
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
DPSC: A Novel Scheduling Strategy for Overloaded

Real-Time Systems

Author(s)
CHENG, Zhuo; ZHANG, Haitao; TAN, Yasuo; LIM,

Azman Osman

Citation

2014 IEEE 17th International Conference on

Computational Science and Engineering (CSE):

1017-1023

Issue Date 2014-12

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/13472

Rights

This is the author's version of the work.

Copyright (C) 2014 IEEE. 2014 IEEE 17th

International Conference on Computational Science

and Engineering (CSE), 2014, 1017-1023. Personal

use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in

any current or future media, including

reprinting/republishing this material for

advertising or promotional purposes, creating new

collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted

component of this work in other works.

Description

DPSC: A Novel Scheduling Strategy for Overloaded
Real-Time Systems

Zhuo Cheng, Haitao Zhang, Yasuo Tan, and Azman Osman Lim
School of Information Science, JAIST

Nomi, Ishikawa 923-1292, Japan
{chengzhuo, zhanghaitao, ytan, aolim}@jaist.ac.jp

Abstract—For real-time systems, the correctness of system
behavior depends on not only the computed results but also on
the time at which results are produced. This requires tasks in
such systems to be completed before their deadlines. However,
when workload is heavy, the system may become overloaded.
Under such condition, some tasks may miss their deadlines.
When this problem happens, it is important to minimize the
degrees of system performance degradation. To achieve this
objective, the design of scheduling algorithm is crucial. In this
paper, we focus on designing on-line scheduling algorithm to
maximize the total number of tasks that meet their deadlines.
The idea of dynamic programming is used to present a dynamic
programming scheduling (DPS) algorithm. In each time, DPS
makes an optimum choice for currently known task set. As the
uncertainty of new arriving tasks, DPS cannot make optimum
choice for the set of overall tasks. To deal with this uncertainty,
by applying a congestion control mechanism, a dynamic program-
ming scheduling with congestion control (DPSC) is introduced.
Three widely used scheduling algorithms and their corresponding
deferrable scheduling (DS) methods are discussed and compared
with DPSC. Simulation results reveal that DPSC can effectively
improve system performance.

Keywords—cyber-physical systems, overloaded real-time sys-
tems, dynamic programming, congestion control.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are integrations of com-
putation and physical processes [1]. With their rapid devel-
opments, CPSs have enlivened many critical areas for human
life such as transportation, energy, and health. In CPS, as the
dynamic nature of physical processing, sensitivity to timing
and concurrency become central features of system behavior
[1] [2]. These features make typical CPSs as multi-tasking
real-time systems. In such a system, a task is required to
be completed before a specified time instant which is called
deadline. The execution order of tasks is set by a scheduler.
Under ideal workload condition, scheduler with a proper
scheduling algorithm can make all tasks meet their deadlines.
However, in practical environment, system workload may vary
widely. Once system workload becomes too heavy so that there
does not exist a feasible scheduling algorithm can make all the
tasks meet their deadlines, we say the system is overloaded.

To deal with the overloaded problem, two different kinds
of real-time systems, hard and soft real-time systems, have
different objectives. In hard real-time systems, a task miss-
ing deadline is treated as fatal fault, which may result in
catastrophic. For example, in aircraft control system, a task
missing deadline may result in aircraft crash. For such a

system, the primary objective is to prevent the overloaded
problem from occurring [3]. Unlike the hard real-time systems,
soft real-time systems tolerate some tasks missing deadlines,
and treat task missing deadline as performance degradation.
When the overloaded problem happens, the objective is to
minimize the degrees of the degradation. To achieve this
objective, the design of scheduling algorithms is crucial, as
different scheduling algorithms will lead to different degrees
of performance degradation.

To design a scheduling algorithm for overloaded soft real-
time systems, many objectives described in [5], [6] can be
considered. For example, (i) maximizing the total number
of tasks that meet deadlines, (ii) maximizing the effective
processor utilization, (iii) maximizing the obtained value of
completed tasks. The last two objectives are frequently adopted
and studied in literature (e.g., [3], [7]). Compared with them,
the first one is rarely studied, especially for the design of on-
line scheduling (scheduler has no knowledge of a task until it
makes request to execute). This objective motivates our work.
In this paper, we focus on studying on-line scheduling for
overloaded real-time systems with uniprocessor. Our objective
is to maximize the total number of tasks that meet their
deadlines. This objective is reasonable upon the application
that when a missed deadline corresponds to a disgruntled
customer, and the aim is to keep as many customers satisfied
as possible [4].

There are mainly two contributions in this paper. (i)
Utilize dynamic programming method to present dynamic
programming scheduling (DPS) algorithm which can make
optimum choice for currently known task set. (ii) Extend DPS
to dynamic programming scheduling with congestion control
(DPSC) in which congestion control mechanism is introduced.
With the help of congestion control mechanism, DPSC can
dynamically deal with the uncertainty of new arriving tasks.
This uncertainty is the biggest challenge in the design of on-
line scheduling algorithm. This idea gives a feasible method
for on-line scheduling algorithm to meet this challenge.

