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Abstract 

Sound field analysis is complicated and computationally intensive. In this paper, a two-dimensional 

sound field solver based on the Digital Huygens’ Model (DHM) is designed and implemented by a 

Field Programmable Gate Array (FPGA). In this sound field solver, the original DHM and its boundary 

condition are extended to reduce operations and hardware resource consumption. The computation is 

completed locally, and external memory access is avoided. In a two-dimensional space with both 

length and width being 1.28m, when boundaries are rigid walls, the FPGA-based analysis system 

enhances performance from 44 to 217 times, and from 37 to 179 times against the software simulations 

based on the original DHM and Standard Leapfrog Finite-difference Time-domain (SLF-FDTD), 

respectively. Compared with the General-purpose Graphic Processing Unit (GPGPU) Tesla C1060, it 

speeds up by 1223 times in computation and by 114 times in overall performance in the case of time 

steps being 20,000. When the node scales are different and the calculated time steps are 32,000, the 

FPGA-based sound field solver achieves about 1,795 and 1,190 times faster in computation, 218 and 

179 times enhancement in final performance over the software simulations based on the original DHM 

and SLF-FDTD, respectively. Furthermore, the proposed system provides high data throughput, and is 

easily applied in real-time applications. 
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1. Introduction 

Sound field analysis, which exhibits numerical methods to model sound propagation phenomena in 

spatial and time domain, is required widely in many industrial and scientific fields, such as 

ultra-realistic communication, virtual reality, interactive games and noise control. Generally, a sound 

space is discretised into small grids. The governing equations of sound propagation are numerically 

applied on each grid to analyse sound behaviour at discrete time steps. Currently, many numerical 

methods have been proposed for computer simulation, such as acoustical ray tracing [1], image source 

method [2], beam tracing method [3], acoustic radiosity [4]，finite element method [5], boundary 
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element method [6], and Finite Difference Time-Domain (FDTD) method [7][8]. Moreover, various 

software techniques, from high-level thread parallelism on computer clusters [9] to low-level memory 

and disk optimizations [10] have been developed to accelerate the execution of these simulation tasks. 

However, current computers are confronted with the difficulty of improving performance at a 

reasonable cost due to their inefficient hardware-resource utilization. During simulation, huge amounts 

of data are read from and written into the external memory system. Since no special tailored hardware 

units are used to accelerate these data access, memory system does not work effectively due to the 

intensive data requirements and limited memory bandwidth. The simulation is time-consuming even if 

computers are much faster. Although supercomputers and large computer clusters may eliminate these 

disadvantages and gain a parallel processing speedup [9][11], they are prohibitively expensive.  

In order to eliminate the limitation of memory bandwidth and reduce data access to external memory, 

GPGPUs [12][13] and FPGAs are currently applied to speed up such type of data-oriented applications 

[14][15][16][17] by completing all computations inside chips. In a GPGPU, several streaming 

multiprocessors are connected to each other with a fast interconnection network. Inside a streaming 

multiprocessor, multiple streaming processors work in parallel to speed up computation, and most of 

data are exchanged in the on-chip shared memory rather than the external memory. But the GPGPU 

based solutions are not easily applied for real-time applications because there are no external I/O 

connectors in general GPU boards and the calculated results require further post-processing. For 

example, in a virtual audio system, many channels are output at real-time. A sound synthesizer is 

needed to process the calculation results of GPGPUs. 

In the FPGA-based sound field analysis systems, the propagation equations of sound wave are directly 

implemented by the Configurable Logic Blocks (CLB), and data are kept by the D flip-flops and block 

memory units inside FPGA chips. By cascading hundreds of arithmetic units together, and coordinating 

them to work in parallel, FPGA-based sound field analysis system may achieve much higher 

computation performance than the software simulations on generic computer systems. Since the 

utilization and interconnection of internal memory resources of a FPGA are explicitly tailored 

according to the system data flow, data are reused more efficiently, and the external memory access is 

reduced significantly or eliminated. Particularly, the calculation results can be output by the digital to 

analogue converters (D/A) directly for real-time applications.  

In this paper, a FPGA-based two-dimensional sound field solver is introduced and evaluated. This 

solver is based on the systolic architecture. It has regularity, locality, and parallelism in computing. The 

present study mainly discusses the system design and implementation. This design is based on a 

programmable hardware structure fully tailored for the sound field analysis. Major contributions of this 

work are as follows: 

1) A parallel systolic architecture to avoid external memory access during computation and exploit 

both the spatial and temporal parallelism of computation for scaling up the system performance. 

