
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Adaptive Fighting Game Computer Player by

Switching Multiple Rule-based Controllers

Author(s)
Sato, Naoyuki; Temsiririkkul, Sila; Sone, Shogo;

Ikeda, Kokolo

Citation

2015 3rd International Conference on Applied

Computing and Information Technology/2nd

International Conference on Computational Science

and Intelligence (ACIT-CSI): 52-59

Issue Date 2015

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/12993

Rights

This is the author's version of the work.

Copyright (C) 2015 IEEE. 2015 3rd International

Conference on Applied Computing and Information

Technology/2nd International Conference on

Computational Science and Intelligence (ACIT-

CSI), 2015, 52-59. Personal use of this material

is permitted. Permission from IEEE must be

obtained for all other uses, in any current or

future media, including reprinting/republishing

this material for advertising or promotional

purposes, creating new collective works, for

resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work

in other works.

Description

Adaptive Fighting Game Computer Player by
Switching Multiple Rule-based Controllers

Naoyuki Sato∗, Sila Temsiririrkkul∗, Shogo Sone∗ and Kokolo Ikeda∗
∗Japan Advanced Institute of

Science and Technology
Ishikawa, Japan

Email:{satonao,temsiririrkkul,sone shogo,kokolo}@jaist.ac.jp

Abstract—This paper proposes the design of a computer
player for fighting games that has the advantages of both
rule-based and online machine learning players. This method
combines multiple computer players as game controllers and
switches them at regular time intervals. In this way the computer
player as a whole tries to act advantageously against the current
opponent player. To select appropriate controllers against the
opponent out of the multiple controllers, we use the Sliding
Window Upper Confidence Bound (SW-UCB) algorithm that is
designed for non-stationary multi-armed bandit problems. We
use the FightingICE platform as a testbed for our proposed
method. Some experiments show the effectiveness of our proposed
method in fighting games. The computer player consists of 3
rule-based computer players, and our method outperforms each
of the 3 players. Additionally the proposed method improves the
performance a little bit against an online machine learning player.

I. INTRODUCTION

There are many researches for the purpose of creating
competitive computer game players. In some games, computer
players are more competitive than advanced human players.
For instance, the chess program ”Deep Blue” won against
human chess champions [1].

On the other hand, games of synchronized moves are exam-
ples of games where computer players are not so competitive.
Games with synchronized moves force researchers to consider
several factors different from games with alternate moves. In
such games, the best moves are not generally defined without
knowing the opponent’s next move. We can not know the
opponent’s moves beforehand and these games are imperfect
information.

We focus on fighting games, a kind of synchronized games.
A fighting game is a genre of video game in which each of
the two players controls a character and makes it fight against
the other. Many commercial titles of fighting game are played
around the world. A lot of researchers studied this area but
computer players in most fighting games seem to be still less
competitive than human expert players [4].

We divide the design of computer players for fighting
games into two categories, that is, rule-based players and
online machine learning players. Rule-based players merely
consist of several sets of heuristic if-then rules but they are
competitive to some extent, because in the case of fighting
games where scales of time and distance are fine, effective
sequential actions are easier to obtain with simple hand-coding
rules than with machine learning or game tree search methods.

The champion players of fighting game AI competitions
in the conference on Computational Intelligence and Games
(CIG) are rule-based in 2013 and 2014 [2] in matches of
”3C” category (we regard players of finite state machine as
rule-based) [3]. However, rule-based players tend to act in
the same manner through the matches unless their if-then
rules are so sophisticated that they can change their action
patterns adaptively according to the opponent’s actions. In the
competition, even the rule-based players with higher ranks
repeated the same actions and continued to take damages
till they lost against players of lower ranks. These consistent
patterns of actions might also bore human players in human
versus computer games.

By contrast, computer players with online machine learning
are capable of adjusting their action patterns to the opponent’s
actions. But existing players of these types are generally bad at
obtaining effective sequential actions by online learning only.

Therefore, we designed a new method that uses multiple
rule-based players as the game controllers and switches them
in order to make the character’s action patterns advantageous
against the opponent’s actions. This method chooses one
controller out of several controllers at regular time intervals
to control the character during the time interval. Controllers
that fight disadvantageously against the opponent player get
less opportunities to be chosen and controllers that fight
advantageously against the opponent are chosen more often.

