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Abstract—Feedback loss can severely degrade the overall
system performance, in addition, it can affect the control and
computation of the Cyber-physical Systems (CPS). CPS hold
enormous potential for a wide range of emerging applications
including stochastic and time-critical traffic patterns. Stochas-
tic data has a randomness in its nature which make a great
challenge to maintain the real-time control whenever the data
is lost. In this paper, we propose a data recovery scheme,
called the Efficient Temporal and Spatial Data Recovery
(ETSDR) scheme for stochastic incomplete feedback of CPS.
In this scheme, we identify the temporal model based on
the traffic patterns and consider the spatial effect of the
nearest neighbor. Numerical results reveal that the proposed
ETSDR outperforms both the weighted prediction (WP) and
the exponentially weighted moving average (EWMA) algorithm
regardless of the increment percentage of missing data in terms
of the root mean square error, the mean absolute error, and
the integral of absolute error.

Keywords-cyber-physical system; data recovery scheme;
stochastic data; temporal correlation; spatial correlation; auto
regressive integrated moving average

I. I NTRODUCTION

Cyber-physical systems (CPS) are a new generation of
communication, control and computation that has received
a great deal of attention recently [1]. CPS enable the
virtual world to interact with the physical world in order
to monitor and control the intended parameter in real-time
basis. In CPS, technologies such as communication, control,
computation, cognition and sensing converge to create new
technologies for smarter society. The area of CPS represent
the intersection of several systems trends, such as real-time
embedded system, distributed systems, control system and
networked wireless system.

To facilitate communications between the cyber and
the physical world, wireless sensor and actuator network
(WSAN) is an essential ingredient of CPS. This is because,
the traditional wireless sensor network (WSN) is limited
in its ability to monitor the physical world [2]. However,
CPS achieve this requirement by facilitating the system to
sense, interact and change the physical world in real-time
by using feedback control loop. In a typical application of
CPS, sensor nodes collect information from the physical
world as a source of CPS inputs. Upon receiving input, a
controller makes a decision and actuators perform action in
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Figure 1. General control view of cyber-physical system.

the physical world through the closed-loop feedback. Thus,
the proper timing and accuracy of feedback data is very
important for interaction between cyber and physical world.
Fig. 1 shows the general control view of cyber-physical
system.

Since, CPS exploit the physical information collected by
WSANs; it also inherit the wireless contention problem
of WASN. This makes the challenging issue to control
in real-time. Wireless channels have many adverse prop-
erties like path loss, fading, adjacent channel interference,
node/link failure, etc. Besides these, wireless signals can
be easily affected by noise, physical obstacles, node move-
ment, environmental change and so on [3]. Because of
this unpredictable and dynamic nature, the sensing data
loss is a common phenomenon, which make hamper in
controlling decision. Since, the applicability of CPS is found
in numerous time-critical applications including smart house
to smart grid, data loss makes the system unstable. Emerging
applications of CPS include medical devices and systems,
aerospace systems, transportation vehicles and intelligent
highways, defense systems, robotic systems, process con-
trol, factory automation, building and environmental control,
smart spaces, intelligent home and so on [4]. In all of these
applications, CPS has to monitor and control the state of
physical phenomenon in real-time. In particular, for time-
critical applications, feedback data must present on time
to make decision. In many cases, re-transmission cannot
provide appropriate solution because of the unpredictable
network behavior, which can cause high delay.

To maintain uninterrupted control, we always need to
ensure the presence of feedback data. To do this, we propose
a data recovery scheme that can handle insufficient feedback
control information. In our paper [5], we proposed a highly



Efficient Spatial Data Recovery (ESDR) scheme that deals
with deterministic traffic pattern of CPS. This scheme is very
efficient for deterministic traffic pattern like temperature,
humidity, moisture which is highly correlated with space. In
our proposed ESDR scheme, we utilized spatial correlation
of neighboring sensors by using the Pearson correlation co-
efficient (PCC). But, as mentioned already, the applications
of CPS are numerous, thus in many applications the data
traffic is stochastic. To handle the stochastic data properly
we need to consider their nature which contains randomness.
The random and non-stationary nature of stochastic traffic
pattern makes it more challenging to recover. In many cases,
neighbor sensors maintain non-linear relationship between
them. The aim of this paper, is to propose an Efficient
Temporal and Spatial Data Recovery (ETSDR) scheme for
stochastic data traffic of CPS by considering the nature of
stochastic data. The proposed scheme consists of two phases.
In the first phase, which is offline, we identify the temporal
model for stochastic data and determine the spatial effects of
neighbors. The stochastic data series is normally highly auto-
correlated and outliers have a different correlation structure
then the deterministic data series. Auto Regressive Integrated
Moving Average (ARIMA) model is a very powerful model
to identify the auto-correlated nature or trend of stochastic
data. We utilize this model to identify the nature of the
stochastic data. In addition to determine the outliers, spatial
effect of neighbor is analyzed. In the next phase, which is
on line, we use that temporal model and spatial effect to
recover missing data. At the same time, we check whether
the identified model keeps fitted with recent data or not.

