
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
SW-POR: A Novel POR Scheme Using Slepian-Wolf

Coding for Cloud Storage

Author(s)
THAO, Tran Phuong; KHO, Lee Chin; LIM, Azman

Osman

Citation

2014 IEEE 11th Intl Conf on Ubiquitous

Intelligence and Computing, and IEEE 11th Intl

Conf on and Autonomic and Trusted Computing, and

IEEE 14th Intl Conf on Scalable Computing and

Communications and Its Associated Workshops (UTC-

ATC-ScalCom): 464-472

Issue Date 2014-12

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/13471

Rights

This is the author's version of the work.

Copyright (C) 2014 IEEE. 2014 IEEE 11th Intl Conf

on Ubiquitous Intelligence and Computing, and

IEEE 11th Intl Conf on and Autonomic and Trusted

Computing, and IEEE 14th Intl Conf on Scalable

Computing and Communications and Its Associated

Workshops (UTC-ATC-ScalCom), 2014, 464-472.

Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

SW-POR: A Novel POR Scheme using Slepian-Wolf
Code for Cloud Storage

Tran Phuong Thao, Lee Chin Kho, Azman Osman Lim
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa, Japan 923-1292
Email: {tpthao, s1120203, aolim}@jaist.ac.jp

Abstract—Cloud Computing is a service by which clients can
outsource their data to reduce the burdens of data storage and
maintenance. However, cloud providers are untrustworthy, which
therefore introduce several security challenges: data integrity,
data availability and data confidentiality. Since integrity and
availability are prerequisite conditions for the existence of a
system, researchers focus on these before confidentiality. To
ensure integrity and availability, network coding-based POR
(Proof of Retrievability) schemes have been proposed to enable
the client to check whether the distributed data stored in the cloud
servers is intact or not. However, most existing schemes have
not achieved exact-repair feature and efficiency. In this paper,
we propose a new POR scheme named SW-POR (Slepian-Wolf-
based Proof of Retrievability) to address these gaps. Our scheme
supports exact repair in which the repaired data is the same
as the original corrupted data. Our scheme also can reduce the
storage, computation, communication overheads and the size of a
coded block. We proposed SW-POR based on Slepian-Wolf data
compression code. We prove our security using entropy theory
and implement SW-POR to show the costs.

Keywords—proof of retrievability, network coding, Slepian-Wolf
code

I. INTRODUCTION

Many individuals and organizations outsource their data
to cloud storage providers which allow clients to access,
manage and share their data easily from anywhere via the
Internet. However, cloud provider are untrustworthy, there are
numerous security challenges: data availability, data integrity
and data confidentiality. In this work, we focus on ensuring
integrity and availability because they are pre-conditions for
the existence of cloud system, they are thus more important
than confidentiality.

Checking integrity and availability is mainly based on three
techniques: replication, erasure coding and network coding.
Replication, which allows the client to store file replicas in
servers, was firstly proposed in [1]. When a corrupted server
is detected, the client uses the healthy replicas to recover it.
However, the drawback of this method is high storage cost
because the client must store a whole file in each server.
Erasure coding [3] was then applied to reduce storage cost.
Erasure code allows the client to store file blocks in each server
redundantly instead of file replica as replication. However,
when recovering corrupted data, the client has to reconstruct
the entire original file before generating new coded blocks.
Therefore, its computation and communication costs are in-
creased in data repair. To enable efficiency in repair phase,
network coding has been applied [4]–[6] so that the client does

not need to reconstruct the entire file before generating coded
blocks, instead coded blocks are retrieved from healthy servers
to generate new coded blocks.

To restore assurances eroded by cloud storage, researchers
proposed a tool called POR (Proof Of Retrievability) as a
system model [7]–[9]. Many schemes have been proposed
based on the POR, e.g., [2], [20] using replication and [14]–
[16] using erasure code. Due to the advantages of network
coding compared to replication and erasure code as introduced
before, in this work, we focus on several notable network
coding-based POR schemes. Dimakis et al. [10] were the
first to apply network coding to distributed storage systems
and achieve a remarkable reduction in the communication
overhead of the repair component. Li et al. [11] proposed
tree-structure data regeneration with linear network coding to
achieve an efficient regeneration traffic and bandwidth capacity
by using undirected-weighted maximum spanning tree and
Prim algorithms. Chen et al. then proposed RDC-NC [12]
which provides an elegant solution for efficient data repair
by recoding encoded blocks in the healthy servers. H. Chen et
al. proposed NC-Cloud [13] to improve the cost-effectiveness
of repair using the functional minimum-storage regenerating
(FMSR) codes and relax the encoding requirement of storage
nodes during repair.

Unfortunately, most of these have not addressed the fol-
lowing shortcomings: (i) the repaired coded block is not in
exactly the same form as the corrupted coded block (Section
II.B), (ii) the size of coded block are greater than or equal
to the size of each file block and (iii) although most of prior
works focus on efficiency, the models still incur high storage,
computation and communication costs.

Contribution We propose a new POR scheme named
SW-POR to address the above gaps. SW-POR has the fol-
lowing advantages:

• The size of a coded block in SW-POR is smaller than
that in network coding.

• Exact-repair: the repaired coded block is exactly the
same as the corrupted coded block unlike network
coding. The additional overheads are unnecessary un-
der exact-repair. Exact-repair also permits the code to
be systematic.

• Our storage, communication and computation costs
are lower than the costs in network coding.

Because in a real cloud system, the size of the original file
is huge, SW-POR particularly becomes meaningful.

