<table>
<thead>
<tr>
<th>Title</th>
<th>New Integrated Long-Term Glimpse of RC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ito, Ryoma; Miyaji, Atsuko</td>
</tr>
<tr>
<td>Citation</td>
<td>Lecture Notes in Computer Science: 137-149</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-01-22</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Text version</td>
<td>author</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10119/13006</td>
</tr>
<tr>
<td>Rights</td>
<td>This is the author-created version of Springer, Ryoma Ito and Atsuko Miyaji, Lecture Notes in Computer Science, 2015, pp.137-149. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-319-15087-1_11</td>
</tr>
<tr>
<td>Description</td>
<td>15th International Workshop, WISA 2014, Jeju Island, Korea, August 25-27, 2014. Revised Selected Papers</td>
</tr>
</tbody>
</table>
New Integrated Long-Term Glimpse of RC4

Ryoma Ito and Atsuko Miyaji

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi-shi, Ishikawa, 923-1292, Japan
{s1310005,miyaji}@jaist.ac.jp

Abstract. RC4, which was designed by Ron Rivest in 1987, is widely used in various applications such as SSL/TLS, WEP, WPA, etc. In 1996, Jenkins discovered correlations between one output keystream and a state location, known as Glimpse Theorem. In 2013, Maitra and Sen Gupta proved Glimpse Theorem and showed correlations between two consecutive output keystreams and a state location, called long-term Glimpse. In this paper, we show a new long-term Glimpse and integrate both the new and the previous long-term Glimpse into a whole.

Keywords: RC4, correlation, long-term Glimpse

1 Introduction

RC4, which was designed by Ron Rivest in 1987, is widely used in various applications such as Secure Socket Layer/Transport Layer Security (SSL/TLS), Wired Equivalent Privacy (WEP) and Wi-fi Protected Access (WPA), etc. Due to its popularity and simplicity, RC4 has become a hot cryptanalysis target since its specification was made public on the internet in 1994. For example, typical attacks on RC4 are distinguishing attack [3, 4, 10], state recovery attack [1, 6, 9] and key recovery attack [2, 8, 11].

In 1996, Jenkins discovered correlations between one output keystream and a state location, which is known as Glimpse Theorem [5]. These correlations have biases with the probability about \(\frac{2}{N} \) higher than that of random association \(\frac{1}{N} \) using the knowledge of one output keystream. In 2013, Maitra and Sen Gupta presented the complete proof of Glimpse Theorem and showed \(S_r[r + 1] = N - 1 \) occurs with the probability about \(\frac{2}{N} \) when two consecutive output keystreams \(Z_r \) and \(Z_{r+1} \) satisfies \(Z_{r+1} = Z_r \), where \(S_r[r + 1] \) is the \(r + 1 \)-th location of the state array in the \(r \)-th round as usual. They also showed the probability of \(S_r[r + 1] = N - 1 \) is further increased to about \(\frac{3}{N} \) when \(Z_{r+1} = r + 2 \) as well as \(Z_{r+1} = Z_r \) occurs. Here, we call correlation with a probability significantly higher or lower than \(\frac{1}{N} \) (the probability of random association) positive bias or negative bias, respectively. Then, their results of \(S_r[r + 1] = N - 1 \) with the probability about \(\frac{2}{N} \) correspond to cases with positive biases. Note that Theorem 2 implicitly means that there exists a value of \(S_r[r + 1] \) with negative bias since \(S_r[r + 1] \) varies in \([0, N - 1]\) when \(Z_{r+1} = Z_r \) has happened. We often assume uniform randomness of other certain events to prove bias of a certain event.
Therefore, it is important to prove the existence of a value with negative bias explicitly. We also call such a case with negative bias to dual case of a positive bias.

In this paper, we first show a dual case of $S_r[r+1] = N - 1$, that is $S_r[r+1] = 0$, occurs with the probability about $\frac{1}{X}$ when $Z_{r+1} = Z_r$, which will be shown as Theorem 4. Then, Theorem 5 will give each probability of $S_r[r+1] = 0$ when $Z_{r+1} = r + x \ (\forall x \in [0, N-1])$ as well as $Z_{r+1} = Z_r$ occurs. Furthermore, during our careful observation of the dual case, we also find a new positive bias on $S_r[r+1]$, which will be shown in Theorem 6. Our results show that, giving two consecutive keystreams Z_r and Z_{r+1} satisfying with $Z_{r+1} = Z_r$ and $Z_{r+1} = r + 1 + x \ (x \in [2, N-1])$, the probability of $S_r[r+1] = N - x$ is about $\frac{1}{X}$, which is significantly higher than random association $\frac{1}{X}$. Note that the previous results are limited to a value of $S_r[r+1] = N - 1$, but our results varies $S_r[r+1] \in [0, N-2]$. Furthermore, both our new and the previous results are integrated into long-term Glimpse of $Z_{r+1} = Z_r$ in Theorem 7.