The whole system architecture and function modules inside it are introduced. Design issues are 

presented. Data flow, memory requirement, and computing flow are analysed. 



3 

 

2) Extension of the original DHM and its boundary condition to reduce operations and hardware 

resource consumption. 

3) Design and implementation of the FPGA-based prototype systems with different node scales, 

which achieve significant speedups in computations, data throughput, and final performance.  

4) Detail analysis and evaluation of system performance based on the prototype system. The 

hardware resource consumption of the whole system is presented. System performance under 

two cases is evaluated and analysed, including calculation time, data transfer speed, speedup in 

computation, and data throughput. 

The rest of this paper is organized as follows. The related work is summarized in Section 2. The DHM 

and its extension are introduced briefly in Section 3. The system design, including system architecture, 

computing cell design, memory requirement, and computation flow, is described in Section 4. The 

system performance, such as hardware resource consumption, execution time, and data throughput is 

discussed in Section 5. Finally, conclusions are drawn in Section 6. 

2. Related Work 

In FPGA-based sound field solvers, the analysis algorithm and system architecture affect system 

performance significantly. Since hardware resources are limited inside a FPGA, the analysis algorithm 

should be as simple as possible to reduce hardware resource consumption. In recent years, many 

simple algorithms have been derived from the propagation equations of sound waves to investigate 

acoustical behaviour, such as the DHM, the Digital Waveguide Mesh (DWM)[18][19], and 

Transmission Line Matrix (TLM)[20][21][22]. The DWM method was in principle a FDTD scheme 

based on digital signal processing technology. Based on the FDTD algorithm, the compact FDTD 

schemes were derived [23]. Although some of them are simple and efficient, such as nine-point INT, it 

requires more data during calculation, which results in increasing of memory bandwidth. The TLM 

method was a physical equivalent method to analyse sound behaviour in the time domain. The original 

DHM, proposed by Y. Kagawa and T. Tsuchiya [24][25][26][27], was derived from the TLM method. 

Compared with other algorithms, the DHM is simpler and more easily implemented by hardware.  

As FPGAs have been integrated more and faster hardware resources of CLBs, DSPs, and block RAMs, 

they have been used for acceleration of numerical simulations based on the FDTD algorithm in thermal 

propagation, computational fluid dynamics (CFD), electromagnetic analysis, and so on. F. Pardo 

proposed a FPGA-based solver for thermal simulation [28]. K. Sano, W. D. Smith, and H. Morishita 

explored FPGA-based accelerators for CFD applications [29][30][31]. Among them, K. Sano 

researched the systolic computational memory architecture to eliminate the bottleneck of memory 

bandwidth during computation. W. D. Smith developed baseline system architecture for accelerating the 

three of the most computation-intensive algorithms in CFD applications by using FPGA. H. Morishita 

designed FPGA-based arithmetic pipelines with a customized memory system to speed up some CFD 

subroutines. In addition, C. He and M. shafiq introduced the optimized memory architectures to exploit 

data reuse on a reconfigurable computing platform for applications based on the finite difference 

method [32][33]. J. P. Durbano, W. Chen, and R. N. Schneider investigated the FPGA-based FDTD 

solutions for electromagnetic problems [34][35][36]. Erdem Motuk developed the FPGA-based sound 
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synthesized system based on explicit finite-difference algorithm [37]. In this paper, a FPGA-based 

solver with parallel architecture is proposed for sound field analysis, where massive data are required 

along with the numerical algorithms. To reduce hardware resource and improve system performance, 

the original DHM and its boundary condition are extended. The resolver is easily used for real-time 

applications. 

3. Two-dimensional DHM Algorithm 

3.1 Original scheme 

In the two-dimensional DHM, a sound space is treated as a grid mesh with each grid being same length 

l . Since the impedance is discontinuous at the connecting node, when a pulse with magnitude being 

P is incident to a node (Fig. 1a), the sound pulse scatters in four directions as shown in Fig. 1b. This 

procedure is equivalent to the travelling and scattering of a voltage pulse over an orthogonal mesh 

made of transmission lines. If the impedance of one direction branch is Z0, the equivalent impedance 

from one direction branch to the other three branches at the node is Z0/3 because the three branches are 

connected in parallel. Then the reflection coefficient at the node is given by 
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Thus the pulse with magnitude being 1 2P is transmitted and reflected back into the adjacent nodes 

and the incident node, respectively. When four directions are incident, the scattering matrix is obtained 

and shown in equation (1) [15][24][25][26], where 
n

m
S

 
and n

mP  (the subscript m denotes the four 

directions 1, 2, 3 and 4) are the scattered pulses and incident pulses in different directions at time t, 

respectively. Time t equals
T

n l

C

  ( n =0,1,2,…), where TC is the propagation speed of sound, l  is the 

grid length, and n  is the discrete time steps.  
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Fig. 1 Two dimensional DHM (a) An incident pulse (b) Scattered pulses 
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Since the coefficient matrix is symmetrical, from the equivalent principle, we have  