Organization We describe the preliminaries of POR, network
coding, Slepian-Wolf code and the notations used in our
scheme in Section II. We propose our scheme SW-POR in
Section III. We analyse security and efficiency in Section IV
and Section V. We present the result from the experiment in
Section VI. We conclude our work in Section VII.

II. PRELIMINARIES

A. Proof Of Retrievability (POR)

To check the server, researchers have proposed POR [7]–
[9] as a system model which is a challenge-response pro-
tocol between client and server. A POR has a tuple of
(keygen, encode, check, retrieve, repair) as follows:

• keygen(1λ): is a probabilistic algorithm run by the
client given a security parameter λ to produce secret
key sk and public key pk (for symmetric key system,
pk is set to be null).

• encode(sk, F): The client encodes a raw file F to an
encoded file F ′, then stores F ′ in the server.

• check(sk): is a challenge-response run between the
client and server during which the client uses sk to
generate a challenge c and sends c to the server. The
server computes a corresponding response r and sends
r back to the client. The client then verifies the server
based on c and r.

• retrieve(k0, · · · , km−1): The client runs this algorithm
when he wants to retrieve his raw file F . The client
requests m healthy servers Sk0 , · · · ,Skm−1 to provide
their coded blocks. The client then computes the raw
file F based on these m coded blocks.

• repair(): If a corrupted server is detected in the check
phase, this algorithm is executed by the client to
repair the corrupted data. The technique of this phase
depends on each concrete scheme.

In this work, we focus on encoding, retrieving and re-
pairing. The check phase is beyond the scope of this paper.
There are several existing schemes addressing checking. Two
popular methods are to use homomorphic MAC (Message
Authentication Code) [17]–[19] and homomorphic signature
[27]–[29]. Because we do not deal with the check phase, we
do not need any key for checking the servers; and thus, the
keygen is not described in this work.

B. Network coding

Network coding [4]–[6] was proposed to improve network
throughput and efficiency in data transmission and data re-
pair. The source firstly partitions the message into m block
w̄1, · · · , w̄m. Each w̄i ∈ Flq where i ∈ {1,m} and Flq denotes
a l-dimensional finite field over a prime q. The source then
augments each w̄i with the vector of length m consisting
of a digit ′1′ in the i-th position and ′0′ elsewhere. Let
w1, · · · , wm be the augmented vectors. Each wi has the form:

wi = (w̄i,

m︷ ︸︸ ︷
0, · · · , 0, 1︸ ︷︷ ︸

i

, 0, · · · , 0) ∈ Fl+mq

The source then sends {w1, · · · , wm} as packets to
the network. When an intermediate node receives k pack-
ets wi1 , · · · , wik , the node generates k coding coefficients
α1, · · · , αk ∈ Fq and linearly combines the received packets
and transmits the resulting linear combination to the adjacent
nodes. Therefore, each vector w carries m accumulated coding
coefficients in Fq that produce w as a linear combination of all
m original file blocks. Receivers receive combinations of the
original vectors and can retrieve the original message from any
set of m combinations. If y ∈ Fl+mq is a linear combination of
w1, · · · , wm ∈ Fl+mq then the linear combination coefficients
are contained in the last m coordinates of y.

Application in distributed systems [10]–[13] From m aug-
mented blocks w1, · · · , wm, the client chooses m coding
coefficients α1, · · · , αm and computes coded blocks as c =∑m
i=1 αi · wi, then stores those coded blocks in the servers.

When corruption is detected, the client retrieves coded blocks
from h healthy servers and linearly combines them to regener-
ate new coded blocks. An example of this mechanism is given
in Figure 1.

Fig. 1: From augmented vectors {w1, w2, w3}, the client
computes six coded blocks and stores two coded blocks in the
server S1,S2,S3. Suppose S1 is corrupted, the client requires
S2 and S3 to create new blocks using linear combination, and
then mixes these to obtain two new coded blocks.

In Figure 1, we can observe that the new coded blocks
(5w1 + 5w2 + 16w3 and 8w1 + 8w2 + 27w3) are not the
same as the corrupted coded blocks (2w1 + 2w3 and 2 + 2w3).
Furthermore, since each file block is augmented with a vector
length m, the size of each augmented block wi is: |wi| =

m+ |w̄i| = m+ |F |
m . The size of a coded block ci is equal to

the size of a augmented vector because the linear combination
works in Fq: |ci| = |wi|. Therefore, |ci| = m + |F |

m . We will
use this note in our efficiency analysis (Section V).

C. Slepian-Wolf coding (SWC)

We use the binning idea of SWC [24]. Assume that the
source has two blocks X and Y which have the same bit-size.
X is partitioned into a number of bins. During encoding, the
index of the bin that the input lies into will be transmitted to
the decoder instead of the input itself. Suppose we partition
|X| into t bins each with |X|t elements. Without SWC, we need
log2|X| bits to convey the input to the decoder. With SWC,
we only need log2t bits instead. The decoder cannot tell what
is the actual input with the bin index alone but Y now comes
to the rescue. The decoder picks the element in the bin that is
best matched with Y .

2

D. Notations

Throughout our scheme, the following notations are used:

C client.
F original file.
m number of file blocks.
w̄i file block (i ∈ {0,m− 1}).
n number of servers.
Si server (i ∈ {0, n− 1}).
ci coded block stored in Si.
vi XOR constructing ci.
ĉi metadata of ci (number of bit ’1’ of vi).
α first-operand index of vi.
β second-operand index of vi.
γ first-operand index of vi.
|x| bit-size of x
|w̄| bit-size of each file block w̄i, |w̄| = |F |

m
⊕ exclusive-OR operator.
H(x) Shannons entropy of a random variable x.

III. PROPOSED SCHEME

In SW-POR, the form of a coded block ci is different from
that of network coding. We use the key idea that each coded
block is the bin index as in SWC to achieve better coded block
size.