The remainder of this paper is organized as follows. Section
II summarizes the related work in this area. In section III, we
present the system model and give the definition of overloaded
systems. In section IV, through an example, we have studied
the performance of three typical scheduling algorithms, and
illustrated the necessity of a new scheduling algorithm. The
details of the proposed DPS algorithm are described in section
V. The extended algorithm DPSC which includes congestion
control mechanism is presented in section VI. Section VII

TABLE I: Symbols and definitions
Symbol Definition
T set of real-time tasks
τi real-time task, τi ∈ T , where i is index of the task
ri the request time instant of τi
ci the execution time of τi
di the deadline of τi
rci the remaining execution time of τi
t system time instant
T c set of successfully completed real-time tasks

shows the simulation results. Concluding remarks are given
in section VIII.

II. RELATED WORK

In the literature on real-time systems, several scheduling al-
gorithms have been proposed to deal with the overloaded prob-
lem. Some of them focus on maximizing the obtained value of
completed tasks. For example, the Best-Effort approach [13]
introduced a rejection policy for overloaded systems based on
removing tasks with the minimum value density. It chooses the
subset of tasks that maximize the value of the computation for
each time unit. In [14], random criticality values are assigned
to tasks. The goal is to schedule all of the critical tasks and
make sure that the weight of rejected non-critical tasks is
minimized. Other approaches focus on providing less stringent
guarantees for temporal constraints. The elastic task model
(ETM) proposed in [15] aims at increasing task periods to
handle overloads in adaptive real-time control systems. In
ETM, periodic tasks are able to change their execution rate
to provide different qualities of service.

As to the objective that maximizes the number of task com-
pletion, some researches focus on special cases of overloaded
problem. They impose certain constraints on the values of the
task attributes. For example, in [4], a scheduling algorithm is
proposed for the special case: equal to request times (ERT).
Under that case, all the tasks have the same request time when
the system is overloaded. This special case avoids the biggest
challenge (the uncertainty of new arriving tasks) in designing
on-line scheduling algorithm. Under that case, it is actually
an overloaded problem for the design of off-line scheduling
algorithm. In our approach, we does not put any constraint on
the values of task attributes. By introducing congestion control
mechanism, our proposed scheduling algorithm can properly
deal with the uncertainty.

III. SYSTEM MODEL & DEFINITION

A. Notation and Assumptions

The symbols used throughout the paper are summarized in
Table I. We adopt the general firm-deadline model proposed in
[8] with uniprocessor. This model has been adopted in many
studies (e.g., [4], [6]). The “firm-deadline” means only tasks
completed before their deadlines are considered valuable, and
any task missing its deadline is worthless to system.

The real-time system comprises a set of aperiodic real-
time tasks waiting to execute. These tasks request processor
to execute when they arrive in system. Each task τi is a 3-
tuple τi = (ri, ci, di), where i is the index of a task, ri is
the request time instant, ci is the required execution time, and

0 1 2 3

τ1= (0,1,2)

τ2= (0,2,3)

τ2= (0,2,3)

τ3= (1,1,2)

1 2 30

discards
τ2

t t

(a) underloaded at t=0 (b) overloaded at t=1
Fig. 1: Example for underloaded & overloaded

di is the deadline. Symbol T = {τ1, τ2, . . . , τn} denotes the
set of tasks comprised in the system, where n is the number
of tasks. Task set T varies with the passage of time. At
system time t, ∀τi ∈ T meets ri ≥ t. Symbol rci represents
remaining execution time of task τi. Initially, it equals to ci.
After τi has been executed for mci (mci ≤ ci) time units,
rci = ci −mci. If rci = 0, it means τi has been completed.
The set of successfully completed tasks T c comprise all the
tasks that meet their deadlines. It features that ∀τi ∈ T c has
been executed ci time units during time interval [ri, di). Note
that, if rci > di − t, task τi should be discarded immediately,
as such task cannot be able to complete successfully.

The assumptions that apply to the system model are as
follows: (i) The scheduler can learn of a task’s attributes at the
time instant when it makes request, nothing is known about a
task before this time. (ii) A task being executed on processor
can be preempted by another task at any time instant, and there
is no associated cost with such preemption. (iii) Every task is
independent with the others. There is no prior bound on the
time instant and number of takes which request to execute.

B. Definition

A real-time system can use different scheduling algorithms
to schedule tasks in T .

Definition ([9], [10]). When there exists a scheduling algo-
rithm can make all tasks meet their deadlines, the system is
underloaded, and the task set is feasible. On the contrast,
when there does not exist a scheduling algorithm can make
all the tasks meet their deadlines, the system is overloaded,
and the task set is infeasible.

