
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Platform for Turn-Based Strategy Games, with a

Comparison of Monte-Carlo Algorithms

Author(s) Fujiki, Tsubasa; Ikeda, Kokolo; Viennot, Simon

Citation
2015 IEEE Conference on Computational

Intelligence and Games (CIG): 407-414

Issue Date 2015

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/12992

Rights

This is the author's version of the work.

Copyright (C) 2015 IEEE. 2015 IEEE Conference on

Computational Intelligence and Games (CIG), 2015,

407-414. Personal use of this material is

permitted. Permission from IEEE must be obtained

for all other uses, in any current or future

media, including reprinting/republishing this

material for advertising or promotional purposes,

creating new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description



A Platform for Turn-Based Strategy Games, with a
Comparison of Monte-Carlo Algorithms

Tsubasa FUJIKI
Japan Advanced Institute of

Science and Technology
Ishikawa, Japan

Email: s1310062@jaist.ac.jp

Kokolo IKEDA
Japan Advanced Institute of

Science and Technology
Ishikawa, Japan

Email: kokolo@jaist.ac.jp

Simon VIENNOT
Japan Advanced Institute of

Science and Technology
Ishikawa, Japan

Email: sviennot@jaist.ac.jp

Abstract—A lot of research has been done on classical games
such as Chess or Shogi, but not so much on more recent games
such as turn-based strategy games, where the players can move
multiple pieces at each turn. In this paper, we analyze the game
components found in most strategy games, and propose a set of
simple rules that could be used as a standard game for research
on turn-based strategy games. We have implemented these rules
in an open platform, and in the second part of the paper we
compare four different Monte-Carlo search algorithms with this
platform. Especially, we show the importance of distinguishing
and handling differently tactical moves and attacking moves.

I. INTRODUCTION

A lot of research in the artificial intelligence field has
already been done on games such as Chess, Shogi or Go,
leading to the development of many search algorithms and
machine learning methods. Thanks to these algorithmic devel-
opments as well as hardware improvements, it was possible
for DeepBlue, a program from IBM, to beat the world chess
champion in 1997. In Computer Shogi, the programs also
reached the professional level, with the breakthrough of the
Bonanza method consisting in the machine learning of an
evaluation function. This level of play is sufficient for almost
all human players. Considering these successes, it is natural
to consider now games more difficult than Chess or Shogi,
where programs are still weaker than humans. In this paper,
we consider strategy games where it is possible to move
multiple pieces in one turn, and we propose a platform to
facilitate future research on these games. Such Turn-Based
Strategy (TBS) games, like the “Daisenryaku” series, have
a lot of success, and many variants have been developed.
However, because of the lack of a standard platform for doing
benchmarks, research on this topic is limited, and the computer
players of most commercial games are still weak compared to
humans. In this paper, we start by presenting in Section II some
well-known and representative games. Then, in Section III, we
list the rules and design components found in most TBS games,
and in Section IV we propose a set of rules that could be used
as a benchmark representative of TBS games. We detail in
Section V the search algorithms that we have tested on this
platform, and finally we show their relative performance in
Section VI.

II. EXISTING TURN-BASED STRATEGY GAMES

Daisenryaku is a famous Turn-Based Strategy game series
from System Soft, which achieved a commercial success,

especially in Japan with more than 800,000 copies sold since
the first title in 1985. As in Chess and Shogi, the players move
in turn the pieces (called units) placed on a board (called the
map). The originality of Daisenryaku is that all the units of
a player can be moved in the same turn. Many games related
to Daisenryaku have been developed through the years, so in
this section, we list the different variants and their specificities.
Then, we discuss which kind of rules should be retained for a
research platform on TBS games.

A. Arimaa

Arimaa is a two-player board game similar to chess in
many aspects, especially in the fact that it is a zero-sum perfect
information game, but it has the particularity of authorizing the
moves of up to 4 pieces at each turn [1]. Because of this rule,
the number of legal moves is very high, which is a problem for
a direct usage of the classical search algorithms. Arimaa can
be used as a good benchmark for testing algorithms designed
for games with multiple moves in a single turn [6]. However,
the popularity of Arimaa is somewhat limited, which makes
it difficult to obtain the game records of strong players or to
evaluate the programs against humans.