We must consider which controller to choose and how
long to give it the control of the character. We regard this
allocation problem as a multi-armed bandit(MAB) problem [9]
which is a traditional problem representing a trade-off between
explorations and exploitations. So we apply the sliding window
upper confidence bound algorithm [8] which is shown to be
effective at non-stationary MAB problems, like the switching
between multiple fighting game AIs in our method.

II. FIGHTING GAME AI

Only in this section, we use the term ”AI” for computer
game players. Many researchers introduced in this section call
their computer players ”AI”, so we use the term to avoid
confusion.

A. Fighting games

Fighting games are games designed for two players, and
played mainly as video games. The players control their

Fig. 1. Screenshot of FightingICE

characters in the game and make combat dealing damages
to each other, as shown in Figure 1. These games are real-
time games and possible actions (moves) contain triangular
relationships like the rock-paper-scissors game, so that players
cannot take the most dominant action over the other actions
repeatedly. For example, a kick attack is advantageous against
a throw attack, the throw attack is advantageous against a guard
action and the guard action is advantageous the kick attack in
a fighting game.

One may think that it is an optimal strategy for a player to
adopt one action randomly out of such three actions with the
proper ratio, but it is not so simple to obtain optimal strategies
in fighting games. Fighting games have more complicated
systems than the rock-paper-scissors game, for example the
number of possible actions are more than three and the
relationships among the possible actions vary with the distance
between characters and their statuses. Thus, optimal strategies
are rarely obtained and most strategies are biased. This is the
reason why online machine learning and opponent modeling
techniques would contribute to competitiveness of computer
players in fighting games by detecting the biases of the
opponent player’s strategy and trying to take advantage of it.

B. Existing studies on Fighting Game AI

Many designs can be considered for fighting game AIs. We
consider mainly three types of designs as listed below.

• Rule-based

• Machine learning
◦ Offline learning
◦ Online learning

Rule-based is the simplest one. Whenever a current state
satisfies a precondition of an if-then rule, the AI will execute
particular actions associated with it. Meanwhile, machine
learning AIs adjust some input/output objects like Q-tables
or artificial neural networks by using rewards from the envi-
ronment or teaching signals, where inputs are the state of the
game and outputs are the key inputs to the game.

Offline learning AIs use a large amount of data to decide
the action patterns of the AI, but after the learning, their action
patterns are consistent. We give examples of researches related
to offline learning AIs in fighting games. Saini et al. researched
about fighting game AIs mimicking a human player using a

finite state machine created by offline learning on data from
the human player [6]. An AI proposed by Hyunsoo et al. can
be also categorized in offline learning AI. This AI decides its
move with a case-based method from massive play data [5].

On the other hand, online learning AIs try to obtain action
patterns advantageous against the current opponent player or
situation during the match. Some online learning AIs adopt
offline learning methods, different from the method for the
online learning, to make their initial action patterns. For
example, Sarayut et al. tried to make an AI’s advantageous
actions against the current opponent occur more frequently by
online learning [11]. Hoshino et al. make similar sequential
actions with the current opponent’s easier to be adopted by
their AI [12]. Both AIs by Sarayut or Hoshino have the
initial settings decided by offline learning from data of human
players.

Meanwhile there are many AIs where online learnings
and offline learnings use the same methods. Thore et al. and
Simon et al. respectively designed fighting game AIs with
reinforcement learning techniques. Thore adopted the SARSA
algorithm [10] and Simon used the monte-carlo method [7] in
reinforcement learning. Eyong et al. implemented an AI player
by optimization of an artificial neural network in a fighting
game [13]. An AI player by Kaito et al. using k-NN algorithm
and a game simulator is also an online learning AI in a fighting
game [4].

C. FightingICE

FightingICE [3] is a platform for fighting game AIs re-
leased in 2013. Our experiments in this paper use this platform.
Human players and AI players can fight on this platform.
Toolkits to develop AIs for this platform are also available
and AI competitions using this platform are held annually.

