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1 School of Information Science, Japan Advanced Institute of Science and
Technology, Japan

2 Graduate School of Engineering, University of Fukui, Japan
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Abstract. This paper presents the first non-trivial collision attack on
the double-block-length compression function presented at FSE 2006
instantiated with round-reduced AES-256: f0(h0∥h1,M)∥f1(h0∥h1,M)
such that

f0(h0∥h1,M) = Eh1∥M (h0) ⊕ h0 ,

f1(h0∥h1,M) = Eh1∥M (h0 ⊕ c) ⊕ h0 ⊕ c ,

where ∥ represents concatenation, E is AES-256 and c is a non-zero
constant. The proposed attack is a free-start collision attack. It uses the
rebound attack proposed by Mendel et al. It finds a collision with time
complexity 28, 264 and 2120 for the instantiation with 6-round, 8-round
and 9-round AES-256, respectively. The space complexity is negligible.
The attack is effective against the instantiation with 6-/8-round AES-
256 if the 16-byte constant c has a single non-zero byte. It is effective
against the instantiation with 9-round AES-256 if the constant c has four
non-zero bytes at some specific positions.

Keywords: Double-block-length compression function · Free-start col-
lision attack · Rebound attack · AES-256

1 Introduction

Background. Cryptographic hash functions are very important primitives and
used in almost all cryptographic protocols. They are often called hash functions,
and we follow this convention.

There are several design strategies of hash functions, and the most popu-
lar ones are block-cipher-based and permutation-based. The block-cipher-based
approach is much more classical than the permutation-based approach. The
permutation-based approach is fairly new, and the SHA-3 Keccak [2] is designed
with the approach. Well-known hash functions such as MD5 [33], SHA-1 and
SHA-2 [11] can be regarded as being designed with the block-cipher-based ap-
proach using dedicated block ciphers. Hash functions MDC-2 and MDC-4 [6]
using DES predate them.



Hash functions using an existing block cipher seem useful for resource-
constrained devices such as low-end microcontrollers and RFIDs. Even for high-
end devices with AES-NI, hash functions using AES [8, 12] may be an option.
How to construct secure hash functions using a block cipher has been an im-
portant research topic [4, 30]. When using existing block ciphers such as AES,
one should adopt double-block-length construction [6, 14, 15, 20, 27] for sufficient
level of collision-resistance.

Our Contribution. This paper presents a non-trivial collision attack on the
double-block-length (DBL) compression function [15] instantiated with round-
reduced AES-256. As far as the authors know, this is the first collision attack on
the DBL compression function instantiated with AES-256. The DBL compres-
sion function is defined as f0(h0∥h1,M)∥f1(h0∥h1,M) such that

f0(h0∥h1,M) = Eh1∥M (h0)⊕ h0 ,

f1(h0∥h1,M) = Eh1∥M (h0 ⊕ c)⊕ h0 ⊕ c ,

where ∥ represents concatenation, E is AES-256 and c is a non-zero constant.
The proposed collision attack assumes that the final round of round-reduced
AES-256 does not have the MixColumns operation. The time complexity of the
attack is 28, 264, and 2120 for the instantiation with AES-256 of 6 rounds, 8
rounds, and 9 rounds, respectively. The space complexity is negligible.

The proposed collision attack makes use of the following fact: If (h0∥h1,M)
and ((h0⊕c)∥h1,M) are a colliding pair for f0, then they are also a colliding pair
for f1. The rebound attack [21] is used to find such a colliding pair for f0. Thus,
it largely depends on the value of c whether the proposed attack works well or
not. The attack is effective against the instantiation with 6-/8-round AES-256
if the 16-byte constant c has a single non-zero byte. It is effective against the
instantiation with 9-round AES-256 if the constant c has four non-zero bytes at
some specific positions.

Related Work. The rebound attack was proposed by Mendel et al. [26], and was
applied to the hash functions Whirlpool [31] and Grøstl [18], which have similar
structure to AES. The rebound attack on Whirlpool was further improved by
Lamberger et al. [21]. The rebound attack was also applied to a few other SHA-3
finalists [9, 17, 32].