B. Simulation Role Playing Games (SRPG)

Simulation Role Playing Game (SRPG) is a genre of games
containing components from both strategic games and Role
Playing Games (RPG). A representative title in the many
games of this genre is Final Fantasy Tactics, with almost 2
millions copies sold in Japan alone. SRPG often contain many
small elements specific to the game, which is somewhat an
unneeded difficulty for research about algorithms.

C. Real Time Strategy Games

Real Time Strategy (RTS) games, like StarCraft or Age of
Empires, are a relatively new genre of games, made possible
by the improvement of the standard computer hardware. In
RTS games, there is no concept of turn. It is replaced by
a continuous time, and the players act freely at any time,
simultaneously. There is also usually no concept of cell on the
map where the pieces are moved. RTS games are particularly
played in Europe and America, and a lot of research has
already been done on these games. Especially, some open
platforms are available for algorithm development and test [2]
[3]. However, because of the real-time aspect and the usually



complex rules, RTS is a genre already quite far from Chess
and Shogi.

III. DESIGN COMPONENTS AND CLUSTER ANALYSIS OF
TBS GAMES

Many different specific rules are found in Turn-Based
Strategy (TBS) games, but not all of them have the same degree
of importance. In this section, we start by listing the different
rules that we have observed in most TBS games. Then, we try
to group the different games in categories.

A. Design Components of TBS Games

We list here the concepts and components found in most
standard TBS games. The originality of a TBS game is often
determined by the components that are used or not in the game.
We have ordered the components roughly in function of their
proximity or not to the game of Chess.

F1 Map
As in Chess and Shogi, a board map with square
cells is the most common, but sometimes hexag-
onal cells or no cell at all are used.

F2 Number of players
Not always limited to 2 players.

F3 Pieces (units) characteristic
Many different units are used. In SRPG, one unit
corresponds usually to one character, with its own
characteristics.

F4 Order of moves
One unit in turn, several units in turn, all units in
turn, or real-time.

F5 Victory condition
Destruction of all opponent pieces, capture of a
specific piece, control of a specific cell...

F6 Piece relative strength
As in the Rock-Paper-Scissor game, pieces are
often strong or weak depending on the opponent
piece.

F7 Hit Points (HP)
Number representing the remaining power of the
piece, with the piece destruction when it reaches
0. This concept is important and needed for many
other more advanced concepts.

F8 Attack system
In Chess, opponent pieces are captured just by
moving on their cell, but the most common system
is to attack and decrease the HP of a target piece
from a nearby cell. Long-range attacks are also
common.

F9 Counter-attack
Possibility for a piece under attack to counter-
attack, either immediately or during the next turn.

F10 Map landform
The cells of the map are often different, such
as forests, swamps or fortifications. It affects the
moves and the attacks of the pieces. Usually, the
landform is fixed at the beginning of the game,
but the construction of bridges or fortifications is
sometimes possible. Multiple layers of landform
are also possible.

F11 Piece movements
Pieces often have a movement capacity, and they
pay a given amount of movement cost for each
cell that they go through. Units can often go
through units of the same team, but not through
opponent units. It can also be impossible to go
through an area controled by the opponent (Zone
of Control).

F12 Player Asymmetry
The initial placement of the pieces and the land-
form are not necessarily the same for the players.

F13 Occupation
Some cells of the map, like a town, a factory or
an airport can be occupied by some infantry units.
The player controling them usually obtains some
benefits.

F14 Production
System of production of new units, for example
from a factory, by using the revenues of towns.

F15 Experience, Level
System of promotion of the units when they gain
experience after a number of attacks.

F16 Remaining bullets
System to limit the number of times a particular
attack can be executed.

F17 Supply, Replenishment
Possibility of restoring the HP or the number of
remaining bullet of a unit, for example in a town.

F18 Enemy search
In some games, only the units and cells controled
by the player are visible to him, creating the need
to search the enemies. This component has an
important impact on the algorithms because it
introduces imperfect information.

F19 Randomness
The damages of the attacks can contain an amount
of randomness. This affects algorithms widely
because it introduces probabilities in the state
transitions of the game.

F20 Commanding Officer
Unit with particular capacities, that affects all the
units nearby.

F21 Gathering, Dispersion
Multiple units gathering on the same cell to group
their HP and bullet numbers, or the reverse sys-
tem.