An example in Fig. 1 is used to elaborate this definition.
As shown in Fig. 1 (a), at t = 0, T = {τ1, τ2}, using earliest
deadline first (EDF) algorithm to schedule T can make all
tasks meet their deadlines, where EDF first schedules the task
with the earliest deadline. Thus, the system is underloaded, and
the task set is feasible. EDF algorithm proposed in literature
[11] has been proven as an optimal scheduling algorithm.
That is, if using EDF to schedule a task set cannot make all
tasks meet their deadlines, no other algorithms can. Thus, EDF
scheduling algorithm can be used to tell if a task set is feasible.
After system passed a time unit, at t = 1. As shown in Fig.
1 (b), τ1 has been successfully completed, and a new task τ3
arrives in the system. At that time, T = {τ2, τ3}. Using EDF to
schedule T can only make τ3 meet its deadline. Task τ2 should
be discarded at t = 2, as rc2 > d2− t, where d2 = 3, rc2 = 2.
Thus, the system is overloaded, and the task set is infeasible.

discards τ3
LLF

EDF

SRTF

t

discards τ3

discards τ3 discards τ1

discards τ2 discards τ3

discards τ1

τ1= (0,3,7)

τ2= (0,5,5)

τ3= (0,4,6)

τ4= (0,1,8)

0 2 4 6 81 3 5 7
Fig. 2: Performance of scheduling algorithms

IV. PRELIMINARY

There are many scheduling algorithms widely used in
various real-time systems. Three representative scheduling
algorithms are adopted as the baseline algorithms: shortest
remaining time first (SRTF), EDF, and least laxity first (LLF).
In this section, we use an example described in Fig. 2 to study
their performance.

A. Results

SRTF: It first schedules the task with the shortest remaining
time. The scheduling sequence is 〈τ4, τ1〉. By this sequence, τ4
and τ1 can be completed sequentially, while τ2 and τ3 will miss
their deadlines. SRTF schedules a task based on its “length”,
while another kind of scheduling algorithms uses “urgency” to
schedule tasks. There are two algorithms using this method.

EDF: It uses deadline to indicate the urgency of a task.
A task with shorter deadline will be scheduled first. It can
complete τ2 and τ4 while makes τ3 and τ1 miss their deadlines.

LLF: Another method to indicate the urgency of a task is
using laxity, which is a measure of the spare time that a task
has. For τi, the laxity li is computed as li = di− rci− t. LLF
first schedules task with least laxity. Notice that, at t = 2, τ2
and τ3 have the same least laxity. It is reasonable to select
the task with the shortest remaining time to execute, thus τ2
is selected to execute. Same situation happens at t = 4, based
on the same criterion, τ2 is selected. It can complete τ2 and
τ4 while makes τ3, τ1 miss their deadlines.

B. Criterion

For the given task set T = {τ1, τ2, τ3, τ4} at t = 0,
all the three scheduling algorithms can complete two tasks.
In this regard, the performance of these three algorithms is
the same. However, all these results are obtained based on
current knowledge of task set without consideration of the
impact of new arriving tasks. In practical environment, when
there are new tasks arriving, the performance of the three
algorithms may be different. Consider a scenario. A new task
τ5 = (4, 1, 5) arrives in system at t = 4. SRTF can complete
three tasks τ4, τ1, τ5 while EDF and LLF can only complete
two tasks τ2, τ4 or τ5, τ4 (either is possible). The reason
that SRTF can complete one more task is because SRTF can
complete the two tasks within less time slots. When τ5 arrives,
SRTF has already completed τ4 and τ1, while LLF and EDF
have not completed τ2 and τ4, which results in either τ2 or
τ5 missing deadline. Based on this observation, we come to a
criterion.

Criterion. A task set can be scheduled by different scheduling
algorithms, when these algorithms can complete the same
number of tasks, the one that can complete this number of
tasks within less time slots makes better performance.

Based on this criterion, SRTF is considered to make better
performance than EDF and LLF. All of the three scheduling
algorithms achieve two as the value of task completion number.
We wonder if it is the maximum value. For this simple
example with only four tasks, we can enumerate all the subset
of the given ready task set, and use EDF to tell if the
subset of tasks is feasible. By this way, we can find three
is the maximum value of task completion number with the
scheduling sequence 〈τ3, τ1, τ4〉. Through this example, we can
see that, for overloaded real-time system, a new scheduling
algorithm is needed. This motives our work. A novel dynamic
programming scheduling algorithm is proposed in next section.

V. DYNAMIC PROGRAMMING SCHEDULING

For a given set of tasks T = {τ1, τ2, . . . , τn} at system t, to
maximize the number of task completion is a procedure to find
the optimal solution of scheduling T to maximize |T c|. This
procedure can be treated as choosing tasks from T , and putting
it into T c. Because only a task fully completed before its
deadline is considered successfully completed, once choosing a
task τi ∈ T , and putting it into T c, it means allocating rci idle
time slots before di to τi. This optimization problem is similar
to 0-1 knapsack problem. Here, we use dynamic programming
scheduling (DPS) to find the optimal solution.

A. Sets

1) S: Define S[i, j] to be a list used to store the scheduling
sequence for task set Ti ⊆ T within the number of time slots
no more than j. Task set Ti = {τ1, τ2, . . . , τi}, where i is the
number of task in Ti, 0 ≤ i ≤ n. Note 0 ≤ j ≤ d max(T)− t,
where d max returns the maximum value of di of τi ∈ T , and
each task τi in S[i, j] is allocated rci time slots.