There is some work on cryptanalyses of single-block-length hashing modes of
AES. Biryukov, Khovratovich and Nikolić [3] presented a q-multicollision attack
on the Davies-Meyer (DM) compression function instantiated with full-round
AES-256. It is very powerful and its time complexity is q · 267. The proposed
attack does not seem to be able to use their attack since their attack needs some
difference on the key input of AES. Mendel et al. [25] presented a collision at-
tack on the DM compression function instantiated with 5-round AES-128 with
time complexity 256. The collision attack on 5.5-round Whirlpool [21] can eas-
ily be extended to a collision attack on the DM, Matyas-Meyer-Oseas (MMO),
Miyaguchi-Preneel (MP) compression functions instantiated with 6-round AES-
128 or the DM compression function instantiated with 6-round AES-192/256. Its
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time complexity is 256. Jean, Naya-Plasencia and Peyrin [16] presented a collision
attack on the DM compression function instantiated with 6-round AES-128 with
time complexity 232. Sasaki presented preimage and second-preimage attacks on
DM, MMO and MP modes of 7-round AES [34].

There is little work on cryptanalyses of instantiations of DBL hashing modes.
Ferguson [10] presented a few generic attacks on H-PRESENT-128 [5]. Wei et al.
[35] presented collision and preimage attacks on various hashing modes instanti-
ated with the block cipher IDEA [19]. They concluded that IDEA should not be
used for hashing. The hashing modes include the DBL modes such as Abreast-
DM, Tandem-DM [20], the mode by Hirose [15], the mode by Peyrin et al. [29]
and MJH [23]. Our proposed collision attack is unlikely to be applied to them
except for the Hirose mode.

The collision resistance and the preimage resistance were provided proofs
in the ideal cipher model for Abreast-DM [1, 13, 22], Tandem-DM [1, 24], the
Hirose compression function [1, 15]. In particular, Abreast-DM and the Hirose
compression function were shown to be optimally collision-resistant in the ideal
cipher model.

Organization. A brief description of AES is given in Sect. 2. An overview of
the proposed collision attack on the DBL compression function is described in
Sect. 3. The collision attacks on the compression function instantiated with AES-
256 of 6 rounds, 8 rounds and 9 rounds are detailed in Sect. 4, Sect. 5 and Sect. 6,
respectively. A concluding remark is given in Sect. 7.

2 Preliminaries

2.1 AES

This section gives a description of the AES [8, 12] together with some properties
of its components necessary for the discussions later.

AES is a block cipher with 128-bit block length and 128/192/256-bit key
length. The transformations of AES are performed on a (4×4)-byte array called
the state. Each byte is regarded as an element in GF(28). Multiplication is
performed modulo x8 + x4 + x3 + x+ 1. The state is initially a plaintext.

The encryption of AES consists of four transformations: SubBytes, ShiftRows,
MixColumns and AddRoundKey. It starts with the AddRoundKey transformation
followed by iteration of a round function. The round function applies SubBytes,
ShiftRows, MixColumns and AddRoundKey transformations in this order to the
state. The final round does not have the MixColumns transformation.

The SubBytes transformation is byte-wise application of the nonlinear S-box
function. For the S-box S, an input x satisfying the equation S(x)⊕S(x⊕∆I) =
∆O is called an admissible input for the pair of an input difference ∆I and
an output difference ∆O. We will say that an input difference and an output
difference are compatible with each other if there exist admissible inputs for the
pair.
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Table 1 shows the numbers of the pairs of input and output differences which
have the specified numbers of admissible inputs. The probability that there ex-
ist any admissible inputs for a pair of input and output differences (∆I,∆O)
chosen uniformly at random is about 1/2. An admissible input of the SubBytes
transformation is defined similarly.

Table 1. Correspondence between the number of input-/ouput-difference pairs and
the number of their admissible inputs for the AES S-box

the number of admissible inputs 0 2 4 256

the number of difference pairs 33150 32130 255 1

The ShiftRows transformation is byte-wise cyclic transposition of each row.
It shifts the i-th row by i-bytes cyclically to left for 0 ≤ i ≤ 3.

The MixColumns transformation is linear transformation of each column.
It can be represented with a matrix. For a 4-byte column b of a state, it is
represented by Mb, where

M =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 and M−1 =


0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

 .

