<table>
<thead>
<tr>
<th>Title</th>
<th>New Integrated Long-Term Glimpse of RC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ito, Ryoma; Miyaji, Atsuko</td>
</tr>
<tr>
<td>Citation</td>
<td>Lecture Notes in Computer Science: 137-149</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-01-22</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Text version</td>
<td>author</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10119/13006</td>
</tr>
</tbody>
</table>

This is the author-created version of Springer, Ryoma Ito and Atsuko Miyaji, Lecture Notes in Computer Science, 2015, pp.137-149. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-319-15087-1_11

Description
15th International Workshop, WISA 2014, Jeju Island, Korea, August 25-27, 2014. Revised Selected Papers
New Integrated Long-Term Glimpse of RC4

Ryoma Ito and Atsuko Miyaji
Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi-shi, Ishikawa, 923-1292, Japan
{s1310005,miyaji}@jaist.ac.jp

Abstract. RC4, which was designed by Ron Rivest in 1987, is widely used in various applications such as SSL/TLS, WEP, WPA, etc. In 1996, Jenkins discovered correlations between one output keystream and a state location, known as Glimpse Theorem. In 2013, Maitra and Sen Gupta proved Glimpse Theorem and showed correlations between two consecutive output keystreams and a state location, called long-term Glimpse. In this paper, we show a new long-term Glimpse and integrate both the new and the previous long-term Glimpse into a whole.

Keywords: RC4, correlation, long-term Glimpse

1 Introduction

RC4, which was designed by Ron Rivest in 1987, is widely used in various applications such as Secure Socket Layer/Transport Layer Security (SSL/TLS), Wired Equivalent Privacy (WEP) and Wi-fi Protected Access (WPA), etc. Due to its popularity and simplicity, RC4 has become a hot cryptanalysis target since its specification was made public on the internet in 1994. For example, typical attacks on RC4 are distinguishing attack [3, 4, 10], state recovery attack [1, 6, 9] and key recovery attack [2, 8, 11].

In 1996, Jenkins discovered correlations between one output keystream and a state location, which is known as Glimpse Theorem [5]. These correlations have biases with the probability about 2^{-N} higher than that of random association $1/N$ using the knowledge of one output keystream. In 2013, Maitra and Sen Gupta presented the complete proof of Glimpse Theorem and showed $S_r[r+1] = N - 1$ occurs with the probability about 2^{-N} when two consecutive output keystreams Z_r and Z_{r+1} satisfies $Z_{r+1} = Z_r$, where $S_r[r+1]$ is the $r+1$-th location of the state array in the r-th round as usual. They also showed the probability of $S_r[r+1] = N - 1$ is further increased to about 3^{-N} when $Z_{r+1} = r + 2$ as well as $Z_{r+1} = Z_r$ occurs. Here, we call correlation with a probability significantly higher or lower than $1/N$ (the probability of random association) positive bias or negative bias, respectively. Then, their results of $S_r[r+1] = N - 1$ with the probability about 2^{-N} correspond to cases with positive biases. Note that Theorem 2 implicitly means that there exists a value of $S_r[r+1]$ with negative bias since $S_r[r+1]$ varies in $[0, N - 1]$ when $Z_{r+1} = Z_r$ has happened. We often assume uniform randomness of other certain events to prove bias of a certain event.
Therefore, it is important to prove the existence of a value with negative bias explicitly. We also call such a case with negative bias to dual case of a positive bias.

In this paper, we first show a dual case of $S_r[r+1] = N-1$, that is $S_r[r+1] = 0$, occurs with the probability about $\frac{1}{N}$ when $Z_{r+1} = Z_r$, which will be shown as Theorem 4. Then, Theorem 5 will give each probability of $S_r[r+1] = 0$ when $Z_{r+1} = r + x \ (\forall x \in [0,N-1])$ as well as $Z_{r+1} = Z_r$ occurs. Furthermore, during our careful observation of the dual case, we also find a new positive bias on $S_r[r+1]$, which will be shown in Theorem 6. Our results show that, giving two consecutive keystreams Z_r and Z_{r+1} satisfying with $Z_{r+1} = Z_r$ and $Z_{r+1} = r + 1 + x \ (x \in [2,N-1])$, the probability of $S_r[r+1] = N - x$ is about $\frac{2}{N}$, which is significantly higher than random association $\frac{1}{N}$. Note that the previous results are limited to a value of $S_r[r+1] = N-1$, but our results varies $S_r[r+1] \in [0,N-2]$. Furthermore, both our new and the previous results are integrated into long-term Glimpse of $Z_{r+1} = Z_r$ in Theorem 7.