2) N : Define N [i, j] to be the number of task completion
with scheduling sequence in S[i, j]. That is N [i, j] = |T i,j |,
where Ti,j is a task set which stores all the tasks in S[i, j].

3) L: Define L[i, j] to be the total number of time slots
used by S[i, j] to complete all the tasks in Ti,j . That is,
L[i, j] =

∑
rci for ∀τi ∈ Ti,j .

B. Optimal Targets

Our objective can be interpreted as finding
S[n, d max(T)− t] to maximize N [n, d max(T)− t].
When there exists more than one scheduling sequence can
achieve the same maximum value of N [n, d max(T)− t],
the one with smaller value of L[n, d max(T)− t] should be
chosen. This criterion has been described in section IV-B.

C. Details

The details of finding the optimal solution are summarized
in Alg. 1. Note ∀τi ∈ T represents tasks which are waiting
to execute, and features rci > 0, di − t ≥ rci, ri ≥ t. The
elements in the three sets are computed recursively. We obtain
the element values with the increasing order of i, and with

Algorithm 1 Dynamic Programming Scheduling (DPS)
Input: T , with known of rci, for all τi ∈ T
Output: scheduling sequence S[n, tmax], where n = |T |, tmax = d max(T)− t
1: sort T by non-descending order of di, such that 〈τ1, τ2, . . . , τn〉 is a permutation

of the tasks in T with di ≤ di+1 for all i, 1 ≤ i < n;
2: for all 0 ≤ j ≤ tmax do
3: N [0, j] := 0,L[0, j] := 0,S[0, j] := 〈〉;
4: end for
5: for all 1 ≤ i ≤ n do
6: for all 0 ≤ j ≤ tmax do
7: if j < rci then
8: N [i, j] := N [i− 1, j],L[i, j] := L[i− 1, j],S[i, j] := S[i− 1, j]
9: else if rci ≤ j ≤ di − t then

10: (p,N [i, j]) := max(N [i− 1, j − rci] + 1,N [i− 1, j])
11: if p = 1 then
12: L[i, j] := L[i − 1, j − rci] + rci, S[i, j] := S[i − 1, j −

rci].push back(τi)
13: else if p = 2 then
14: L[i, j] := L[i− 1, j], S[i, j] := S[i− 1, j]
15: else
16: (q,L[i, j]) := min(L[i− 1, j − rci] + rci,L[i− 1, j])
17: if q = 2 then
18: S[i, j] := S[i− 1, j]
19: else
20: S[i, j] := S[i− 1, j − rci].push back(τi)
21: end if
22: end if
23: else
24: N [i, j] :=N [i, di− t],L[i, j] :=L[i, di− t],S[i, j] :=S[i, di− t]
25: end if
26: end for
27: end for
28: return S[n, tmax]

the same i, obtained with the increasing order of j (line 5-
6). We first sort T by non-descending order of di such that
〈τ1, τ2, . . . , τn〉 is a permutation of the tasks in T with di ≤
di+1 for all i, 1 ≤ i < n (line 1). For the computation of
S[i, j], based on the relation between the number of available
time slots, i.e., j and the interval [rci, di − t], where di −
t represents the maximum number of time slots that can be
allocated to τi, there are three different situations.

1) j < rci : It means τi cannot be inserted into S[i, j].
Thus the results are the same as S[i − 1, j], which uses the
same number of time slots to schedule the task set without
τi, i.e., Ti−1, where symbol Ti := {τ1, τ2, . . . , τi} denotes
the set of first i tasks. Thus, S[i, j] := S[i − 1, j],N [i, j] :=
N [i− 1, j],L[i, j] := L[i− 1, j] (line 8).

2) j > di − t: As only time slots that before di can be
allocated to τi, di− t represents the maximum number of time
slots that can be allocated to τi. As τi has the maximum value
of di of τi in Ti, which means it has the maximum number
of time slots that can be allocated. That is, when the number
of available time slots exceeds di − t, the tasks in Ti can
only be allocated di− t number of time slots. Thus, S[i, j] :=
S[i, di − t],N [i, j] := N [i, di − t],L[i, j] := L[i, di − t] (line
24).

3) rci ≤ j ≤ di − t: Under this situation, two choices
can be made for S[i, j], i.e., including τi or not. We make
the decision between the two choices based on the computed
value of N [i, j]. The one that leads larger value will be chosen
(line 10). If both choices lead the same values, we choose the
one that can result smaller value of L[i, j] (line 16). Function
max(a, b) (line 10) returns a vector (i, v), where i is the index
of larger value. If a is larger, i equals to 1. When b gets the
larger value, i equals to 2. If a equals to b, assign i as −1.
The Value of v is the larger value from {a, b}. If a equals to b,

0 (null)

2 (7)

1 (5)

1 (4)

1 (τ2) 0 (0) 0 (0) 0 (0) 1 (5)

2 (τ3) 1 (4) 1 (4)

3 (τ1) 2 (7)

4 (τ4) 3(8)

0 (0) 0 (0) 0 (0) 0 (0)

0 2 31 4 865 7i
j

Fig. 3: Results of dynamic programming scheduling

v equals to them. Function mim(a, b) (line 16) has the similar
operation, the difference is it returns the vector for smaller
value.