The game system on FightingICE is simpler than actual
commercial fighting games though this provides basic concepts
shown in most fighting games, for example, attack actions,
guard actions, move actions, real-time systems, combo attacks
and special arts actions. Additionally, cognitive delays (like
humans) of 0.16 seconds are imposed on AI players on this
platform, so the game system on FightingICE is complex
enough that developers cannot find any obvious optimum
strategies. Furthermore, source codes of AI players which
participated in past competitions are available. Thus, we have
evaluated our proposed methods on this platform.

D. AI designs

Through observing the source code of competitors in the
FightingICE AI competitions, we focus on two types of AI
designs here, that is, rule-based and online machine learning
(hereafter referred to as the ”online learning”).

1) Online learning: Online learning AIs are designed to
adapt dynamically to the current action patterns of the op-
ponent player. For instance, an AI using the reinforcement
learning for obtaining action patterns advantageous against the
opponent [10] and an AI with prediction of the opponent’s
next action by k-NN algorithm [4] are online learning AIs.
However, it is generally difficult to adapt to the current oppo-
nent dynamically in situations of limited number of fightings.

Shortage of time length for learning might be one problem but
existing online learning AIs tend to associate primitive single
actions with each game states. The reason of being primitive
for the associated actions is possibly that larger numbers of
actions associated with a game state would prevent quick
learnings.

But in fighting games, there are many effective sequential
actions, which consist of several primitive single actions, e.g.
counter attacks after guard actions, combo attacks, surprise
attacks with sudden ducking actions. These sequential actions
generally have a great effect in fighting games . We can
easily implement these actions by a rule-based approach but
these actions are hard to obtain through machine learning with
primitive single actions.

As a result, it is the advantage of online learning AIs to
be capable of adapting to the current situations. On the other
hand, existing online learning AIs miss benefits from effective
sequential actions in general.

2) Rule-based: Rule-based is a popular design. We think
that most AI players in commercial fighting games are rule-
based. For example, an AI which takes anti air attacks when the
opponent character jumps, or takes projectile attacks when the
opponent is distant, is a rule-based AI in a fighting game. The
champion AIs of FightingICE competitions in 2013 and 2014
at ”3C” category can be categorized as rule-based AI. Rule-
based designs have the advantage that developers can more
easily implement effective sequential attacks and strategic
moves described with heuristics.

However, rule-based AIs cannot change their action pat-
terns to more advantageous or less disadvantageous ones
against the opponent player unless the preconditions of the
if-then rules contain historical information about the matches.
In the competitions stated above, some rule-based AIs with
higher ranks occasionally lost against other rule-based AIs with
lower ranks. The higher rank AIs repeated the same patterns
of actions and continued to take damages in these matches.

Of course, it is possible ideally to create a rule-based
AI that can change its action patterns properly against the
opponent by using quite a large number of if-then rules.
But such an AI is difficult to implement under the complex
environments of fighting games. Hence, we prepared multiple
existing rule-based AIs, each of which is not capable of online
adaptation to the current situation, and switch among them. In
this way we developed an AI that take heuristic sequential
actions like rule-based AIs and is capable of changing its
action patterns advantageously against the current opponent
like online learning AIs. The details are as follows.

III. METHODOLOGY

As illustrated in Figure 2, we prepared rule-based players
as the controllers and switch them for the purpose of adding
online adaptivity to the character. Each controller outputs
commands for the character when it receives game states as the
inputs, but the switcher pick only one controller out of them
to control the character. The type of input and output of the
system as a whole is the same as the each controller, that is,
game states as the inputs and commands for the character as
the outputs. Thus, we refer to these multiple rule-based players

Fig. 2. Switching rule-based controllers

inside the system as ”the controllers”, and the system as a
whole as ”the proposed method player” to avoid confusion.

Our proposed system and general multi-agent systems, e.g.
a system by Simon et al. [7], are similar in that both systems
make use of multiple computer players as the agents or the
controllers. But both systems differ in many points.

Firstly, multi-agent systems prepared agents specialized in
particular purposes, e.g. input combo attack commands, avoid
combo attacks from the opponent and so on. By contrast, each
controller in our proposed method is designed independently
to work properly in every game situation by itself.