This paper is organized as follows. Section 2 briefly summarizes notation and RC4 algorithms. Section 3 presents the previous works on Glimpse Theorem [5] and long-term Glimpse [7]. Section 4 first discusses positive and negative biases, and shows Theorems 4 to 7. Section 5 demonstrates experimental simulations. Section 6 concludes this paper.

2 Preliminary

The following notation is used in this paper.

- K, l: secret key, the length of secret key (bytes)
- r: number of rounds
- N: number of arrays in state (typically $N = 256$)
- S^K_r or S^K_r: state of KSA or PRGA after the swap in the r-th round
- i_r, j_r: indices of S_r for the r-th round
- Z_r: one output keystream for the r-th round
- t_r: index of Z_r

RC4 consists of two algorithms: Key Scheduling Algorithm (KSA) and Pseudo Random Generation Algorithm (PRGA). KSA generates the state S^K_0 from a secret key K of l bytes as described in Algorithm 1. Then, the final state S^K_N in KSA becomes the input of PRGA as S_0. Once the state S_0 is computed, PRGA generates one output keystream Z_r of bytes as described in Algorithm 2. The output keystream Z_r will be XORed with a plaintext to generate a ciphertext.

Algorithm 1 KSA

1: for $i = 0$ to $N - 1$ do
2: $S^K_0[i] \leftarrow i$
3: end for
4: $j \leftarrow 0$
5: for $i = 0$ to $N - 1$ do
6: $j \leftarrow j + S^K_0[i] + K[i \mod l]$
7: Swap($S^K_0[i], S^K_0[j]$)
8: end for

Algorithm 2 PRGA

1: $r \leftarrow 0, i_0 \leftarrow 0, j_0 \leftarrow 0$
2: loop
3: $r \leftarrow r + 1, i_r \leftarrow i_{r-1} + 1$
4: $j_r \leftarrow j_{r-1} + S_{r-1}[i_r]$
5: Swap($S_{r-1}[i_r], S_{r-1}[j_r]$)
6: $t_r \leftarrow S_r[i_r] + S_r[j_r]$
7: Output: $Z_r \leftarrow S_r[t_r]$
8: end loop
In this paper, we focus on PRGA and investigate correlations between two consecutive output keystreams and a state location. The probability of one location by random association is $\frac{1}{N}$ and uniform randomness of the RC4 stream cipher is assumed if there are no significant biases.

3 Previous works

In 1996, Jenkins discovered correlations between one output keystream and a state location \[5\], which is proved as Glimpse Theorem in \[7\]. Glimpse Theorem is given as follows.

Theorem 1. \[7\] After the r-th round of PRGA for $r \geq 1$, we have

$$\Pr(S_r[j_r] = i_r - Z_r) = \Pr(S_r[i_r] = j_r - Z_r) \approx \frac{2}{N}.$$

In 2013, Maitra and Sen Gupta discovered other correlations between two consecutive output keystreams and the $r + 1$-th location of the state array in the r-th round, which is called long-term Glimpse \[7\]. Long-term Glimpse is given as follows. Note that Theorem 3 is a special case of Theorem 2.

Theorem 2. \[7\] After the r-th round of PRGA for $r \geq 1$, we have

$$\Pr(S_r[r + 1] = N - 1 | Z_{r+1} = Z_r) \approx \frac{2}{N}.$$

Theorem 3. \[7\] After the r-th round of PRGA for $r \geq 1$, we have

$$\Pr(S_r[r + 1] = N - 1 | Z_{r+1} = Z_r \land Z_{r+1} = r + 2) \approx \frac{3}{N}.$$

4 New results on long-term Glimpse

4.1 Observation

Let us investigate the previous results (Theorems 2 and 3) in detail. Here, we call correlation with a probability significantly higher or lower than $\frac{1}{N}$ (the probability of random association) to positive bias or negative bias, respectively. Theorems 2 and 3 give cases with positive biases. Then, Theorem 2 implicitly means that there exists a value of $S_r[r + 1]$ with negative bias since $S_r[r + 1]$ varies in $[0, N - 1]$ even when $Z_{r+1} = Z_r$ has happened. We often assume uniform randomness of other certain events to prove bias of a certain event. Therefore, it is important to prove the existence of a value in $S_r[r + 1]$ with negative bias explicitly. We also call such a case with negative bias a dual case of a positive bias.