The AddRoundKey transformation is bitwise XOR of a round key to a state.
The round keys are generated by a key expansion algorithm. The round keys of
AES-256 are generated in the following way. Let (4 × 4)-byte array Kr be the
round key of the r-th round for r ≥ 0, where K0 is for the initial AddRoundKey
transformation. The 256-bit key input is given to K0 and K1. Let Kr[j] be the
j-th column of Kr for 0 ≤ j ≤ 3. For r ≥ 2, if r is even, then

Kr[0] = Kr−2[0]⊕ SW(Kr−1[3]
↑)⊕ Cr ,

Kr[j] = Kr−2[j]⊕Kr[j − 1] for 1 ≤ j ≤ 3 ,

where SW represents byte-wise application of the AES S-box,Kr−1[3]
↑ represents

cyclic 1-byte shift of Kr−1[3] to the top, and Cr is a specified constant. If r is
odd, then

Kr[0] = Kr−2[0]⊕ SW(Kr−1[3]) ,

Kr[j] = Kr−2[j]⊕Kr[j − 1] for 1 ≤ j ≤ 3 .

For simplicity, the SubBytes, ShiftRows, MixColumns and AddRoundKey trans-
formations are denoted by SB, SR, MC and AK, respectively.

The state in the r-th round is denoted by Sr. S
SB
r , SSR

r , SMC
r and SAK

r represent
the state Sr just after SB, SR, MC and AK transformations, respectively. S−1

represents a plaintext input.
For 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3, Sr[i][j] represents the byte of Sr in the i-th

row and the j-th column. Sr[j] represents the j-th column of Sr.
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3 Collision Attack on DBL Compression Function
Instantiated with Round-Reduced AES-256

This section gives an overview of the proposed free-start collision attack on a
DBL compression function [15] instantiated with round-reduced AES-256. The
target DBL compression function

v0∥v1 = F (h0∥h1,M) = f0(h0∥h1,M)∥f1(h0∥h1,M)

is defined by

f0(h0∥h1,M) = Eh1∥M (h0)⊕ h0 ,

f1(h0∥h1,M) = Eh1∥M (h0 ⊕ c)⊕ h0 ⊕ c ,

where ∥ represents concatenation, E is a block cipher and c is a non-zero con-
stant. F is depicted in Fig. 1.

E

E

M

h0

h1

c

v0

v1

Fig. 1. The target DBL compression function. c is a non-zero constant and E is a block
cipher.

The proposed attack uses the following simple fact:

Fact 1 Suppose that (h0∥h1,M) and ((h0 ⊕∆h0)∥h1,M) cause a collision for
f0, that is, f0(h0∥h1,M) = f0((h0 ⊕ ∆h0)∥h1,M) and that ∆h0 = c. Then,
(h0∥h1,M) and ((h0 ⊕∆h0)∥h1,M) also cause a collision for f1.

The algorithm of the collision attack on F is given below:

1. Find a colliding pair of inputs (h0∥h1,M) and ((h0 ⊕∆h0)∥h1,M) for f0.
2. Output (h0∥h1,M) and ((h0 ⊕∆h0)∥h1,M) if ∆h0 = c. Otherwise, return

to Step 1.

The first step returns a colliding pair of inputs for f0 such that the non-zero bytes
of ∆h0 are located at the same positions as the non-zero bytes of the constant
c. Thus, it largely depends on the value of c if the proposed attack is effective
or not. The attack is effective against F instantiated with 6-/8-round AES-256
if the 16-byte constant c has a single non-zero byte. It is effective against F
instantiated with 9-round AES-256 if the constant c has four non-zero bytes at
some specific positions. Sections 4, 5 and 6 present how the collision attack is
applied to F instantiated with AES-256 of 6, 8 and 9 rounds, respectively.
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4 Collision Attack on F with 6-Round AES-256

This section presents a collision attack on f0 instantiated with 6-round AES-256.
It returns a pair of colliding inputs for any given ∆h0(= c) whose bytes are zero
except for the first byte. The time complexity is 28, and the space complexity
is negligible.1 Thus, the total time complexity of the collision attack on the
compression function F instantiated with 6-round AES-256 is also 28.

The collision attack on f0 is based on the rebound attack on the 5.5-round
Whirlpool hash function by Lamberger et al. [21]. Different from the attack by
Lamberger et al., it is a free-start collision attack. Its goal is to find a pair of
inputs, (h0∥h1,M) and (h′

0∥h1,M), which follow the differential path given in
Fig. 2. Colored bytes in Fig. 2 are non-zero differences.

1

2

3

4

5

6

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB SR AK

AK

Fig. 2. The differential path used by the collision attack on the compression function
f0 instantiated with 6-round AES-256. Colored bytes are non-zero differences.