A. Encode

TABLE I: Encode algorithm (Encode)

INPUT: m,n, {w̄0, · · · , w̄m−1}, |F |
OUTPUT: {c0, · · · , cn−1}, {ĉ0, · · · , ĉn−1}
01: count← 0
02: for α← 0 to m− 3
03: for β ← α+ 1 to m− 2
04: for γ ← β + 1 to m− 1
05: ĉi ← 0
06: for x← 0 to |w̄α| − 1
07: if (w̄α ⊕ w̄β ⊕ w̄γ == 1)
08: ĉi + +

09: Pi ← list all combinations(|F |
m
, ĉi)

10: vi ← w̄α ⊕ w̄β ⊕ w̄γ

11: for x← 0 to Pi.length− 1
12: if (Pi[x] == vi)
13: ci ← x
14: break
15: count+ +
16: if (count == n− 1)
17: break
18: return {c0, · · · , cn−1}, {ĉ0, · · · , ĉn−1}

From m file blocks, there are
(
m

3

)
XORs of any three

different file blocks. However, we only need n out of
(
m

3

)
XORs. The idea for choosing such n XORs is that:

(*) C chooses w̄0 as the first operand, w̄1 as the second
operand and w̄2, · · · , w̄m−1 as the third operands, respec-
tively. C then chooses w̄0 as the first operand, w̄2 as the
second operand and w̄3, · · · , w̄m−1 as the third operands,

respectively. C repeats this process until there are enough
n XORs. The first-operand index, the second-operand index
and the third-operand index of the XOR used to construct
a coded block are decided, unlike network coding in which
the coded blocks are distributed randomly to the servers.
The coded block in S0,S1, · · · ,Sn−1 are constructed from
w̄0⊕w̄1⊕w̄2, · · · , w̄0⊕w̄1⊕w̄m−1, w̄0⊕w̄2⊕w̄3, · · · , w̄0⊕
w̄2⊕ w̄m−1, · · · , w̄1⊕ w̄2⊕ w̄3, · · · , w̄1⊕ w̄2⊕ w̄m−1, · · · ,
respectively. To reconstruct F when a server is corrupted,

n,m are chosen as 2m < n ≤
(
m

3

)
. n can be reduced if

the scheme is extended so that each Si stores multiple coded
blocks.

The Encode algorithm is described in Table I. On input
m, n, {w̄0, · · · , w̄m−1} and |F |, the algorithm outputs n
coded blocks c0, · · · , cn−1 and their metadata ĉ0, · · · , ĉn−1.
i denotes the coded block index, α denotes the first-operand
index, β denotes the second-operand index and γ denotes the
third-operand index of a XOR. Our coded block are not simply
the XORs. Firstly, C finds the number of bit ’1’ (ĉi) when
computing w̄α ⊕ w̄β ⊕ w̄γ (line 5-8). Secondly, C constructs
a vector Pi which consists of all possible values of each XOR
(line 9) using list all combination (this common function is
supported in many libraries in programming language) given
the length of each file block |F |

m and ĉi. Thirdly, C finds
the corresponding index of w̄α ⊕ w̄β ⊕ w̄γ in Pi, returns to
ci (line 10-14). Our final coded blocks are the index of the
XORs in their corresponding sets. The number of elements

in Pi is |Pi| =

(
|F |/m

ĉi

)
and the length of each coded

block is log2|Pi|. The bandwidth and the storage cost can be
reduced since the length of an index is less than the length
of a coded block. Then, the Encode algorithm returns the
list of coded blocks {c0, · · · , cn−1}, the list of the metadata
{ĉ0, · · · , ĉn−1}. Finally, C distributes {ci, ĉi} to Si where
i = 0, · · · , n− 1.

Example 1: Suppose all operations work in F2. F =
11001001011000011010 (|F | = 20 bits) is divided into m = 5
blocks: w̄0 = 1100, w̄1 = 1001, w̄2 = 0110, w̄3 = 0001 and
w̄4 = 1010 (|w̄i| = 4). Suppose n = 8, we make 8 coded
block {c0, · · · , c7}. To make c0, v0 = w̄0⊕ w̄1⊕ w̄2 = 0011
is used (as explained in (*)). Since the number of bit ’1’
in v0 is 2, we have ĉ0 = 2. Since ĉ0 = 2 and |w̄i| = 4,
we have P0 = {0011, 0101, 0110, 1001, 1010, 1100} in which
the elements are sorted in an ascending order and indexed as

{0, 1, · · · , 5}. The important thing is that: since |P0| =
(

4

2

)
=

6, we only need log26 ' 3 bits to represent ci instead of 4 bits
of w̄0 ⊕ w̄1 ⊕ w̄2. Since the index of v0 = 0011 in P0 is 0,
we have c0 = 0(decimal) = 000. {c0, ĉ0} are sent to the server
S0. Similarly, we make c1, · · · c7. The results are as follows:

• v0 = w̄0 ⊕ w̄1 ⊕ w̄2 = 0011, ĉ0 = 2, P0 =
{0011, 0101, 0110, 1001, 1010, 1100}, c0 = 0dec =
000.

• v1 = w̄0 ⊕ w̄1 ⊕ w̄3 = 0100, ĉ1 = 1, P1 =
{0001, 0010, 0100, 1000}, c1 = 2dec = 10.

• v2 = w̄0 ⊕ w̄1 ⊕ w̄4 = 1111, ĉ2 = 4, P2 = {1111},
c2 = 0dec = 0.