Secondly, multi-agent systems give the control to the agent
whose design best fits the current immediate situation. On
the contrary, our proposed method switches controllers at
regular intervals and selects the controller that has fought
advantageously against the opponent during the match.

A. Controllers used in this method

We use existing rule-based players in the FightingICE
competitions as internal controllers in our method to reduce the
implementation cost. Our method also works if we implement
these controllers by ourselves.

Each rule-based controllers should have at least one ad-
vantage over the other controllers, otherwise the controller
makes no contribution to the system as a whole. Online
learning players can be adopted as the controllers but we
think that is not appropriate because online learning players
tend to require higher computational costs and might cause
considerable delays in computation if they are executed in
parallel. Furthermore, online learning players change their
action patterns according to time. Therefore, longer time is
needed to judge if the online learning player is effective against
the opponent compared to rule-based controllers.

B. Switching AIs by Sliding Window UCB Algorithm

The switching problem among the controllers in our
method can be thought as a non-stationary multi-armed bandit
problem (MAB problem [9]), which is a famous problem rep-
resenting the trade-off between exploration and exploitation. In
MAB problems, a player chooses an arm out of multiple arms
and gets a reward associated with the arm. The player chooses
arms many times and tries to maximize the total reward. The
non-stationary MAB problem is a variant of MAB problem

Fig. 3. Selecting fighting game controllers as a MAB problem

Fig. 4. UCB algorithm and SW-UCB algorithm

where the probability distribution associated with each arm
may vary according to time.

As shown in Figure 3, the selections of the controllers
in our method correspond to the selections of the arms in
MAB problems. On the other hand, the effectiveness of the
controller against the opponent player corresponds to the
reward in MAB problems. For example, the effectiveness can
be defined as the difference between the caused damage and
the received damage of the character. Moreover, environments
on the fighting games can be categorized as non-stationary
environments because the opponent’s action patterns may vary
according to time.

There are many algorithms for MAB problems or non-
stationary MAB problems. Among them, we used the slid-
ing window upper confidence bound algorithm (SW-UCB
algorithm), a variant of the upper confidence bound (UCB)
algorithm [9]. The SW-UCB algorithm was proposed and given
theoretical supports for the performance by Eric et al [8].
Both the UCB algorithm and the SW-UCB algorithm make
use of historical data about the rewards obtained from each
arm selections and calculate the values used to decide which
arm should be selected next. However, as shown in Figure
4, the UCB algorithm uses all of the historical data but the
SW-UCB algorithm uses only a part of them (only the last τ
data).

Specifically, in the SW-UCB algorithm the player chooses
an arm i which maximizes the value Xt(τ, i)+ct(τ, i) defined
as below at each time t.

Xt(τ, i) is the average reward given by

Fig. 5. Overall procedure of the proposed method

Xt(τ, i) =
1

Nt(τ, i)

t∑
s=t−τ+1

Xt(i)δ(Isi)

where,

Nt(τ, i) =

t∑
s=t−τ+1

δ(Isi), δ(Isi) =

{
1 Is = i

0 Is ̸= i

and Xt(i) is the reward for choosing arm i at time t, Is is an
action selected at time s.

ct(τ, i) is the exploration bonus given by

ct(τ, i) = B

√
ξ log(t ∧ τ)

Nt(τ, i)

where B and ξ are constants, t∧ τ represents the minimum of
t and τ .

In this way this algorithm suggests an arm which seems to
be associated with higher rewards in a non-stationary environ-
ment. If τ is positive infinity, the SW-UCB algorithm becomes
the same as the UCB algorithm. The SW-UCB algorithm
adapts to non-stationary environments by ignoring all of the
old data before the τ time steps.

C. Overall procedure

The overall procedure of the proposed method is illustrated
in Figure 5.

1) The character fights against the opponent player.
The character is controlled by one of the rule-based
controllers.

2) After fighting during a time interval, we observe the
reward (the differences between the caused damage
and the received damage of the character) and store
them.

3) We use the SW-UCB algorithm and decide which
controller should be selected for the next time in-
terval.

