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[PAPER

Traffic Pattern Based Data Recovery Scheme for Cyber-Physical

Systems

Naushin NOWER'?, Nonmember, Yasuo TAN', and Azman Osman LIM', Members

SUMMARY  Feedback data loss can severely degrade overall system
performance. In addition, it can affect the control and computation of the
Cyber-physical Systems (CPS). CPS hold enormous potential for a wide
range of emerging applications that include different data traffic patterns.
These data traffic patterns have wide varieties of diversities. To recover var-
ious traffic patterns we need to know the nature of their underlying property.
In this paper, we propose a data recovery framework for different traffic pat-
terns of CPS, which comprises data pre-processing step. In the proposed
framework, we designed a Data Pattern Analyzer to classify the different
patterns and built a model based on the pattern as a data pre-processing
step. Inside the framework, we propose a data recovery scheme, called Ef-
ficient Temporal and Spatial Data Recovery (ETSDR) algorithm to recover
the incomplete feedback for CPS to maintain real time control. In this
algorithm, we utilize the temporal model based on the traffic pattern and
consider the spatial correlation of the nearest neighbor sensors. Numeri-
cal results reveal that the proposed ETSDR outperforms both the weighted
prediction (WP) and the exponentially weighted moving average (EWMA)
algorithms regardless of the increment percentage of missing data in terms
of the root mean square error, the mean absolute error, and the integral of
absolute error.

key words: data pattern analyzer, stochastic traffic pattern, data recovery,
cyber-physical systems

1. Introduction

Cyber-physical systems (CPS) are a new generation of com-
munication, control and computation that have received a
great deal of attention recently [1]. CPS enable the virtual
world to interact with the physical world in order to moni-
tor and control the intended parameter in real-time basis. In
CPS, technologies such as communication, control, compu-
tation, cognition and sensing converge to create new tech-
nologies for a smarter society. The area of CPS represents
the intersection of several system trends, such as real-time
embedded systems, distributed systems, control systems and
networked wireless systems.

To facilitate communications between the cyber and
the physical world, wireless sensor and actuator network
(WSAN) is an essential component of CPS. This is because,
the traditional wireless sensor network (WSN) is limited in
its ability to monitor the physical world [2]. However, CPS
achieves this requirement by facilitating the system to sense,
interact and change the physical world in real-time by using
feedback control loop. In a typical CPS application, sen-
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Fig.1  General control view of CPS.

sor nodes collect information from the physical world as a
source of CPS input. Upon receiving the input information,
a controller makes a corresponding decision by computing
and actuators perform a corresponding action in the physical
world through the closed-loop feedback. Thus, the proper
timing and accuracy of feedback data is very important for
interaction between the cyber and the physical world. Fig-
ure 1 shows the general control view of a cyber-physical
system.

Since the CPS exploit the physical information col-
lected by WSAN:S, it also inherit the wireless contention
problem of WSAN. This is a challenging issue for control
in real-time. Wireless channels have many adverse prop-
erties like path loss, fading, adjacent channel interference,
node/link failure, etc. Besides these, wireless signal can
be easily affected by noise, physical obstacles, node move-
ment, environmental change and so on [3]-[5]. Because of
this unpredictable and dynamic nature, sensing data loss is a
common phenomenon, which makes hamper in controlling
decision. In particular, for time critical applications, feed-
back data must have to arrive on time, to make decision. In
many cases, re-transmission cannot provide appropriate so-
lution because of the unpredictable network behavior, which
can cause high delay.

Moreover, the applicability of CPS is found in numer-
ous time-critical applications including smart house to smart
grid. Emerging applications of CPS include, medical de-
vices and systems, aerospace systems, transportation vehi-
cles and intelligent highways, defense systems, robotic sys-
tems, process control, factory automation, building and en-
vironmental control, smart spaces, intelligent home and so
on [6]. These systems are equipped with a large network
of sensors distributed across different components, which
leads to a huge amount of measured data available to the sys-
tem controller. For example, CPS can be used in the medi-
cal health care applications, where various types of sensors

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers



NOWER et al.: TRAFFIC PATTERN BASED DATA RECOVERY SCHEME FOR CYBER-PHYSICAL SYSTEMS

are used to monitor patient’s condition and then controller
communicates with doctor using the feedback closed control
loop system. Thus, the doctor can remotely monitor the pa-
tient’s physical condition, give suggestions or prescriptions
and also do remotely guided robotic microsurgery. More-
over, CPS is planning to use in more complex situation, in
particular robot-assisted MRI guided interventions on aortic
valve implantation, cardiac surgery, etc.[7]. In these time-
critical applications, the accuracy and real-time presence of
feedback data is very essential for the controller to make a
real-time and highly reliable decision. Since these measure-
ments are collected continuously along the time, they can
be regarded as a time series data. In this wide spectrum
of CPS applications, different data properties are observed.
These time series data also have different traffic patterns in
terms of their shape, trend, variation and periodicity. Some
series maintain stable stage, some show stochastic behavior
and others exhibit repetition in their evolutions. Because of
this time series data heterogeneity, one single data recovery
algorithm can not provide a solution for all.

