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from the Analysis of K.265/300e
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Abstract. Lerdahl and Jackendoff’s theory employed a tree in a repre-
sentation of internal structure of music. In order for us to claim that such
a tree is a consistent and stable representation, we argue that the differ-
ence of trees should correctly reflect our coginitive similarity of music. We
report our experimental result concerning the comparison of similarity
among variations on Ah vous dirai-je, maman, K. 265/300e by Mozart.
First we measure the theoretical distance between two variations by the
sum of the lengths of time-spans, and then we compare the result with
the human psychological resemblance. We show the statistical analysis,
and discuss the adequacy of the distance as a metric of similarity, which
moreover becomes a metrics of theory.

Keywords: Time-span tree, Generative Theory of Tonal Music, join/meet
operations, cognitive similarity

1 Introduction

Music theory gives us methodology to analyze music written on scores, and
clarifies their inherent features in a comprehensive way. There have been many
attempts to embody a music theory onto a computer system and to build a
music analyzer. In particular, some music theories employ trees to represent the
deep structure of a musical piece [10, 6, 11, 15, 1], and such a tree representation
seems a promising way to automatize the analyzing process. It is, however, widely
recognized that there are intrinsic difficulties in this; (i) how we can formalize
ambiguous or missing concepts and (ii) how we can assess the consistency and
stability of a fomalized music theory.

For (i), the approaches include the externalization of those hidden features of
music. For example, Lerdahl and Jackendoff [10] (the generative theory of tonal
music; GTTM hereafter) specified many rules to retrieve such information in mu-
sic to obtain a time-span tree, though they proposed only heuristics and missed
fully explicit algorithms. Thus, to formalize this theory, we have complemented
necessary parameters to clarify the process of time-span reduction [8]. Pearce
and Wiggins [14] build a model to derive as many features as possible from the
scores; these features contain the properties of potentially non-contiguous events.
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For (ii), we do not think there is an agreeable solution yet, but we propose to
assess the consistency and the stability of a formalized music theory based on our
cognitive reality. If the tree representation derived by a formalized music theory
is sufficiently stable and consistent, the distance between those representations
must reflect our human intuition on difference in music. Hence, if it is allowed
to compare the tree distance and our psychological difference and/or similarity,
we can evaluate the consistency and the stability of a formalized music theory.

Here, we look back at the studies on similarity in music. In music information
research, the similarity has been drawing attention of many researchers [19, 9].
Some of the reseachers are motivated by engineering demands such as music
retrieval, classification, and recommendation, [13, 7, 16] and others by modeling
the cognitive processes of musical similarity [4, 5]. Several types of similarity have
been proposed, including melodic similarity, e.g., van Kranenburg (2010) [18]
and harmonic similarity, e.g., de Haas (2012) [3]. The song similarity in MIREX
of every year is recognized as an important category in the contest [12]. All
these viewpoints suggest the importance of quantitative comparison, and thus
we employ a numeric distance in measuring the cognitive similarity.

We have proposed a notion of distance among the time-span trees [17], how-
ever, in this research there lacked the discussion on the perception of similarity.
As a result, it was difficult for us to explain that the distance could be a metric
of similarity [9, 13, 18, 3]. The contribution of this paper is that we have actually
conducted a psychological experiment on the similarity among 12 variations in C
major on Ah vous dirai-je, maman, K. 265/300e by Wolfgang Amadeus Mozart,
in comparison with the corresponding time-span distance.

This paper is organized as follows: in Section 2 we briefly summarize the
notion of time-span tree and reduction. In Section 3, we introduce our notion
of distance in time-span trees. Then, to apply the notion to arbitrary two mu-
sic pieces, we generalize the distance in Section 4. In Section 5, we report our
experimental result. First we measure the distance between two variations by
the tree distance, and then we compare the result with the human psychological
resemblance. We show the statistical analysis, and discuss the adequacy of our
measure as a metric of similarity 6. Finally we conclude in Section 7.