This paper is organized as follows. Section 2 briefly summarizes notation and RC4 algorithms. Section 3 presents the previous works on Glimpse Theorem [5] and long-term Glimpse [7]. Section 4 first discusses positive and negative biases, and shows Theorems 4 to 7. Section 5 demonstrates experimental simulations. Section 6 concludes this paper.

2 Preliminary

The following notation is used in this paper.

- K, l: secret key, the length of secret key (bytes)
- r: number of rounds
- N: number of arrays in state (typically $N = 256$)
- S^N_r or S_r: state of KSA or PRGA after the swap in the r-th round
- i_r, j_r: indices of S_r for the r-th round
- Z_r: one output keystream for the r-th round
- t_r: index of Z_r

RC4 consists of two algorithms: Key Scheduling Algorithm (KSA) and Pseudo Random Generation Algorithm (PRGA). KSA generates the state S^N_0 from a secret key K of l bytes as described in Algorithm 1. Then, the final state S^N_{l} in KSA becomes the input of PRGA as S_{0}. Once the state S_{0} is computed, PRGA generates one output keystream Z_r of bytes as described in Algorithm 2. The output keystream Z_r will be XORed with a plaintext to generate a ciphertext.

Algorithm 1 KSA

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>for $i = 0$ to $N - 1$ do</td>
</tr>
<tr>
<td>2.</td>
<td>$S^K_{N}[i] \leftarrow i$</td>
</tr>
<tr>
<td>3.</td>
<td>end for</td>
</tr>
<tr>
<td>4.</td>
<td>$j \leftarrow 0$</td>
</tr>
<tr>
<td>5.</td>
<td>for $i = 0$ to $N - 1$ do</td>
</tr>
<tr>
<td>6.</td>
<td>$j \leftarrow j + S^K_{N}[i] + K[i \mod l]$</td>
</tr>
<tr>
<td>7.</td>
<td>Swap($S^K_{N}[i], S^K_{N}[j]$)</td>
</tr>
<tr>
<td>8.</td>
<td>end for</td>
</tr>
</tbody>
</table>

Algorithm 2 PRGA

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$r \leftarrow 0, i_0 \leftarrow 0, j_0 \leftarrow 0$</td>
</tr>
<tr>
<td>2.</td>
<td>loop</td>
</tr>
<tr>
<td>3.</td>
<td>$r \leftarrow r + 1, i_r \leftarrow i_{r-1} + 1$</td>
</tr>
<tr>
<td>4.</td>
<td>$j_r \leftarrow j_{r-1} + S_{r-1}[i_r]$</td>
</tr>
<tr>
<td>5.</td>
<td>Swap($S_{r-1}[i_r], S_{r-1}[j_r]$)</td>
</tr>
<tr>
<td>6.</td>
<td>$t_r \leftarrow S_r[i_r] + S_r[j_r]$</td>
</tr>
<tr>
<td>7.</td>
<td>Output: $Z_r \leftarrow S_r[t_r]$</td>
</tr>
<tr>
<td>8.</td>
<td>end loop</td>
</tr>
</tbody>
</table>
In this paper, we focus on PRGA and investigate correlations between two consecutive output keystreams and a state location. The probability of one location by random association is $\frac{1}{N}$ and uniform randomness of the RC4 stream cipher is assumed if there are no significant biases.

3 Previous works

In 1996, Jenkins discovered correlations between one output keystream and a state location [5], which is proved as Glimpse Theorem in [7]. Glimpse Theorem is given as follows.

Theorem 1. [7] *After the r-th round of PRGA for $r \geq 1$, we have*

$$\Pr(S_r[j_r] = i_r - Z_r) = \Pr(S_r[i_r] = j_r - Z_r) \approx \frac{2}{N}.$$

In 2013, Maitra and Sen Gupta discovered other correlations between two consecutive output keystreams and the $r + 1$-th location of the state array in the r-th round, which is called long-term Glimpse [7]. Long-term Glimpse is given as follows. Note that Theorem 3 is a special case of Theorem 2.