To maintain uninterrupted control, we always need to
ensure the continuous presence of feedback time series data.
Therefore, to handle any uncertainty we need to know the
behavior or trend of the data. For time series data, we need
a general tool that can analyze and determine the pattern
from the data. Thus, it is important to build an effective traf-
fic pattern analyzer to analyse the data, so that we can better
understand the underlying properties of collected time se-
ries data that control the system operation. Based on the data
properties, it is easier to design an effective data recovery al-
gorithm to provide uninterrupted control. Thus, successful
determination of traffic pattern ensure efficient data recovery
to maintain continuous control. In this paper, we proposed
a data recovery framework for the CPS applications. Inside
the proposed framework, we design a Data Traffic Pattern
Analyzer (DTPA) to deal with different time series data for
CPS. The designed analyzer determines whether the time
series data exhibits deterministic or stochastic property or
have repeated patterns based on the property of the collected
data. Based on the pattern, we design a temporal model
construction step and propose a model based data recovery
algorithm for real-time recovery. That is, from the known
nature of deterministic, stochastic and repeated pattern, the
analyzer will evaluate the collected data. Whenever, the data
series has stochastic or repeated patterns, we build a tem-
poral model and use that model to recover the data in the
cased of missing data. The stochastic data series is normally
highly auto-correlated and outliers have a different correla-
tion structure than the deterministic data series. Auto Re-
gressive Integrated Moving Average (ARIMA) [8] model is
a very powerful model to identify the auto-correlated nature
or trend of stochastic data. We identify the stochastic and
repeated trend of data using the analyzer and then build a
temporal model to recover the data. For data recovery, we
propose an Efficient Temporal and Spatial Data Recovery
(ETSDR) scheme for stochastic data and repeated traffic of
CPS. For deterministic pattern, we incorporate our spatial
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Fig.2  Proposed data recovery scheme for control view of CPS.

correlation based data recovery scheme in [9].

In [9], we proposed a highly Efficient Spatial Data Re-
covery (ESDR) scheme that deals with deterministic traf-
fic pattern of CPS. This scheme is very efficient for de-
terministic traffic pattern like temperature, humidity, mois-
ture which is linearly correlated with space. Thus, in our
proposed ESDR scheme, we utilized spatial correlation of
neighboring sensors by using the Pearson correlation coeffi-
cient (PCC). In this paper, we present a data analyzer to cat-
egorize different traffic patterns. For stochastic and repeated
traffic pattern, we design a data model based on temporal
correlation and determine the spatial effect by considering
linear or non linear relation exist between the neighbors.
The designed model is used to recover data in real-time ap-
plications. Using the analyzer we extract the data property
and build a model, as a data pre-processing step. Since, de-
terministic data seldom varies we can utilize our ESDR [9]
whenever the analyzer classify the data as a deterministic
pattern.

Our first contribution is that, the analyzer can success-
fully classify the traffic patterns of CPS. Second, the patterns
of the time series data determined by the analyzer can be
used to build a temporal model. This data model is used to
estimate the missing data for uninterrupted control. Third,
the data model is determined in the off line analysis stage
step, so it can ensure timely data recovery because of mini-
mum computation in real-time. Figure 2 shows the control
view of CPS with proposed traffic pattern based data recov-
ery scheme.

The rest of the paper is organized as follows. Section 2
summarizes some state-of-the-art research works that is re-
lated to this paper. In Sect.3, the proposed traffic pattern
based data recovery scheme is presented. We describe the
simulation scenario and the evaluation parameters in Sect. 4.
Simulation results and discussions are presented in Sect. 5.
Section 6 concludes with conclusion and future works.

2. Research Background
2.1 Background

CPS are deployed as a sensor and actuator network of inter-
acting elements with a huge amount of data with different
patterns. Based on the observed data from different CPS
applications, we classify three traffic patterns: determinis-
tic, stochastic and repeated. Theoretically, the pattern that
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remains constant with time is known as deterministic pat-
tern. The deterministic traffic pattern always maintains a
stable state. For example, in a temperature controlled room,
the temperature remains stable or varies to a certain degree
within a given range.

On the other hand, any traffic pattern which involves
random change and indeterminacy is defined as a stochastic
traffic pattern. Unlike a deterministic pattern, a stochastic
pattern involves randomness in their nature. If this stochas-
tic data have time depended moments then, it is called sta-
tionary stochastic data pattern. That is, the mean and vari-
ance of the stationary data remained constant over a fixed
time. On the other hand, the mean and variance of non-
stationary data changes over time. Stochastic time series
data can be presented as a combination of autoregressive
(AR), moving average (MA), or seasonal dynamic compo-
nents.