• v3 = w̄0 ⊕ w̄2 ⊕ w̄3 = 1011, ĉ3 = 3, P3 =
{0111, 1011, 1101, 1110}, c3 = 1dec = 01.

3

• v4 = w̄0 ⊕ w̄2 ⊕ w̄4 = 0000, ĉ4 = 0, P4 = {},
c4 = 0dec = 0.

• v5 = w̄0 ⊕ w̄3 ⊕ w̄4 = 0111, ĉ5 = 3, P5 =
{0111, 1011, 1101, 1110}, c5 = 0dec = 00.

• v6 = w̄1 ⊕ w̄2 ⊕ w̄3 = 1110, ĉ6 = 3, P6 =
{0111, 1011, 1101, 1110}, c6 = 3dec = 11.

• v7 = w̄1 ⊕ w̄2 ⊕ w̄4 = 0101, ĉ7 = 2, P7 =
{0011, 0101, 0110, 1001, 1010, 1100}, c7 = 1dec =
001.

B. Retrieve

TABLE II: Retrieve algorithm (Retrieve)

INPUT: {ck0 , ĉk0}, {ck1 , ĉk1}, · · · , {ckm−1 , ĉkm−1}
OUTPUT: {w̄0, w̄1, · · · , w̄m−1}
1: i← 0
2: for i← 0 to i← m− 1

3: vki ← SUB(cki , ĉki ,
|F |
m

)
4: αki , βki , γki ← GET (m, ki)
5: uki ← COEF (vki ,m, αki , βki , γki)
6: Ū ← [uk0 , uk1 , · · · , ukm−1]T

7: U = gaussian elimination(Ū)
8: {w̄0, w̄1, · · · , w̄m−1} ← filter(U)
9: F ← w̄0||w̄1|| · · · ||w̄m−1

return F

To retrieve F , C requires m servers to provide their coded
blocks (suppose ck0 , · · · , ckm−1). Note that the coded blocks
are chosen such that the binary matrix consisting of coefficient
vectors of the XORs should have full rank.

The main algorithm Retrieve is described in Table II. On in-
put m sets, each set consists of: coded block cki and metadata
ĉki , this algorithm outputs m file blocks {w̄0, · · · , w̄m−1}.
SUB, GET and COEF are the sub-algorithms. Firstly, for

TABLE III: SUB algorithm

Input: ci, ĉi, |F |,m
Output: vi
1: Pi ← list all combinations(|F |

m
, ĉi)

2: count← 0
3: for x← 0 to Pi.length− 1
4: if (count == i)
5: return Pi[x]
return Pi[count]

TABLE IV: GET algorithm

Input: m, ki
Output: αki , βki , γki
1: count = −1
2: for α← 0 to m− 3
3: for β ← α+ 1 to m− 2
3: for γ ← β + 1 to m− 1
4: count+ +
5: if (count == ki)
6: αki ← α
7: βki ← β
8: γki ← γ
return αki , βki , γki

TABLE V: COEF algorithm

Input: vi,m, αi, βi, γi
Output: ui
1: for x← 0 to x← m− 1
2: if ((x == αi) or (x == βi) or (x == γi))
3: ui[x]← 1
4: else ui[x]← 0
5: ui[m]← vi
return ui

each coded block cki , C finds the XOR used to construct
cki (line 3: SUB denotes the function used to find the
XOR on input cki , ĉki and the length of a file block |F |

m ,
then returning result to vki). C then performs the GET
algorithm to find the indices of three operands of the XOR
(line 4). C constructs a vector consisting of m + 1 elements:
uki = (e0, e2, · · · , em−1, vki) where ei ∈ {0, 1} for i =
0, · · · ,m − 1. ei = 1 where i is the first-operand index
(αki), the second operand index (βki) and the third operand
index (γki) of the XOR. ei = 0 elsewhere. uki is constructed
by the COEF algorithm (line 5). Secondly, all uki where
i = [0,m−1] are combined into a matrix Ū (line 6). Thirdly, C
executes Gaussian elimination gaussian elimination on Ū and
returns to a matrix U (line 7) to solve the equation system of
m variables w̄0, · · · , w̄m−1. Fourthly, C filters w̄0, · · · , w̄m−1
from U (line 8). Finally, F is reconstructed as w̄0|| · · · ||w̄m−1
(line 9).

Example 2: We reconstruct F from Example 1. Assume that
c0, c1, c2, c3 and c6 are chosen to reconstruct F since the
matrix consisting of coefficient vectors of v0, v1, v2, v3 and
v6 has full rank. Since c0 = 000, ĉ0 = 2, we have P0 =
{0011, 0101, 0110, 1001, 1010, 1100}, map c0 to obtain v0 =
0011. Similarly, we have v1 = 0100, v2 = 1111, v3 = 1011
and v6 = 1110. Next, a vector uki is constructed for each cki .
(α0 = 0, β0 = 1, γ0 = 2) because c0 uses w̄0 ⊕ w̄1 ⊕ w̄2.
Given α0 = 0, β0 = 1, γ0 = 2 and v0 = 0011, we have u0 =
[1, 1, 1, 0, 0, 0011]. Similarly, we have u1 = [1, 1, 0, 1, 0, 0100],
u2 = [1, 1, 0, 0, 1, 1111], u3 = [1, 0, 1, 1, 0, 1011] and u6 =
[0, 1, 1, 1, 0, 1110]. From u0, u1, u2, u3, u6, we construct Ū as:

Ū =

1, 1, 1, 0, 0, 0011
1, 1, 0, 1, 0, 0100
1, 1, 0, 0, 1, 1111
1, 0, 1, 1, 0, 1011
0, 1, 1, 1, 0, 1110

Applying Gaussian elimination on Ū , we have U as below.