Theorem 2. [7] *After the r-th round of PRGA for $r \geq 1$, we have*

$$\Pr(S_r[r + 1] = N - 1|Z_{r+1} = Z_r) \approx \frac{2}{N}.$$

Theorem 3. [7] *After the r-th round of PRGA for $r \geq 1$, we have*

$$\Pr(S_r[r + 1] = N - 1|Z_{r+1} = Z_r \land Z_{r+1} = r + 2) \approx \frac{3}{N}.$$

4 New results on long-term Glimpse

4.1 Observation

Let us investigate the previous results (Theorems 2 and 3) in detail. Here, we call correlation with a probability significantly higher or lower than $\frac{1}{N}$ (the probability of random association) to *positive bias* or *negative bias*, respectively. Theorems 2 and 3 give cases with positive biases. Then, Theorem 2 implicitly means that there exists a value of $S_r[r + 1]$ with negative bias since $S_r[r + 1]$ varies in $[0, N - 1]$ even when $Z_{r+1} = Z_r$ has happened. We often assume uniform randomness of other certain events to prove bias of a certain event. Therefore, it is important to prove the existence of a value in $S_r[r + 1]$ with negative bias explicitly. We also call such a case with negative bias a *dual case* of a positive bias.

One of our motivation is to find a dual case of Theorem 2, which will be shown as Theorem 4. Then, we will also prove a special case of Theorem 4 in the same way as Theorem 3 to Theorem 2, which will be shown as Theorem 5. Furthermore, during our careful observation of the dual case, we also find a new positive bias on $S_r[r + 1]$, which will be shown in Theorem 6. Our new results can integrate long-term Glimpse when $Z_{r+1} = Z_r$. The previous results are limited to the case of $S_r[r + 1] = N - 1$ when $Z_{r+1} = Z_r$. Our results are not limited to $S_r[r + 1] = N - 1$ but varies $S_r[r + 1] \in [0, N - 2]$. Finally, both results can be integrated in Theorem 7.
4.2 New negative biases

First, Theorem 4 shows a dual case of Theorem 2 as follows.

Theorem 4. After the r-th round of PRGA for $r \geq 1$, we have

$$\Pr(S_r[r+1] = 0|Z_{r+1} = Z_r) \approx \frac{2}{N^2} \left(1 - \frac{1}{N}\right).$$

Proof. We define main events as follows:

$$A := (S_r[r+1] = 0), B := (Z_{r+1} = Z_r).$$

We first compute $\Pr(B|A)$, and apply Bayes’ theorem to prove the claim. Assuming that event A happened, we get

$$j_{r+1} = j_r + S_r[i_{r+1}] = j_r + S_r[r+1] = j_r.$$

Then, $\Pr(B|A)$ is computed in three paths: $j_r = r$ (Path 1), $j_r = r + 1$ (Path 2) and $j_r \neq r, r + 1$ (Path 3). These paths include all events in order to compute $\Pr(B|A)$. Let $X = S_r[r]$ and $Y = S_r[j_r]$.

Path 1. Fig. 1 shows a state transition diagram in Path 1. First, we prove $t_r \neq t_{r+1}$. After the r-th round, $t_r = 2X$ holds since $i_r = j_r = r$. In the next round, $t_{r+1} = X$ holds since $j_{r+1} = j_r = r$ and $i_{r+1} = r + 1$. Thus, we get $t_r \neq t_{r+1}$ with probability 1 since $X \neq 0$. Then, if event B occurs, t_{r+1} must be swapped from t_r. This is why $\Pr(\text{Path 1}) = \Pr(B|A \land j_r = r)$ is computed in two subpaths: $i_r = 1 \land t_{r+1} = 1$ (Path 1-1) and $i_r = 254 \land t_{r+1} = 255$ (Path 1-2).