The time series data, that involves repetition, is known
as a repeated/periodic pattern. These traffic patterns can be
transmitted by four different traffic types [10]: Streamline
traffic of variable rate or fixed rate, periodic, bursty and ar-
bitrary rate. In the periodic traffic types, data is transmitted
periodically. In bursty data traffic, the data tends to a bursty
nature, from low transmission to sudden increase the rate
of transmission. In arbitrary rate, there is no fixed schedule
for data transmission. In this research, we design our data
recovery scheme for periodic data traffic since, CPS utilize
periodic traffic types for control.

2.2 Related Work and Motivation

Data recovery is a part of most research and there exist sev-
eral methods to handle this. Even-though, there exist sev-
eral methods, the recovery of data loss for CPS still poses
an open problem because of its unique requirement. The
whole recovery process for CPS must be held in real-time
and invisible to the outside world. In this section, we first
focus on the existing data analyzer for CPS. Then, we dis-
cuss in details the data recovery procedures for CPS.

In [11], the authors proposed a data analysis technique
to extract meaningful information from the large volume of
noisy data. Their designed analyzer named Tru-Alarm, is
used to recognize trustworthy alarms from the noisy and
false alarms. Tru-Alarm estimates the locations of objects
causing alarms, then constructs an object-alarm graph and
carries out trustworthiness inference based on the graph
links. Their study also reveal that the alarm trustworthi-
ness and sensor reliability could be mutually enhanced. This
property is used to filter out the alarms generated by un-
reliable sensors. Moreover, in [12], the authors proposed
a method called IntruMine to detect and verify intruders
from the untrustworthy data by modeling the relationships
between sensor and intruders. The authors discovered the
trajectories of intruders from the untrustworthy data by con-
structing watching network in [13].

In [14] authors discussed about retrieving the atypical
events from massive sensor data and analyzing them with
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spatial, temporal, and other multidimensional information.
Whenever a abnormal event happens such as a congestion is
detected in traffic system, the sensor will send out as atypical
records. They fixed a threshold for normal event and based
on that a atypical event is detected and cluster is formed.
The basic cluster is designed to summarize an individual
event, and the macro-cluster is used to integrate the infor-
mation from multiple events. The atypical cluster is then
used to effective query execution. Each of the existing ana-
lyzer is designed for different purposes and objectives. None
of this can be used for data traffic pattern analysis for data
recovery.

Xia, et al. [15] first proposed a solution for CPS over
WSAN:S to cope with packet loss. They illustrate three pre-
diction algorithms and provide a comparison between them.
First algorithm based on the assumption that, the state of the
physical system does not change during the last sampling
period. So, previous sample is used to replace the missing
value. The second algorithm computes a moving average of
the previous m samples to restore the lost data. Thus it treats
every previous measurement equally. In third algorithm,
which is known as weighted prediction (WP), weighted av-
erage of all previous samples is taken to replace the missing
one. Simulation result shows that third algorithm works well
compared with others. All of their procedures are bound for
specific situation where current data depends on the previ-
ous data or the combination of previous data but not for all
conditions.

Choi, et al.[16] exploit an exponentially weighted
moving average (EWMA) based value estimation algorithm
to reduce the impact of packet loss. When some packets
are randomly dropped in wireless network environment, the
EWMA algorithm filters an abrupt increase or decrease by
exponentially smoothing commands or data based on the
past value profile. This method is only suitable, when the
data series is an exponentially weighted combination of past
data sets. But in real-life there is no guarantee that data
will always maintain this combination. Moreover, none of
the existing data recovery scheme includes model identifi-
cation before recover the data. We believe that successful
identification of data model can ensure accurate and timely
recovery.

In the literature, model based data aggregation scheme
exists. In [17], authors proposed an ARIMA based data
aggregation method to reduce the energy consumption and
number of communication. In this scheme, both the sensor
node and the aggregator have the same model for data gener-
ation. Sensor node checks whether the data predicted from
the model and measured data is same. If the real value and
predicted value is within the threshold, then the sensor node
will not transmit the data to the aggregator. Otherwise, the
sensor will send new data to the aggregator.

The applications of CPS are numerous which involve
different data patterns. In the existing literature, there is
no direction of data recovery based on data traffic pattern.
Thus, the recovery process without considering the nature
can not provide a solution for all. To recover data accurately,
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we first need to understand the nature of the data and their
spatial relationship with others. To achieve our motivation,
we propose a data pre-processing stage, where the data an-
alyzer is used to classify the data pattern and based on that
property, a model is built for real time recovery process.