A detailed description of the attack is given below. It proceeds in two phases.
It first fixes the values of differences on the differential path so that the pair of
input and output differences of each SB transformation are compatible, that is,
they have admissible inputs (Steps 1 to 5). Then, it selects admissible inputs of
the SB transformations and connects them using the round keys (Steps 6 to 15).

Input : ∆h0 = ∆S−1.

Procedure:

1. Select the difference ∆SSB
1 compatible with ∆SAK

0 = ∆S−1. Then, compute
∆SAK

1 = ∆SMC
1 = MC(SR(∆SSB

1 )).
2. Select ∆SSB

2 compatible with ∆SAK
1 . Then, compute ∆SAK

2 .
3. Select ∆SAK

5 = ∆SMC
5 compatible with ∆SSB

6 = ∆SAK
6 = ∆S−1. Then,

compute ∆SSB
5 = SR−1(MC−1(∆SMC

5 )).

1 The complexity to compute admissible inputs of the AES S-box is omitted.
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4. Select ∆SAK
4 compatible with ∆SSB

5 . Then, compute ∆SSB
4 .

5. Compute ∆SSB
3 and ∆SAK

3 compatible with ∆SAK
2 and ∆SSB

4 , respectively,
such that ∆SAK

3 = MC(SR(∆SSB
3 )). They can be computed column by col-

umn, and the expected time complexity is 4× 24 = 26.

6. Select an admissible input SAK
2 for the pair of ∆SAK

2 and ∆SSB
3 .

7. Select an admissible input SAK
3 for the pair of ∆SAK

3 and ∆SSB
4 .

8. Compute the round key K3 = SMC
3 ⊕ SAK

3 = MC(SR(SB(SAK
2 )))⊕ SAK

3 .

9. Compute SMC
4 from SAK

3 .

10. Select the diagonal elements of an admissible input SAK
4 for the pair of ∆SAK

4

and ∆SSB
5 . Then, compute the diagonal elements of K4: K4[i][i] = SMC

4 [i][i]⊕
SAK
4 [i][i] for 0 ≤ i ≤ 3.

11. The diagonal elements of SSB
5 are fixed by those of SAK

4 , and they further fix
SMC
5 [0].

12. Select an admissible input SAK
5 [0][0] for the pair of ∆SAK

5 and ∆SSB
6 . Then,

compute K5[0][0] = SMC
5 [0][0]⊕ SAK

5 [0][0].

13. Select an admissible input SAK
1 [0] for the pair of ∆SAK

1 and ∆SSB
2 . SAK

1 [0]
fixes SSB

2 [0]. The following condition on the round key K2 is obtained:

SSB
2 [0] = SR−1(MC−1(SAK

2 ⊕K2))[0]

= SR−1(MC−1(SAK
2 ))[0]⊕ SR−1(MC−1(K2))[0] .

14. Select an admissible input SAK
0 [0][0] for the pair of∆SAK

0 and∆SSB
1 . SAK

0 [0][0]
fixes SSB

1 [0][0]. The following condition on the round key K1[0] is obtained:

SSB
1 [0][0] = (0e, 0b, 0d, 09)(SAK

1 [0]⊕K1[0])

= (0e, 0b, 0d, 09)SAK
1 [0]⊕ (0e, 0b, 0d, 09)K1[0] .

15. Compute the round keys satisfying all the conditions obtained so far. The
following bytes of the round keys are already fixed: K3, K4[0][0], K4[1][1],
K4[2][2], K4[3][3] and K5[0][0]. The conditions on the other bytes of round
keys can be expressed by equations on K2. The expected time complexity to
compute K2 is 28. Details are given in Sect. 4.1.

16. Compute the input S−1 from SAK
2 and the round keys. Output h0 = S−1,

h1 = K0 and M = K1.

The time complexity of the collision attack is about 28. The space complexity
is negligible. An example of collision is given in Appendix A.

The same kind of differential path as the one in Fig. 2 is able to be constructed
when given an input difference ∆h0 with a single non-zero byte at any byte
position. Due to the asymmetry of the key expansion algorithm, however, a little
more analyses are required to confirm whether the same kind of very efficient
attack really works or not.
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4.1 Conditions on the Round Key K2

The following five conditions are led from the key expansion algorithm:

K2[0][0] = K4[0][0]⊕ S(K3[1][3])⊕ RC 2 (1)

K2[1][0]⊕K2[1][1] = K4[1][1]⊕ S(K3[2][3]) (2)

K2[2][0]⊕K2[2][1]⊕K2[2][2] = K4[2][2]⊕ S(K3[3][3]) (3)

K2[3][0]⊕K2[3][1]⊕K2[3][2]⊕K2[3][3] = K4[3][3]⊕ S(K3[0][3]) (4)

K2[0][1]⊕K2[0][2]⊕K2[0][3] = K4[0][0]⊕K4[0][3] , (5)

where RC 2 is a constant in the key expansion algorithm.K4[0][3] = S−1(K3[0][0]⊕
K5[0][0]). Notice that all the bytes of the round keys on the right side of the
equations above are fixed.