2 Time-Span Tree and Reduction

Time-span reduction in Lerdahl and Jackendoff’s Generative Theory of Tonal
Music (GTTM; hereafter) [10] assigns structural importance to each pitch events
in the hierarchical way. The structural importance is derived from the grouping
analysis, in which multiple notes compose a short phrase called a group, and from
the metrical analysis, where strong and weak beats are properly assigned on each
pitch event. As a result, a time-span tree becomes a binary tree constructed in
bottom-up and top-down manners by comparison between the structural im-
portance of adjacent pitch events at each hierarchical level. Although a pitch
event means a single note or a chord, we restrict our interest to monophonic
analysis in this paper, as the method of chord recognition is not included in the
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Fig. 1. Reduction hierarchy of chorale ‘O Haupt voll Blut und Wunden’ in St.
Matthew’s Passion by J. S. Bach [10, p.115]

original theory. Fig. 1 shows an excerpt from [10] demonstrating the concept of
reduction.

In the sequence of reductions, each reduction should sound like a simplifi-
cation of the previous one. In other words, the more reductions proceed, each
sounds dissimilar to the original. Reduction can be regarded as abstraction, but
if we could find a proper way of reduction, we can retrieve a basic melody line
of the original music piece. The key idea of our framework is that reduction is
identified with the subsumption relation, which is the most fundamental relation
in knowledge representation.
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3 Strict Distance in Time-Span Reduction

In the section, the basic formalization of time-span trees is given as a prerequisite
for extending our framework to be described later. Since the contents presented
in the section overlap some of those in [17] and contain rather mathematical
stuff, the readers who first want to comprehend an outline of the contributions
could move onto the experimental section. Then, the readers would come back
here afterward.

3.1 Subsumption, Join, and Meet

First we define the notion of subsumption. Let σ1 and σ2 be tree structures. σ2

subsumes σ1, that is, σ1 ⊑ σ2 if and only if for any branch in σ1 there is a
corresponding branch in σ2.

Definition 1 (Join and Meet) Let σA and σB be tree structures for music A
and B, respectively. If we can fix the least upper bound of σA and σB, that is,
the least y such that σA ⊑ y and σB ⊑ y is unique, we call such y the join of σA

and σB, denoted as σA ⊔ σB. If we can fix the greatest lower bound of σA and
σB, that is, the greatest x such that x ⊑ σA and x ⊑ σB is unique, we call such
x the meet of σA and σB, denoted as σA ⊓ σB.

We illustrate join and meet in a simple example in Fig. 2. The ‘⊔’ (join)
operation takes quavers in the scores to fill dtrs value, so that missing note in
one side is complemented. On the other hand, the ‘⊓’ (meet) operation takes ⊥
for mismatching features, and thus only the common notes appear as a result.

qq e
‰ ⊔

qq e‰
=

q
q ee

qq e
‰ ⊓

qq e‰
= qq

Œ

Fig. 2. Join and meet

Obviously from Definitions 1, we obtain the absorption laws: σA⊔x = σA and
σA⊓x = x if x ⊑ σA. Moreover, if σA ⊑ σB , x⊔σA ⊑ x⊔σB and x⊓σA ⊑ x⊓σB

for any x.
We can define σA ⊔ σB and σA ⊓ σB in recursive functions. In the process

of unification between σA and σB , when a single branch is unifiable with a tree,
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σA ⊔ σB chooses the tree while σA ⊓ σB chooses the branch, in a recursive way.
Because there is no alternative action in these procedures, σA ⊔σB and σA ⊓σB

exist uniquely. Thus, the partially ordered set of time-span trees becomes a
lattice.

3.2 Maximal Time-Span and Reduction Distance

In GTTM, a listener is supposed to construct mentally pitch hierarchies (reduc-
tions) that express maximal importance among pitch relations [10, p.118]. We
here observe a time-span becomes longer as the level of time-span hierarchy goes
higher. Then, we can suppose that a longer time-span contains more information,
and it is therefore regarded more important.

Based on the above consideration, we hypothesize:

If a branch with a single pitch event is reduced, the amount of information
corresponding to the length of its time-span is lost.

We call a sequence of reductions of a music piece reduction path. We regard the
sum of the length of such lost time-spans as the distance of two trees, in the
reduction path. Thereafter, we generalize the notion to be feasible, not only in
a reduction path but in any direction in the lattice.

We presuppose that branches are reduced only one by one, for the convenience
to sum up distances. A branch is reducible only in the bottom-up way, i.e., a
reducible branch possesses no other sub-branches except a single pitch event
at its leaf. In the similar way, we call the reverse operation elaboration; we can
attach a new sub-branch when the original branch consists only of a single event.

The head pitch event of a tree structure is the most salient event of the
whole tree. Though the event itself retains its original duration, we may regard
its saliency is extended to the whole tree. The situation is the same as each
subtree. Thus, we consider that each pitch event has the maximal length of
saliency.