Path 1-1. Fig. 2 shows a state transition diagram in Path 1-1. Then, we get event B since $Z_{r+1} = S_{r+1}[1] = 0$ and $Z_r = S_r[2] = 0$. Thus, we can compute the probability of Path 1-1 as follows.

$$\Pr(\text{Path 1-1}) = \Pr(\text{Path 1} \land i_r = 1 \land t_{r+1} = 1) = 1.$$

Path 1-2. Fig. 3 shows a state transition diagram in Path 1-2. Then, we get event B since $Z_{r+1} = S_{r+1}[255] = 255$ and $Z_r = S_r[254] = 255$. Thus, we can compute the probability of Path 1-2 as follows.

$$\Pr(\text{Path 1-2}) = \Pr(\text{Path 1} \land i_r = 254 \land t_{r+1} = 255) = 1.$$

Therefore, the probability of Path 1 is computed as follows.

$$\Pr(\text{Path 1}) = \Pr(\text{Path 1-1}) \cdot \Pr(i_r = 1 \land t_{r+1} = 1) + \Pr(\text{Path 1-2}) \cdot \Pr(i_r = 254 \land t_{r+1} = 255) \approx 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N}\right) + 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N}\right) = \frac{2}{N^2}.$$
Fig. 1. Path 1

Fig. 2. Path 1-1

Fig. 3. Path 1-2

Path 2. Fig. 4 shows a state transition diagram in Path 2. We get $t_r \neq t_{r+1}$ in the same way as Path 1. Then, event B never occurs because t_{r+1} cannot be swapped from t_r. Therefore, the probability of Path 2 is computed as follows.

$$
Pr(\text{Path 2}) = Pr(B|A \land j_r = r + 1) = 0.
$$

Path 3. Fig. 5 shows a state transition diagram in Path 3. We get $t_r \neq t_{r+1}$ in the same way as Path 1. Then, if event B occurs, t_{r+1} must be swapped from t_r. This is why $Pr(\text{Path 3}) = Pr(B|A \land j_r \neq r, r + 1)$ is computed in two subpaths: $t_r = j_r \land t_{r+1} = r + 1$ (Path 3-1) and $t_r = r + 1 \land t_{r+1} = j_{r+1}$ (Path 3-2).

Path 3-1. Fig. 6 shows a state transition diagram in Path 3-1. Then, we get event B since $Z_{r+1} = S_{r+1}[r + 1] = r + 1$ and $Z_r = S_r[j_r] = r + 1$. Thus, we can compute the probability of Path 3-1 as follows.

$$
Pr(\text{Path 3-1}) = Pr(\text{Path 3} \land t_r = j_r \land t_{r+1} = r + 1) = 1.
$$

Path 3-2. Fig. 7 shows a state transition diagram in Path 3-2. Then, we get event B since $Z_{r+1} = S_{r+1}[j_{r+1}] = 0$ and $Z_r = S_r[r + 1] = 0$. Thus, we can compute the probability of Path 3-2 as follows.

$$
Pr(\text{Path 3-2}) = Pr(\text{Path 3} \land t_r = r + 1 \land t_{r+1} = j_r) = 1.
$$

Therefore, the probability of Path 3 is computed as follows.

$$
Pr(\text{Path 3}) = Pr(\text{Path 3-1}) \cdot Pr(t_r = j_r \land t_{r+1} = r + 1) \\
+ Pr(\text{Path 3-2}) \cdot Pr(t_r = r + 1 \land t_{r+1} = j_{r+1}) \\
\approx 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N} \right) + 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N} \right) = \frac{2}{N^2}.
$$
From these results, \(Pr(B|A) \) is computed as follows.

\[
Pr(B|A) = Pr(\text{Path 1}) \cdot Pr(j_r = r) + Pr(\text{Path 2}) \cdot Pr(j_r = r + 1) \\
+ Pr(\text{Path 3}) \cdot Pr(j_r \neq r, r + 1)
\approx \frac{2}{N^2} \cdot \frac{1}{N} + 0 \cdot \frac{1}{N} + \frac{2}{N^2} \cdot \left(1 - \frac{2}{N}\right) = \frac{2}{N^2} \left(1 - \frac{1}{N}\right).
\]

\(Pr(A|B) \) is computed as follows by applying Bayes’ theorem since events \(A \) and \(B \) occur with the probability of random association \(\frac{1}{N} \).

\[
Pr(A|B) = \frac{Pr(B|A) \cdot Pr(A)}{Pr(B)} \approx \frac{2}{N^2} \left(1 - \frac{1}{N}\right) \cdot \frac{1}{N} = \frac{2}{N^2} \left(1 - \frac{1}{N}\right). \quad \Box
\]

Next, Theorem 5 shows a special case of Theorem 4 as follows.