F22 Internal management
Use of the town revenues to increase the produc-
tivity or to develop new units. Such component
introduces long-term goals in the game.

F23 Tactical formation, Surrounding effect, Support effect
Systems that change the efficiency of the attacks
during a battle depending on the relative place-
ment of the units.

F24 Strategic bombardment
Possibility of damaging or destroying opponent
facilities, like towns or factories.

F25 Weather, Climate, Time
Dynamic changes of the game not controled by
the players, like a loss of visibility during the
night, or a change of a flat land cell into a swamp
cell when it rains.



B. Cluster Analysis of TBS Games

In the last two decades, many strategy games have been
proposed and commercialized. It is not so easy to trace the
relations between them. Some games evolved into other ones,
and sometimes different games merged to lead to a new genre.
In this section, we analyze the main components of 17 existing
representative games, and we group these games in categories,
in order to show their relative proximity. We plot on Figure
1 the result of a cluster analysis done with R, projected
on 2 dimensions. The features used for the analysis are the
existence or not of some components: pieces characteristics
(F3), multiple pieces move in one turn (F4), real-time aspect
(F4), relative strength of pieces (F6), hit-points (F7), landform
(F10), multiple layers of landform (F10), zone of control
(F11), occupation concept (F13), production system (F14),
variable level of the units (F15), enemy search (F16), internal
management (F22).

Fig. 1. Cluster Analysis from the main design components

The clusters found in Figure 1 can be explained as follows.

• In Arimaa, multiple moves in one turn are possible,
and Stratego or Luzhanqi are games with imperfect
information and piece relative strength. These charac-
terics make these games more modern than Chess or
Shogi, but they are still directly related.

• Near the center, we find games like Daisenryaku or
Famicom Wars, which can be considered as close to
a standard of TBS games.

• In SRPG like Fire Emblem, some components are
simplified (like Production F14) which make these
games in a way closer to Chess, but it is a different
cluster because of the addition of personal characters
to the pieces.

• Advanced Daisenryaku or DaisenryakuEX contain
more complex components like Enemy Search (F18)
or multiple layers of landforms.

• Romance of the Three Kingdoms or StarCraft also
contain more complex component like Internal Man-
agement (F22) and a real-time aspect.

We have also ploted on Figure 1 the position of the rules
proposed in Section IV for our platform (called TUBSTAP).
These rules are close to Arimaa and Chess, while still retaining
the main aspects of standard TBS like Daisenryaku. We
consider this position of the rules as a good target for general
research on TBS games, without becoming too specific to a
particular game.

IV. RULES OF A TBS FOR RESEARCH PURPOSE

In the previous section, we have presented the components
found in many strategy games, and the results of the cluster
analysis show the relation of these games to classical games
such as Chess and Shogi. In this section, our goal is to define
a set of basic rules common to many strategy games. This set
of rules will be our base to develop a research platform for
these games.

A. Motivation of the Design

An important point for research on games is the availability
of an open platform, so that the research results can be
reproduced and compared with others. We list below what can
be considered as the main requirements of a research platform
for games. R3 and R6 are not mandatory, but we tried to keep
them in mind when designing the platform presented in this
section.

• R1 The rules are clearly and precisely defined.

• R2 The rules contain the main components common
to most games, but compact enough without minor
components very specific to a particular game.

• R3 Extension of the rules to a richer set of components
is possible.

• R4 The game is fun for real players, so that a
human evaluation of the computer performance and
the gathering of game records is possible.

• R5 The game is sufficiently close to existing games,
so that players can start to play easily.

• R6 It is possible to compare the algorithms with the
commercial ones of existing games.

• R7 Relatively short games are possible, for a fast
evaluation.

• R8 A platform containing the rules and a graphical
interface is available, with the possibility of doing
battle experiments to test the algorithms. It should be
easy to change the main algorithms.

• R9 A server is available to perform human vs human,
human vs computer and computer vs computer games.

An important point is to find a good balance between
R2 and R4. The rules should be left as compact and simple
as possible, but it should still be interesting to play for
human players. In respect to R5 and R6, we have used the
game “Famicom Wars DS2 Advance Wars Days Of Ruin”



(FWDS2) from Nintendo as a starting point, from which we
have removed the unneeded components. Especially, this game
is commercialized with the possibility of selecting options and
defining user maps, so it is possible to reproduce inside this
commercial game the rules that we propose.