The following conditions are mentioned in the step 13 of the algorithm in
Sect. 4:

(0e, 0b, 0d, 09)K2[0] = SSR
2 [0][0]⊕ (0e, 0b, 0d, 09)SAK

2 [0] (6)

(0b, 0d, 09, 0e)K2[1] = SSR
2 [3][1]⊕ (0b, 0d, 09, 0e)SAK

2 [1] (7)

(0d, 09, 0e, 0b)K2[2] = SSR
2 [2][2]⊕ (0d, 09, 0e, 0b)SAK

2 [2] (8)

(09, 0e, 0b, 0d)K2[3] = SSR
2 [1][3]⊕ (09, 0e, 0b, 0d)SAK

2 [3] . (9)

The following last condition is nonlinear. It is also led from the key expansion
algorithm:

SW(K2[3]) = K1[0]⊕K3[0] ,

where K1[0] satisfies

(0e, 0b, 0d, 09)K1[0] = SSB
1 [0][0]⊕ (0e, 0b, 0d, 09)SAK

1 [0] . (10)

SW represents transformation of each byte with the AES S-box.
We compute K2 satisfying the conditions above by first computing K2[3]

satisfying the last nonlinear condition. K2[3] is computed as follows:

1. Choose K2[3] satisfying Eq. (9) uniformly at random, and compute K1[0] =
SW(K2[3])⊕K3[0].

2. Check if K1[0] satisfies Eq. (10).

In the second step of the procedure, the probability that Eq. (10) holds is 2−8.
It is easy to compute the remaining twelve bytes of K2 satisfying the linear
equations from (1) to (9).

5 Collision Attack on F with 8-Round AES-256

This section presents a free-start collision attack on f0 instantiated with 8-round
AES-256. It returns a pair of colliding inputs with difference ∆h0 whose bytes
are zero except for one byte at any specified position. The time complexity is
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256, and the space complexity is negligible. The probability that ∆h0 = c is 2−8

if c has a single non-zero byte at the same position as the non-zero byte of ∆h0.
Thus, the total time complexity of the collision attack on F instantiated with
8-round AES-256 is 264.

The collision attack on f0 is based on the rebound attack on the 7.5-round
Whirlpool compression function by Lamberger et al. [21]. The goal of the at-
tack is to find a pair of inputs, (h0∥h1,M) and (h′

0∥h1,M), which follow the
differential path given in Fig. 3.

1

2

3

4

5

6

7

8

SB SR MC AKAK

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB SR AK

Fig. 3. The differential path used by the collision attack on the compression function
f0 instantiated with 8-round AES-256. Colored bytes are non-zero differences.

The proposed attack uses two inbound phases: The first one is in the second
and the third rounds, and the second one is in the fifth and the sixth rounds. The
algorithm of the attack is described below. It first selects the values of differences
of the two inbounds (Steps 1 and 2) and those between the two inbounds (Step 3).
Then, for each pair of an admissible input of SB in the third round and that of
SB in the sixth round, it connects them with the round keys (Steps 4a to 4c),
and extends the state transformation to the outbounds to check if a colliding
pair of inputs are obtained (Steps 4d to 4f).

1. This step looks for a pair of compatible input/output differences of SubBytes
of the third round in the following way:
(a) Select ∆SSR

2 , ∆SAK
3 = ∆SMC

3 uniformly at random, and compute

∆SAK
2 = ∆SMC

2 = MC(∆SSR
2 ) ,

∆SSB
3 = SR−1(MC−1(∆SMC

3 )) .
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(b) If there are no admissible inputs for the pair of ∆SAK
2 and ∆SSB

3 , then
return to Step 1a.

The expected number of repetitions of this step is 216. The number of ad-
missible inputs obtained for SAK

2 with this step is 216. Actually, this step
can be made more efficient since the trials can be done column by column.
However, this speed-up does not change the time complexity of the overall
algorithm.