One of our motivation is to find a dual case of Theorem 2, which will be shown as Theorem 4. Then, we will also prove a special case of Theorem 4 in the same way as Theorem 3 to Theorem 2, which will be shown as Theorem 5. Furthermore, during our careful observation of the dual case, we also find a new positive bias on $S_r[r + 1]$, which will be shown in Theorem 6. Our new results can integrate long-term Glimpse when $Z_{r+1} = Z_r$. The previous results are limited to the case of $S_r[r + 1] = N - 1$ when $Z_{r+1} = Z_r$. Our results are not limited to $S_r[r + 1] = N - 1$ but varies $S_r[r + 1] \in [0, N - 2]$. Finally, both results can be integrated in Theorem 7.
4.2 New negative biases

First, Theorem 4 shows a dual case of Theorem 2 as follows.

Theorem 4. After the r-th round of PRGA for $r \geq 1$, we have

$$\Pr(S_r[r+1] = 0 | Z_{r+1} = Z_r) \approx \frac{2}{N^2} \left(1 - \frac{1}{N}\right).$$

Proof. We define main events as follows:

$$A := (S_r[r+1] = 0), B := (Z_{r+1} = Z_r).$$

We first compute $\Pr(B|A)$, and apply Bayes’ theorem to prove the claim. Assuming that event A happened, we get

$$j_{r+1} = j_r + S_r[i_{r+1}] = j_r + S_r[r+1] = j_r.$$

Then, $\Pr(B|A)$ is computed in three paths: $j_r = r$ (Path 1), $j_r = r + 1$ (Path 2) and $j_r \neq r, r + 1$ (Path 3). These paths include all events in order to compute $\Pr(B|A)$. Let $X = S_r[r]$ and $Y = S_r[j_r]$.

Path 1. Fig. 1 shows a state transition diagram in Path 1. First, we prove $t_r \neq t_{r+1}$. After the r-th round, $t_r = 2X$ holds since $i_r = j_r = r$. In the next round, $t_{r+1} = X$ holds since $j_{r+1} = j_r = r$ and $i_{r+1} = r + 1$. Thus, we get $t_r \neq t_{r+1}$ with probability 1 since $X \neq 0$. Then, if event B occurs, t_{r+1} must be swapped from t_r. This is why $\Pr(\text{Path 1}) = \Pr(B|A \land j_r = r)$ is computed in two subpaths: $i_r = 1 \land t_{r+1} = 1$ (Path 1-1) and $i_r = 254 \land t_{r+1} = 255$ (Path 1-2).

Path 1-1. Fig. 2 shows a state transition diagram in Path 1-1. Then, we get event B since $Z_{r+1} = S_{r+1}[1] = 0$ and $Z_r = S_r[2] = 0$. Thus, we can compute the probability of Path 1-1 as follows.

$$\Pr(\text{Path 1-1}) = \Pr(\text{Path 1} \land i_r = 1 \land t_{r+1} = 1) = 1.$$

Path 1-2. Fig. 3 shows a state transition diagram in Path 1-2. Then, we get event B since $Z_{r+1} = S_{r+1}[255] = 255$ and $Z_r = S_r[254] = 255$. Thus, we can compute the probability of Path 1-2 as follows.

$$\Pr(\text{Path 1-2}) = \Pr(\text{Path 1} \land i_r = 254 \land t_{r+1} = 255) = 1.$$

Therefore, the probability of Path 1 is computed as follows.

$$\Pr(\text{Path 1}) = \Pr(\text{Path 1-1}) \cdot \Pr(i_r = 1 \land t_{r+1} = 1) + \Pr(\text{Path 1-2}) \cdot \Pr(i_r = 254 \land t_{r+1} = 255) \approx 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N}\right) + 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N}\right) = \frac{2}{N^2}.$$
Path 2. Fig. 4 shows a state transition diagram in Path 2. We get $t_r \neq t_{r+1}$ in the same way as Path 1. Then, event B never occurs because t_{r+1} can not be swapped from t_r. Therefore, the probability of Path 2 is computed as follows.

$$\Pr(\text{Path 2}) = \Pr(B|A \land j_r = r+1) = 0.$$

Path 3. Fig. 5 shows a state transition diagram in Path 3. We get $t_r \neq t_{r+1}$ in the same way as Path 1. Then, if event B occurs, t_{r+1} must be swapped from t_r. This is why $\Pr(\text{Path 3}) = \Pr(B|A \land j_r \neq r, r+1)$ is computed in two subpaths: $t_r = j_r \land t_{r+1} = r + 1$ (Path 3-1) and $t_r = r + 1 \land t_{r+1} = j_{r+1}$ (Path 3-2).