Definition 2 (Maximal Time-Span) Each pitch event has the maximal time-
span within which the event becomes most salient, and outside the time-span the
salience is lost.

In Fig. 3 (a), there are four contiguous pitch events, e1, e2, e3, and e4; each
has its own temporal span (duration on surface), s1, s2, s3, and s4, denoted thin
lines. Fig. 3 (b) depicts time-span trees and corresponding maximal time-span
hierarchies, denoted gray thick lines. The relationships between spans in (a) and
maximal time-spans in (b) as follows. At the lowest level in the hierarchy, the
length of a span is equal to that of a maximal time-span; mt2 = s2, mt3 = s3.
At the higher levels, mt1 = s1 + mt2, and mt4 = mt1 + mt3 + s4 = s1 + s2 +
s3 + s4. That is, every span extends itself by concatenating the span at a lower
level along the configuration of a time-span tree. When all subordinate spans
are concatenated up into a span, the span reaches the maximal time-span.

Only the events at the lowest level in the hierarchy are reducible; the other
events cannot be reduced. In Fig. 3 (b), for the leftmost time-span tree σ1, either
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e1 e2 e3 e4e1 e2 e3 e4

   

s1 s2 s3 s4

(a) Sequence of pitch events and their spans 

σ1 σ2 σ3 σ4

            

mt1
mt2 mt3

mt4

  

mt1
mt3

mt4

 

mt1
mt4



mt4

(b) Reduction proceeds by removing a reducible maximal time-span 

Fig. 3. Reduction of time-span tree and maximal time-span hierarchy; gray thick lines
denote maximal time-spans while thin ones pitch durations.

e2 or e3 is reducible; e2 is first reduced then e3. For σ2, e3 is only reducible, not
e1 because e1 is not at the lowest level in the maximal time-span hierarchy.

Let ς(σ) be a set of pitch events in σ, ♯ς(σ) be its cardinality, and se be the
maximal time-span of event e. Since reduction is made by one reducible branch
at a time, a reduction path σn, σn−1, . . . , σ2, σ1, σ0, such that σn ⊒ σn−1 ⊒ . . . ⊒
σ2 ⊒ σ1 ⊒ σ0, suffices ♯ς(σi+1) = ♯ς(σi) + 1. If we put σA = σ0 and σB = σn,
σA ⊑ σB holds by transitivity. For each reduction step, when a reducible branch
on event e disappears, its maximal time-span se is accumulated as distance.

Definition 3 (Reduction Distance) The distance d⊑ of two time-span trees
such that σA ⊑ σB in a reduction path is defined by

d⊑(σA, σB) =
∑

e∈ς(σB)\ς(σA) se.

For example in Fig. 3, the distance between σ1 and σ4 becomes mt1 + mt2 +
mt3. Note that if e3 is first reduced and e2 is subsequently reduced, the distance
is the same. Although the distance is a simple summation of maximal time-spans
at a glance, there is a latent order in the addition, for reducible branches are
different in each reduction step. In order to give a constructive procedure on this
summation, we introduce the notion of total sum of maximal time-spans.

Definition 4 (Total Maximal Time-Span) Given tree structure σ,

tmt(σ) =
∑

e∈ς(σ) se.

When σA ⊑ σB , from Definition 3 and 4, d⊑(σA, σB) = tmt(σB)− tmt(σA).
As a special case of the above, d⊑(⊥, σ) = tmt(σ).
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3.3 Properties of Distance

Uniqueness of Reduction Distance: First, as there is a reduction path between
σA⊓σB and σA⊔σB , and σA⊓σB ⊑ σA⊔σB, d⊑(σA⊓σB, σA⊔σB) is computed
by the difference of total maximal time-span. Because the algorithm returns a
unique value, for any reduction path from σA⊔σB to σA⊓σB , d⊑(σA⊓σB , σA⊔
σB) is unique. This implies the uniqueness of reduction distance: if there exist
reduction paths from σA to σB , d⊑(σA, σB) is unique.

Next, from set-theoretical calculus, ς(σA ⊔ σB) \ ς(σA) = ς(σB) \ ς(σA ⊓
σB). Then, d⊑(σA, σA ⊔ σB) =

∑
e∈ς(σA⊔σB)\ς(σA) se =

∑
e∈ς(σB)\ς(σA⊓σB) se =

d⊑(σA⊓σB, σB). Therefore, d⊑(σA, σA⊔σB) = d⊑(σA⊓σB, σB) and d⊑(σB, σA⊔
σB) = d⊑(σA ⊓ σB , σA).