If we describe FWDS2 with the components listed in III-A,
we can note that it is close to Chess. The map is made of
square cells (F1), it is a two-player game (F2), multiple kind
of pieces are available (F3). But it is also quite different from
Chess, since it is possible to move multiple pieces in one turn
(F4), and in fact, it contains all the components from F5 to
F21. In light of the cluster analysis done in III-B, we have
grouped the components of FWDS2 into 4 groups as follows.

• G1 Components found in most games and essential:
Multiple moves in one turn (F4), Relative strength
of pieces (F6), Hit points (F7), Short and long-range
attacks (F8), Movement capacity (F11).

• G2 Components found in many games, not essen-
tial but still important: Different victory conditions
(F5), Counter-attack (F9), Landform (F10), Assymetry
(F12).

• G3 Components found in many games, interesting as
extensions but not needed in a basic set of rules: Oc-
cupation (F13), Production (F14), Bullet count (F16),
Supply and replenishment (F17), Enemy search (F18),
Randomness (F19).

• G4 Components found only in some games, that do
not need to be considered: Experience level (F15),
Commanding Officer (F20), Gathering (F21).

As in FWDS2, we have not included in our platform
components like Zone of Control (F11), Real-time aspect
(F4), Dispersion (F21), Internal management (F22) or Tactical
formation (F23). For the sake of simplicity, we have also not
included the components of the group G3, like Occupation and
Production, even if they are found in Daisenryaku and many
other strategy games. The group G2 is not essential for a basic
set of rules, but we chose to include it in our platform, because
it is an important part of what makes the game interesting for
human players.

B. Description of the Rules

We describe in this section the concrete rules that we have
retained for our platform. As shown in the cluster analysis of
Section III-B, these rules are in a way an intermediate between
games like Chess and Arimaa, and games like Daisenryaku.
Based on the design motivation described in Section IV-A,
we have included components from F1 to F11 only, and no
components from F12 to F25.

• F1 Board. Like in Chess, a two-dimensional board of
square cells is used. The dimensions are not fixed.

• F2 Players. Two players. The units of the player to
play first are red, and the units of the opponent are
blue.

• F3 Pieces. 6 different pieces (units) are used: Fighter
(denoted by F), Attack Aircraft (A), Tank (P), Anti-
aircraft Tank (R), Infantry (I), Artillery (U).

• Map. The dimensions of the map, the landform, and
the initial disposition of units is not fixed. Some maps
are prepared, possibly assymetric, and the players
can choose any of them to play. Figure 2 shows an
example of map, with the landform and initial units.

Fig. 2. Screenshot of TUBSTAP

• F4 Order of moves. In a turn, the first player can
move all its units one time in any order. When he
has finished, the second player can do the same, and
when both players have finished, the next turn starts.
The 4 possible actions for a unit during one move are
“movement only” “movement and close-range attack”
“close or long-range attack” or “nothing”.

• F5 Victory condition. A player wins when all the
opponent units are destroyed. A limit is fixed on the
number of turns, and when the limit is reached, the
winner (or no winner) is decided by other conditions.

• F6 Units relative strength. We show in Table I the
coefficient efficiency of an attack between two types
of units. F and R are strong against air units, and A,
T, U are strong against land units.

• F7 Hit-Points. Each unit has between 1 and 10 hit
points. The number of HP decreases when receiving
damages from an attack, and the unit is removed from
the board when its HP reaches 0.

• F8 Attack, F9 Counter-attack. Except for U, all units
can only attack units on a neighbor cell, either before
or after moving. An attacked unit that is not destroyed
(value of at least 1 for HP) can counter-attack. Only
before moving, U can attack any opponent unit at a
Manhattan distance of 2 or 3, and the attacked unit
cannot counter-attack.

• F10 Landform. There are currently 5 landforms:
mountain, sea, forest, plain, road. This list could be
easily extended. The landform affects the movement
cost and the defense capacity of the units. Extensions
are possible.