Theorem 5. After the \(r \)-th round of PRGA for \(r \geq 1 \) and \(\forall x \in [0, N-1] \), we have

\[
Pr(S_r[r+1] = 0|Z_{r+1} = Z_r \land Z_{r+1} = r + x) \approx \begin{cases} \\
\frac{1}{N} \left(1 - \frac{2}{N^2}\right) & \text{if } x = 1 \\
\frac{2}{N^2} \left(1 - \frac{1}{N}\right) & \text{if } x = 255 \\
\frac{1}{N^2} \left(1 - \frac{2}{N}\right) & \text{if } x = N - r \\
\end{cases} \\
\quad (x \neq 1, 255).
\]

Proof. We define main events as follows.

\(A := (S_r[r+1] = 0), B := (Z_{r+1} = Z_r), C := (Z_{r+1} = r + x). \)
Pr(A/B ∩ C) is difficult to compute because events B and C are not independent. To avoid this problem, we define a new event B' := (Z_r = r + x). Then, Pr(A/B ∩ C) = Pr(A/B' ∩ C) since B ∩ C and B' ∩ C are the same event. Pr(A/B' ∩ C) is decomposed as follows by using Bayes’ theorem:

Pr(A/B' ∩ C) = \frac{Pr(A ∩ B' ∩ C)}{Pr(B' ∩ C)} = \frac{Pr(C|B' ∩ A) ∙ Pr(B' | A) ∙ Pr(A)}{Pr(B' ∩ C)}.

We first compute Pr(C|B' ∩ A) in three paths: j_r = r (Path 1), j_r = r + 1 (Path 2) and j_r ≠ r, r + 1 (Path 3). These paths are the same as in Theorem 4, and thus the proof itself is similar to Theorem 4. Let X = S_r[r] and Y = S_r[j_r].

Path 1. Fig. 1 shows a state transition diagram in Path 1. Note that t_r ≠ t_r+1 from the discussion of Path 1 in Theorem 4, and that event C is limited to two subpaths: i_r = 1 for r + x = 0 (Path 1-1) and t_r+1 = 255 for r + x = 255 (Path 1-2).

Path 1-1. Fig. 2 shows a state transition diagram in Path 1-1. Then, event C holds under event B' ∩ A since Z_r+1 = S_r+1[1] = 0 and Z_r = S_r[2] = 0. Note that i_r = 1 and r + x = 0 hold if and only if x = 255. Thus, we can compute the probability of Path 1-1 as follows.

Pr(Path 1-1) = Pr(Path 1 ∩ i_r = 1) = 1 if x = 255.

Path 1-2. Fig. 3 shows a state transition diagram in Path 1-2. Then, event C holds under event B' ∩ A since Z_r+1 = S_r+1[255] = 255 and Z_r = S_r[254] = 255. Note that i_r = 254 (see Fig. 3) and r + x = 255 hold if and only if x = 1. Thus, we can compute the probability of Path 1-2 as follows.

Pr(Path 1-2) = Pr(Path 1 ∩ t_r+1 = 255) = 1 if x = 1.

Therefore, the probability of Path 1 is computed as follows.

Pr(Path 1) = \begin{cases}
Pr(Path 1-1) ∙ Pr(i_r = 1) ≈ \frac{1}{N} & \text{if } x = 255 \\
Pr(Path 1-2) ∙ Pr(t_r+1 = 255) ≈ \frac{1}{N} & \text{if } x = 1 \\
0 & \text{otherwise.}
\end{cases}

Path 2. Event C never occurs in Path 2 from the discussion of Path 2 in Theorem 4. Therefore, the probability of Path 2 is computed as follows.

Pr(Path 2) = Pr(C|B' ∩ A ∩ j_r = r + 1) = 0.

Path 3. Fig. 5 shows a state transition diagram in Path 3. Note that t_r ≠ t_r+1 from the discussion of Path 3 in Theorem 4, and that event C is limited to two subpaths: t_r+1 = r + 1 for x = 1 (Path 3-1) and t_r = r + 1 ∩ t_r+1 = j_r+1 for r + x = 0 (Path 3-2).
Path 3-1. Fig. 6 shows a state transition diagram in Path 3-1. Then, event C holds under event B' since $Z_{r+1} = S_{r+1}|r+1| = r+1$ and $Z_r = S_r[j_r] = r+1$. Thus, we can compute the probability of Path 3-1 as follows.

$$\Pr(\text{Path 3-1}) = \Pr(\text{Path 3} \cap t_{r+1} = r+1) = 1 \text{ if } x = 1.$$