2. This step looks for a pair of compatible input/output differences of SubBytes
of the sixth round in the same way as the step 1. 216 admissible inputs are
obtained for SAK

5 with this step.
3. Select ∆SSB

4 compatible with ∆SAK
3 uniformly at random until ∆SAK

4 =
∆SMC

4 = MC(SR(∆SSB
4 )) is compatible with ∆SSB

5 . The expected number of
repetitions of this step is 24.

4. Perform the following procedure:
(a) Select a new pair among the 232 pairs of SAK

2 and SAK
5 . If there exists no

new pair, then return to Step 1.
(b) Compute SSB

3 = SB(SAK
2 ). Then, run the algorithm for connecting two

inbound phases, which is given in Sect. 5.1, and obtain the round keys
K3, K4 and K5.

(c) Compute the round keys K0, K1, K2, K6 and K7.
(d) Compute the corresponding input S−1 to AES and the difference ∆S−1

from SAK
2 and ∆SAK

2 . If any byte of ∆S−1 other than ∆S−1[0][0] is non-
zero, then return to Step 4a.

(e) Compute the corresponding output SAK
8 from AES and the difference

∆SAK
8 from SAK

5 and ∆SAK
5 . If any byte of ∆SAK

8 other than ∆SAK
8 [0][0]

is non-zero, then return to Step 4a.
(f) If ∆S−1 = ∆SAK

8 , then proceed to Step 5. Otherwise, return to Step 4a.
5. Output the pair of inputs (K,S−1) and (K,S−1⊕∆S−1), which are mapped

to the same hash value by f0 instantiated with 8-round AES-256, where
K = K0∥K1.

For Step 4d in the algorithm above, the probability that only ∆S−1[0][0] is
non-zero (the transition from ∆SMC

1 to ∆SSR
1 is successful) is 2−24. Similarly, for

Step 4e, the probability that only ∆SAK
8 [0][0] is non-zero is 2−24. For Step 4f,

the probability that ∆S−1 = ∆SAK
8 is 2−8. Thus, the estimated time complexity

of the algorithm above is 224×2+8 = 256.
The collision attack returns a colliding pair of inputs whose non-zero dif-

ference is located at the top-left corner. Owing to the symmetry of AES, the
collision attack can easily be extended so that it returns a colliding pair of in-
puts whose non-zero difference is located at any specified byte position.

5.1 Algorithm to Connect Two Inbound Phases

An algorithm to connect two inbound phases is described in this section. It gives
a pair of sequences of state values between SB in the third round and SB in the
sixth round whose differences follow the differential path in Fig. 3. The initial
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and final state values of the sequences are given to the algorithm as input as
well as the values of the differences. The algorithm outputs the round keys (K3,
K4 and K5) which connect these values. The algorithm pays specific attention
to the bytes of states with black circles in Fig. 3. They are given priority simply
because they are bytes with non-zero differences.

Input : SSB
3 , SAK

5 , and ∆SSB
3 , ∆SSB

4 , ∆SAK
5 .

Output : Round keys K3, K4 and K5.

Procedure:

1. Compute ∆SAK
3 , ∆SAK

4 and ∆SSB
5 :

∆SAK
3 = ∆SMC

3 = MC(SR(∆SSB
3 ))

∆SAK
4 = ∆SMC

4 = MC(SR(∆SSB
4 ))

∆SSB
5 = SR−1(MC−1(∆SMC

5 )) , where ∆SMC
5 = ∆SAK

5 .

2. Select admissible inputs of the S-boxes with non-zero differences of SB in
the fourth round: SAK

3 [0][3], SAK
3 [1][0], SAK

3 [2][1] and SAK
3 [3][2].

3. Compute K3[0][3], K3[1][0], K3[2][1] and K3[3][2] from the corresponding
bytes of SMC

3 = MC(SR(SSB
3 )) and SAK

3 .
4. Select admissible inputs of the S-boxes with non-zero differences of SB in

the fifth round: SAK
4 [3]. Then, compute SSB

5 [3].
5. K4[3] = SMC

4 [3] ⊕ SAK
4 [3], where SMC

4 [3] can be computed from the corre-
sponding bytes of SAK

3 .
6. Compute the round key K5 satisfying the conditions obtained so far. They

can be expressed by 8 linear equations on the bytes of K5. The equations
are given in Sect. 5.2.