Here let us define two ways of distances.

d⊓(σA, σB) = d⊑(σA ⊓ σB, σA) + d⊑(σA ⊓ σB , σB)
d⊔(σA, σB) = d⊑(σA, σA ⊔ σB) + d⊑(σB , σA ⊔ σB)

Then, we immediately obtain d⊔(σA, σB) = d⊓(σA, σB) by the uniqueness of
reduction distance.

For any σ′, σ′′ such that σA ⊑ σ′ ⊑ σA⊔σB , σB ⊑ σ′′ ⊑ σA⊔σB , d⊔(σA, σ
′)+

d⊓(σ
′, σ′′) + d⊔(σ

′′, σB) = d⊔(σA, σB). Ditto for the meet distance. Now the
notion of distance, which was initially defined in the reduction path as d⊑ is
now generalized to d{⊓,⊔}, and in addition we have shown they have the same
values. From now on, we omit {⊓,⊔} from d{⊓,⊔}, simply denoting ‘d’. Here,
d(σA, σB) is unique among shortest paths between σA and σB . Note that shortest
paths can be found in ordinary graph-search methods, such as branch and bound,
Dijkstra’s algorithm, best-first search, and so on. As a corollary, we also obtain
d(σA, σB) = d(σA ⊔ σB, σA ⊓ σB).

Triangle Inequality: Finally, as d(σA, σB)+d(σB , σC) becomes the sum of maxi-
mal time-spans in ς(σA⊔σB)\ς(σA⊓σB) plus those in ς(σB⊔σC)\ς(σB⊓σC) while
d(σA, σC) becomes ς(σA ⊔ σC) \ ς(σA ⊓ σC), we obtain d(σA, σB) + d(σB , σC) ≥
d(σA, σC): the triangle inequality. For more details on the theoretical stuff, see
[17].

In Fig. 4, we have laid out various reductions originated from a piece. As we
can find three reducible branches in A there are three different reductions: B, C,
and D. In the figure, C (shown diluted) lies behind the lattice where three back-
side edges meet. The distances, represented by the length of edges, from A to B,
D to F , C to E, and G to H are the same, since the reduced branch is common.
Namely, the reduction lattice becomes parallelepiped,4 and the distances from A
to H becomes uniquely 2+2+2 = 6. We exemplify the triangle inequality; from
A through B to F , the distance becomes 2 + 2 = 4, and that from F through
D to G is 2 + 2 = 4, thus the total path length becomes 4 + 4 = 8. But, we can
find a shorter path from A to G via either C or D, in which case the distance

4 In the case of Fig. 4, as all the edges have the length of 2, the lattice becomes
equilateral.
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Fig. 4. Reduction lattice

becomes 2 + 2 = 4. Notice that the lattice represents the operations of join and
meet; e.g., F = B ⊓ D, D = F ⊔ G, H = E ⊓ F , and so on. In addition, the
lattice is locally Boolean, being A and H regarded to be ⊤ and ⊥, respectively.
That is, there exists a complement,5 and Ec = D, Cc = F , Bc = G, and so on.

4 Generalized Distance in Trees

In this section, we extend the notion of strict distance, to be applicable to two
different music pieces, which may not necessarily share a common-ancestor music
piece in terms of reduction. To this purpose, we need to relax the condition of
distance calculation.

4.1 Interval Semantics on Absolute Time Axis

In order to compare two different melodies, we need to place those at proper
places in a common temporal axis. Two arbitrary music pieces are possibly dif-
ferent from each other with a large variety; for example, a music piece beginning
with auftakt or syncopation, containing hemiola, and being at a double tempo
with the same pitch sequence. To handle such cases, we may need various types
of adjustments of two music pieces for comparison; for example, alignment by
the endpoints of music pieces and/or bar lines, and by stretching or compressing
to make the two of same length.

