board and pieces

trary, and reproducible. In the information paradigm, the Wakatta Mo-
ment is the arrival at a critical position. The critical position is the first
node on the game tree which leads to that branch containing the solution
to the T-puzzle. In the cognitive paradigm, the Wakatta Moment is the
player’s own understanding of having arrived at the critical position. In
the case of the proposed T-puzzle, this would be e.g. key placement of the
pentagonal piece, the filling or not filling of the notch, and a corresponding
definitive curve, shape or value of brain/eye data. Actual values for the
data of Wakatta Moment must be decided during experimentation.

Components–

6 attributes

puzzle state

time

distance

more?

Puzzle State–

1-The key positions (attributes) of the puzzle pieces (i.e. the notched pen-
tagons relationship to trapezoids)?

2-What is the center of field?
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3-What is the given stage of development/distance to solution?

4-Is an indicator of the solver/players state

I. Process:
1. Define a physical working environment for the trials:

a. The four pieces of the T-puzzle (one-sided, or two-sided)

b. Size and shape of workspace (table) appropriate for the task

c. Appropriate color coding for: table, T-puzzle pieces, gloves...

d. Divide workspace (b.) into number of regions

2. Apparatus:

a. Black background, white grid (as in Figure, a zoned 2.5 cm 14 x 20
grid)

b. Wide-angle plasma lens video camera and I-bar support over (a.)

c. Durable non-reflective, bright color-coded T-puzzle(s)

d. Tobii Glasses eye tracking system (takes 4MB discs)

e. Hitachi WOT 220 fNIRS system

f. EKG machine

g. plenty of numerated mini discs for data recording

II. Test Metrics

1. Review use of Eye Tracker, EKG, fNIRS machines for the task

2. Test background, color for video monitoring and recording

3. Pilot experiment (guest-test)

→ can we measure? → can we clearly identify the (defined) Wakatta Mo-
ment?

3. Adjust/re-design after II.2. as necessary

III. Experiment

1. Apply for permission of the experiment under school and accepted inter-
national ethical guidelines for treatment of information, health, safety, and
handling of private personal data.

2. Begin advertising and interviews for subjects about 1 month prior. (Con-
trol for handedness and color vision. Observe gender, nationality, other fac-
tors?)
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3. Select and schedule 15-20 subjects

4. Conduct the experiments.

1 Instructions, Pre-tests–Is the task understood? Is the subject capable
and prepared for the task?→

2 Trials →
3 Identify critical position(s) →
4 Advances quickly to solution from 3

5. Analyze:
-What is the number of steps in the problem? (i.e. 1-thinking 2-assembling
3-disassembling 4-achieving a critical position 5-solving ?)
-Observe and record the working definition of the critical position or posi-
tions
-and failing positions
-and other, less critical positions

-What are the measurable cues of behavior?
(location and pupil movement from eye tracker; ∆ heart rate from EKG; ∆
brain O2 from fNIRS) → Interpret: indicators of ... engagement, difficulty,
others ?

6. Report
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