Path 3-1. Fig. 6 shows a state transition diagram in Path 3-1. Then, we get event B since $Z_{r+1} = S_{r+1}[r + 1] = r + 1$ and $Z_r = S_r[j_r] = r + 1$. Thus, we can compute the probability of Path 3-1 as follows.

$$\Pr(\text{Path 3-1}) = \Pr(\text{Path 3} \land t_r = j_r \land t_{r+1} = r + 1) = 1.$$

Path 3-2. Fig. 7 shows a state transition diagram in Path 3-2. Then, we get event B since $Z_{r+1} = S_{r+1}[j_{r+1}] = 0$ and $Z_r = S_r[r + 1] = 0$. Thus, we can compute the probability of Path 3-2 as follows.

$$\Pr(\text{Path 3-2}) = \Pr(\text{Path 3} \land t_r = r + 1 \land t_{r+1} = j_{r+1}) = 1.$$

Therefore, the probability of Path 3 is computed as follows.

$$\Pr(\text{Path 3}) = \Pr(\text{Path 3-1}) \cdot \Pr(t_r = j_r \land t_{r+1} = r + 1) + \Pr(\text{Path 3-2}) \cdot \Pr(t_r = r + 1 \land t_{r+1} = j_{r+1}) \approx 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N} \right) + 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N} \right) = \frac{2}{N^2}.$$
From these results, \(\Pr(B|A) \) is computed as follows.

\[
\Pr(B|A) = \Pr(\text{Path 1}) \cdot \Pr(j_r = r) + \Pr(\text{Path 2}) \cdot \Pr(j_r = r + 1) + \Pr(\text{Path 3}) \cdot \Pr(j_r \neq r, r + 1)
\approx \frac{2}{N^2} \cdot \frac{1}{N} + 0 \cdot \frac{1}{N} + \frac{2}{N^2} \cdot \left(1 - \frac{2}{N}\right) = \frac{2}{N^2} \left(1 - \frac{1}{N}\right).
\]

\(\Pr(A|B) \) is computed as follows by applying Bayes’ theorem since events \(A \) and \(B \) occur with the probability of random association \(\frac{1}{N} \).

\[
\Pr(A|B) = \frac{\Pr(B|A) \cdot \Pr(A)}{\Pr(B)} \approx \frac{\frac{2}{N^2} \left(1 - \frac{1}{N}\right) \cdot \frac{1}{N}}{\frac{2}{N^2} \left(1 - \frac{1}{N}\right)} = \frac{2}{N^2} \left(1 - \frac{1}{N}\right).
\]

Next, Theorem 5 shows a special case of Theorem 4 as follows.

Theorem 5. After the \(r \)-th round of PRGA for \(r \geq 1 \) and \(\forall x \in [0, N - 1] \), we have

\[
\Pr(S_r[r + 1] = 0|Z_{r+1} = Z_r \wedge Z_{r+1} = r + x) \approx \begin{cases}
\frac{1}{N} \left(1 - \frac{2}{N^2}\right) & \text{if } x = 1 \\
\frac{2}{N^2} \left(1 - \frac{1}{N}\right) & \text{if } x = 255 \\
\frac{1}{N^2} \left(1 - \frac{2}{N}\right) & \text{if } x = N - r \\
\end{cases}
\]

where \(x \neq 1, 255 \).

Proof. We define main events as follows.

\(A := (S_r[r + 1] = 0), B := (Z_{r+1} = Z_r), C := (Z_{r+1} = r + x) \).
Pr(A|B' \land C) is difficult to compute because events B and C are not independent. To avoid this problem, we define a new event \(B' := (Z_r = r + x) \). Then, \(\Pr(A|B \land C) = \Pr(A|B' \land C) \) since \(B \land C \) and \(B' \land C \) are the same event. \(\Pr(A|B' \land C) \) is decomposed as follows by using Bayes’ theorem:

\[
\Pr(A|B' \land C) = \frac{\Pr(A \land B' \land C)}{\Pr(B' \land C)} = \frac{\Pr(C|B' \land A) \cdot \Pr(B'|A) \cdot \Pr(A)}{\Pr(B' \land C)}.
\]

We first compute \(\Pr(C|B' \land A) \) in three paths: \(j_r = r \) (Path 1), \(j_r = r + 1 \) (Path 2) and \(j_r \neq r, r + 1 \) (Path 3). These paths are the same as in Theorem 4, and thus the proof itself is similar to Theorem 4. Let \(X = S_r[r] \) and \(Y = S_r[j_r] \).