5 

 

4 4

1 1
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            (2) 

The sound pressure at the node (i, j) is denoted by ( , )nP i j  and defined as
4

1

1
( , ) ( , )

2

n n
m

m
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  for 

lossless propagation. Then equation (1) is rewritten as 

( , ) ( , ) ( , )n n n
m mS i j P i j P i j  ( 1,2,..,4)m      (3) 

In Fig. 1(b), the scattered pulses at a node are the incidences to the corresponding directions of its 

neighbours at the next time step. The relations between a node and its neighbours are shown in 

equation (4): 
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      (4) 

Equation (4) shows the mesh connection topology for general nodes. When a node is on a boundary, its 

scatterings and incidences are affected by the characteristics of the boundary medium. If a boundary is 

reflective, and its acoustical reflection coefficient is R, equation (5) shows the relation between the 

scatterings and incidences at a node on the boundary. 

1( , ) ( , )n n
m mP i j R S i j   ( 1,2,..,4)m      (5) 

R equals 1 for a rigid boundary while it is 
21

21



  in the case of a fully-absorbing boundary [15]. Thus 

according to equations (1), (3), (4), (5), and the initial incidence, sound pressures of all nodes are 

calculated through time iteration based on the time step
T

l

C

 . From equations (1) and (3), eight 

operations, namely three additions, four subtractions, and one right-shift operation, are required to 

calculate the sound pressure and scatterings at a general node. When a node is on a boundary, an 

additional multiplication operation is required. During calculation, the scatterings and incidences in 

four directions are kept for further calculation. 

3.2 Extension of the DHM 

The formula of sound pressure ( , )nP i j  is rewritten by inserting equation (4) and then eliminating the 

scatterings according to equation (3).  

1 1 1 1 1
1 3

1 1 1
4 2

1
( , ) ( ( 1, ) ( 1, ) ( 1, ) ( 1, ) ( , 1)

2

( , 1) ( , 1) ( , 1))

n n n n n n

n n n

P i j P i j P i j P i j P i j P i j

P i j P i j P i j

    

  

         

     

   (6) 

By inserting equation (4), and replacing
1( , )n

mP i j
with the related scatterings, equation (6) is expressed 

as   
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1 1 1 1 2
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( , ) ( ( 1, ) ( 1, ) ( , 1) ( , 1) ))

2
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m

m

P i j P i j P i j P i j P i j S    



              (7)
 

Equation (7) is further rewritten as equation (8) by using equation (2) [15][16]. 

1 1 1 1 21
( , ) ( ( 1, ) ( 1, ) ( , 1) ( , 1)) ( , )

2

n n n n n nP i j P i j P i j P i j P i j P i j            
   (8) 

Equation (8) is the same as the FDTD expression with the standard leapfrog stencil for 

two-dimensional wave propagation [18]. To calculate the sound pressure of a general node requires 

three additions, one subtraction, and one right-shift operation. Thus three subtractions are reduced 

against the original DHM scheme. If a node (i, j) is on a rigid wall boundary, for example, in the 

direction 3, due to full reflection,  

1
3 3( , ) ( , )n nP i j S i j      (9) 

By using the same derivation procedure, equation (10) is obtained to calculate the sound pressure.  

1 1 1 1 21
( , ) ( ( 1, ) ( , ) ( , 1) ( , 1)) ( , )

2

n n n n n nP i j P i j P i j P i j P i j P i j           
    (10)

 

If nodes are at corners, for example, the corners of the east and north boundaries, equation (11) is 

derived and applied to calculate the sound pressure. 

1 1 1 21
( , ) ( ( 1, ) ( , 1) 2* ( , )) ( , )

2

n n n n nP i j P i j P i j P i j P i j                 (11) 

Equations (10) and (11) contain only additions, subtractions, and shift operations, and the complex 

multiplication operations are eliminated. Equations (8), (10), and (11) show that calculating sound 

pressure of a node only requires the sound pressures of its neighbours at previous time steps. 