For the first choice, when we insert τi into the list (line 12),
it will occupy rci time slots, such that, the remaining time slots
for the other available tasks, (tasks in Ti−1) is j − rci. The
value of task completion for tasks in Ti−1 is N [i−1, j− rci].
When we add one to this value, for the completion of τi, we
get the result, i.e., N [i, j] = N [i − 1, j − rci] + 1. With the
similar analysis, we can get the results as: L[i, j] = L[i −
1, j−rci]+rci, and S[i, j] = S[i−1, j−rci].push back(τi),
where S[i, j].push back(τi) inserts τi to the end of the list
S[i, j].

For the second choice, if τi is not added in the list (line
14), it means all the j time slots can be allocated to the other
available tasks (tasks in Ti−1). The value of task completion
for tasks in Ti−1 is N [i− 1, j]. As τi is not added in the list,
thus N [i, j] = N [i − 1, j]. With the similar analysis, we can
get the results as: L[i, j] = L[i−1, j], and S[i, j] = S[i−1, j].

For time complexity, as double loops are used, the worst-
case time complexity of DPS is O(n · tmax), where tmax =
d max(T)− t. It is pseudo-polynomial time complexity.

D. Results

As to the example of task set depicted in Fig. 2, the
computed results by Alg. 1 is shown in Fig. 3. Only results
that are needed to compute the scheduling sequence are
shown. In this example, task set T = {τ1, τ2, τ3, τ4}, and the
permutation of tasks in T by non-descending order of d is
〈τ2, τ3, τ1, τ4〉. The first row of the table represents the index
j, and the first column represents the index i corresponding to
the permutation, and the corresponding task is shown in the
bracket. The thick black box in the row i, 1 ≤ i ≤ 4 denotes
the interval rci ≤ j ≤ di − t, here t = 0, rci = ci. The
element at position (i, j) is the results of N [i, j], and L[i, j]
(in the bracket).

From table, we can see the maximum number of task
completion is N [4, 8] = 3, the corresponding number of time
slots used to complete such number of task is L[4, 8] = 8.
The S[4, 8] is denoted by the lines with arrows. The line
with arrow from position (1, 0) to (2, 4) represents the value
of the elements at (2, 4) is computed from (1, 0), that is,
N [2, 4] = N [1, 0] + 1, L[2, 4] = L[1, 0] + rc3, and S[2, 4] =
S[1, 0].push back(τ3). From the three lines with arrows, we
can see τ3, τ1, τ4 are inserted into list S[4, 8] in turn. Thus,
the result of scheduling sequence is 〈τ3, τ1, τ4〉, which is the
optimal solution.

Each time, DPS scheduling tasks makes optimum choice
for currently known task set. However, as scheduler has no

TABLE II: Result of DPS without limit of S[n, tmax]
t T S[n, tmax] T c

0 {τ1, τ2, τ3, τ4} 〈τ3, τ1, τ4〉 ∅
1 {τ1, τ3, τ4} 〈τ3, τ1, τ4〉 ∅
2 {τ1, τ3, τ4, τ5} 〈τ5, τ1, τ4〉 ∅
3 {τ1, τ4, τ6} 〈τ6, τ1, τ4〉 {τ5}
4 {τ1, τ4, τ7} 〈τ7, τ4〉 {τ5, τ6}
5 {τ4} 〈τ4〉 {τ5, τ6, τ7}
6 ∅ ∅ {τ5, τ6, τ7, τ4}

TABLE III: Result of DPS with limit of S[n, tmax]
t T S[n, tmax] T c

0 {τ1, τ2, τ3, τ4} 〈τ1, τ4〉 ∅
1 {τ1, τ3, τ4} 〈τ1, τ4〉 ∅
2 {τ1, τ3, τ4, τ5} 〈τ5, τ1〉 ∅
3 {τ1, τ4, τ6} 〈τ6, τ1〉 {τ5}
4 {τ1, τ4, τ7} 〈τ7, τ1〉 {τ5, τ6}
5 {τ1, τ4} 〈τ1, τ4〉 {τ5, τ6, τ7}
6 {τ4} 〈τ4〉 {τ5, τ6, τ7, τ1}
7 ∅ ∅ {τ5, τ6, τ7, τ1, τ4}

knowledge of a task until it arrives in the system, it is doubtful
that DPS can make optimum choice for the set of overall tasks.

VI. DYNAMIC PROGRAMMING SCHEDULING WITH
CONGESTION CONTROL

DPS schedules tasks based on the sequence stored in list
S[n, tmax], where n = |T |, tmax = d max(T) − t. It expects
all tasks in S[n, tmax] can all be completed. Nevertheless,
when system is overloaded, the selected tasks usually cannot
all be successfully completed. This observation gives the idea
that the capacity of S[n, tmax] (i.e., the maximum number of
tasks that can be added into S[n, tmax]) should be limited
based on the completion condition of tasks. If the number
of tasks in S[n, tmax] (N [n, tmax]) exceeds the capacity,
based on criterion described in section IV-B, longest task
should be first deleted from S[n, tmax] until meet the capacity
requirement. When remaining tasks have the same length (rci),
the tasks that first added into S[n, tmax] should be remained.
This procedure will be shown through an example, which will
reveal the benefit of limiting capacity.