Path 1. Fig. 1 shows a state transition diagram in Path 1. Note that \(t_r \neq t_r+1 \) from the discussion of Path 1 in Theorem 4, and that event \(C \) is limited to two subpaths: \(i_r = 1 \) for \(r + x = 0 \) (Path 1-1) and \(t_r+1 = 255 \) for \(r + x = 255 \) (Path 1-2).

Path 1-1. Fig. 2 shows a state transition diagram in Path 1-1. Then, event \(C \) holds under event \(B' \land A \) since \(Z_r+1 = S_{r+1}[1] = 0 \) and \(Z_r = S_r[2] = 0 \). Note that \(i_r = 1 \) and \(r + x = 0 \) hold if and only if \(x = 255 \). Thus, we can compute the probability of Path 1-1 as follows.

\[
\Pr(\text{Path 1-1}) = \Pr(\text{Path 1} \land i_r = 1) = 1 \quad \text{if} \ x = 255.
\]

Path 1-2. Fig. 3 shows a state transition diagram in Path 1-2. Then, event \(C \) holds under event \(B' \land A \) since \(Z_r+1 = S_{r+1}[255] = 255 \) and \(Z_r = S_r[254] = 255 \). Note that \(i_r = 254 \) (see Fig. 3) and \(r + x = 255 \) hold if and only if \(x = 1 \). Thus, we can compute the probability of Path 1-2 as follows.

\[
\Pr(\text{Path 1-2}) = \Pr(\text{Path 1} \land t_r+1 = 255) = 1 \quad \text{if} \ x = 1.
\]

Therefore, the probability of Path 1 is computed as follows.

\[
\Pr(\text{Path 1}) = \begin{cases}
\Pr(\text{Path 1-1}) \cdot \Pr(i_r = 1) & \text{if} \ x = 255 \\
\Pr(\text{Path 1-2}) \cdot \Pr(t_{r+1} = 255) & \text{if} \ x = 1 \\
0 & \text{otherwise}.
\end{cases}
\]

Path 2. Event \(C \) never occurs in Path 2 from the discussion of Path 2 in Theorem 4. Therefore, the probability of Path 2 is computed as follows.

\[
\Pr(\text{Path 2}) = \Pr(C|B' \land A \land j_r = r + 1) = 0.
\]

Path 3. Fig. 5 shows a state transition diagram in Path 3. Note that \(t_r \neq t_{r+1} \) from the discussion of Path 3 in Theorem 4, and that event \(C \) is limited to two subpaths: \(t_{r+1} = r + 1 \) for \(x = 1 \) (Path 3-1) and \(t_r = r + 1 \land t_{r+1} = j_{r+1} \) for \(r + x = 0 \) (Path 3-2).
Path 3-1. Fig. 6 shows a state transition diagram in Path 3-1. Then, event C holds under event $B^t \land A$ since $Z_{r+1} = S_{r+1}[j_{r+1}] = r+1$ and $Z_r = S_r[j_r] = r$. Thus, we can compute the probability of Path 3-1 as follows.

$$\Pr(\text{Path 3-1}) = \Pr(\text{Path 3} \land t_{r+1} = r+1) = 1 \text{ if } x = 1.$$

Path 3-2. Fig. 7 shows a state transition diagram in Path 3-2. Then, event C holds under event $B^t \land A$ since $Z_{r+1} = S_{r+1}[j_{r+1}] = 0$ and $Z_r = S_r[j_r] = 0$. Note that $r+x = 0 \ (\forall r \in [0, N-1])$ means $x = N - r$.