4. System Design  

4.1 System architecture  

Although FPGA-based computing engines appear to be attractive for sound field analysis system based 

on the DHM, the following considerations are taken into account during design and implementation.  

(1) System architecture and the physical constraints of the FPGA hardware resources. Once the 

analysis algorithm is determined, the system architecture affects the hardware resource 

consumption significantly, particularly system data path. Thus full analysis of the data flow in the 

DHM is needed to design the computing engine. This not only helps to better understand the 

DHM algorithm and to exploit the system parallelism, but also optimizes system to reduce 

hardware resource consumption.  

(2) Data transfer speed and data throughput. Data transfer between FPGA and the host computer, and 

data communication during computation affect system performance. Thus the analysis of the data 

transfer speed and data throughput is required during implementation.  

Based on these considerations, a two-dimensional sound field solver based on the DHM is designed, 

and its architecture is shown in Fig. 2, which consists of six modules, namely DHM2D, Controller, 

Incidence ROM, Block RAM, PLX_IF, and PCI Controller PCI9054. The DHM2D is the DHM 
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computing engine, which calculates sound pressures of all nodes at each time step according to the 

incidence pulses stored into the Incidence ROM. The sound pressure of the observation node is stored 

into the Block RAM. The computation flow is managed by the Controller. The PLX_IF is the bus 

interface between the DHM system and the PCI controller PCI 9054. Once the calculation is finished, 

the calculated results are dumped out from the block memory to the host computer through the 

compact PCI bus. Thus during computation, data flows from the DHM2D, the block RAM, PLX_IF, 

and finally to the host computer through the PCI bus controller. In Fig. 2, the modules enclosed by 

dashed line are implemented by FPGA. 

PCI 

Controller

PCI9054

data

PCI BUS

address
HOST 

PC
Block 

RAM 

Incidence

ROM

Controller

ram_wea

addra_ram[14:0]

enable_rom

addr_rom

dout_rom[31:0]

dout_dhm[31:0]

dout_dhm_vald

finish

PLX_IF
doutb[31:0]

data[31:0]

addrb_ram[14:0]

cell cell cell...

cell cell cell...

cell cell cell...

...

... ... ... ...

DHM2D

 
Fig. 2 System diagram 

4.1.1 DHM2D 

As shown in Fig. 2, the DHM2D is based on a systolic architecture [38][39], where a uniform 

computing cell exists at each node to calculate its sound pressure, and all computing cells are arranged 

regularly like an array. This architecture provides a high degree of modularity, regularity, and localized 

data communication. It has potential to perform computations with high efficiency and robustness. In 

such architecture, all computing cells work concurrently to speed up computation, and data are kept by 

the local memories, such as D flip-flops. During computation, data are locally processed and 

synchronously flow across the array between neighbours. The external memory access is therefore 

avoided during computation and the performance bottleneck resulting from the memory bandwidth is 

eliminated. Furthermore, this systolic architecture is suitable for spatially parallel processing, and 

achieves scalable computing performance by extending the scale of the computing cells. It matches 

well with the state-of-the-art FPGAs that consist of CLBs and embedded block RAMs. CLBs are 

arranged like an array, and connected to each other through the programmable routing matrix. Thus a 

systolic architecture is suitable for high CLBs utilization since computing cells in it are arranged 

regularly, and each cell is easily implemented by one or more CLBs, and connected together through 
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the inter-connectors inside a FPGA chip. In addition, the locality of the cell control and 

communication leads to high operation frequency of system. All these lead the DHM2D to achieve 

high performance in computation. 

The DHM2D is the computing unit. At a time step, an incident data (dout_rom) is read from the 

Incidence ROM, computations are then carried out, and finally the sound pressures of all nodes are 

updated. Since the calculation result of a computing cell is the input of its neighbour cells in the next 

time step, temporal dependence does not appear in computation in an iteration period. According to 

equation (8), updating the sound pressure of a node only requires the previously calculated results, and 

the data flow for such updating is shown in Fig. 3. Due to no data dependency existing during updating, 

all computing cells are easily cascaded together and work in parallel. Therefore the computing cell 

structure and the number of the computing cells have a great impact on the system performance and 

hardware resource consumption. Typically, the number of computing cells is determined by the 

dimensions of the sound space and the grid size l . The computing cell structure is determined by the 

sound field analysis algorithm and the design techniques.  