3. Proposed Traffic Pattern Based Data Recovery
Scheme

In this section, we propose data recovery framework for time
series data. We design a data pattern analyzer to classify the
traffic pattern for model generation as a data pre-processing
step. Before doing this, we identified the basic properties of
each traffic pattern. The designed data recovery framework
contains two steps: i) Off line data pattern analysis and tem-
poral model construction ii) On line recovery of data. Fig-
ure 3 shows the block diagram of our proposed traffic pattern
based data recovery scheme.

3.1 Offline Data Pattern Analyzer

The aim of this step is to classify the data using the analyzer,
and build a model based on the property present in the data.
According to the classifications, we include three pattern
checkers in the data analyzer: deterministic pattern checker,
stochastic pattern checker and repeated pattern checker. The
block diagram of proposed data analyzer is shown in Fig. 4.
The following assumptions have been considered. First, n
observed sensor data is available for analysis and model
generation. Second, the group of time series data for a appli-
cations follow a specific data property. Third, the maximum
tolerable variation (@) of two consecutive deterministic data
pattern is known. In addition, some real-life known repeated
patterns are available for matching. Forth, the maximum
number of attempts (C) to generate the model is fixed at ini-
tialization stage. The parameter C is also used to make the
decision that, the model cannot be generated from the avail-
able data.

Each pattern checker identifies the time series data
based on the property and calculates the percent of the data
maintains that property. The checker integrator combines
the result from the all checkers and makes decision.

Deterministic pattern checker focuses on detecting the
stable behavior in time series data. The main feature of de-
terministic pattern is that, they have almost constant value
or have a very small variation. Thus, checker identifies
whether the consecutive measurement (dy;, dy») of time se-
ries data is less then «, where « is the maximum tolerable
difference between two consecutive measurements.

The stochastic pattern checker is designed to detect the
stochastic behavior in time series data. The stochastic data
series can be further categorized into two types: stationary
and non-stationary. Stationarity, is defined as a quality of
a time series data in which the statistical parameters (mean
and variance) of the series do not change with time. The sta-
tionarity of time series data can be determined by examining
the auto-correlation coefficient function (ACF) and partial
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correlation coefficient function (PACF). The ACF is a set of
correlation coefficients between the series and lags of itself
over time [18]. The k-order auto-correlation coefficient of a
data series d,1,dy, . . ., d,, of sensor s is defined as

n—k - -
'21 (dsi — dgi)(dyiiriy — dsi)
Fy = =

— (M
(dsi - dsi)

=

where, r; is the k-lag sample auto-correlation and dg is the
average of n observations. The PACF is the partial corre-
lation coefficients between the series and lags of itself over
time. The k-order partial auto-correlation coefficient of a
data series is defined as

é11 =1 2

¢ = (r2 = r*)(1 = r1?) 3)

ki = P-1)j — Pk Pk~ “4)
k-1 k-1

b ="k~ _g‘l ¢(k")rk‘f/1— Z Pa-1)r; &)
=

For the stationary time series, the ACF and PACF trend
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to zero gradually (die out). On the other hand, for non-
stationary data series, the value of ACF and PACF remain
for a long time. The analyzer uses this property to deter-
mine the type of stochastic data.

The repeated pattern checker compares the time series
data with the stored real life periodic pattern. In the case of
successful matching with any known pattern, we specify the
number of distinguish patterns, their duration, interval and
other properties. From the observed properties, we build a
model and verify the model by comparing the model gener-
ated data and with the real data.

3.2 Temporal Model Construction

For the stochastic data pattern, we deploy a temporal model
construction step. We assume that, the error offset, the max-
imum difference between the model computed data and the
measured data is fixed at initilization step for verifications.
We analyze the stochastic data series trend by modelling it
into ARIMA series. The Autoregressive Integrated Moving
Average (ARIMA) models, or Box-Jenkins methodology,
are a class of linear models that is capable of representing
stationary as well as non-stationary time series.

ARIMA model is a very powerful tool that uses histor-
ical data to predict future data values. Any type of stochas-
tic data series can be identified by this model [18]. The
ARIMA model, also called Box-Jenkins model, can be di-
vided into three components: auto-regressive (AR), moving-
average (MA), and one-step differencing. The AR compo-
nent estimates the current sample as a linear-weighted sum
of previous samples; the MA component captures relation-
ship between prediction errors; and the one-step differenc-
ing component captures relationship between adjacent sam-
ples. In ARIMA, the AR component captures the temporal
correlation in the time series by modeling a future value as
a function of a number of past values. The MA component
is modeled as a zero-mean, uncorrelated Gaussian random
variable [20].