Thus, we can compute the probability of Path 3-2 as follows.

$$\Pr(\text{Path 3-2}) = \Pr(\text{Path 3} \land t_r = r+1 \land t_{r+1} = j_{r+1}) = 1.$$

Therefore, the probability of Path 3 is computed as follows.

$$\Pr(\text{Path 3}) = \Pr(\text{Path 3-1}) \cdot \Pr(t_{r+1} = r+1)$$

$$+ \Pr(\text{Path 3-2}) \cdot \Pr(t_r = r+1 \land t_{r+1} = j_{r+1})$$

$$\approx \begin{cases}
\frac{1}{N} \cdot \frac{1}{N} + \frac{1}{N} \cdot \left(1 + \frac{1}{N}\right) \cdot \left(1 - \frac{2}{N}\right) = \frac{1}{N} \left(1 - \frac{2}{N^{2}}\right) & \text{if } x = 1 \\
0 \cdot \frac{1}{N} + \frac{1}{N^{2}} \cdot \left(1 - \frac{2}{N}\right) = \frac{1}{N^{2}} \left(1 - \frac{2}{N}\right) & \text{if } x = N - r \ (x \neq 1).
\end{cases}$$

From these results, $\Pr(C \mid B^t \land A)$ is computed as follows.

$$\Pr(\text{Path 3} \land \text{Path 3-1}) = \Pr(\text{Path 1}) \cdot \Pr(j_r = r) + \Pr(\text{Path 2}) \cdot \Pr(j_r = r + 1)$$

$$+ \Pr(\text{Path 3}) \cdot \Pr(j_r \neq r, r+1)$$

$$\approx \begin{cases}
\frac{1}{N} \cdot \frac{1}{N} + \frac{1}{N} \cdot \left(1 + \frac{1}{N}\right) \cdot \left(1 - \frac{2}{N}\right) = \frac{1}{N} \left(1 - \frac{2}{N^{2}}\right) & \text{if } x = 1 \\
\frac{1}{N} \cdot \frac{1}{N} + \frac{1}{N^{2}} \cdot \left(1 - \frac{2}{N}\right) = \frac{1}{N^{2}} \left(1 - \frac{2}{N}\right) & \text{if } x = 255 \\
0 \cdot \frac{1}{N} + \frac{1}{N^{2}} \cdot \left(1 - \frac{2}{N}\right) = \frac{1}{N^{2}} \left(1 - \frac{2}{N}\right) & \text{if } x = N - r \ (x \neq 1, 255).
\end{cases}$$

$\Pr(A \mid B \land C)$ is computed as follows by applying Bayes’ theorem since events A, B^t, C and $B^t \mid A$ occur with the probability of random association $\frac{1}{N}$.

$$\Pr(A \mid B \land C) = \frac{\Pr(C \mid B^t \land A) \cdot \Pr(C^t \land A) \cdot \Pr(A)}{\Pr(B^t \land C)} \approx \frac{\Pr(C \mid B^t \land A) \cdot \frac{1}{N} \cdot \frac{1}{N}}{\frac{1}{N} \cdot \frac{1}{N}}$$

$$= \Pr(C \mid B^t \land A) \approx \begin{cases}
\frac{1}{N} \left(1 - \frac{2}{N^{2}}\right) & \text{if } x = 1 \\
\frac{2}{N^{2}} \left(1 - \frac{1}{N}\right) & \text{if } x = 255 \\
\frac{1}{N^{2}} \left(1 - \frac{2}{N}\right) & \text{if } x = N - r \ (x \neq 1, 255).
\end{cases}$$
4.3 New positive biases and their integration

Theorem 6 shows a new positive bias on $S_r[r + 1]$ as follows.

Theorem 6. After the r-th round of PRGA for $r \geq 1$ and $\forall x \in [2, N - 1]$, we have

$$\Pr(S_r[r + 1] = N - x | Z_{r+1} = Z_r \land Z_{r+1} = r + 1 + x) \approx \frac{2}{N} \left(1 - \frac{1}{N} + \frac{1}{N^2} \right)$$

Proof. We define main events as follows.

$$A := (S_r[r + 1] = N - x), B := (Z_{r+1} = Z_r),$$
$$B' := (Z_r = r + 1 + x), C := (Z_{r+1} = r + 1 + x).$$

The proof itself is similar to Theorem 5. We first compute $\Pr(C | B \land A)$ in three paths: $j_r = r$ (Path 1), $j_r = r + 1$ (Path 2) and $j_r \neq r, r + 1$ (Path 3). Let $X = S_r[r]$, $Y = S_r[j_r]$ and $W = S_r[j_{r+1}]$.

Path 1. Both t_r and t_{r+1} are independent since we get $t_r = 2X$ and $t_{r+1} = N - x + W$. Then, event C is limited to three subpaths: $t_{r+1} = r + 1$ (Path 1-1), $N - x = r + 1 + x \land t_{r+1} = j_{r+1}$ (Path 1-2) and $t_{r+1} = t_r$ except when t_r equals either $r + 1$ or j_{r+1} (Path 1-3). We can compute the probability of each subpath as follows.