+ /2 -

two cycle 

delay

K-1P(i+1,j)

K-1P(i-1,j)

K-1P(i,j+1)

K-1P(i,j-1)

KP(i,j)

K-2P(i,j)

 
Fig. 3 Data flow for updating the sound pressure of a node 

In the DHM2D, when the system clock frequency becomes high, data communication and timing 

control between computing cells are big challenge. A common technique is to use a hand-shaking 

signal between computing cells. When a computing cell finishes calculations, its output is updated and 

the handshaking signal is set. Then its neighbours read the updated results and carry out computations. 

Although data throughput and timing are improved in this solution, the calculation is inefficient. If the 

output of a computing cell is not updated on time, all calculations in other computing cells will be 

suspended gradually. To avoid this and simplify the design of the DHM2D, all operations inside a 

computing cell are limited to be completed in a clock cycle. Thus all computing cells finish 

computations and update their outputs synchronously. At the next time step, computing cells read the 

related data from their neighbours directly, and hand-shaking signals are not required. Although this 

solution may result in relatively worse timing performance over other solutions, the hardware system is 

simple, and computing is not suspended. Based on this design issue and equation (8), a computing cell 

shown in Fig. 4 is designed, which consists of a four-input 32-bit adder, a three-input 32-bit adder, a 

32-bit Not gate, and two 32-bit Flip-flops. On average, each computing cell consumed 130 Look-up 

Tables (LUTs) and 68 D Flip-flops in the FPGA chip XC5VLX330T-FF1738 [15][16]. 
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Fig. 4 Structure of a computing cell 

4.1.2 Memory requirement 

In Fig. 2, D flip-flops in the DHM2D, the Incidence ROM, and the Block RAM are required to store 

the temporary data, the incidence, and the calculation results, respectively. In Fig. 4, the calculated 

sound pressure of a node is kept by two 32-bit D Flip-flops for computations in the next time step. If a 

DHM system contains N × M nodes, 2NM 32-bit D flip-flops are required. The overhead to access data 

from D flip-flops is much shorter, and the bottleneck of performance improvement due to the 

bandwidth of external memory is eliminated by accessing data from D Flip-flops in parallel.  

The Incidence ROM is used to store the external incident data. Firstly, the incident signal is discretised 

according to the sample rate. Then with the discretization data, the Incidence ROM is generated by the 

tool CORE Generator provided by the Xilinx ISE. The sound pressures at the observation point are 

stored in the Block RAM, and finally output to the external host PC through the compact PCI bus. 

Since the DHM2D operates on 100MHz, and the PCI controller operates on 50MHz, the block RAM 

also acts as a synchronization buffer of the data stream. The size of the Block RAM is determined by 

the calculated time steps, and data-width. In the current system, data are 32-bit fixed-point, and the 

Block RAM is 128KB in size. If the analysis system is used for real-time applications, the calculation 

results are output by the D/A board directly, and the Block RAM is not required.  

4.1.3 Controller and PLX_IF 

The Controller is the system control centre. It generates the related data and control signals according 

to the system timing diagram and computation flow, such as the reading address of the Incidence ROM 

(addr_rom), the writing address of the Block RAM (addra_ram), the writing/reading enable signal 

(ram_wea), and the computation finish flag. The PLX_IF is an interface between the sound field solver 

and the compact PCI controller PCI9054. Through it, the calculation results are transferred to the 

external host computer. 

4.2 Computation Flow 

The calculation flow is based on an iteration procedure, and shown in Fig. 5. After system initialization, 

an excited datum is read from the Incidence ROM, then calculation is started in the DHM2D, and the 

sound field of the observation point is stored in the Block RAM. Then the reading addresses of the 

Incidence ROM and Block RAM are increased by 1. At the next time step, another incident datum is 

read, and computations occur again. This procedure is repeated until the calculated time steps are over. 
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Once all calculations are finished, a flag signal (finish) is set, and the Incidence ROM and the DHM2D 

are disabled. At the same time, the system delays three cycles to ensure the last calculation result is 

stored into the Block RAM. Finally, the PLX_IF generates the reading address of the Block RAM, and 

all the calculation results are dumped out to the host computer through the compact PCI bus by DMA 

mode. 