D. Advantages and Drawbacks of our method

1) Advantages: Compared with a rule-based player, the
proposed method player has the ability to adapt to the current
situation. If the opponent player acts with consistent patterns,
our proposed method player will learn which controller is the

1: count[] ← {0, 0, 0}
2: for i = 1 to t− 2 do
3: if My actions[i]==My actions[t− 1] then
4: if Enemy actions[i]==Enemy actions[t− 1] then
5: count[Enemy actions[i+ 1]]++
6: end if
7: end if
8: end for
9: return argmaxe(count[e])

Fig. 6. The prediction algorithm

most effective against the opponent and fights advantageously.
Additionally, if the opponent player uses online learning tech-
niques, the proposed method prevents the learning to some
extent by switching the controllers.

Furthermore, the proposed method is likely to make the
character take more complex sequential actions than naive on-
line learning players, because the proposed method associates
action routines of the rule-based controllers with each time
step, while the online learning players associate more primitive
actions with each game state.

Moreover, in case that we can use other developers’ players
as the controllers, the proposed method requires little cost for
implementation.

2) Drawbacks: The proposed method player’s action pat-
terns are less flexible than the online learning players. Fur-
thermore, the switching process might break the context of the
action patterns described in the rule-based controller. By this
reason, the character might take terrible actions sometimes.

IV. PRELIMINARY EXPERIMENT

We did some preliminary experiments before the experi-
ments on fighting games. Actual fighting games are complex
systems but basically they are consecutive games with syn-
chronized moves. Thus, we prepared an extremely simplified
environment that is consecutive games with synchronized
moves to check the effectiveness of the proposed method.

A. Rock-paper-scissors game

Plural number of rock-paper-scissor games are the environ-
ment for the experiments. A single rock-paper-scissors game
consists of three possible actions with synchronized moves.
We will call these actions respectively, act-r, act-p and act-s.
Act-r wins against act-s and loses against act-p. Act-s wins
against act-p. It is a draw game if actions by both players are
the same.

In experiments below, we calculated win rates by counting
a draw as a half win. It should be pointed out that there does
not exist any effective sequential actions in this game, different
from the fighting games. Thus, one of the advantages of the
proposed method, that is, the proposed method players can take
more complex sequential actions than online learning players,
cannot be shown through the experiments in this section.

B. Players

We prepared 3 rule-based players, an online learning player
and the proposed method player for this game.

1) Rule-based player: Each of our rule-based player, name-
ly πwin, πlose and πdraw, consists of single if-then rule. If the
result of the last match is not a draw, in the next game, πwin

selects an action which is advantageous against the opponent’s
last move with a 85% possibility. In other cases, πwin takes a
random action. Similarly, whenever the last match results in a
win or draw, πlose chooses an action which is disadvantageous
against the opponent’s last action, πdraw chooses the same
action with the opponent’s last action with a 85% possibility.

There is a triangular relationship among these AIs. πwin

fights advantageously against πlose, but disadvantageously
against πdraw. πlose fights advantageously against πdraw.

For example, we consider a match between πwin and πlose.
If πwin chooses an act-r and πlose chooses an act-s, in the next
match πwin will chooses an act-r and πlose will choose an act-
s with high probability, so πwin tends to win continuously. On
the other hand, if πwin chooses an act-r and πlose chooses an
act-p, in the next match each of πwin and πlose will chooses
an act-s with high probability and this is a draw. In the next
match after the draw match, each player chooses their actions
uniformly at random. As a result, in matches between different
rule-based players, the win rate of one of the two players would
be around 70%.

2) Online learning player: Our online learning player
predicts the opponent’s next move by a majority voting of the
historical data. The player refers whole action data in the series
of matches against the current opponent. The player stores the
action data on its actions and opponent’s actions as below.

My actions[] = {m 1, m 2, m 3, . . .}
Enemy actions[] = {e 1, e 2, e 3, . . .}
Where m x and e x are the actions chosen by the player

and the opponent at match x. The online learning player
predicts the opponent’s move at match number t (t ≥ 3)
match like Algorithm in Figure 6, provided that each action is
represented by digits, 0, 1 and 2 in the code of the algorithm.

The player chooses an action advantageous against the
gained action by this algorithm. This opponent modeling
method is able to predict correctly the action chosen by rule-
based players in this section with the highest probability. As a
result, this online learning player has a 90% win rate against
the rule-based players in the long run.