Pr(Path 1-1) = Pr(Path 1) \cdot Pr($t_{r+1} = r + 1$) = 1,
Pr(Path 1-2) = Pr(Path 1 \land $N - x = r + 1 + x \land t_{r+1} = j_{r+1}$) = 1,
Pr(Path 1-3) = Pr(Path 1 \land $t_{r+1} = t_r$) = 1 - $\frac{2}{N}$.

Therefore, the probability of Path 1 is computed as follows.

$$\Pr(\text{Path 1}) = \Pr(\text{Path 1-1}) \cdot \Pr(t_{r+1} = r + 1) + \Pr(\text{Path 1-2}) \cdot \Pr(N - x = r + 1 + x \land t_{r+1} = j_{r+1}) + \Pr(\text{Path 1-3}) \cdot \Pr(t_{r+1} = t_r) \approx 1 \cdot \frac{1}{N} + 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N} \right) + \frac{1}{N} \cdot \frac{1}{N} = \frac{1}{N} \left(1 - \frac{1}{N} + \frac{1}{N^2} \right).$$

Path 2. We get $t_r \neq t_{r+1}$ since $t_r = N - x + X$, $t_{r+1} = N - x + W$ and $X \neq W$.

Then, event C is limited to two subpaths: $t_{r+1} = r + 1$ (Path 2-1) and $N - x = r + 1 + x \land t_{r+1} = j_{r+1}$ (Path 2-2). We can compute the probability of each subpath as follows.

Pr(Path 2-1) = Pr(Path 2 \land $t_{r+1} = r + 1$) = 1,
Pr(Path 2-2) = Pr(Path 2 \land $N - x = r + 1 + x \land t_{r+1} = j_{r+1}$) = 1.

Therefore, the probability of Path 2 is computed as follows.

$$\Pr(\text{Path 2}) = \Pr(\text{Path 2-1}) \cdot \Pr(t_{r+1} = r + 1) + \Pr(\text{Path 2-2}) \cdot \Pr(N - x = r + 1 + x \land t_{r+1} = j_{r+1}) \approx 1 \cdot \frac{1}{N} + 1 \cdot \left(\frac{1}{N} \cdot \frac{1}{N} \right) = \frac{1}{N} \left(1 + \frac{1}{N} \right).$$
Path 3. Both \(t_r \) and \(t_{r+1} \) are independent since we get \(t_r = X + Y \) and \(t_{r+1} = N - x + W \). Then, event \(C \) is limited to three subpaths: \(t_{r+1} = r + 1 \) (Path 3-1), \(N - x = r + 1 + x \wedge t_{r+1} = j_{r+1} \) (Path 3-2) and \(t_{r+1} = t_r \) except when \(t_r \) equals either \(r + 1 \) or \(j_{r+1} \) (Path 3-3). We can compute the probability of each subpath as follows.

\[
\begin{align*}
\Pr(\text{Path 3-1}) &= \Pr(\text{Path 3} \wedge t_{r+1} = r + 1) = 1, \\
\Pr(\text{Path 3-2}) &= \Pr(\text{Path 3} \wedge N - x = r + 1 + x \wedge t_{r+1} = j_{r+1}) = 1, \\
\Pr(\text{Path 3-3}) &= \Pr(\text{Path 3} \wedge t_{r+1} = t_r) = 1 - \frac{2}{N}.
\end{align*}
\]

Therefore, the probability of Path 3 is computed as follows.

\[
\Pr(\text{Path 3}) = \Pr(\text{Path 3-1}) \cdot \Pr(t_{r+1} = r + 1) \\
+ \Pr(\text{Path 3-2}) \cdot \Pr(N - x = r + 1 + x \wedge t_{r+1} = j_{r+1}) \\
+ \Pr(\text{Path 3-3}) \cdot \Pr(t_{r+1} = t_r) \\
\approx 1 \cdot \frac{1}{N} + 1 \cdot \left(\frac{1}{N} - \frac{2}{N} \right) + \frac{1}{N} = \frac{1}{N} \left(2 - \frac{1}{N} \right).
\]

From these results, \(\Pr(C \mid B' \land A) \) is computed as follows.