U =

1, 0, 0, 0, 0, 1100
0, 1, 0, 0, 0, 1001
0, 0, 1, 0, 0, 0110
0, 0, 0, 1, 0, 0001
0, 0, 0, 0, 1, 1010

From U , we obtain w̄0 = 1100, w̄1 = 1001, w̄2 =

0110, w̄3 = 0001 and w̄4 = 1010. Finally, F is reconstructed
as F = w̄0||w̄1||w̄2||w̄3||w̄4.

C. Repair

The main algorithm Repair is described in Table VI. GET ,
REGET and SUB are the sub-algorithms. Assume that Sy is

4

TABLE VI: Repair algorithm (Repair)

INPUT: Sy
OUTPUT: cy, ĉy
01: αy, βy, γy ← GET (m, y)
02: choose a, b ∈ {0,m− 1} s.t. a, b 6= αy, βy, γy
03: {αr1 , βr1 , γr1} ← ascending sort(αy, βy, a)
04: {αr2 , βr2 , γr2} ← ascending sort(αy, γy, b)
05: {αr3 , βr3 , zγr3} ← ascending sort(αy, a, b)
06: Sr1 ← REGET (αr1 , βr1 , γr1)
07: Sr2 ← REGET (αr2 , βr2 , γr2)
08: Sr3 ← REGET (αr3 , βr3 , γr3)
09: Require Sr1 ,Sr2 ,Sr3 to provide

{cr1 , ĉr1}, {cr2 , ĉr2}, {cr3 , ĉr3}
10: vr1 ← SUB(cr1 , ĉr1 ,

|F |
m

)

11: vr2 ← SUB(cr2 , ĉr2 ,
|F |
m

)

12: vr3 ← SUB(cr3 , ĉr3 ,
|F |
m

)
13: vy ← vr1 ⊕ vr2 ⊕ vr3
14: ĉy ← number bit1(vy)

15: Py ← list all combinations(|F |
m
, ĉy)

16: cy ← ord(Py, vy)
return cy, ĉy

TABLE VII: REGET algorithm

Input: αri , βri , γri
Output: Sri
1: count← −1
2: for α← 0 to m− 3
3: for β ← α+ 1 to m− 2
4: for γ ← β + 1 to m− 1
4: count+ +
5: if (α == αri) and (β == βri) and (γ == γri)
6: return count

corrupted, it is repaired using three healthy servers. Firstly, C
finds the indices of three operands of the XOR w̄αy ⊕ w̄βy ⊕
w̄γy in Sy by using the GET algorithm (line 1). Secondly, let
a, b be two numbers in {0,m− 1} such that a, b 6= αy, βy, γy
(line 2). The idea to find such three coded blocks to repair Sy
is that:

w̄αy ⊕ w̄βy ⊕ w̄γy = (w̄αy ⊕ w̄βy ⊕ w̄a)
⊕ (w̄αy ⊕ w̄γy ⊕ w̄b)
⊕ (w̄αy ⊕ w̄a ⊕ w̄b)

Thirdly, {αy, βy, a}, {αy, γy, b} and {αy, a, b} are sorted
in ascending orders using the ascending sort algorithm (line
3-5). Let {αr1 , βr1 , γr1}, {αr2 , βr2 , γr2} and {αr3 , βr3 , γr3}
be the results of these sorting, respectively. The explanation of
ascending sort is skipped since it is a simple programming
function. Fourthly, C finds three servers storing three XORs by
using the REGET algorithm (line 6-8). Fifthly, C finds the
real result of XORs (vr1 , vr2 , vr3) by using the SUB algorithm
(line 10-12). Sixthly, the XOR of Sy is recovered (line 13) by
vy = vr1 ⊕ vr2 ⊕ vr3 . C then finds the metadata ĉy of cy by
counting the number of bits ′1′ in vy (line 14). Finally, we
find the coded block of Sy (line 15-16) like the encode phase.

Example 3 We follow example 1, 2. Assume S3 is corrupted.
αy = 0, βy = 2 and γy = 3 because S3 uses w̄0 ⊕ w̄2 ⊕ w̄3

(line 1). a = 1 and b = 4 are chosen because 1, 4 6= 0, 2, 3
(line 2). Observe that:

w̄0 ⊕ w̄2 ⊕ w̄3 = (w̄0 ⊕ w̄2 ⊕ w̄1)
⊕ (w̄0 ⊕ w̄3 ⊕ w̄4)
⊕ (w̄0 ⊕ w̄1 ⊕ w̄4)

Then, {0, 2, 1}, {0, 3, 4} and {0, 1, 4} are sorted in
ascending orders as {0, 1, 2}, {0, 3, 4} and {0, 1, 4}. Let
{αr1 , βr1 , γr1} = {0, 1, 2}, {αr2 , βr2 , γr2} = {0, 3, 4} and
{αr3 , βr3 , γr3} = {0, 1, 4} (line 3-5). Given {αr1 , βr1 , γr1} =
{0, 1, 2}, we find S0 because S0 uses w̄0 ⊕ w̄1 ⊕ w̄2. Given
{αr2 , βr2 , γr2} = {0, 3, 4}, we find S5 because S5 uses
w̄0 ⊕ w̄3 ⊕ w̄4. Given {αr3 , βr3 , γr3} = {0, 1, 4}, we find
S2 because S2 uses w̄0 ⊕ w̄1 ⊕ w̄4 (line 6-8). S0,S5 and
S2 are required to provide {c0, ĉ0}, {c5, ĉ5} and {c2, ĉ2}
(line 9). Given {c0 = 000, ĉ0 = 2}, we find v0 = w̄0 ⊕
w̄1 ⊕ w̄2 = 0011. Given {c5 = 00, ĉ5 = 3}, we find
v5 = w̄0 ⊕ w̄3 ⊕ w̄4 = 0111. Given {c2 = 0, ĉ2 = 4},
we find v2 = w̄0 ⊕ w̄1 ⊕ w̄4 = 1111 (line 10-12). Then,
vy = v0 ⊕ v5 ⊕ v2 = 1011 (line 13). Then, ĉy = 3 since the
number of bits ’1’ of 1011 is 3. Given ĉy = 3 and |w̄i| = 4,
Py = {0111, 1011, 1101, 1110}. Since |Py| = 4, we need
log24 = 2 bits to present cy . The coded block cy is the index
of vy in Py which is: cy = 1decimal = 01.