3) Proposed method player: This player uses the rule-
based players, πwin, πlose and πdraw, as its controllers and
switches them. Every 6 matches, the player calculate rewards
and chooses a next controller. The reward is equal to the win
rate during the six matches. Parameter B and ξ are 1.0 and
10. τ is 20. At the beginning of the fight, the controller πwin

is selected.

C. Experiments

1) Matches against Rule-based players: The proposed
method player fought against each of the three rule-based
players 1000 times respectively. The results are shown in
Figure 7. Our proposed method player has an about 60% win
rate when it fights against each of rule-based AIs. If the one
of the rule-based players fight against the 3 rule-based players,
the win rate would be theoretically 50% (70%, 50% and 30%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

w
in

 r
at

e

matches

against pi_win
against pi_lose

against pi_draw

Fig. 7. The proposed method player versus rule-based players

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

w
in

 r
at

e

matches

proposed method
rule-based

Fig. 8. An online learning player versus the proposed method player and An
online learning player versus a rule-based player

every 1000 matches). Thus, we can conclude that the proposed
method player outperformed rule-based AIs in this experiment.

2) Matches against Online learning players: We think that
our proposed method prevents opponent modeling from online
learning players. To verify this argument, the online learning
player fought against the rule-based player and the proposed
method player 1000 times.

The result is illustrated in Figure 8. The rule-based AI has
a 10% win rate but the proposed method player has a 50%
win rate when they fought against the online learning player.
Thus, in case of fighting against the online learning players,
the proposed method has a higher performance than the rule-
based strategies.

D. Conclusion

The proposed method worked well in matches against both
a rule-based player and an online learning player. Thus, we
can conclude that the proposed method is effective in such an
extremely simplified consecutive synchronized game.

V. EXPERIMENT

We try to evaluate our method in actual fighting games by
using the Fighting ICE platform. The term ”AI” for computer
players are used again in this section again because the players
are called in this way in the competition.

TABLE I. RANKING AT 2014 ”1C” FIGHTING ICE
COMPETITION

AI Ranking AI Ranking
CodeMonkey 1 thunder final 6

VS 2 ragonKing1C 7

T1c 3 ATteam 8

LittleFuzzy 4 SomJang 9

PnumaSON AI 5 ThrowLooper 10

A. Environment and Settings

The FightingICE platform is used for this experiment. We
implemented an player by the proposed method using three
players in a triangular relationship as the controllers. These
three controllers are the competitors of the FightingICE AI
competition ”1C” category in 2014. All of them, namely
ATTeam, T1C, Somjang AI, are rule-based AIs. The total
ranking of the competition is listed as Table I.

Every 180 time units in the game (equals to 3 seconds), the
proposed method player switches the controllers. We defined
the reward as the difference between the caused damage and
the received damage during the time interval. But there is some
exceptions, that is, when no damage caused during the time
interval, the reward is set to an (nearly) infinity value so as to
the same controller will be selected at the next time. Still, if the
controller with the infinity reward receives any damages, the
controller gets a (nearly) negative infinity value as the reward
to cancel the infinity reward.

B, ξ and τ , parameters in the SW-UCB algorithm, are 100,
0.5 and 16 respectively.

The opponent rule-based players are ATTeam, T1c and
Somjang AI. Additionally, we prepared online learning player
CodeMonkey, the 1st ranked in the competition to evaluate the
performance against online learning players.

We evaluated the competitiveness by using the same score
systems on the FightingICE platform. Each match consists of
three rounds, and at the end of each round the players gain
the scores calculated as below.
Score = opponentHP

selfHP+opponentHP ∗ 1000
Where, opponentHP is a HP value of the opponent player and
selfHP is a HP value of the player itself at each end of rounds.
Thus, the minimum value of the score is 0 and maximum value
is 3000 per matches. The score of 1500 means the even match.

B. Results and Discussions

We show the result as Table II for the matches against
rule-based players and Table III for the matches against online
learning players, where ”switch AI” represents the AI by
the our proposed method. ”95% IC” means 95% confidence
interval. The proposed method player obtained the higher
scores against rule-based players than each of the rule-based
players, even if we take the 95% confidence intervals into
consideration. Meanwhile, the proposed method player does
not seem to be so effective against the online learning player.
Although, the proposed method player obtained the slightly
higher scores than each of the rule-based players.