\[
\Pr(\text{Path 3-1}) \cdot \Pr(t_{r+1} = r + 1) \\
+ \Pr(\text{Path 3-2}) \cdot \Pr(N - x = r + 1 + x \wedge t_{r+1} = j_{r+1}) \\
+ \Pr(\text{Path 3-3}) \cdot \Pr(t_{r+1} = t_r)
\]

\[
\approx \frac{1}{N} \left(2 - \frac{1}{N} \right) \cdot \frac{1}{N} + \frac{1}{N} \left(1 + \frac{1}{N} \right) \cdot \frac{1}{N} + \frac{1}{N} \left(2 - \frac{1}{N} \right) \cdot \left(1 - \frac{2}{N} \right)
\]

\[
= \frac{2}{N} \left(1 - \frac{1}{N} + \frac{1}{N^2} \right).
\]

As a result, \(\Pr(A \mid B \land C) \) is computed as follows.

\[
\Pr(A \mid B \land C) \approx \Pr(C \mid B' \land A) \approx \frac{2}{N} \left(1 - \frac{1}{N} + \frac{1}{N^2} \right).
\]

Finally, we can integrate long-term Glimpse on \(S_r \mid r + 1 \) as Theorem 7.

Theorem 7. After the \(r \)-th round of PRGA for \(r \geq 1 \) and \(\forall x \in [0, N - 1] \), we have

\[
\Pr(S_r \mid r + 1 = N - x \mid Z_{r+1} = Z_r \wedge Z_{r+1} = r + 1 + x)
\]

\[
\approx \begin{cases}
\frac{1}{N} \left(1 - \frac{2}{N^2} \right) & \text{if } x = 0 \\
\frac{1}{N} \left(3 - \frac{6}{N} + \frac{2}{N^2} \right) & \text{if } x = 1^1 \\
\frac{2}{N} \left(1 - \frac{1}{N} + \frac{1}{N^2} \right) & \text{otherwise}.
\end{cases}
\]

\footnote{The probability of correlation when \(x = 1 \) can be precisely revised to \(\frac{1}{N} (3 - \frac{6}{N} + \frac{2}{N^2}) \) from [7] in the same way as our other cases of \(x \neq 1 \), whose precise proof will be given in the final paper.}
5 Experimental results

In order to check the accuracy of biases shown in Theorems 4 to 6, the experiments are executed using 2^{24} randomly chosen keys of 16 bytes and 2^{24} output keystreams for each key, which mean $2^{48}(= N^6)$ trials of RC4. Note that $O(N^3)$ trials are reported to be sufficient to identify the biases with reliable success probability since each correlation here is of about $\frac{1}{N}$ with respect to a base event of probability $\frac{1}{N}$. Our experimental environment is as follows: Linux machine with 2.6 GHz CPU, 3.8 GiB memory, gcc 4.6.3 compiler and C language. We also evaluate the percentage of relative error ϵ of experimental values compared with theoretical values:

$$\epsilon = \frac{|\text{experimental value} - \text{theoretical value}|}{\text{experimental value}} \times 100(\%)$$

<table>
<thead>
<tr>
<th>Results</th>
<th>Experimental value</th>
<th>Theoretical value</th>
<th>$\epsilon(%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem 4</td>
<td>0.000030522</td>
<td>0.000030398</td>
<td>0.406</td>
</tr>
<tr>
<td>Theorem 5 for $x = 1$</td>
<td>0.003922408</td>
<td>0.003906131</td>
<td>0.415</td>
</tr>
<tr>
<td>for $x = 255$</td>
<td>0.000030683</td>
<td>0.000030398</td>
<td>0.929</td>
</tr>
<tr>
<td>for $x = N - r$ ($x \neq 1, 255$)</td>
<td>0.000015259</td>
<td>0.000015140</td>
<td>0.780</td>
</tr>
<tr>
<td>Theorem 6</td>
<td>0.007812333</td>
<td>0.007782102</td>
<td>0.387</td>
</tr>
</tbody>
</table>

Table 1 shows experimental, theoretical values and the percentage of relative errors ϵ, which indicates ϵ is small enough in each case such as $\epsilon \leq 0.929$. Therefore, we have convinced that theoretical values closely reflects the experimental values.

6 Conclusion

In this paper, we have shown dual cases of the previous long-term Glimpse. We have also shown a new long-term Glimpse. We note that the previous long-term Glimpse is limited to $S_r[r+1] = N - 1$ but that our results varies $S_r[r+1] \in [0, N - 2]$. As a result, these long-term Glimpse can be integrated to biases of $S_r[r+1] \in [0, N - 1]$. These new integrated long-term Glimpse could contribute to the improvement of state recovery attack on RC4, which remains an open problem.

References