5. System Performance 

To verify and estimate the performance of the proposed sound field solver, the sound propagation in a 

small two-dimensional sound space shown in Fig. 6 was examined. In Fig. 6, both the length and width 

of the sound space surrounded by rigid walls are 1.28m, and l  is 24.0 10 m . The incident 

position is at the node (0, 0), and the observation point is at the node (6, 15). The hardware 

development environment was Xilinx ISE 12.1 and ModelSim SE 6.6C running on the Windows XP 

platform. For comparison, counterpart systems based on the original DHM and its extension, the 

SLF-FDTD were developed by C++ programming language, and executed on a personal computer (PC) 

with 4GB RAM and an AMD Phenom 9500 Quad-core processor running at 2.2 GHz. The operating 

system of the PC was Windows XP, and the development environment was Microsoft Visual Studio 

2008. The reference C++ codes were compiled and optimized for the maximum speed with option of 

“/O2”. The FPGA-based sound field solver ran at 100MHz, and data were 32-bit fixed-point while they 

were integer in the software simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Calculation flow 

5.1 Hardware resource consumption  

The whole system shown in Fig. 2 was implemented by a processor-based FPGA machine 

TD-SPP3000 [40], which had a CPU board and several FPGA boards. Each FPGA board had two 

Xilinx XC5VLX330T-FF1738 FPGA chips, 512MB DDR RAM, and a compact PCI controller. A 

Xilinx XC5VLX330T FPGA chip had 51,840 slices, and each slice contained four LUTs and four 

flip-flops. In addition, the FPGA chip included about 3Mb distributed RAMs, and 11Mb block RAMs. 
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The block RAMs were used to implement the Incidence ROM and Block RAM. On the FPGA board, 

two FPGA chips communicated each other directly, and one was connected to the compact PCI bus, 

while another was attached to the Advanced Telcom Computing Architecture (ATCA) bus. The 

compact PCI bus was for data transfer between the FPGA board and the host PC, and the ATCA bus 

was mainly for data communication between different FPGA boards. The CPU board, composed of 

504MB DDR RAM and an Intel Pentium M processor running at 1.4 GHz, provided an environment to 

debug the system and dump out the calculation results. 
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Fig. 6 A two-dimensional sound space 

When data were 32-bit fixed-point, and the DHM system contained 1024 (32 × 32) nodes, the sound 

field solver consumed 200,233 LUTs (96%), 102,423 D flip-flops (49%), and 88 block RAMs (27%) in 

a Xilinx FPGA XC5VLX330T-FF1738 after implementation, and the maximum clock frequency of 

system was about 137MHz. Except for the modules shown in Fig. 2, the system also contained 

communication interface for two FPGAs on the same FPGA board, and two different FPGA boards. In 

the current parallel architecture, a computing cell locates at each node to speed up computation. The 

LUTs and D flip-flops inside a FPGA limit system scalability because they are required significantly as 

the node scale is increased.  

5.2 Calculation time 

The execution time was measured on the AMD Phenom 9500 platform as a comparison with the 

proposed FPGA-based sound field solver. The time was calculated by calling the functions 

QueryPerformanceFrequency() and QueryPerformanceCounter() in Windows XP platform with 

Microsoft Visual Studio 2008 environment. Then ten measured data were averaged with a precision of 

1μs. The system execution performance was evaluated under two cases. One case was different DHM 

systems at the same time step, and another was a same system at different time steps.  

5.2.1 Calculation time vs. node scale 

Table I shows the execution time taken by the software simulations and the FPGA systems with 

different node scales at 32,000 time steps. In each solution, the computational time is shown in the left 
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column, while the total consumed time, including the computational time and the time spent in 

outputting the calculation results, is listed in the right column. In the FPGA-based sound field solver, 

the sound pressures of all nodes are obtained and updated synchronously. All computations are 

completed in a clock cycle at each time step. Therefore the computation time is linearized with the 

time steps. When the time step is 32,000, the computation takes 3.2×10-4s (32,000 cycles). However, in 

the software simulation, the computation time is affected by both the number of nodes and the 

calculated time steps since the sound pressures are calculated node by node at each time step. When 

the node scale is increased, the computation time becomes much longer. For example, when the node 

scale is increased from 10 × 10 to 32 × 32, the computational time is increased about 8.4 

(0.574809/0.060857 -1) times. In Table I, the FPGA system speeds up computation significantly. When 

the node scale is 32 × 32, the FPGA system achieves about 1795 (0.574809/0.00032 -1) and 1190 

(0.381252/0.00032 -1) times faster in computation than the software simulations based on the original 

DHM and SLF-FDTD algorithms, respectively.  