3.2.1 Auto-Regressive Model of Order p

An auto-regressive (AR) model is a simplified version of
ARIMA model which describes random time-varying pro-
cess. The AR model specifies that the output variable de-
pends linearly on its own previous values [8]. The AR model
of sensor s data series d,,d, ...,ds, with order p is de-
fined as follows

P
dy =+ ) @idyur) + &n 6)
i=1
where p is the order of auto-regressive terms, ¢, ¢2,...¢,
are the parameter of the model, c is a constant and g, is white
noise. This can be equivalently written using the back-shift
operator B as

P
dm =c+ Z QDiBidm + &n (7)

i=1
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3.2.2 Moving Average Model of Order ¢

A moving-average (MA) model is a linear regression of the
current and previous error of a random series. The MA
model of sensor s data series d,i,d;, . ..,ds, with order g
is defined as follows

q
dm =u+ Z 6)i‘(':n—l (8)
i=1

where ¢ is the number of moving average terms, u is the
mean of the series, 01,6, .. .0, are the parameter of the se-
ries, and &, is the error. This can be written using back shift
operator B as

q
dg =+ Z 6;B's, )
im1

3.2.3 ARIMA Model

An ARIMA model predicts future values of a sensor s data
series by a linear combination of its auto-regressive past val-
ues, integrated, and moving average of errors. The model
is generally referred to as an ARIMA(p, d, ¢) model where
parameters p, d, and g are non-negative integers that refer
to the order of the auto-regressive, the amount of differenc-
ing, and moving average parts of the model respectively.
ARIMA is used for non-stationary data time series mod-
elling. If any of p, d, or g are zero, the corresponding letters
are often dropped. For example, if p and d are zero, then
model would be denoted MA(g).

0,(B)r‘dyy = Oy(B)e, (10)

where B is the backward shift operator, Ais the backward
difference, d is the order of differencing and 6, and ®, are
the polynomial of order p and ¢ respectively. In addition,
Bd, = dyy-1y and A = 1 — B. ARIMA(p, d, q) model is the
product of an AR part AR(p):

0,=1-¢B—pB*—...—¢,B", (11)

an integrating part:

I(d) = ™ (12)
and a MA part MA(q):
®,=1-6,B-6,B*—...-6,B". (13)

The flowchart for temporal model identification for
stochastic data is shown is Fig. 5.

Step 1: Temporal Model Identification

The aim of this step is to determine whether the series is
stationary or not. If the series is not stationary, it is converted
to a stationary series by differencing: the original series is
replaced by a series of differences and an ARMA model is
then specified for the differenced series. Differencing can
help stabilize the mean of a time series by removing changes
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Fig.5  Flowchart of temporal model construction.

Table1  Properties of ACF and PACF.
ACF PACF
Tails off Cuts off after lag
AR(p) (trend to zero gradually) P
Cuts off after lag ¢ .
MA(9) (disappear or zero) Tails off
ARMA(p,q) | Tails off after lag (¢ — p) | Tails off after lag (g — p)

in the level of a time series, and thus eliminates trend and
seasonality. The differenced series is the change between
consecutive observations in the original series, and can be
written as d jt = dy—d,:-1). Whenever the differenced data is
not stationary yet then, it is necessary to difference the data
in second times to obtain a stationary series: d?, = (dy —
dyi-1y) — (ds-1) — dsq-2)). In practice, it is almost never
necessary to go beyond second-order differences.

Step 2: Estimate the Temporal Model

In this step, we determined the order of p and g from
the observed series and determine the model by comparing
the sample ACF and PACF with the theoretical pattern of
known model. The properties of ACF and PACF for AR(p),
MA(g) and ARMA(p, q) is listed in Table 1. From the ACF
and PACF, the ARMA model that closely fit to the data can
be identified.

Step 3: Solve the Parameters of Temporal Model

In this step, we calculate the parameters of the iden-
tified model using method of moments and Yule-Walker
equations [19].

Step 4: Verify the Temporal Model

To verify the model, we compare the model generated
data with the e observed sensor data. If the verification
fails, we continue to estimate the model until the maximum
counter C is reached. In the case of successful verifications,
we use that model to generate the data.

3.3 Proposed ETSDR Scheme

To deploy our proposed stochastic data recovery scheme, we
propose a flowchart of ETSDR scheme as depicted in Fig. 6.
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Fig.6  Flowchart of ETSDR scheme.

Here, the proposed ETSDR scheme will compute the model
estimated data when there is an input measured data from
the sensors. If there is no missing data, then the measured
data is used as a feedback data. At the same time the differ-
ence between the measured data and model computed data is
computed for model verifications. If the verifications fails,
model is updated by computing new parameters.