A. DPS with limit capacity of S[n, tmax]

Recall the example depicted in Fig. 2, and consider a
scenario that there are three tasks τ5 = (2, 1, 3), τ6 = (3, 1, 4),
and τ7 = (4, 1, 5) arriving in system during time interval [0, 8).
The scheduling results using DPS are shown in Table II. The
bold symbols in column S[n, tmax] denote which task is sched-
uled at corresponding time. Four tasks T c = {τ5, τ6, τ7, τ4}
can be successfully completed. It can be seen that tasks τ1
and τ3 are in S[n, tmax] at t = 0. However, both of them have
not been successfully completed. If the capacity of S[n, tmax]
is limited to 2, we can get the scheduling result depicted
in Table III. Five tasks T c = {τ5, τ6, τ7, τ1, τ4} have been
completed. All the tasks that were added into S[n, tmax] have
been successfully completed.

By comparing S[n, tmax] obtained under two conditions,
we can see that under first condition, without limit of
S[n, tmax], DPS allocates first two time slots to τ3. However, at
t = 3, τ3 is preempted by a new arriving task τ5, which makes

Algorithm 2 ComputeWS()

1: if a task in T s is discarded then
2: ws := max(b0.6wsc, 1), where max returns larger value
3: end if
4: if a task in T s is completed then
5: if ws ≥ wth then
6: ws := ws+ 1
7: else
8: ws := min(2ws,wth), where min returns smaller value
9: end if

10: end if

τ3 fail to complete. For the second condition, at t = 0, although
τ3 can be allocated enough idle time slots, due to the limit of
S[n, tmax], only the first two tasks τ4, τ1 have been added into
S[n, tmax]. It makes the first two time slots allocated to τ1, a
shorter task than τ3, which makes τ1 successfully complete.

B. Congestion Control for Window Size

From above example, it can be known that the capacity
of S[n, tmax] has a great impact on the performance of DPS,
and its value should be dynamically changed based on the
completion condition of tasks in S[n, tmax]. Here we use
window size, represented by ws, to denote the value of this
capacity. For concision, we use T s to represent the set of tasks
in S[n, tmax]. As our objective is to complete all the tasks that
have been added into T s, congestion control methods applied
in network technology is feasible to achieve this objective.
By introducing this method, DPS is extended to dynamic
programming scheduling with congestion control (DPSC).

The detail of applying congestion control method is sum-
marized in Alg. 2. The symbol wth (line 5) represents the
threshold value of ws. It is set to the value of maximum
|T s| every timer time units, where the maximum |T s| is the
number of tasks in T s without limiting its capacity, and timer
is used to decide the time instant for updating wth. When a
task in T s is discarded, the value of ws is set to the 0.6 times
its current value (the value of 0.6 is based on our experiments
and experience), and due to the practical meaning of ws, it
is defined as an integer with lower limit of 1 (line 2). When
a task in T s is completed, the increasing method of ws has
two conditions: (i) if ws ≥ wth, it keeps linear growth (line
6); (ii) if ws < wth, it keeps exponential growth. At this
condition, wth has a upper bound (line 8). This procedure
benefits from congestion control strategies (e.g., slow start,
congestion avoidance) applied in network technology.

VII. PERFORMANCE EVALUATION

In this section, we present the numerical results of sim-
ulations, which are conducted to study the performance of
different scheduling algorithms. The scheduling algorithms
that are used to compare with DPS and DPSC are SRTF,
EDF, LLF, and their corresponding deferrable scheduling (DS)
methods, i.e., DS-SRTF, DS-EDF, DS-LLF. The DS method is
introduced in [12]. The idea of DS is trying to complete more
tasks by deferring the execution of their first selected tasks.
For DS-SRTF, the procedure of it to construct scheduling list
is: (i) select tasks based on the ascending order of rci, and
(i) when a task is selected, allocate idle time slots to the
task backwards from its deadline. The difference of scheduling
procedure among DS-SRTF, DS-EDF, and DS-LLF is the order

Ideal DPSC DPS SRTF DS−SRTF EDF DS−EDF LLF DS−LLF
30

40

50

60

70

80

90

100

Scheduling Algorithm

Su
cc

es
s R

at
io

(%
)

λ = 4
λ = 8
λ = 12
λ = 16
λ = 20
λ = 24

Fig. 4: Performance comparison (4 ≤ λ ≤ 24)

Ideal DPSC DPS SRTF DS−SRTF EDF DS−EDF LLF DS−LLF

5

10

15

20

25

30

35

40

45

50

Scheduling Algorithm

Su
cc

es
s R

at
io

(%
)

λ = 50
λ = 100
λ = 200
λ = 400
λ = 800
λ = 1600

Fig. 5: Performance comparison (50 ≤ λ ≤ 1600)

TABLE IV: Percentage improvement of DPSC compared with
other scheduling algorithms in terms of success ratio

Success Ratio DPS (%) SRTF (%) DS-SRTF (%) Ideal (%)

Average 2.3 3.0 7.2 -6.9
Maximum 16.0 17.1 25.4 0

of selecting tasks. DS-SRTF selects task with ascending order
of rci, while DS-EDF and DS-LLF select task with ascending
order of di and laxity respectively.