• Attack effect. The damages on the HP that result
of an attack depend on the relative strength of the
units (Table I) and on the protective effect of the
landform (Table II), with the equation below. We have



Defense A F R I P U
Attack

A 0 0 85 115 105 105
F 65 55 0 0 0 0
R 70 70 45 105 15 50
I 0 0 3 55 5 10
P 0 0 75 75 55 70
U 0 0 65 90 60 75

TABLE I. UNIT RELATIVE STRENGTH

Landform Mountain Forest Plain Road Sea
Defending unit

A,F 0 0 0 0 0
R,I,P,U 0.4 0.3 0.1 0 0

TABLE II. PROTECTIVE EFFECT

not introduced any randomness (F19).

effect =
(relative strength)× (attack HP)

10 + (protective effect)× (defense HP)

• F11 Movements. Each unit can move vertically or
horizontally, by consuming some of its movement
capacity. The movement cost depends on the landform
as shown in Table III. There is no need for a unit to
use all its movement capacity at each turn. Units can
go through cells containing units of the same team,
but cannot go through cells contaning opponent units.

Mountain Forest Plain Road Sea
A,F 1 1 1 1 1

R,P,U ∞ 2 1 1 ∞
I 2 1 1 1 ∞

TABLE III. MOVEMENT COST

C. TUBSTAP platform implementation

We have implemented the rules proposed in this paper in a
platform called TUBSTAP. It can be accessed and used freely
[13]. We plan to improve or extend the rules when needed,
with the long-term goal of obtaining a platform shared by
researchers to compare algorithms and reproduce the results.
The project page with source code in C# and binaries is
available on the web site of our laborary [13]. We have not
implemented yet a server, but plan to do so in the future.

D. Large number of possible actions

The rules of TUBSTAP are inspired from FWDS2, without
some advanced components, but even with the current basic set
of rules, the game already presents new difficulties compared
to classical games like Shogi. For example, a direct application
of the αβ algorithm is difficult. Because of the multiple moves
of units in a single turn, the total number of possible actions
available to a player is very large. Even with only 6 units
that can make 10 possible moves each, there are 720 millions
actions available if we consider all possible order of the moves
(different order of the moves can lead or not to a similar game
state).

In games where multiple piece moves are possible in the
same turn, we can distinguish mainly two different ways to
implement a game tree search. It is possible to either create
a node for each piece move, and consider that a turn is made
of successive actions as in Figure 3, or either create a node

Fig. 3. Game tree with a node for each piece move

Fig. 4. Game tree with a node for each global action in a turn

for each global action as in Figure 4. The internal structure
of the tree is different but the total number of nodes at the
bottom of both figures is the same, and corresponds to the end
of a possible action. Because of the large number of possible
actions, it is usually not possible to search all of them. In
the following sections, we present the methods that we have
already tested on our platform to handle this difficulty.

V. SEARCH ALGORITHMS

In this section, we present some methods that seem promis-
ing to handle the problem of the large number of available
actions in games with multiple pieces moves. In the description
of the algorithms, we use the following notations.

s: state of the game (board and pieces).

a: one piece action.

s′(s, a): state when the action a has been done from
s. It contains information about which pieces can still
be moved or not.

p = {a1, a2, ...}: list of all the pieces actions done in
one turn.

P (s): set of all possible list of actions p that can be
done in one turn from the state s. P ′(s) is some subset
of P (s).

s′(s, p): state when the list of actions p has been done
from s. The opponent is to move next.

g(s): state evaluation function.

A. UCT

UCT is one of the most used Monte-Carlo tree search
algorithm, where the formula for guiding the search is UCB1,
as presented in Equation 1.

UCB1 = xj +

√
2 log n

nj
(1)

xj : winning ratio of node j
nj : number of simulations done at node j
n: total number of simulations of the parent node

UCT was applied successfully to many games, in particular
to the game of Go, and it is also promising for turn-based



strategy games [4] [5]. To use fully the potential of the UCB1
formula, we have implemented UCT with a tree as in Figure
3, with one node for each piece action.

However, because of the large number of actions in the
TUBSTAP game, some branch pruning needs to be added to
UCT. In the following sections, we compare different branch
pruning methods to reduce the number of searched actions. In
order to compare mainly the pruning aspect of these methods,
the same UCB1 formula is used in all algorithms.

Progressive Widening

Progressive Widening (PW) is an advanced method for the
UCT algorithm, that consists in searching only a limited set
of promising actions [7]. The number of searched actions is
increased progressively with the number n of simulations. In
this research, we have used PW in the UCT algorithm to search
in priority attack actions. Concretely, we have used Equations
2 and 3 to decide the number of searched actions in function
of the number n of simulations, as proposed in [9] for the
game of Go. The attack actions are added progressively to the
search, in a random order, and when all attack actions have
already been added, then we add movement actions.