Unlike network coding, our new coded block is exactly
same as the corrupted coded block.

IV. SECURITY ANALYSIS

A. Data recover condition

Let epoch be a time step in which the servers are checked.
If a corrupted server is detected, it is repaired in the next epoch.

Theorem 1: The raw file F can be retrieved as long as in
any epoch, at least m out of n servers are healthy and the
corresponding matrix has full rank, i.e., rank equals to m.

Proof: F has m blocks: F = w̄0|| · · · ||w̄m−1, the number
of coded blocks is n. Each coded block ci is computed using
XOR between three different file blocks: vi = w̄α⊕w̄β⊕w̄γ .
To retrieve F , we view w̄0, · · · , w̄m−1 as the variables that
need to be solved. To solve these m variables, we need at least
m coded blocks which make the matrix have full rank because
the number of variables in a equation system has to be less
than or equal to the number of equations.

v0 = w̄α0 ⊕ w̄β0 ⊕ w̄γ0
v1 = w̄α1

⊕ w̄β1
⊕ w̄γ1

...
vm−1 = w̄αm−1

⊕ w̄βm−1
⊕ w̄γm−1

The number of required servers is thus at least m in any epoch.

B. Security threshold

In this subsection, we show the security of SW-POR
using entropy theory. Let H(x) be the Shannon’s entropy of a
random variable x. Let λ be the number of the pairs of coded
block and its metadata that an adversary A can learn. Let L
be the number of servers whose coded blocks are constructed
collectively from m file blocks w̄0, · · · , w̄m−1 via XOR.

Theorem 2: The advantage of the adversary A who has λ
pairs of coded blocks and metadata is as follows:

5

TABLE VIII: Comparison between network coding and SW-POR

Network coding SW-POR
Feature Exact-repair No Yes

Storage All phases O(m+ |w̄|) O(log2

(
|w̄|
ĉ

)
+ log2|w̄|)

Computation Encode O(mn) O(n)
complexity Retrieve O(m) O(m)

Repair O(m) O(1)

Communication Encode O(n(m+ |w̄|)) O(n(log2

(
|w̄|
ĉ

)
+ log2|w̄|))

complexity Retrieve O(m(m+ |w̄|)) O(m(log2

(
|w̄|
ĉ

)
+ log2|w̄|))

Repair O((m+ 1)(m+ |w̄|)) O(3(log2

(
|w̄|
ĉ

)
+ log2|w̄|))

PrA[(ci0 , ĉi0), · · · , (ciλ−1
, ĉiλ−1

)] = H(F)(λ < L)
m−λ
m H(F)(L ≤ λ < m)

0(m ≤ λ)

Proof: The probability for A to obtain F is the entropy:

PrA[(ci0 , ĉi0), ..., (ciλ−1
, ĉiλ−1

)] =

H(F |(Ci0 , Ĉi0), · · · , (Ciλ−1
, Ĉiλ−1

))

where Ci1 , · · · , Ciλ are the random variables of λ coded
blocks ci0 , · · · ciλ−1

, and Ĉi1 , · · · , Ĉiλ are the random vari-
ables of λ corresponding metadata ĉi0 , · · · ĉiλ−1

. From the
property of conditional entropy, we have:

H(F |(Ci0 , Ĉi0), · · · , (Ciλ−1
, Ĉiλ−1

)) ≤ H(F |vi0 , · · · , viλ−1
)

where vi denotes the XOR that is uniquely determined by a
coded block ci and its metadata ĉi. The equality is halt if F
is uniformly distributed.

When λ < L, the set {vi0 , · · · , viλ−1
} are constructed from

inadequate m file blocks; and the binary matrix consisting
of coefficients vectors of vij has not full rank, we have:
H(F |vi0 , · · · , viλ−1

) = H(F). This yields:

H(F |(Ci0 , Ĉi0), · · · , (Ciλ−1
, Ĉiλ−1

)) = H(F) (λ < L)

When L ≤ λ, the binary matrix consisting of coefficients
vectors of vij has full rank λ, we have: H(F |vi0 , · · · , ciλ−1

) =
m−λ
λ H(F). This yields:

H(F |(Ci0 , Ĉi0), · · · , (Cim−1 , Ĉiλ−1
)) = m−λ

λ H(F) <
H(F) (L ≤ λ < m)

When m ≤ λ, from (2) we can obtain m−λ
λ H(F) = 0.

This yields:

H(F |(Ci0 , Ĉi0), · · · , (Ciλ−1
, Ĉiλ−1

)) = 0 (m ≤ λ)

V. EFFICIENCY ANALYSIS

A. Storage cost

In network coding, since the size of a coded block is
m + |w̄|, the storage cost in each server is O(m + |w̄|).
In SW-POR, each server store two things: ci which

has the size |ci| = log2

(
|w̄|
ĉi

)
and ĉi which has

the size |ĉi| = log2|w̄| because ĉi ∈ {1, |w̄|}. Our

storage cost is thus: O(log2

(
|w̄|
ĉi

)
+ log2|w̄|). For all

|w̄| and ĉi ∈ {0, |w̄|}, log2

(
|w̄|
ĉi

)
< |w̄|. Therefore,

(log2

(
|w̄|
d

)
+ log2|w̄|) < (m + |w̄|) if log2|w̄| < m. The

condition is halt if the parameters are chosen s.t. |w̄| < 2m.