A. Simulation Settings

The metric used to evaluate the scheduling performance
is success ratio, which is the percentage of tasks that have
been successfully completed. The setting of total number of
input tasks is 1000. Arriving rate λ represents the mean value
of the number of tasks that arrive in the system per 100
time units. In order to evaluate the performance of scheduling
algorithms under different workload conditions, the success
ratio is evaluated as a function of the arriving rate λ. As the
workload can be changed by λ, the attributes of tasks in our
simulations are given a simple setting. For each task τi, ci
varies uniformly in [1 25]. The assignment of di is according
to the equation: di = ri+sfi · ci, where sfi is the slack factor
that indicates the tightness of task deadline. For each task τi,
sfi varies uniformly in [1 16].

B. Results and Analysis

As the change rate of success ratio is quit different in
different intervals of λ, the results are shown separately in two
intervals of arriving rate: [4 24] and [50 1600]. When λ ≤ 4,
all the algorithms can make all tasks meet their deadlines. In
addition to comparing with the baseline algorithms, we also
want to know how far the performance of DPSC is from the
upper bound in terms of success ratio. If the congestion control
mechanism in DPSC could set ws perfectly to make sure that
every time DPSC just completes all the tasks in T s, and no
processor time slot is wasted in executing unsuccessfully com-
pleted tasks, the DPSC could achieve the ideal performance.
In order to get this upper bound, we manually adjust the value
of ws in DPSC. For the specific input task sets, we can get
the ideal results, which are represented by Ideal in Fig. 4, Fig.
5 and table IV.

We first study the performance of the six baseline algo-
rithms. The results are shown in Fig. 4 and Fig. 5. We can see

that, DS-SRTF performs best when λ ≤ 12. This means that,
the idea of DS that tries to complete more tasks by deferring
the execution of their first selected tasks works well under
such workload condition, as under such workload condition,
most of the tasks can be completed. The performance of DS
also depends on the order of selecting tasks. Selects tasks with
ascending order of rci can get satisfactory performance. When
workload becomes heavier (λ ≥ 16), the performance of SRTF
will surpass DS-SRTF, and achieve the best performance. The
reason is that, under such heavy workload, many new tasks
are keeping on arriving, which makes there usually exist many
tasks can be scheduled. Under such workload condition, first
selecting shortest task to execute is a wise choice.

Focus next on DPS and DPSC. For DPS, compared with
the baseline algorithms, it performs best when λ ≤ 200. As
when λ > 200, the success ratio is around 20%, which means
system is severely overloaded. This condition rarely happens in
practical environment. Thus, we can say DPS achieves better
overall performance than all the baseline algorithms. This
reveals the effectiveness of dynamic programming scheduling.

For DPSC, it achieves the best performance among all
the algorithms under all the different workload conditions.
Compared with DPS, this observation proves the effectiveness
of congestion control mechanism. This improvement appears
when λ ≥ 8. This is because when λ < 8, the overload
condition is not serious. The ws used to limit the capacity
of T s, computed by congestion control mechanism, is larger
than the number of tasks that can be added into T s. This makes
these two methods have the same performance. When λ ≥ 800,
it can be seen that DPSC and SRTF achieve the same best
performance. The reason is that, under such serious overload
condition, the ws computed by function ComputeWS() is 1
which is its lower bound at most of the time. Under that
condition, it makes the DPSC act the same as SRTF. Notice
that, under such serious overload condition, as so many new
tasks are keeping on arriving, first selecting a shortest task to
execute can get the ideal performance in terms of success ratio.

The statistic results of DPSC compared with the baseline
algorithms and the ideal performance are shown in table IV. As
DS-SRTF and SRTF achieve the best performance under dif-
ferent workload conditions among all the baseline algorithms,
only them are shown in the table to compare with DPSC.
The values in the table are the percentages of improvement
(positive number) or deterioration (negative number) of DPSC
compared to the corresponding methods in terms of success

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

System time instant, t

Va
lu

e

|T|

Maximum |Ts|

Fig. 6: Trajectories of |T | and maximum |T s| (λ = 100)

0 200 400 600 800 1000 1200
0

10

20

30

System time instant, t

Va
lu

e

Actual ws

0 200 400 600 800 1000 1200
−10

0

10

20

30

System time instant, t

Va
lu

e

Ideal ws

Fig. 7: Trajectories of ws under congestion control mechanism
and manual operation (λ = 100)

ratio. Compared with SRTF, although the average improvement
of DPSC is just 3.0% which seems not much, it is because
the performance upper bound which is shown in the Ideal
column. The average performance of DPSC is not far from the
ideal performance (6.9% less than the ideal), which shows the
effectiveness of DPSC. Moreover, relative big improvements
happen at some specific workload conditions. For example,
when λ = 100, DPSC can get 17.1% improvement compared
with SRTF.