The rest of the paper is organized as follows. Section
II summarizes some state-of-the-art research works those
are related to this paper. In Section III, the proposed model
based recovery scheme is presented. We describe the experi-
mental scenario and the evaluation parameters in Section IV.
Simulation results and discussions are presented in Section
V. Section VI concludes with conclusion and future works.

II. RELATED WORK

Data recovery is a part of most research and there exist
several methods to handle this. Although there exists several
methods, but the recovery of data loss for CPS still poses an
open problem because of its unique requirement. The whole
recovery process for CPS must be held in real-time and
invisible to the outside world. Moreover, the applications of
CPS are numerous which involves different data patterns. In
the existing literature, there is no direction of data recovery
based on traffic patterns. Thus, recovery process without
considering the pattern can not provide a solution for all.
To recover data accurately, we first need to understand the
nature of the data and their relationship with others.

Missing data is a well-studied subject in statistics. Max-
imum likelihood (ML), multiple imputation (MI) and ex-
pectation maximization (EM) are widely used methods for

missing data imputation. ML [6] calculates the likelihood
function for given set of data, which is a hypothetical
probability that uses past event with known outcome. Then,
by using iterative steps, ML makes the likelihood function
maximum. EM [7] also uses iterative steps to maximize the
likelihood function but in EM, model depends on unobserved
or latent variables. Based on mean and covariance matrix of
multivariate normal distribution, expectation (E) step initial-
izes the expected values for latent variables. Maximization
(M) step plugs the expected values into the log-likelihood
function and maximizes the log-likelihood function by re-
peating the E and M steps. However initialization step
directly impacts the performance of EM based imputation.
On the other hand, in MI [8], missing data are filled by m
different times to generate m complete data sets. Generated
m data sets are analyzed by standard procedure and then
combined for inference. But these well known techniques
for missing data imputation are not suitable for WSNs, due
to their high space and/or time complexities.

Xia, et al. [9] first propose a solution for CPS over
WSANs to cope with packet loss. They illustrate three
prediction algorithms and provide a comparison between
them. Their first algorithm based on the assumption that,
the state of the physical system does not change during the
last sampling period. So, previous sample is used to replace
the missing value. The second algorithm computes a moving
average of the previous m samples to restore the lost data.
Thus it treats every previous measurement equally. In third
algorithm weighted average of all previous samples is taken
to replace the missing one. Simulation result shows that third
algorithm works well compared with others. All of their
procedures are bound for specific situation where current
data depends on the previous data or the combination of
previous data but not for all conditions.

Choi, et al. [10] exploit an exponentially weighted mov-
ing average (EWMA) based value estimation algorithm to
reduce the impact of packet loss. When some packets are
randomly dropped in wireless network environment, the
EWMA algorithm filters an abrupt increase or decrease by
exponentially smoothing commands or data based on the
past value profile. This method only suits, when the data
series is an exponentially weighted combination of past data
sets. But in real-life there is no guarantee that data will
always maintain this combination. Moreover, none of the
existing data recovery scheme includes model identification
before recover the data. We believe that successful identifica-
tion of data model can ensure accurate and timely recovery.

In the literature, there exists some model based data
aggregation scheme. In [11], authors proposed an ARIMA
based data aggregation method to reduce the energy con-
sumption and number of communication. In their scheme,
both sensor node and aggregator have the same model
for data generation. Sensor node checks whether the data
predicted from the model and measure data is same or



not. If the real value and predicted value is within the
threshold, then the sensor node will not transmit the data
to the aggregator. Otherwise, sensor will send the new data
to the aggregator.

III. PROPOSEDEFFICIENT TEMPORAL AND SPATIAL

DATA RECOVERY SCHEME

In this section, we propose a data recovery scheme
called Efficient Temporal and Spatial Data Recovery Scheme
(ETSDR) for stochastic traffic pattern of CPS. Before doing
this, we classify the pattern and types of CPS data traffic.
We classify three traffic patterns for CPS applications:
deterministic, stochastic and time-critical. The deterministic
traffic pattern always maintains a stable state. On the other
hand, any traffic pattern which involves random change and
indeterminacy is defined as a stochastic traffic pattern. We
concentrate stochastic traffic patterns in this paper. And,
these traffic patterns can be transmitted by four different
traffic types [12] : fixed, periodic, bursty and arbitrary rate.
In this research, we design our scheme to mitigate the
problem of periodic traffic type. As mentioned already, the
proposed scheme contains two steps: i) Offline temporal
model identification and ii) Online recovery of data.