B. Communication cost

1) Encode: In network coding, the size of each packet is
m + |w̄|; thus, the cost for C to send n packets to n servers
is O(n(m + |w̄|)). In SW-POR, the size of each packet is

log2

(
|w̄|
ĉi

)
+ log2|w̄|; thus, the cost for C sends n packets to

n servers is O(n(log2

(
|w̄|
ĉi

)
+ log2|w̄|)).

2) Retrieve: Suppose C uses m out of n servers to retrieve
F . In network coding, the cost for m servers to send their
packets to C is O(m(m+|w̄|)). Similarly, the cost in SW-POR

is O(m(log2

(
|w̄|
ĉi

)
+ log2|w̄|)).

3) Repair: In network coding, the cost for m healthy
servers to provide their packets to C is m(m + |w̄|) and the
cost for C to send new coded blocks to the new server is
m+ |w̄|. Thus, the cost is O((m+1)(m+ |w̄|)). In SW-POR,
we only need three healthy servers to repair. Our cost is thus

O(3(log2

(
|w̄|
ĉi

)
+ log2|w̄|)).

6

(a) Encoding phase: fix n (b) Encoding phase: fix m

(c) Retrieving phase (d) Repairing phase

Fig. 2: Comparison of the computational overhead between network coding and SW-POR

C. Computation cost

1) Encode: In network coding, to compute a coded block,
C combines m augmented blocks that takes O(m) operations.
Thus, C needs O(mn) operations to make n coded blocks.
In SW-POR, to make a coded block, C only computes XOR
between three file blocks that takes two operations. Thus, C
needs O(n) to make n coded blocks.

2) Retrieve: In network coding, C requires m healthy coded
blocks that takes O(m) operations. Similarly, in SW-POR, C
also needs O(m) operations.

3) Repair: In network coding, C needs at least m coded
blocks from m healthy servers for repairing. This has O(m)
operations. In SW-POR, we only need three healthy coded
blocks for repairing. This has O(1) operations.

VI. EXPERIMENT

We now assess the performance of network coding and the
proposed scheme. We implement by Python using a computer
with Intel Core i5 processor running at 2.40GHz, 4.00GB of
RAM, Win 7 64-bit OS. For network coding scheme, we use
|q| as 210 bits. For both network coding and SW-POR, we
set each block as 210 bits and each server stores one coded
block. The results are the average of 100 runs. In both network
coding and SW-POR implementations, gmpy2 library is used
for dealing with big values, itertools library is used for efficient
looping of big values. Figure 2 compares the computation

overheads between network coding and SW-POR. Graph 2a
compares the encode phase when fixing n = 500. Graph 2b
compares the encode phase when fixing m = 100. Graph 2c
compares the retrieve phase and Graph 2d compares the repair
phase.

Graph 2a and 2d show that the time-consuming of network
coding increases linearly with m while that of SW-POR
is almost constant. Graph 2b and 2c show that the time-
consumings in both network coding and SW-POR increase
linearly with n and m, respectively, but the slope of SW-POR
is less than that of network coding. The experiment results are
almost match with the complexity analysis in Section V.

VII. CONCLUSION

In this paper, we propose a new POR scheme named
SW-POR to support exact-repair and to obtain an optimal
coded block size. We also achieve better storage, communica-
tion and computation costs. Our idea is based on the binning
index approach of Slepian-Wolf code which is a common data
compression code in network. We show the security threshold
of SW-POR based on entropy theory. We analyse the efficiency
based on complexity theory and implement our scheme and
network-coding POR.

REFERENCES

[1] W. J. Bolosky, J. R. Douceur, D. Ely and M. Theimer, ”Feasibility of a
serverless distributed file system deployed on an existing set of desktop

7

PCs”, in Proc. of ACM conf. on Measurement and modeling of computer
systems - SIGMETRICS’00, 2000, pp.34-43.

[2] R. Curtmola, O. Khan, R. Burns and G. Ateniese, ”MR-PDP: Multiple-
Replica Provable Data Possession”, in Proc. 28th Distributed Comput-
ing Systems Conf., 2008, pp. 411-420.

[3] M. K. Aguilera, R. Janakiraman and L. Xu, ”Efficient fault-tolerant
distributed storage using erasure codes”, Tech. Rep., Washington Uni-
versity in St. Louis, 2004.

[4] R. Ahlswede, N. Cai, S. Li and R. Yeung, ”Network information flow”,
in IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204-1216, Jul
2000.

[5] S. Li, R. Yeung, and N. Cai, ”Linear Network Coding”, in IEEE Trans.
on Information Theory, vol.49, no.2, pp.371381, 2003.

[6] Ralf Koetter and Muriel Mdard, ”An Algebraic Approach to Network
Coding”, in IEEE/ACM Trans. on Networking (TON), vol.11, no.5, Oct
2003, pp.782-795.

[7] A. Juels and B.Kaliski, ”PORs: Proofs of retrievability for large files”,
in Proc. 14th ACM Computer and communications security Conf., 2007,
pp. 584-597.

[8] H. Shacham and B. Waters, ”Compact Proofs of Retrievability”, in
Proc. 14th Int. Conf. on the Theory and Application of Cryptology and
Information Security: Advances in Cryptology - ASIACRYPT’08, Dec
2008, pp.90-107.