Path 3-2. Fig. 7 shows a state transition diagram in Path 3-2. Then, event C holds under event B' since $Z_{r+1} = S_{r+1}|j_{r+1}| = 0$ and $Z_r = S_r[r+1] = 0$. Note that $r + x = 0 \ (\forall r \in [0, N-1])$ means $x = N - r$. Thus, we can compute the probability of Path 3-2 as follows.

$$\Pr(\text{Path 3-2}) = \Pr(\text{Path 3} \cap t_r = r+1 \land t_{r+1} = j_{r+1}) = 1.$$

Therefore, the probability of Path 3 is computed as follows.

$$\Pr(\text{Path 3}) = \Pr(\text{Path 3-1}) \cdot \Pr(t_{r+1} = r+1) + \Pr(\text{Path 3-2}) \cdot \Pr(t_r = r+1 \land t_{r+1} = j_{r+1}) \approx \begin{cases}
1 \cdot \frac{1}{N} + 1 \cdot \frac{1}{N} \cdot \frac{1}{N} = \frac{1}{N} \left(1 + \frac{1}{N}\right) & \text{if } x = 1 \\
0 \cdot \frac{1}{N} + 1 \cdot \frac{1}{N} = \frac{1}{N^2} & \text{if } x = N - r \ (x \neq 1).
\end{cases}$$

From these results, $\Pr(C|B' \land A)$ is computed as follows.

$$\Pr(C|B' \land A) = \Pr(\text{Path 1}) \cdot \Pr(j_r = r) + \Pr(\text{Path 2}) \cdot \Pr(j_r = r+1) + \Pr(\text{Path 3}) \cdot \Pr(j_r \neq r, r+1) \approx \begin{cases}
\frac{1}{N} \cdot \frac{1}{N} + \frac{1}{N} \cdot \left(1 + \frac{1}{N}\right) \cdot \left(1 - \frac{2}{N}\right) = \frac{1}{N} \left(1 - \frac{2}{N}\right) & \text{if } x = 1 \\
\frac{1}{N} \cdot \frac{1}{N} + \frac{1}{N^2} \cdot \left(1 - \frac{2}{N}\right) = \frac{2}{N^2} \left(1 - \frac{1}{N}\right) & \text{if } x = 255 \\
0 \cdot \frac{1}{N} + \frac{1}{N^2} \cdot \left(1 - \frac{2}{N}\right) = \frac{1}{N^2} \left(1 - \frac{2}{N}\right) & \text{if } x = N - r \ (x \neq 1, 255).
\end{cases}$$

Pr(A|B \land C) is computed as follows by applying Bayes’ theorem since events A, B', C and $B'|A$ occur with the probability of random association $\frac{1}{N}$.

$$\Pr(A|B \land C) = \frac{\Pr(C|B' \land A) \cdot \Pr(B'|A) \cdot \Pr(A)}{\Pr(B' \land C)} \approx \frac{\Pr(C|B' \land A) \cdot \frac{1}{N} \cdot \frac{1}{N}}{\frac{1}{N} \cdot \frac{1}{N}} \approx \begin{cases}
\frac{1}{N} \left(1 - \frac{2}{N}\right) & \text{if } x = 1 \\
\frac{2}{N^2} \left(1 - \frac{1}{N}\right) & \text{if } x = 255 \\
\frac{1}{N^2} \left(1 - \frac{2}{N}\right) & \text{if } x = N - r \ (x \neq 1, 255).
\end{cases}$$
4.3 New positive biases and their integration

Theorem 6 shows a new positive bias on $S_r[r + 1]$ as follows.

Theorem 6. After the r-th round of PRGA for $r \geq 1$ and $x \in [2, N - 1]$, we have

$$\Pr(S_r[r + 1] = N - x | Z_{r+1} = Z_r \land Z_{r+1} = r + 1 + x) \approx \frac{2}{N} \left(1 - \frac{1}{N} + \frac{1}{N^2} \right).$$

Proof. We define main events as follows.

$$A := (S_r[r + 1] = N - x), B := (Z_{r+1} = Z_r), B' := (Z_r = r + 1 + x), C := (Z_{r+1} = r + 1 + x).$$

The proof itself is similar to Theorem 5. We first compute $\Pr(C | B' \land A)$ in three paths: $j_r = r$ (Path 1), $j_r = r + 1$ (Path 2) and $j_r \neq r, r + 1$ (Path 3). Let $X = S_r[r], Y = S_r[j_r]$ and $W = S_r[j_{r+1}].$