7. Compute the remaining bytes of K3 from K5 and K4[3].
8. Compute SMC

4 and SAK
4 from SSB

3 with K3 and from SAK
5 with K5, respec-

tively. Then, compute K4[j] = SMC
4 [j]⊕ SAK

4 [j] for 0 ≤ j ≤ 2.

5.2 Conditions on the Round Key K5

The following four conditions are led from the key expansion algorithm:

K5[1][0] = K3[1][0]⊕ S(K4[1][3])

K5[2][0]⊕K5[2][1] = K3[2][1]

K5[3][1]⊕K5[3][2] = K3[3][2]

K5[0][2]⊕K5[0][3] = K3[0][3] .

Notice that all the bytes of K3 and K4 on the right side are already fixed by the
algorithm.

The other condition comes from the fixed bytes of SSB
5 [3]:

SR(SSB
5 [3]) = MC−1(SAK

5 )[3]⊕MC−1(K5)[3] .

11



Notice that SAK
5 is given to the algorithm as input. They can be expanded to

the following four equations:

(0b, 0d, 09, 0e)K5[0] = SSR
5 [3][0]⊕ (0b, 0d, 09, 0e)SAK

5 [0]

(0d, 09, 0e, 0b)K5[1] = SSR
5 [2][1]⊕ (0d, 09, 0e, 0b)SAK

5 [1]

(09, 0e, 0b, 0d)K5[2] = SSR
5 [1][2]⊕ (09, 0e, 0b, 0d)SAK

5 [2]

(0e, 0b, 0d, 09)K5[3] = SSR
5 [0][3]⊕ (0e, 0b, 0d, 09)SAK

5 [3] .

6 Collision Attack on F with 9-Round AES-256

The collision attack on f0 instantiated with 8-round AES-256 can be extended to
the collision attack on f0 instantiated with 9-round AES-256 for different choice
of the constant c. The differential path used by this attack is presented in Fig. 4.
∆h0 = ∆S−1 has four non-zero bytes on its diagonal. The differential path from
the third round to the sixth round is equal to the differential path from the
second round to the fifth round in Fig. 3. Thus, the algorithm to connect two
inbound phases shown in Sect. 5.1 can also be used here.

In the outbound phase of the attack,

– the success probability of the transition from ∆SMC
2 to ∆SSR

2 is 2−24,
– the success probability of the transition from ∆SSR

8 to ∆SMC
8 is 2−32, and

– the probability that ∆S−1 = ∆SAK
9 is 2−32.

Thus, the estimated time complexity of the attack is 224+32+32 = 288. Though
it is beyond the complexity of the birthday attack for f0, it is effective for our
purpose.

Due to the symmetry of AES, the attack also works with the same kind of
the differential paths with ∆S−1 such that the four non-zero bytes of ∆S−1 are

– ∆S−1[0][1], ∆S−1[1][2], ∆S−1[2][3], ∆S−1[3][0],
– ∆S−1[0][2], ∆S−1[1][3], ∆S−1[2][0], ∆S−1[3][1], or
– ∆S−1[0][3], ∆S−1[1][0], ∆S−1[2][1], ∆S−1[3][2].

The total time complexity of the collision attack on F is 288+32 = 2120 since
the probability that ∆h0 = c is 2−32 for constant c which has four non-zero
bytes at the same positions as the non-zero bytes of ∆h0.

7 Conclusion

This paper has presented a free-start collision attack on the DBL compression
function [15] instantiated with round-reduced AES-256. A drawback of the attack
is that it is effective against restricted constants. It is interesting if the restriction
is reduced. It is also interesting to apply the attack to instantiations with other
block ciphers.
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Fig. 4. The differential path used by the collision attack on the compression function
f0 instantiated with 9-round AES-256. Colored bytes are non-zero differences. The
differential path from the third round to the sixth round is omitted since it is equal to
the differential path from the second round to the fifth round in Fig. 3.
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A Example of Collision for f0 Instantiated with 6-round
AES-256

Table 2 gives an example of collision for f0 instantiated with 6-round AES-256.

Table 2. An example of collision for f0 instantiated with 6-round AES-256

∆h0 ff000000 00000000 00000000 00000000

h0 5950c89a 7243695a b5561aa0 78899ca7

h1 e9141904 6ab77163 f77410dc 429d3463

M f5e6ee51 ac004900 1d47b1e7 8394e656

output 6ecccd37 579174c9 457e605d f2cdeecb
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