Candidates =
log n

40

1.4
+ 2 (n < 3000) (2)

Candidates =
log n+2000

45

1.2
− 11 (n > 3000) (3)

n: number of simulations

Simulation details

In TUBSTAP, the available actions can be divided mainly
in two categories, attack actions (that can include or not a
movement) and movement only actions. Usually, for a given
piece, the number of available attack actions is fairly small
compared to the number of movement actions.

For this reason, if the Monte-Carlo simulations are purely
random, it is frequent that the victory of one player is not
reached inside the simulation before the given fixed maximal
number of turns is reached. Such simulation ends in a draw.
A similar problem would also arise in Chess with random
simulations. To solve this problem, attack actions are chosen
whenever available, in all the simulations. The same simulation
policy is used for all the algorithms.

Other improvements of the simulations could be consid-
ered, for example variations of an epsilon-greedy policy as in
[8], but our focus in this paper is mainly the search part of the
UCT algorithm.

B. Attack Action Search (AAS)

Murayama et al. proposed a method [10] to focus the search
on attack actions. The details are as follows.

1) First, from the current state s, all the lists of actions of
length at most l containing only attack actions are listed
in a set P ′(s). If there are no attack actions, some lists
with movement actions are added to the set.

Fig. 5. Example of state where the attack action search works well. (Capital
letter to play first)

Fig. 6. Example of state where the attack action search does not work well.
(Capital letter to play first)

2) For each action list in P ′(s), the resulting state s′(s, p)
is evaluated with an evaluation function g, and the action
list p with the highest evaluation is chosen.

In the first step, the length of the action list is limited to l
to avoid particular cases where the total number of action lists
is large. There are some states where all pieces can attack,
and when all the possible ordering of attacks are taken into
account, the total number of action lists become quite large.
The length limitation l prevents such case.

Figure 5 shows an example where this attack action search
works well. The teams are distinguished with small or capital
letters, and the player with capital letters plays first. The
numbers show the remaining HP of each unit, and the cross
shows a cell where it is forbidden to move. If the piece U
(artillery) does not move, it can attack at a distance of 2 or 3,
and the piece P (tank) can attack even after moving, but only
the neighbor cell. In this case, if P moves first, it will lose the
opportunity to attack u during the turn. The best option is to
attack u with U first, and then attack u again with P . AAS
is able to analyze such case correctly, and find the best action
within the attack actions.

On the contrary, Figure 6 shows an example where the
attack action search does not work. U cannot attack the
neighbor cell, and attacking u is not urgent. Also, the position
of U prevents P from attacking, so the best action is to make
a retreat move with U . However, this action is not found by
AAS since it is a movement action. The attack action search
is also not efficient on the starting position of Figure 2, since
no attack is possible.

C. DLMC

We present now the Depth-Limited Monte-Carlo (DLMC)
method, already applied to games like Amazon [11] [12]. It
can handle well the position of Figure 2. It works as follows.

1) A set P ′(s) is created with m samples selected randomly
from the possible list of actions p.

2) For each action list p in P ′(s), n simulations limited to d
turns are done, and the state that is reached is evaluated
by the state evaluation function g(s). The evaluation of p
is the average of the simulation results.



3) The action list p∗ with the highest evaluation in P ′(s) is
chosen.

This DLMC method uses a tree as in Figure 4, where each
node is a total action (list of actions of all the pieces). For
each total action, a simulation is done, but only for a limited
number of d turns, after which the state is evaluated with an
evaluation function. The advantage of this method is that the
simulations are faster. Since we are using total actions instead
of the actions of each piece, the state is easier to evaluate.

Since there is potentially a large number of total actions,
we search only m random actions. This creates the risk of
missing promising actions, especially attack actions, but it
works well to find good movement actions or defensive actions.
The proportion of movement actions in all the possible actions
is higher than that of attack actions, so most of the m random
action samples are movement actions. Because of this, DLMC
works well on Figure 2 and Figure 6, but on the contrary, it
is weak in states like Figure 5.