[9] K. Bowers, A. Juels and A. Oprea, ”Proofs of retrievability: theory and
implementation”, in Proc. ACM workshop on cloud computing security,
2009, pp.43-54.

[10] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright and K. Ramchandran,
”Network coding for distributed storage systems”, in IEEE Trans.
Information Theory, vol.56, no.9, Sep 2010, pp.4539-4551.

[11] J. Li, S. Yang, X. Wang, X. Xue and B. Li, ”Tree-structured Data
Regeneration in Distributed Storage Systems with Network Coding”,
in Proc. 29th IEEE Information communications Conf., 2000, pp.2892-
2900.

[12] B. Chen, R. Curtmola, G. Ateniese and R. Burns, ”Remote Data
Checking for Network Coding-based Distributed Storage Systems”, in
Proc. ACM workshop on cloud computing security, 2010, pp. 31-42.

[13] H.C.H. Chen, Yuchong Hu, P.P.C. Lee and Yang Tang, ”NCCloud: A
Network-Coding-Based Storage System in a Cloud-of-Clouds”, in IEEE
Trans. on Computers, vol.63, no.1, Jan 2014, pp.31-44.

[14] K. Bowers, A. Juels and A. Oprea, ”HAIL, A high-availability and
integrity layer for cloud Storage”, in Proc. 16th ACM Computer and
communications security Conf., 2009, pp. 187-198.

[15] Y. Dodis, S. Vadhan and D. Wichs, ”Proofs of Retrievability via Hard-
ness Amplification”, in Proc. 6th Theory of Cryptography Conference
on Theory of Cryptography - TCC’09, Mar 2009, pp.109-127

[16] J. Hendricks, G. R. Ganger and M. Reiter, ”Verifying distributed
erasure-coded data”, in Proc. 26th ACM Principles of Distributed
Computing Symposium, 2007, pp.163-168.

[17] S. Agrawal and D. Boneh, ”Homomorphic MACs: MAC-Based In-
tegrity for Network Coding”, in Proc. 7th Applied Cryptography and
Network Security Conf., 2009, pp.292-305.

[18] C. Cheng and T. Jiang, ”An Efficient Homomorphic MAC with Small
Key Size for Authentication in Network Coding”, in IEEE Trans. on
Computers, vol.62, no.10, Jun 2012, pp.2096-2100.

[19] C. Cheng, T. Jiang and Qian Zhang, ”TESLA-Based Homomorphic
MAC for Authentication in P2P System for Live Streaming with Net-
work Coding”, in IEEE Journal on Selected Areas in Communications,
vol.31, no.9, Sep 2013, pp.291-298.

[20] Z.Zhang, Q. Lian, S. Lin, W.Chen, Y.Chen and C. Jin, ”Bitvault: A
highly reliable distributed data retention platform”, in ACM SIGOPS
Operating Systems Review, vol.41, Apr 2007, pp.27-36.

[21] Q. Wang, C. Wang, K. Ren, W. Lou and J. Li, ”Enabling Public Au-
ditability and Data Dynamics for Storage Security in cloud Computing”,
in IEEE Trans. parallel and distributed system, vol.22, no.5, May 2011,
pp.847-859.

[22] D. Catalano, D. Fiore and B. Warinschi, ”Efficient network coding
signature in the standard model”, in Proc. 15th Practice and Theory
in Public Key Cryptography Conf., 2012, pp.680-696.

[23] W. Yana, M. Yanga, L. Lia and H. Fang, ”Short signature scheme for
multi-source network coding”, in Journal Computer Communications,
vol.35, no.3, Feb 2012, pp.344-351.

[24] Samuel Cheng, Slepian-Wolf Code Designs, 2010, Available:
http://tulsagrad.ou.edu/samuel cheng/information theory 2010/swcd.pdf.

[25] V. Stankovic, A.D. Liveris, Z. Xiong and C.N. Georghiades, ”On
code design for the Slepian-Wolf problem and lossless multiterminal
networks”, in IEEE Trans. on Information Theory, vol.52, no.4, Apr
2006, pp.1495-1507.

[26] V. Stankovi, A.D. Liveris, Z. Xiong and C.N.Georghiades, ”Design of
Slepian-Wolf Codes by Channel Code Partitioning”, in Proc. of Data
Compression Conf. - DCC’04, Mar 2004, pp.302-311.

[27] R. Johnson, D. Molnar, D. Song and D Wagner, ”Homomorphic
Signature Schemes”, in Proc. of Cryptographer’s Track at the RSA Conf.
on Topics in Cryptology - CT-RSA’02, pp.244-262, 2002.

[28] N. Attrapadung and B. Libert, ”Homomorphic network coding signa-
tures in the standard model”, in Proc. of 14th Int. conf. on Practice
and theory in public key cryptography conference on Public key
cryptography - PKC, Mar 2011, pp.680-696.

[29] David Mandell Freeman, ”Improved security for linearly homomorphic
signatures: a generic framework”, in Proc. of 15th conf. on Practice
and Theory in Public Key Cryptography - PKC 2012, vol.7293, May
2012, pp.697-714.

8

	Introduction
	Preliminaries
	Proof Of Retrievability (POR)
	Network coding
	Slepian-Wolf coding (SWC)
	Notations

	Proposed scheme
	Encode
	Retrieve
	Repair

	Security analysis
	Data recover condition
	Security threshold

	Efficiency analysis
	Storage cost
	Communication cost
	Encode
	Retrieve
	Repair

	Computation cost
	Encode
	Retrieve
	Repair

	Experiment
	Conclusion
	References