Fig. 6 shows the trajectories of |T | and maximum |T s|,
where maximum |T s| stands for the number of tasks in T s
without limiting its capacity. Only the results for λ = 100 is
shown as an example. We can see that, although the number
of tasks which are waiting to execute is large (around 90), the
number of tasks that can be added into T s is relatively small
(around 25). Actually, even such small number of takes cannot
all be completed under this kind of heavy workload.

Based on this observation, the capacity of T s should be
limited. The capacity value is denoted by window size ws,
its trajectories are shown in Fig. 7. The actual ws stands
for the actual trajectory under congestion control mechanism,
and ideal ws stands for the ideal trajectory under manual
manipulation. For ideal trajectory, every time, we manually
manipulate ws to make sure that DPSC can just complete
all the tasks in T s, and no processor time slot is wasted in
executing unsuccessfully completed tasks. To achieve this, it
is only possible when all tasks are known as a prior. Thus, the
manual manipulation actually plays a role of clairvoyant off-
line scheduling algorithm. Compare these two trajectory, we

can see that the tendency is the same. This means congestion
control mechanism can relatively effectively adjust ws.

VIII. CONCLUDING REMARKS

The design of scheduling algorithm is crucial for over-
loaded real-time systems. In this paper, we focus on maxi-
mizing the total number of tasks that meet their deadlines.
To achieve this objective, a dynamic programming scheduling
(DPS) algorithm was proposed. Each time DPS scheduling
tasks makes optimum choice for currently known task set.
But for the set of all the tasks, due to the uncertainty of new
arriving tasks, DPS cannot make optimum choice. This uncer-
tainty becomes the biggest challenge in the design of on-line
scheduling algorithms. To meet this challenge, by introducing
congestion control mechanism, DPSC was proposed. As shown
in the the performance studies, DPSC can effectively improve
system performance. This has demonstrated the effectiveness
of congestion control mechanism. For the future work, an ap-
pealing direction is to adapt DPSC for such real-time systems
which have probabilistic task model.

REFERENCES

[1] P. Derler, E.A. Lee, and A.S. Vincentelli, “Modeling Cyber-Physical
Systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, 2012.

[2] J.C. Eidson, E.A. Lee, S. Matic, S.A. Seshia, and J. Zou, “Distributed
Real-Time Software for Cyber-Physical Systems,” Proceedings of the
IEEE, vol. 100, no. 1, pp. 45–59, 2012.

[3] M.K. Gardner and J.W.S. Liu, “Performance of Algorithms for Schedul-
ing Real-Time Systems with Overrun and Overload,” In Proc. of the
Euromicro Conference on Real-Time Systems, pp. 287–296, 1999.

[4] S.K. Baruah, J. Haritsa, and N. Sharma, “On-line Scheduling to
Maximize Task Completions,” In Proc. of the IEEE Real-Time Systems
Symposium, pp. 228–236, 1994.

[5] A. Burns, “Scheduling Hard Real-Time Systems: a Review,” Software
Engineering Journal, vol. 6, no. 3, pp. 116–128, 1991.

[6] S.K. Baruah and J.R. Haritsa, “Scheduling for Overload in Real-Time
Systems,” IEEE Transactions on Computers, vol. 46, no. 9, pp. 1034–
1039, 1997.

[7] P. Mejia-Alvarez, R. Melhem, D. Mosse, and H. Aydin “An Incremental
Server for Scheduling Overloaded Real-Time Systems,” IEEE Transac-
tions on Computers, vol. 52, no. 10, pp. 1347–1361, 2003.

[8] J.R. Haritsa, M.J. Carey and M. Livny, “On Being Optimistic about
Real-Time Constraints,” In Proc. of the ACM Principles of Database
Systems Symposium, pp. 331–343, 1990.

[9] F. Zhang and A. Burns, “Schedulability Analysis for Real-Time Systems
with EDF Scheduling,” IEEE Transactions on Computers, vol. 58, no.
9, pp. 1250–1258, 2009.

[10] R.I. Davis and A. Burns, “A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems,” ACM Computing Surveys, vol. 43, no. 5, pp.
35:1–35:44, 2011.

[11] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” Journal of the ACM, vol. 20,
no. 1, pp. 40–61, 1973.

[12] M. Xiong, S. Han, K.-Y. Lam, and D. Chen, “Deferrable Scheduling
for Maintaining Real-Time Data Freshness: Algorithms, Analysis, and
Results,” IEEE Transactions on Computers, vol. 57, no. 7, pp. 952–964,
2008.

[13] C.D. Locke, “Best-Effort Decision Making for Real-Time Scheduling,”
Ph. D. Dissertation, Carnegie Mellon University, 1986.

[14] S. Hwang, C.M. Chen, and A.K. Agrawala, “Scheduling an Overloaded
Real-Time System,” In Proc. of the IEEE International Phoenix Con-
ference on Computers and Communications, pp. 22–28, 1996.

[15] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic Task Model for Adaptive
Rate Control,” In Proc. of the IEEE Real-Time Systems Symposium, pp.
286–295, 1998.