Except for the computational time, outputting the calculation results will spend time. In the software 

simulation, the calculation results are written into a binary file while they are output to the host PC 

through the compact PCI bus by DMA mode in the FPGA system. If all these are taken into account, 

the FPGA system speeds up execution from 101 times to 217 times against the software simulations 

based on the original DHM and SLF-FDTD algorithms in the case of different node scales. On the 

other hand, most of the time is spent in dumping out the calculation results through the compact PCI 

bus in the FPGA system. When the node scale is 32 × 32, about 7.3% (0.00032/0.004344×100%) of the 

total time is spent in computation. The system performance is therefore influenced significantly by the 

data transfer speed through the compact PCI bus. Compared with the software simulations based on the 

original DHM and the SLF-FDTD, the FPGA system speeds up 1795 times and 1190 times in 

computation, but the final performance is only enhanced 218 (0.950861/0.004344 -1) times and 179 

(0.783141/0.004344 -1) times. Generally, the data transfer speed through the compact PCI bus is 

affected by the data buffer size, driver, the clock frequency of the PCI controller, and so on. Since the 

CPU board has small memory (504MB), if an application utilizes high memory, the execution 

performance of the FPGA machine during data transfer will degrade, which results in a decrease of the 

data transfer speed. For example, when the anti-virus software Symantec Endpoint Protection 11.0 was 

run on the FPGA machine, the calculation time taken by the FPGA based rendering system with 32 × 

32 nodes is about 0.05s [15] in the case of 20,000 time steps. 

Table I Calculation time taken by the system with different node scale (s) 

Nodes 
Time 

steps 

Software solution 
FPGA system  

Original DHM  SLF-FDTD  

10 × 10 32000 0.060857 0.447203 0.038252 0.441029 0.00032 0.004319 

25 × 25 32000 0.376039 0.748787 0.237542 0.63289 0.00032 0.004351 

32 × 32 32000 0.574809 0.950861 0.381252 0.783141 0.00032 0.004344 
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5.2.2 Calculation time vs. time steps 

The calculation time of the rendering system with 32 × 32 nodes at different time steps is shown in Fig 

7. The software simulation time based on the original DHM and the SLF-FDTD is almost increased 

linearly with the time steps. The simulation time of the SLF-FDTD is shorter than that of the original 

DHM due to the reduction of operations. Compared with the software simulations, the FPGA system 

take much shorter time in computation. As shown in Fig. 7, when the time steps are 28,000, the 

proposed FPGA system takes about 4.2ms while the software simulations based on the original DHM 

and the SLF-FDTD spend about 830ms and 680ms, respectively. 

 
Fig. 7 Calculation time taken by the system at different time steps 

As a comparison, the related system was realized by the GPGPU Tesla C1060. When the time steps 

were 20,000, the Tesla C1060 consumed 0.244977s in computation. But the related computation took 

about 2×10-4s (20,000 cycles) in the FPGA based system. The FPGA based rendering system hence 

speeds up by about 1223 (0.244977/(2×10-4)-1) times over the Tesla C1060 in computation. If the time 

spent in outputting the calculation results was taken into account, the Tesla C1060 consumed 

0.428461s while the FPGA system took 0.003712s. The overall performance is then enhanced about 

114 (0. 0.428461/0.003712 -1) times. In the current FPGA system, the whole system is implemented 

inside a FPGA. Temporary data are kept by D flip-flops and accessed in parallel. All computations in a 

time step are finished at a cycle, and external memory access is avoided during computation. However, 

although the Tesla C1060 provides on-chip shared memory for each streaming multiprocessor to store 

temporary data, local memory access may occur during calculation. Accessing data from D flip-flops is 

much faster than accessing data from local memory. Although warps technique is introduced to hide 

memory access latency in the Tesla C1060, the increasing of threads causes decreasing of the shared 
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memory used by each thread. All these result in performance enhancement in the current FPGA based 

solver over GPGPU.    

From Section 5.1, the LUTs and D flip-flops inside a FPGA limit system implementation. Thus when 

the sound space becomes larger, more FPGA chips are required to work in parallel to speed up 

computation due to the limitation of hardware resources. Data exchanges between FPGAs are then big 

challenge, and they are not completed at a clock cycle due to the bus bandwidth. For example, if 

multiple FPGAs are used, and each FPGA is applied to implement a subsystem with 32 × 32 nodes, 

256 (32×4×2) byte data are exchanged between two FPGAs at a clock cycle. Thus the data transfer 

speed is about 25.6GB/s (256Bx100M/s). Although a Xilinx XC5VLX330T provides 24 high-speed 

RocketIO GTP transceivers and each is designed to run maximum 3.75Gb/s, the totally maximum 

transfer speed is about 11.25GB/s, which is almost half of the required data transfer speed. The data 

exchange between two FPGAs therefore requires more clock cycles. The same situation will also occur 

in the data communication between FPGA boards. Thus the calculation time will be increased and 

affected by the time steps and node scale in the related FPGA-based system. A compromised solution 

to these problems is to store the temporary data into the block memory instead of D flip-flops, and one 

or more computing engines are applied to calculate the sound field [41]. The simulated area by a FPGA 

is enlarged, but the calculation time is prolonged. 