Fig. 7. DLMC method

State Evaluation Function

The state evaluation function g(s) can have an important
effect. Since it is called at each simulation, we have chosen
a natural function that is easy to compute. It consists in
comparing the remaining units of the two players.

g(s) = (M − E) ∗B
M : Total sum of HP of the team units (with a coefficient of
0.2 for piece I, and of 0.5 for piece U)
E: Total sum of HP of the opponent units (with the same
coefficients)
B: Value of 2 if M or E is 0 (end of the game), 1 otherwise

The coefficient B is used to make a difference between
a finished and an unfinished game. If the player wins, the
evaluation of the final state will be better than almost any other
situation, and if the player loses, it will be worse. Moreover, a
coefficient is applied to the piece I, because the attack power
of I is limited and this piece is not as useful as the others. A
coefficient is also applied to the piece U, because this piece
cannot move and attack at the same time, so its usage is more
difficult than other pieces.

D. Combination of DLMC and AAS

The Attack Action Search (AAS) algorithm performs well
at finding attacking moves, but cannot find defensive or tactical
moves in a situation like Figure 2. On the contrary, DLMC is
able to find good tactical moves on Figure 2, but is weak
at finding the decisive attacking moves on Figure 5. So it is
natural to consider a combination of the two algorithms, that
can be expected to have the advantages of both algorithms
without their weaknesses. The idea is simply to add to the
DLMC search the good attack moves found by AAS, as
follows.

1) a set P ′(s) is created with m random samples of action
lists p,

2) The attack action search is performed from the state s
and the attack action list p′ with the highest evaluation is
added to P ′(s).

3) The end of DLMC algorithm (steps 2 and 3 in DLMC)
is performed with this set P ′(s).

The goal of this method is to correct the main weakness of
the DLMC algorithm, which frequently misses good attacking
moves. As shown on Figure 8, this DLMC+AAS method
consists simply in adding the best action list of AAS to
the random action lists (called “total action” on the figure)
searched by DLMC. As a result, DLMC+AAS is able to handle
well both Figure 2 and Figure 5.

Fig. 8. Combination of DLMC and Attack Action Search

VI. PERFORMANCE EVALUATION

A. Battle Experiments

In Section V, we have presented several methods,
UCT+PW, DLMC, DLMC+AAS, to handle the very large
number of actions available in the game defined in Section
IV. Here, we show the battle results obtained when comparing
these methods. The conditions of the experiments are as
follows.

• The map from Figure 2 is used.

• 1000 games are done in a battle. One player plays first
in 500 games, and the other player plays first in 500
games.

• 4 algorithms are compared: UCT, UCT+PW, DLMC,
DLMC+AAS.

• A draw is counted as a 1/2 win for both players.

In order to compare the algorithms on a fair base, we have
adjusted their parameters as in Table IV so that the time used



for choosing the next action is roughly the same for all the
algorithms. The time used for one move was around 3 seconds
on a standard computer with 8Gb of memory and a Core i5
3.3Ghz. Also, the number of turns in a simulation is limited
to d = 2 for DLMC, and the length of the action list is limited
to l = 4 in the AAS part of DLMC+AAS. In the case of UCT,
the number of simulations is fixed, and dispatched between
the actions of each piece. For example, if 6000 simulations
are available, and if there are 6 pieces, 1000 simulations will
be used to search the best action of each piece.

Number of samples Number of simulations
DLMC 200 100

DLMC+AAS 180 90
UCT - 6000

UCT+PW - 6000
TABLE IV. PARAMETERS

The result of the experiment is shown in Table V. For a
given match, we show the winning ratio from the point of view
of the algorithm on the given line of the table. As expected,
DLMC+AAS is the best algorithm of the four, and is able to
win against all the other algorithms. It is not shown in the
table, but the number of draws in DLMC+AAS self-play is
notably decreased compared to DLMC self-play. It shows that
DLMC+AAS correctly plays more aggresive moves, compared
to DLMC.

TABLE V. WINNING RATE (LINE AGAINST COLUMN)

UCT UCT+PW DLMC DLMC+AAS
UCT 49.7 - - -
UCT+PW 62.5 49.6 - -
DLMC 41 33.1 53.1 -
DLMC+AAS 60 56.2 65.5 48.25

B. Evaluation of the Opening Performance

As in most turn-based strategy games, there is a very large
number of opening moves in a game of TUBSTAP. The choice
of the opening move has a big influence on the whole game,
so we found it interesting to compare only the first move of
the algorithms with the following experiment.