Path 1. Both t_r and t_{r+1} are independent since we get $t_r = 2X$ and $t_{r+1} = N - x + W$. Then, event C is limited to three subpaths: $t_{r+1} = r + 1$ (Path 1-1), $N - x = r + 1 + x \land t_{r+1} = j_{r+1}$ (Path 1-2) and $t_{r+1} = t_r$ except when t_r equals either $r + 1$ or j_{r+1} (Path 1-3). We can compute the probability of each subpath as follows.

$$\Pr(\text{Path 1-1}) = \Pr(\text{Path 1} \land t_{r+1} = r + 1) = 1,$$
$$\Pr(\text{Path 1-2}) = \Pr(\text{Path 1} \land N - x = r + 1 + x \land t_{r+1} = j_{r+1}) = 1,$$
$$\Pr(\text{Path 1-3}) = \Pr(\text{Path 1} \land t_{r+1} = t_r) = 1 - \frac{2}{N}.$$

Therefore, the probability of Path 1 is computed as follows.

$$\Pr(\text{Path 1}) = \Pr(\text{Path 1-1}) \cdot \Pr(t_{r+1} = r + 1) + \Pr(\text{Path 1-2}) \cdot \Pr(N - x = r + 1 + x \land t_{r+1} = j_{r+1}) + \Pr(\text{Path 1-3}) \cdot \Pr(t_{r+1} = t_r) \approx 1 \cdot \frac{1}{N} + 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N} \right) + 1 \cdot \frac{1}{N} \cdot \frac{2}{N} = \frac{1}{N} \left(1 + 1 \right).$$

Path 2. We get $t_r \neq t_{r+1}$ since $t_r = N - x + X, t_{r+1} = N - x + W$ and $X \neq W.$ Then, event C is limited to two subpaths: $t_{r+1} = r + 1$ (Path 2-1) and $N - x = r + 1 + x \land t_{r+1} = j_{r+1}$ (Path 2-2). We can compute the probability of each subpath as follows.

$$\Pr(\text{Path 2-1}) = \Pr(\text{Path 2} \land t_{r+1} = r + 1) = 1,$$
$$\Pr(\text{Path 2-2}) = \Pr(\text{Path 2} \land N - x = r + 1 + x \land t_{r+1} = j_{r+1}) = 1.$$

Therefore, the probability of Path 2 is computed as follows.

$$\Pr(\text{Path 2}) = \Pr(\text{Path 2-1}) \cdot \Pr(t_{r+1} = r + 1) + \Pr(\text{Path 2-2}) \cdot \Pr(N - x = r + 1 + x \land t_{r+1} = j_{r+1}) \approx 1 \cdot \frac{1}{N} + 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N} \right) = \frac{1}{N} \cdot \frac{1}{N} = \frac{1}{N} \left(1 + 1 \right).$$
Path 3. Both \(t_r \) and \(t_{r+1} \) are independent since we get \(t_r = X + Y \) and \(t_{r+1} = N - x + W \). Then, event \(C \) is limited to three subpaths: \(t_{r+1} = r + 1 \) (Path 3-1), \(N - x = r + 1 + x \land t_{r+1} = j_{r+1} \) (Path 3-2) and \(t_{r+1} = t_r \) except when \(t_r \) equals either \(r + 1 \) or \(j_r + 1 \) (Path 3-3). We can compute the probability of each subpath as follows.

\[
\Pr(\text{Path 3-1}) = \Pr(t_{r+1} = r + 1) = 1, \\
\Pr(\text{Path 3-2}) = \Pr(N - x = r + 1 + x \land t_{r+1} = j_{r+1}) = 1, \\
\Pr(\text{Path 3-3}) = \Pr(t_{r+1} = t_r) = 1 - \frac{2}{N}.
\]

Therefore, the probability of Path 3 is computed as follows.

\[
\Pr(\text{Path 3}) = \Pr(\text{Path 3-1}) \cdot \Pr(t_{r+1} = r + 1) + \Pr(\text{Path 3-2}) \cdot \Pr(N - x = r + 1 + x \land t_{r+1} = j_{r+1}) + \Pr(\text{Path 3-3}) \cdot \Pr(t_{r+1} = t_r) \\
\approx 1 \cdot \frac{1}{N} + 1 \cdot \left(\frac{1}{N} \right) + \frac{1}{N} \cdot \left(1 - \frac{2}{N} \right) = 1 - \frac{1}{N} \left(2 - \frac{1}{N} \right).
\]