As mentioned above, the calculation time spent by the FPGA system is affected by the data transfer 

speed through the compact PCI bus. Fig. 8 shows the data transfer speed and the speedup of the FPGA 

system against the software simulations based on the original DHM and the SLF-FDTD. The 

calculation performance of the FPGA system is enhanced from 44 times to 217 times over the software 

simulation based on the original DHM while it is improved from 37 times to 179 times against the 

software simulation based on the SLF-FDTD. Since the computation is increased linearly with the 

number of nodes and time steps in the software simulations while it is linearized with the number of 

time steps in the current FPGA system, the speedup is increased as the time steps increase. Since DMA 

mode is more efficient for large data blocks in the compact PCI bus, data transfer speed becomes faster 

as the time steps increase, which also results in the speedup enhancement. 

5.3 Data throughput 

The data throughput is denoted by the number of nodes updated per second, and obtained through the 

following formula.  

_ _
_

_

time steps node scale
data throughput

computational time


   (13) 

From Table I, the data throughput in the sound field solver with different node scales was calculated 

and shown in Table II. In the software simulation, because of the limitation of memory bandwidth, the 

data throughput based on the same analysis algorithm is almost fixed even if their node scales are 

different. Compared with the software simulation, the FPGA-based solver provides much higher data 

throughput. When the node scale is 32 × 32 and data are 32-bit, the data throughput of the FPGA 
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solution is 400GB/s, which is beyond the memory bandwidth of current PCs deeply. In another word, 

such applications are not executed efficiently in the current PCs, and will take a long time. 

 

Fig.8 Speedup and data transfer speed 

Table II  Data throughput (Million nodes/s) 

Nodes 
Software solution 

FPGA system 
Original DHM  SLF-FDTD  

10 × 10 52.58 83.66 1.0 × 104 

25 × 25 53.18 84.20 6.25 × 104 

32 × 32 57.01 85.95 1.02× 105 

6. Conclusions 

Sound field analysis is a data-intensive and computation-intensive application. A two-dimensional 

sound field solver based on the updated DHM is developed and implemented by a Xilinx FPGA. To 

speed up calculation, the computing engine is based on a systolic architecture, where a uniform 

computing cell exists at each node to calculate its sound pressure, and all computing cells are cascaded 

regularly like an array. All computing cells work in parallel, and all operations are completed in a 

clock cycle at a time step. Owning to the parallelism of FPGA and on-chip data storage during 

calculation, system performance of the FPGA-based sound field solver is enhanced significantly. 

Compared with the software simulations carried out on an AMD Phenom 9500 platform, regardless of 

the different systems at same time step, or the same system at different time steps, the FPGA system 

has a significant performance enhancement. But the performance of the proposed FPGA-based system 

is influenced by the data transfer speed through the compact PCI bus. Optimized PCI driver, high clock 

frequency of the PCI controller, and large data buffer may result in the improvement of data transfer 

speed and system performance. Furthermore, the proposed system is easily applied for real-time 
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applications by simply outputting the calculation results through the D/A board. Then the PCI bus is 

not needed during data transfer, and its effect to the system performance is eliminated. 

On the other hand, since the hardware resources are limited inside a FPGA chip. When the sound space 

becomes larger, more FPGA chips are required to implement the sound field solver. Then the sound 

space can be divided into different parts, and the sound field of each part is analysed by a FPGA. For 

each part, all computations are carried out locally by a FPGA, and the sound pressures of nodes on the 

divided boundary are exchanged with other FPGAs. The key challenge for the scalability is the data 

communication between FPGAs and FPGA boards due to the bus bandwidth. Because data exchanges 

between FPGAs and FPGA boards take more cycles, the calculation time will increase and be affected 

by the number of nodes and time steps. In the future study, the special RocketIO transceivers and 

receivers inside Xilinx FPGAs will be used for high speed data communication between FPGAs and 

boards. And a FPGA cluster machine will be developed and evaluated.  
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