On the other hand, when there is a missing data, the
model estimated data is utilized. At the same time, neigh-
bor’s model estimated data and neighbor’s measured data
is compared. Whenever the difference between two data
crosses the spatial regressive threshold (SRy;), the spatial
regression is considered. S Ry, is the maximum tolerable er-
ror value as a threshold indicator to determine the spatial
regression to be applied or not in the ETSDR scheme. At
the initialization step, S Ry is a predefined constant value in
order to cope with the dynamic environmental changes (i.e.,
the disturbance effects). Since the temporal model is based
only on the property of data series itself, but in real life, the
sensor measurement can be effected by the surrounding en-
vironment factors. In the case of a missing data of a sensor,
we utilize the temporal model to estimate the model com-
puted data and at the same time we check all the one-hop
neighbors’ measurements to determine whether we should
consider the spatial regression or not. To handle the spatial
regression, we compare the neighbor’s measured data and
the neighbor’s model computed data. This difference value
is defined as model generated error. In this paper, we define
that e; is the average error between all the one-hop neigh-
bors’ sensor of the measured data and the model computed
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Fig.7  An example of 5-sensor scenario.

data. If this e; is greater the SRy, the spatial regression is
added to the model computed data. Otherwise, the only the
model computed data is used as a feedback data.

As far as we are concerned, most of the spatial correla-
tion regression measures the linear correlation between the
nearest neighbors. If an environment is highly correlated in
space, then the spatial information can be used to estimate
missing data and the estimation function can achieve a high
accuracy. Pearson Correlation Coefficient (PCC) is a com-
mon measure of the linear correlation between two random
variables i and j. It reflects the degree of association be-
tween two variables. Therefore, the coefficient correlation
degree of PCC (p;;) in between two random variables i and
Jj in specified window size (W) can be computed as follows

~ wy () =D)(jw)= )
Pi= =2 =2
VEY =) x @Y, G-

But in real-life environment, the neighbor sensors can
be correlated non-linearly with their neighbors also. We
consider this phenomenon and calculate the spatial regres-
sion based on the applications.

Suppose five sensors are placed randomly with one-hop
neighbor to each other. They are denoted as sy, s», $3, S4,
and ss as illustrated in Fig. 7. We assume that the measured
data of sl (dyi(y) is lost at time ¢. In the offline steps of
data pattern analyzer and temporal model construction, we
construct the model for each sensor which is denoted as m;,
My, Mg, Mgy, Mgs and their model computed data as dyy;s1s),
Ams2(t)> Amsa(s)> Amsacr)> and dyg5(r), rEspectively at the time z.

To perform the pseudocode of the ETSDR scheme, we
first set the spatial regressive threshold (SRy;) is 1.5 at the
initialization stage. Suppose the measured data from the
sensor 1 (s;) at t time is missing, i.e., dy(y. The tempo-
ral model is utilized to compute the model computed data
(dmsin) of s1. At the same time, the temporal model will
also compute and also compare the measured data of other
sensors. Then, the average error, e; is computed and com-
pare with the SRy,. If the average error is more than the
SRy, the spatial regression is taken into account. Other-
wise the model computed data only being used as a feedback

(14)
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Algorithm: Efficient Temporal and Spatial Data Recovery

1: if ds) = available then

2:  for each dj;;) from the sensor s; do

3: Compute dysi(r) from the temporal model

4: if abs(dsi) — dmsi(ry)) > error offset then

5: Update the model by calculating new parameters
6: end if

7:  end for

8:

else
9:  for all one-hop neighbors, j of sensor s; do
10: if avg(abs(dsj(,) — dmsj(t))) > SR, then

11: de(ry «— dsisy = dmsin+ spatial regression
12: else

13: deqry < dsi(y = dusic)

14: end if

15:  end for

16: end for

Fig.8 Pseudocode for efficient temporal and spatial data
recovery algorithm.

data.

Figure 8 describes the proposed ETSDR algorithm,
which is used to produce an estimated data from time to
time.

4. Numerical Simulations

In this section, we conduct the simulation studies to evalu-
ate our proposed ETSDR scheme compared to the WP al-
gorithm [15] and the EWMA algorithm [16]. Before doing
this, we determine the data traffic pattern using the proposed
analyzer. We create a small scenario for simulation that can
resemble to smart grid applications for energy consumption
control in smart community. We assume a community with
five houses, where each sensor (e.g., smart meter) in a house
measures the energy consumption and communications with
the controller that placed in a cloud for computing the en-
ergy demand and supply in real-time manner. The energy
value that produces by this smart meter is stochastic and
depends on its usage profile of consumer on the home ap-
pliances in a house. Moreover, the value of created energies
(e.g., solar panel, fuel cell, or electric vehicle, wind energy,
etc) from different houses may or may not linearly corre-
late with other houses as a spatial correlation. In this pa-
per, we consider this kind of scenario for our simulation. In
our simulation environment, five sensors and one controller
are considered. We generate random (stochastic) data se-
ries using MATLAB simulator and assign it to the five sen-
sors. We assume that the distance between the sensors is
non-linearly. Moreover, to make the scenario more realis-
tic we add some disturbance effects at the certain period of
time. Then, we determine the pattern of the generated data
by using the analyzer. The analyzer identify the series as
a stationary scholastic data since, variance is stable. In the
next step, we construct the temporal model from the gen-
erated data by observing the ACF and PACF. We identify
possible value of p and ¢ and find p = 2 and ¢ = O for
sensor 1. Then, we solve the parameters using Yule-Walker
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Fig.9  Error of the measured data from each sensor and the correspond-
ing model computed data to determine the spatial regressive threshold.