At matches against T1c (Table II), the proposed method
player has a score especially lower than other matches. This is

TABLE II. AVERAGE SCORES AGAINST RULE-BASED
PLAYERS FOR 100 MATCHES

opponent
Switch AI ATTeam Somjang T1c Total (95% CI)

Switch AI - 2172 1639 1577 5388 (±76)

ATTeam 828 - 397 2647 3872 (±96)

Somjang AI 1361 2603 - 1019 4983 (±93)

T1c 1423 353 1981 - 3757 (±76)

TABLE III. AVERAGE SCORES AGAINST ONLINE BASED
PLAYERS FOR 100 MATCHES

CodeMonkey(95% CI)

Switch AI 573 (±60)

ATTeam 312 (±54)

Somjang AI 316 (±56)

T1c 564 (±65)

 1

 2

 3

 0 15 30 45 60 75 90 105 120 135 150 165 180

se
le

ct
e
d
 c

o
n
tr

o
lle

r

time[sec.]

vs ATTeam

Fig. 9. Learning history against ATTeam (The learning works well) (y-axis
1:Somjang AI, 2:T1c, 3:ATTeam)

 1

 2

 3

 0 20 40 60 80 100 120 140 160 180

se
le

ct
e
d
 c

o
n
tr

o
lle

r

time[sec.]

vs T1c

Fig. 10. Learning history against T1C (The learning does not work well)
(y-axis 1:Somjang AI, 2:T1c, 3:ATTeam)

caused by some sequential actions of ATteam. The sequential
actions are highly effective against T1c, but it is sensitive to
the timing and did not work well in our switching system.
We show the examples of learning histories in Figure 9
and 10. In these figures, numbers 1, 2 and 3 on the y-
axis indicate Somjang AI, T1c, and ATTeam respectively.
Figure 9 shows the case in which the learning process works
well, and the proposed method switches to the appropriate
controller frequently in the endgame. On the other hand, the
learning process in Figure 10 is disordered. ATTeam and
T1c in the switching system are not advantageous against
T1c, therefore, the two controllers are selected alternately.
Meanwhile, ATTeam controller are selected less frequently in
our method because ATTeam is disadvantageous against T1c.

TABLE IV. AVERAGE SCORES FOR 100 MATCHES BY
CHANGING TAU

ATTeam Somjang AI T1c CodeMonkey Total

τ = 4 1629 1862 1111 664 5266

τ = 16 1639 2172 1577 573 5961

τ = 32 1591 2085 1186 682 5544

TABLE V. AVERAGE SCORES FOR 100 MATCHES BY
CHANGING THE TIME INTERVALS

intervals ATTeam Somjang AI T1c CodeMonkey Total

60 1546 2359 1093 760 5758

90 1564 1781 1361 753 5459

180 1639 2172 1577 573 5961

600 1540 2019 1438 442 5439

1800 1554 2045 1362 406 5367

C. Check the Effects from Parameter Changes

Additionally, we did experiments changing the parameters
on the proposed method. We changed the two parameters, time
intervals and τ . The time intervals are the intervals between
each switching. In the experiment above, the time intervals are
set to 180 time units in the game system (60 time units per 1
second). Besides, τ is the parameter referring to the number
of the historical data used to decide the next controller.

Theoretically, smaller τ makes the switching process more
”short-sighted”, because the system refers only the recent
histories. Therefore, smaller τ is effective at matches against
online learning players (or players that vary their action
patterns according to the time). For a similar reason, smaller
time intervals are effective at matches against online learning
players. On the contrary, the smaller τ or time intervals may
harm the stability of the learning system of the switching
controllers.

The opponent players are the same as the experiment
above, ATTeam, Somjong AI, T1c and CodeMonkey. The aver-
age scores are calculated each 100 matches. Other parameters
or settings are same as the last experiment, the time intervals
are fixed to 180 when we change τ and τ is fixed to 16 when
we change the time intervals.

