JAIST Repository
https://dspace.jaist.ac.jp/

Title gobodoooooooboobobouooooo

Author(s) oo, 00

Citation

Issue Date 1999-09

Type Thesis or Dissertation

Text version aut hor

URL http://hdl.handle.net/ 101019/ 1318
Rights

Description Supervisor: oo 04, ooooooo o0

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



On Efficient Cache Management
in State Space Search

Satoshi Koike

School of Information Science,
Japan Advanced Institute of Science and Technology

August 13, 1999

Keywords: concurrency, state explosion, sleep sets, state-space caching.

Concurrent processes consist, of several sequential subprocesses each of which acts con-
currently in cooperation with other subprocesses. The concept of concurrent process is an
abstraction of programs on parallel computers and network protocols on computer net-
works. Therefore, the consideration of concurrent process is very important in developing
these systems.

In developing concurrent processes, the following problems frequently occur, which are
not considered in a single process.

Dead lock A situation that a concurrent process cannot continue its execution any more.

Live lock A situation that a concurrent process repeats its execution infinitely without
an effective evolution for its purposes.

Inadequate termination a situation that a concurrent process terminates without an
achievement of its purposes.

It is a hard task to find and solve these problems during the development of concurrent
programs. This makes their development more difficult than that of programs with a
single process. For this reason, various methods for developing concurrent program have
been studied.

State-space searching is one of supporting methods for developing concurrent pro-
grams. It generates the state space of concurrent processes by executing each transition
one by one, and searches the state-space for finding problems.

In searching the state space, it stores all visited states in a memory to avoid double
works, a situation that some states are explored more than once. When creating a new
state, it is compared with stored states to check that it is already visited. However, it is

Copyright (© 1999 by Satoshi Koike



hard to store all visited states because of largeness of the state space. To overcome this
problem, several methods to reduce the number of states to be explored are proposed.
Sleep sets is one of these methods. It uses the following fact. Considering a sequence of
transitions, we exchange the position of a transition with one of its neighbors when it is
independent, and obtain a sequence which is also executable, and gives the same result
as the original one.

Empirically, it is known that the double work can be avoided sufficiently by storing a
part of visited states. State-space caching uses this fact. It stores a part of visited states
on high-speed main memory, called cache. When the cache overflows, one of states in the
cache is selected, and is deleted. Therefore, it is desirable that states which will be visited
repeatedly have priority in this selection. By this reason, a decision in selecting states
from the cache is very important. Godefroid and Holzmann proposed several heuristics
for the selection, which are discovered through experiments. But they did not study
theoretically.

In this research, we study the mechanism of an occurrence of double works, and obtain
the following results.

A double work occurs when a sequence translated by the following rules gives
a state that is already visited.

Rulel If one of neighbors of a transition is independent, then they can be
exchanged.

Rule2 If two sequences have the same start and end state in all engaging
processes, then they can be exchanged.

We propose a new algorithm for cache management and prove its correctness. The
proposed algorithm stores states whose local states are in one of the following.

e A joining local state

e The successor of a branching local state
Where joining local states and branching local states are defined as follows.
Joining local state a local state whose input degree is greater than one.

Branching local state a local state whose output degree is greater than one.