At present, we take the simplest approach to the adjustment in which two
music pieces are aligned only at the beginning bar line. Then, the join/meet op-
erations are applied to maximal time-spans without stretching or compressing
them. That is, when two temporal intervals have a common length, the result of
a join operation encompasses the temporal union of the two intervals, and that

5 For any member X of a set, there exists Xc and X ⊔Xc = ⊤ and X ⊓Xc = ⊥.
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of meet operation is exactly the temporal intersection (Fig. 5), where mt{1,2}
means a maximal time-span, respectively. The decision is underlain by the fol-
lowing assumption: the longer a time-span is, the more informative it is, as the
interval semantics of temporal logic [21].

mt1

mt2

time

join(mt1, mt2)

meet(mt1 mt2)meet(mt1, mt2)

Fig. 5. Generalized join and meet operations to maximal time-spans

4.2 Meet-Oriented Distance

In Section 3.3, we have shown that the distance via the meet and that via the join
become the same in the lattice of strict descendents of one common music piece.
However, when we are to apply two music pieces without a common ancestor, one
serious problem is that such equality of join/meet distance may not be promised.
First of all, we cannot calculate the join operation for all cases at present; for
example, if the supremacy of the heads of two trees do not match, the result of
the join operation is not defined (Fig. 6). In contrast, the result of meet operation
can be calculated in any case. Therefore, in this paper, we decide to calculate
the distance using the path via the meet d⊓ in Section 3.3.

Subtree Subtree Subtree Subtree
)join( ,

Subtree

A

Subtree

B

Subtree

A’

Subtree

B’

Fig. 6. Case of undefined result in join operation

Fig. 7 shows the excerpt from the Prolog program implementing the general-
ized join and meet operations. The join/meet operations are recursively applied
in the top-down manner. In the Prolog program, a node in a time-span tree is
represented by data structure (Tp > Ts) or (Ts > Tp), where Tp and Ts denote
subtrees (Fig. 8). Subscripts ‘p’ and ‘b’ represent that a branch is primary or
secondary, and the temporal order between them is shown by ‘<’ or ‘>’.
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join(X,Y,Join) :-

X = (Xp > Xs),

Y = (Yp > Ys),!,

join(Xp,Yp,Mp),

join(Xs,Ys,Ms),

Join = (Mp > Ms).

join(X,Y,Join) :-

X = (Xs < Xp),

Y = (Ys < Yp),!,

join(Xp,Yp,Mp),

join(Xs,Ys,Ms),

Join = (Ms < Mp).

join(X,Y,Join) :-

X = ( > ),

Y = ( < ),!,

Join = undefined.

join(X,Y,Join) :-

X = ( < ),

Y = ( > ),!,

Join = undefined.

meet(X,Y,Meet) :-

X = (Xp > Xs),

Y = (Yp > Ys),!,

meet(Xp,Yp,Mp),

meet(Xs,Ys,Ms),

Meet = (Mp > Ms).

meet(X,Y,Meet) :-

X = (Xs < Xp),

Y = (Ys < Yp),!,

meet(Xp,Yp,Mp),

meet(Xs,Ys,Ms),

Meet = (Ms < Mp).

meet(X,Y,Meet) :-

X = (Xp > ),

Y = ( < Yp),!,

meet(Xp,Yp,Meet).

meet(X,Y,Meet) :-

X = ( < Xp),

Y = (Yp > ),!,

meet(Xp,Yp,Meet).

Fig. 7. Prolog implementation of generalized join and meet operations (recursion part)

   
ns np np ns

mt t

(ns < np) (np > ns)

mts

mtp

mts

mtp

Fig. 8. Representation of time-span tree node in Prolog program

5 Experiment

We conduct two experiments using the same set of pieces: a similarity assessment
by human listeners and the calculation by the proposed framework. Set piece
is the Mozart’s variations K.265/300e ‘Ah, vous dirai-je, maman’, also known
as ‘Twinkle, twinkle little star’. The piece consists of the famous theme and
twelve variations of it. In our experiment, we excerpt the first eight bars (Fig.
9). Although the original piece includes multiple voices, our framework can only
treat monophony; therefore, the original piece is arranged into a monophony. We
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Fig. 9. Monophonic melodies arranged for experiment

extract salient pitch events from each one of two voices, choosing a prominent
note from a chord, and disregard the difference of octave so that the resultant
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melody is heard smoothly. In total, we have the theme and twelve variations
(eight bars long) and obtain 78 pairs to be compared (13C2 = 78).