[20] equations for the identified AR(2) model. In the series,
the autocorrelation at lag 1 is r; = 0.807 and autocorrelation
at lag 2 is r, = 0.429. The equations for the estimators of
this series are

1.000¢4; + 0.807¢, = 0.807 (15)
0.807¢; + 1.000¢, = 0.429 (16)

which has a solution ¢; =1.321 and ¢, = —0.637. Since
¢ = u(l — @1 — ¢y), then it can be estimated ¢ = 46.590(1 —
1.321-0.637) = 14.9. Thus the estimated model is ds1¢) =
1.321 x dsl(r—l) —0.637 x dsl(,_Q) + 14.9. We construct the
temporal model for the other four sensors by using the same
procedure, where all of them are AR(2) model with different
parameters.

To determine the value of SR, for stochastic data pat-
tern, we need the history information of all the measured
data. Through this information, we can compute the value of
S R;;, before we perform the ETSDR scheme. In other words,
the value of SRy, is predefined at the initialization stage of
the ETSDR scheme. To show how the value of SRy, is ob-
tained, we plot the errors of four one-hop neighbors of the
sensor 1 without the disturbance effects as shown in Fig. 9.
The graphs show that the stochastic data changes very fre-
quently thus, the model computed data has the model gener-
ated error. The model computed data are obtained from one
whole day with the interval sensing of 5 minutes. Through
this graph, we can set the value of SRy, is 1.5, which is use
for our first simulation. The parameters and values used in
first simulation are shown in Table 2.

To evaluate the periodic pattern, we perform evaluation
on the Electrocardiography (ECG) data collect from [21].
The analyzer determines that ECG data has a periodic pat-
tern since, it matched with one of its stored data. ECG data
has a known pattern, which includes P wave, a QRS com-
plex, and T wave. In addition, there is a interval between
the waves, such as PR interval indicates the interval between

1933

Table2  Parameter settings of first simulation.

Parameter Value

p : order for AR model 2

¢ : order for MA model 0

n : no. of data for model identification 100

m : no. of data for verification 80

C : maximum no. of attempts 6

Spatial Regressive Threshold (S Ry;) 1.5

Table 3  Parameter settings of second simulation.

Parameter Value
PR interval 0.12-0.20s
QRS duration 0.12s
QT interval 0.43s
RR interval 0.60-1.00s
n : no. of data for model identification 250
m : no. of data for verification 240

‘P’ wave and ‘R’ wave, RT interval denotes the interval be-
tween ‘R’ wave and ‘T’ wave, and RR interval indicates the
interval between ‘R’ wave to next ‘R’ wave. Moreover, ‘Q’
to ‘R’ to ‘S’ wave, formed the most obvious part of ECG,
known as QRS complex, which has a fixed duration. We
use these properties to generate a model for ECG in the
MATLAB simulator. The ECG model parameters for nor-
mal adult people is listed in Table 3. We do our experiment
for 3 lead ECG, where lead I, lead II and lead III initially
started with 0°, 60° and 120° phase angle respectively. We
consider this spatial property for adjustment when lead I’s
data is lost. We assume that lead I sensor data is missing
during the transmission.

For repeated data pattern, the measured data has a fixed
periodic pattern. In our second simulation, the three lead
sensors have a fixed range for normal patient. In this case,
the maximum value is considered as the SR, for that re-
peated data pattern. For example, PR interval has a range
0.12—0.20 seconds for all lead sensor I, sensor II, and sensor
III. When the lead sensor I’s PR interval crosses 0.20, the
PR intervals of the lead sensor II and lead sensor III are also
affected. Thus we need to consider the spatial correlation
among them.

Based on the generated data, we investigate the per-
formance of our proposed scheme using a MATLAB. In
this simulation, we assume that the single sensor produces a
missing sensed data when it transmits its packet to the base
station. We randomly delete the data according to the per-
centage of missing data from the original set and recover
them using the aforementioned data recovery algorithms.
We use the root mean square error (RMSE), the mean ab-
solute error (MAE) and the integral of absolute error (IAE)
to evaluate the performance of the said algorithms.

The RMSE is a frequently used measure of the dif-
ference between values estimated by an algorithm and the
values actually measured from the real environment. The
RMSE of an algorithm estimation with respect to the esti-
mated value, d, is defined as the square root of the mean
squared error as written as
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where d;; is original measured value.