• Only the first move is played by the algorithm that we
evaluate.

• All other moves except the first one are played by
UCT+PW, which is also used as the opponent.

• We measure the winning ratio after 1000 games.

We have used the map of Figure 2 and UCT+PW is the
reference opponent that plays all the moves except the first
one. UCT+PW was chosen because we feel that it is usually
strong at the end game. The result of the experiment is shown
in Table VI. As can be read from the table, when DLMC is
used for the first move of the player that opens the game, the
winning ratio is greatly improved. It shows the strength of
DLMC in the opening. For the first move of the player that
plays in second, we can see that attacking moves are already
important, as is shown by the better result of DLMC+AAS
than DLMC alone.

The UCT+PW line is equivalent to self-play, so it is
expected that the average winning ratio should converge to

50%. It is interesting to note that the game seems slightly
favorable to the second player. Also, UCT+PW searches in
priority attacking moves, so the good result of UCT+PW when
playing as the second player confirms that attacking moves are
important even at the first move of the second player.

Algorithm Winratio, first to play Winratio, second to play Average winratio
DLMC 71.8 37.9 54.85

DLMC+AAS 72.8 48.5 60.65
UCT 53 47.2 50.1

UCT+PW 45.4 52.3 48.85
TABLE VI. MOVE OPENING

VII. CONCLUSION

Strategy games have evolved from games with relatively
simple rules such as Chess or Shogi to games with very
detailed and complicated rules, such as StarCraft. In this
paper, we have first analyzed the game components found
in many well-known games. Then, we have designed the
rules of a turn-based strategy game that can be considered
as an intermediate between Chess and commercial turn-based
strategy games. We have implemented these rules in a platform
called TUBSTAP, which could be used in the future by
other researchers to investigate general algorithms for turn-
based strategy games. Finally, we tested our platform with
a comparison of some Monte-Carlo algorithms. Especially,
we introduce a depth-limited Monte-Carlo tree search, and
we show its efficiency at handling tactical moves. The best
performance is obtained when this algorithm is combined
with an algorithm that handles correctly attacking moves. Our
platform has already reached a level that allowed us to compare
successfully different algorithms. In the future, we plan to
develop a client-server mechanism, in order to play online
against humans and organize program tournaments.

REFERENCES

[1] Arimaa Homepage, http://arimaa.com/arimaa/,
[2] BWAPI, https://code.google.com/p/bwapi/,
[3] IEEE-CIG Competitions, http://geneura.ugr.es/cig2012/competitions.html,
[4] M. Bergsma, P. Spronck, Adaptive Spatial Reasoning for Turn-based-

Strategy Games, Fourth Artificial Intelligence and Interactive Digital
Entertainment Conference, October 22-24, 2008

[5] T. Kato, M. Miwa, Y. Tsuruoka, C. Takashi, UCT and Its Enhancement
for Tactical Decisions in Turn-based Strategy Games, IPSJ-GPW 2013-
11-01pp.138-145, 2013 (in Japanese)

[6] T. Kozelk, Method of MCTS and the game Arimaa. Master’s Thesis,
2009

[7] R. Coulom, Computing Elo Ratings of Move Patterns in the Game of
Go. ICGA Journal Vol.30 pp.198-2082007

[8] N. Sturtevant, An Analysis of UCT in Multi-Player Games, 6th interna-
tional conference on Computers and Games, 2008.

[9] H. Yamashita, K. Yoshizoe, H. Matsubara, Computer Go: Theory and
Practice of Monte Carlo Method (in Japanese), 2012.

[10] K. Murayama, T. Fujiki, K. Ikeda, Proposal of rules for Turn-based-
Strategy-games as an academic platform . IPSJ-GPW 2013-11-01
,pp.146-153, 2013 (in Japanese)

[11] J. Kloetzer, H. Iida, B. Bouzy, The Monte-Carlo Approach in Amazons,
Computer Games Workshop, 2007

[12] J. Kloetzer, Monte-Carlo Techniques:Applications to the Game of the
Amazons. Japan Advanced Institute of Science and Technology, Doctor
240 Includes bibliographical references pp. 87-92, 2010

[13] TUBSTAP web page: http://www.jaist.ac.jp/is/labs/ikeda-lab/tbs