For the similarity assessment by human listeners, eleven university students
participate in our study, seven out of whom have experiences in playing music
instruments more or less. An examinee listens to all pairs ⟨m1,m2⟩ in the random
order without duplication, where m{1,2} is either themeor variations No.1 to 12.
Every time he/she listens to it, he/she is asked “how similar is m1 to m2?”, and
ranks it in one of five grades among quite similar = 2, similar = 1, neutral = 0,
not similar = −1, and quite different = −2. At the very beginning, for cancelling
the cold start bias, every examinee hears the theme and twelve variations (eight
bars long) through without ranking them. In addition, when an examinee listens
to and rank pair ⟨m1,m2⟩, he/she should try the same pair later to avoid the
order effect. Finally, the average rakings are calculated within an examinee and
then for all the examinees.

For the calculation by the proposed framework, we use the meet-oriented
distance introduced in Section 4.2. From Definitions 3 and 4, the distance is
measured by a note duration, we set the unit of distance to one third of the
sixteenth note duration so that a music piece not only in quadruple time but
also in triple time can be represented. The correct time-span trees of the theme
and twelve variations are first created by the authors and are next cross-checked
to each other. Note that the meet operation takes into account only the con-
figuration of a time-span tree, not pitch events; it is obvious from Definitions 3
and 4.

6 Results and Analysis

The experimental results are shown in the distance-matrix (Table 1). The the-
oretical estimation (a) means the results of calculation by the meet operation,
and the human listeners (b) means the psychological resemblance by examinees.
In (a), since the values of meet(m1,m2) and meet(m2,m1) are exactly the same,
only the upper triangle is shown. In (b), if an examinee, for instance, listen to
Theme and variation No.1 in this order, the ranking made by an examinee is
found at the first row, the second column cell (-0.73). The values in (b) are the
averages over all the examinees.

It is difficult to examine the correspondence between the results of calculated
by the meet operation (a) and the psychological resemblance by examinees (b)
in this distance-matrix. Then, we employ multidimensional scaling (MDS) [20]
to visualize the correspondence. MDS takes a distance matrix containing dissim-
ilarity values or distances among items, identifies the axes to discriminate items
most prominently, and plots items on the coordinate system of such axes [20].
Putting it simply, the more similar items are, the closer they are plotted on a
coordinate plane.

First, we use the Torgerson scaling of MDS to plot the proximity among the
13 melodies, however, it is still difficult to find a clear correspondence. Therefore,
we restrict plotting melodies to the theme and variations No.1 to 9 (Fig. 10).
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Table 1. Calculation by meet operation and psychological resemblance

(a) Theoretical estimation

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12

Theme 183 177 195 183 117 249 162 15 21 363 262.5 246
No.1 – 228 332 326 264 360 219 174 204 456 409.5 421
No.2 – – 264 216 246 282 105 168 186 438 391.5 423
No.3 – – – 252 262 320 259 188 198 462 334.5 379
No.4 – – – – 238 246 213 176 186 424 387.5 399
No.5 – – – – – 276 243 114 108 414 298.5 325
No.6 – – – – – – 291 234 264 378 409.5 449
No.7 – – – – – – – 153 171 429 376.5 400
No.8 – – – – – – – – 30 348 259.4 255
No.9 – – – – – – – – – 378 277.5 261

No.10 – – – – – – – – – – 406.5 403
No.11 – – – – – – – – – – – 298.5

(b) Rankings by human listeners (listening in row→column order)

Theme No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12

Theme – -0.73 -0.91 -1.09 -0.82 1.18 -1.00 -1.45 -0.64 1.36 0.64 0.73 1.00
No.1 -1.00 – -0.82 -0.73 -0.91 -0.64 0.36 -0.64 -1.45 -0.82 -0.82 -1.00 -0.64
No.2 -0.91 -0.36 – -0.64 -0.27 -0.82 -0.45 -0.55 -1.55 -0.91 -0.09 -0.64 -0.91
No.3 -0.82 -0.45 -0.82 – 0 -0.91 -1.00 -0.36 -1.36 -0.73 -0.64 -0.73 -0.91
No.4 -1.00 -0.82 -0.73 0.18 – -0.73 -0.82 -0.82 -1.73 -0.91 -0.45 -1.27 -1.00
No.5 1.27 -1.18 -0.91 -0.91 -0.64 – -0.82 -1.09 -1.00 0.73 0.55 0.36 0.73
No.6 -1.18 0.27 -0.27 -0.45 -0.82 -0.64 – -0.36 -1.64 -0.91 -0.55 -0.64 -0.91
No.7 -1.18 -0.64 -0.45 -0.18 -0.82 -0.73 -0.64 – -1.18 -0.73 -0.36 -0.64 -0.73
No.8 -0.73 -1.27 -1.36 -1.55 -1.27 -0.73 -1.00 -1.36 – -0.09 -1.09 -0.64 -0.91
No.9 1.27 -0.91 -0.91 -0.73 -1.09 0.91 -1.27 -0.82 -0.18 – 0.55 0.45 1.00