The MAE is another statistical measurement that used
to measure how close the estimated values are to the mea-
sured values. The MAE is given by

1 N
MAE = & Z |d(n) — ds1(n)] (18)

n=1

The MAE measures the average magnitude of the er-
rors in a data set, without considering their direction. It is
also an average of the absolute error, e =| d, — dy; |- In
other words, it measures the accuracy for the continuous
variables. The MAE and the RMSE can be used together to
analyze the variation in the errors of the data set. The RMSE
will always be larger or equal to the MAE. The greater dif-
ference between them, the greater the variance in the indi-
vidual errors in the sample [22]. If the RMSE is equal to the
MAE, then all the errors are the same magnitude. In [22],
Wilmott, et al. indicate that the MAE is the most natural and
unambiguous measure of average error magnitude.

On the other hand, the IAE is a widely used perfor-
mance metric in control community, which is recorded to
measure the performance of the control application. The
IAE is calculated as follows

IAE = f Idut) - dyy (0 di (19)
0

where, ¢ denotes total simulation time. In general, the larger
the TAE values imply the worse the performance of the con-
trol algorithm.

5. Simulation Results and Discussion

In this section, we present our simulation results and make
some discussions on the performance of algorithms. The
aim of this simulation is to examine the potential of the pro-
posed algorithm in coping with the data missing for the CPS
application. In our simulation, we investigate the impact of
increasing percentage of missing data on the data recovery
algorithm performance. The percentage of missing data is
varied from 10% to 60% in steps of 10%.

Figure 10 depicts the RMSE comparison among data
recovery algorithms for stochastic traffic patterns. As the
percentage of data missing increases, the proposed algo-
rithm always shows better performance that is compared to
the existing two algorithms. The reason for this improve-
ment is because the proposed scheme estimates the data
model then uses that model to generate data. On the other
hand, other two algorithm always use the same combina-
tions of previous measurement. In addition, they do not
consider the effect from the neighbors. Through this sim-
ulation, we can observe that this problem also can be found
at the EWMA algorithm. Both WP and EWMA algorithm
use the fixed combination of previous measurements only.
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Fig.10  The comparison of RMSE of stochastic data of all the data re-

covery algorithms as the percentage of missing data changes from 10% to
60%.
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Fig.11  The comparison of MAE of stochastic data of all the data re-
covery algorithms as the percentage of missing data changes from 10% to
60%.

Thus, they unable to cope with long consecutive missing
and frequent changes in the environment of the conducted
experiments.

The MAE comparison for stochastic data traffic among
three data recovery algorithms is shown in Fig. 11. We can
see that the proposed scheme outperforms the WP algo-
rithm and the EWMA algorithm. Besides that, the proposed
scheme can steadily maintain a small value of MAE regard-
less of the increment of missing data. This also means that
the distance between the real measured data and estimated
data of the proposed scheme is always stable.

In Fig.12, the accumulated IAE comparison for
stochastic data traffic of all the data recovery algorithms
is plotted. The simulation results demonstrate that the
proposed scheme outperforms the WP algorithm and the
EWMA algorithm. In the 30% data missing the proposed al-
gorithm’s IAE is 0.63 on the other hand the IAE of WP and
EWMA is 1.93 and 4.02 respectively. At 50% data miss-
ing, the proposed scheme’s IAE is five times smaller than
the EWMA algorithm.

From Fig. 13 to Fig. 15, the RMSE, MAE and IAE
comparison for ECG data of all the data recovery algo-
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Fig.12  The comparison of IAE of stochastic data of all the data recovery
algorithms as the percentage of missing data changes from 10% to 60%.
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Fig.13  The comparison of ECG data’s RMSE of all the data recovery
algorithms as the percentage of missing data changes from 10% to 60%.
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Fig.14  The comparison of ECG data’s MAE of all the data recovery
algorithms as the percentage of missing data changes from 10% to 60%.

rithms is plotted. The simulation results demonstrate that
the proposed scheme outperforms the other algorithms dra-
matically. This is because ECG data has its own pattern and
we generate the model based on that pattern. Moreover to
handle irregular ECG we consider spatial correlation with
lead IT and lead III sensors.
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Fig.15  The comparison of ECG data’s IAE of all the data recovery al-
gorithms as the percentage of missing data changes from 10% to 60%.

6. Conclusion

In this paper, we have proposed a model based data recovery
framework for different traffic patterns of CPS. Based on the
analysis, a model based ETSDR scheme for stochastic and
repeated is proposed in this paper. Since, stochastic data is
more difficult to estimate than the deterministic data, to han-
dle the stochastic data we incorporate the model from that
data pattern. Our simulation results reveal that the proposed
ETSDR scheme is very beneficial and outperforms the WP
and the EWMA algorithms regardless of the increment of
missing data because of incorporating model before the re-
covery.

Moreover, further research is required to improve the
analyzer by examining more time-critical traffic patterns.
Besides that, a future work will focus on examining the real-
time recovery using the proposed ETSDR scheme. In addi-
tion, we plan to incorporate prediction analysis to estimate
missing data for different traffic pattern.
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