From these results, \(\Pr(\text{Path 3}) \) is computed as follows.

\[
\Pr(\text{Path 3}) = \frac{1}{N} \left(2 - \frac{1}{N} \right) \cdot \frac{1}{N} + \frac{1}{N} \left(1 + \frac{1}{N} \right) \cdot \frac{1}{N} + \frac{1}{N} \left(2 - \frac{1}{N} \right) \cdot \left(1 - \frac{2}{N} \right) \\
= \frac{2}{N} \left(1 - \frac{1}{N} + \frac{1}{N^2} \right).
\]

As a result, \(\Pr(A \mid B \land C) \) is computed as follows.

\[
\Pr(A \mid B \land C) \approx \Pr(\text{Path 3}) \approx 2 \frac{1}{N} \left(1 - \frac{1}{N} + \frac{1}{N^2} \right).
\]

Finally, we can integrate long-term Glimpse on \(S_r[r+1] \) as Theorem 7.

Theorem 7. After the \(r \)-th round of PRGA for \(r \geq 1 \) and \(\forall x \in [0, N - 1] \), we have

\[
\Pr(S_r[r+1] = N - x \mid Z_{r+1} = Z_r \land Z_{r+1} = r + 1 + x) \\
\approx \begin{cases}
\frac{1}{N} \left(1 - \frac{2}{N^2} \right) & \text{if } x = 0 \\
\frac{1}{N} \left(3 - \frac{6}{N} + \frac{2}{N^2} \right) & \text{if } x = 1^1 \\
\frac{2}{N} \left(1 - \frac{1}{N} + \frac{1}{N^2} \right) & \text{otherwise}.
\end{cases}
\]

Note 1. The probability of correlation when \(x = 1 \) can be precisely revised to \(\frac{1}{N} (3 - \frac{6}{N} + \frac{2}{N^2}) \) from [7] in the same way as our other cases of \(x \neq 1 \), whose precise proof will be given in the final paper.
5 Experimental results

In order to check the accuracy of biases shown in Theorems 4 to 6, the experiments are executed using 2^{24} randomly chosen keys of 16 bytes and 2^{24} output keystreams for each key, which mean $2^{48}(= N^6)$ trials of RC4. Note that $O(N^3)$ trials are reported to be sufficient to identify the biases with reliable success probability since each correlation here is of about $\frac{1}{N}$ with respect to a base event of probability $\frac{1}{N}$. Our experimental environment is as follows: Linux machine with 2.6 GHz CPU, 3.8 GiB memory, gcc 4.6.3 compiler and C language. We also evaluate the percentage of relative error ϵ of experimental values compared with theoretical values:

$$\epsilon = \frac{|\text{experimental value} - \text{theoretical value}|}{\text{experimental value}} \times 100(\%).$$

Table 1. Comparison between experimental and theoretical values

<table>
<thead>
<tr>
<th>Results</th>
<th>Experimental value</th>
<th>Theoretical value</th>
<th>$\epsilon(%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem 4</td>
<td>0.000030522</td>
<td>0.000030398</td>
<td>0.406</td>
</tr>
<tr>
<td>Theorem 5</td>
<td>0.003922408</td>
<td>0.003906131</td>
<td>0.415</td>
</tr>
<tr>
<td>for $x = 1$</td>
<td>0.00030683</td>
<td>0.00030398</td>
<td>0.929</td>
</tr>
<tr>
<td>for $x = 255$</td>
<td>0.000015259</td>
<td>0.000015140</td>
<td>0.780</td>
</tr>
<tr>
<td>for $x = N - r \ (x \neq 1, 255)$</td>
<td>0.007812333</td>
<td>0.007782102</td>
<td>0.387</td>
</tr>
</tbody>
</table>

Table 1 shows experimental, theoretical values and the percentage of relative errors ϵ, which indicates ϵ is small enough in each case such as $\epsilon \leq 0.929$. Therefore, we have convinced that theoretical values closely reflects the experimental values.

6 Conclusion

In this paper, we have shown dual cases of the previous long-term Glimpse. We have also shown a new long-term Glimpse. We note that the previous long-term Glimpse is limited to $S_r[r + 1] = N - 1$ but that our results varies $S_r[r + 1] \in [0, N - 2]$. As a result, these long-term Glimpse can be integrated to biases of $S_r[r + 1] \in [0, N - 1]$. These new integrated long-term Glimpse could contribute to the improvement of state recovery attack on RC4, which remains an open problem.

References