No.10 0.55 -0.82 -0.27 -0.64 -0.36 0.73 -0.45 -0.82 -1.00 0.73 – 0.18 0.45
No.11 0.64 -0.82 -0.91 -0.73 -0.91 0.55 -0.91 -1.09 -0.73 0.64 0.27 – 1.00
No.12 1.09 -1.18 -1.09 -1.00 -1.00 0.91 -1.00 -1.18 -0.91 1.09 0.36 0.82 –

Theme and No.i in the figure correspond to those in Fig. 9, respectively (i = 1..9).
The contributions in MDS are as follows: (a) Theoretical estimation: first axis
(horizontal) = 0.23, second = 0.21; (b) Human listeners: first axis (horizontal)
= 0.33, second = 0.17.

In the figure, we can find an interesting correspondence between (a) and (b)
in terms of positional relationships among 10 melodies. In both (a) and (b), we
find that Theme, No.5, No.8, and No.9 make a cluster; so No.3 and No.4 do; so
No.2 and No.7 do. The positional relationship among the cluster of Theme, No.5,
No.8 and No.9, that of No.2 and No.7, and that of No.3 and No.4 resembles each
other. The positional relationship between No.1 and the others, except for No.6,
resembles, too. Since the contributions in the first axis of (a) are considered close
to the second, by rotating the axes of (a) −90 degrees (counter clockwise), a more
intuitive correspondence may be obtained. On the other hand, the discrepancy
between (a) and (b) is seen, too; the positional relationship between No.6 and
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Fig. 10. Relative distances among melodies in mutidimensional scaling

the others is significantly different. rom the above, we argue that the operations
on time-span trees of our framework are viable to a certain extent.

7 Concluding Remarks

We assumed that cognitive similarity should reside in the similarity of time-span
trees, that is, the reduction ordering in time-span trees were heard similarly in
the order of resemblance to human ears. Based on this assumption, we proposed
a framework for representing time-span trees and processing them in the alge-
braic manner. In this paper, we examined the validity of the framework through
the experiments to investigate the correspondence of theoretical similarity with
psychological similarity. The experimental results supported the convincing cor-
respondence to some extent.

Here we have four open problems. Firstly, we exclude variations No.10 to 12
for visualization in Fig. 10. Here, we need to consider why variations No.10 to
12 could not achieve a higher correspondence. As possible reasons, we specu-
late No.10 contains reharmonization, No.11 features ornamental 32nd notes and
No.12 is a music piece in triple time. Thus, we are interested in an even more
generalized distance that is robust to these variations.

Secondly, in terms of the contributions in MDS, the third axis in theoretical
estimation which is not depicted in Fig. 10 is 0.17, and that in human listeners
0.16. Since the third axis is still relatively significant, the dimension may reveal
another hidden grouping among 13 music pieces.

Thirdly, at present, our framework disregards matching of pitch events; the
meet/join operations use only the configuration of time-span trees. When time-
span trees have been constructed, however, it is supposed that the relationship
among pitches within a music piece influences the configuration of a time-span
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tree being constructed. Thus, even without matching of pitch events, the result
of meet/join operation more or less reflects the relationship among pitches in-
directly. To achieve the similarity that truly coincides with our cognition, we
should formalize the operations on pitch events.

Fourthly, in several cases, the join operation could not be calculated as was
pointed out in Fig. 6. Besides, polyphonic melodies could not be handled by
our framework. Since these limitations degrade the applicability of our frame-
work, we should extend the representation method of a music piece and tolerate
the condition of the join operation, preserving the consistency with the meet
operation and vice versa.

Further, future work includes building a large corpus that contains more di-
verse melodies and conducting experiments for us to investigate the correspon-
dence of theoretical similarity with psychological similarity in more detail. For
the purpose of reproducing and rechecking the experiments by other researchers,
we are preparing to distribute the Prolog program shown in Section 4.2.
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