The results are shown in Table IV and Table V. This results
seem not to be consistent with the theoretical explanation.
However, the proposed method seems to be robust to the
changes of these parameters to some extent, considering the
total scores are ranged of 0 to 12,000.

VI. CONCLUSION AND FUTURE WORKS

We proposed a method to implement computer players that
adapt to the situations like online learning players and take ef-
fective sequential actions like rule-based players. Furthermore,
we evaluated the performances of the proposed method and we
confirmed that our method works well for one representative
fighting game. The proposed method switched 3 existing rule-
based players and outperformed each of the 3 players, and
slightly improved the performance against an online learning
player.

We think there is a lot of room for improvement of this
method. For example, if we utilize some heuristic knowledge
about fighting games, we can associate the rewards(in the

UCB algorithm) with not only the controllers but also the
game situations. That is, the system could make decisions
like ”against the current opponent player, the controller A is
effective when the opponent is in the air, but the controller B
is effective when the opponent character is crouching”.

Additionally, we may improve the performance by utilizing
knowledge specific to the game system where the proposed
method player is used.

ACKNOWLEDGMENT

The authors would like to thank the developers of each
fighting game AIs in FightingICE competitions. Thanks to the
available source codes, we could research this theme.

REFERENCES

[1] M. Campbell, A. J. Hoane Jr. and F. Hsu. ”Deep blue”, Artificial
intelligence 134.1 (2002): pp.57-83, 2002.

[2] FightingICE results. http://www.ice.ci.ritsumei.ac.jp/ ftgaic/index-
R.html

[3] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. M. Lee and
R. Thawonmas, “Fighting Game Artificial Intelligence Competition
Platform”, Proc. of the 2013 IEEE 2nd Global Conference on Consumer
Electronics, pp. 320-323, 2013.

[4] K. Yamamoto, S. Mizuno, C. Y. Chu and R. Thawonmas, “Deduction
of Fighting-Game Countermeasures Using the k-Nearest Neighbor
Algorithm and a Game Simulator”, Computational Intelligence and
Games (CIG), IEEE, pp.1-5, 2014.

[5] H. Park and K. Kim, “Learning to Play Fighting Game using Massive
Play Data”, Computational Intelligence and Games (CIG), IEEE, 2014.

[6] S. S. Saini, C. W. Dawson and P. W. H. Chung, “Mimicking player
strategies in fighting games”, Games Innovation Conference (IGIC),
pp.44-47, 2011.

[7] S. E. Ortiz B. , K. Moriyama, K. Fukui, S. Kurihara and M. Numao,
“Three-Subagent Adapting Architecture for Fighting Videogames”,
PRICAI 2010: Trends in Artificial Intelligence, Springer Berlin Hei-
delberg, pp.649-654, 2010.

[8] A. Garivier and E. Moulines, “On Upper-Confidence Bound Policies for
Switching Bandit Problems”, Algorithmic Learning Theory, Springer
Berlin Heidelberg, 2011.

[9] R. Agrawal. “Sample mean based index policies with O(logn) regret
for the multi-armed bandit problem”, Advances in Applied Probability,
pp.1054-1078, 1995.

[10] T. Graepel, R. Herbrich and J. Gold, “Learning to fight”, Proceedings
of the International Conference on Computer Games: Artificial Intelli-
gence, Design and Education, pp.193-200, 2004.

[11] S. Lueangrueangroj and V. Kotrajaras, “Real-Time Imitation Based
Learning for Commercial Fighting Games”, Proc. of Computer Games,
Multimedia and Allied Technology 09, International Conference and
Industry Symposium on Computer Games, Animation, Multimedia,
IPTV, Edutainment and IT Security, 2009.

[12] J. Hoshino, A. Tanaka and K. Hamana, “The Fighting Game Character
that Grows up by Imitation Learning”, Transactions of Information
Processing Society of Japan 49.7 (2008): pp.2539-2548, 2008.

[13] B. H. Cho, S. H. Jung, Y. R. Seong and H. R. Oh, “Exploiting
Intelligence in Fighting Action Games Using Neural Networks”, IEICE
transactions on information and systems 89.3 (2006): pp.1249-1256,
2006.