A. Offline Temporal Model Identification

The aim of this step is to identify the temporal correlation
or pattern of the observed data and build a model based on
that available data. The proposed flowchart for off line tem-
poral model identification is shown in Fig. 2. The following
assumptions have been considered. First,n observed sensor
data is available for model identifications ande observed
sensor data is available for model verification. Second, the
maximum number of attempts (C) to generate the model is
fixed at initialization stage. The parameterC is also used
to make the decision that, the model cannot be generated
from the available data. In the flowchart, first we analyze
the data series trend by modelling it into ARIMA series.
Before modelling, we analyze the nature of stochastic data
which can be perfectly modelled with ARIMA model.

ARIMA model [13] is a very powerful tool that uses
historical data to predict future data values. Any type of
stochastic data series can be identified by this model. The
ARIMA model, also called Box-Jenkins model, can be di-
vided into three components: auto-regressive (AR), moving-
average (MA), and one-step differencing [13].

1) Auto-regressive model of orderp : AR model is a sim-
plified version of ARIMA model which describes random
time-varying process. The AR model specifies that the out-
put variable depends linearly on its own previous values [13].
The AR model of sensors data seriesds1, ds2, .., dsn with

orderp is defined as followsdsn = c+
p∑

i=1

φids(n−1) + εn,

wherep is the order of auto-regressive terms,φ1, φ2, ..φp

are the parameter of the model,c is a constant andεn is
white noise.

Figure 2. Proposed flowchart for temporal model identification.

2) Moving average model of orderq : MA model is a lin-
ear regression of the current and previous error of a random
series. The MA model of sensors data seriesds1, ds2, .., dsn

with order q is defined as followsdsn = µ +
q∑

i=1

θiεn−1,

where,q is the number of moving average terms,µ is the
mean of the series,θ1, θ2, ..θq are the parameter of the series,
andεn is the error.

3) Auto Regressive Integrated Moving Average (ARIMA)
Model: ARIMA model predicts future values of a sensors
data series by a linear combination of its auto-regressive past
values, integrated, and moving average of errors. The model
is generally referred to as an ARIMA(p,d,q) model where
parametersp, d, and q are non-negative integers that refer
to the order of the auto-regressive, integrated, and moving
average parts of the model respectively. The ARIMA model
is defined asθp(B)△dds(t) = Θq(B)εn, where,B is the
backward shift operator,△ is the backward difference,d is
the order of differencing andθp andΘq are the polynomial
of orderp and q respectively. In addition,Bdsn = ds(n−1)

and△ = 1 − B. ARIMA(p,d,q) model is the product of
an AR part AR(p):θp = 1 − φ1B − φ2B

2 − ... − φpB
p,

an integrating part:I(d) = △−d and a MA part MA(q):
Θq = 1− θ1B − θ2B

2 − ...− θqB
q.

To identify the model, we consider the following steps.

Step 1: Calculate ACF and PACF

The Auto-correlation function (ACF) is a set of correlation
coefficients between the series and lags of itself over time
[13]. The k-order auto-correlation coefficient of a data series
ds1, ds2, .., dsn of sensors is defined as



rk =

n−k∑
i=1

(dsi −
−
dsi)(ds(i+k) −

−
dsi)

n∑
i=1

(dsi −
−
dsi)

2 (1)

where,rk is thek lag sample auto-correlation and̄dsi is the
average ofn observations. The PACF stands for the partial
correlation coefficients between the series and lags of itself
over time. Thek-order partial auto-correlation coefficient of
a data series is defined as

ϕ11 = r1 (2)

ϕ22 = (r2 − r1
2)(1− r1

2) (3)

ϕkj = ϕ(k−1)j − ϕkkϕ(k−1)(k−j) (4)

ϕkk = rk −
k−1∑
j=1

ϕ(k−1)rk−j

/
1−

k−1∑
j=1

ϕ(k−1)rj (5)

Step 2: Estimate the Temporal Model
From the ACF and PACF, the ARMA model that closely

fit to the data can be identified. We determined the order of
p and q by matching the patterns in the sample ACF and
PACF with the theoretical pattern of known model. Table I
shows the theoretical properties of ACF and PACF of AR,
MA and ARMA series.

Table I
PROPERTIES OFACF AND PACF

ACF PACF

AR(p)
Tails off as exponential
or damped sine wave

Cuts off after lag
p

MA(q) Cuts off after lagq
Tails off as exponential

decay or damped sine wave
ARMA(p,q) Tails off after lag (q − p) Tails off after lag (q − p)

Step 3: Solve the Parameters of Temporal Model
In this step, we calculate the parameters of the identified

model using method of moments and Yule-Walker equations
[13].

Step 4: Verify the Temporal Model
To verify the model, we compare the model generated data

with the e observed sensor data. If the verification fails, we
continue to estimate the model until the maximum counter
C is reached. In the case of successful verifications, we use
that model to generate the data.

B. Online Data Recovery

To deploy our proposed stochastic data recovery scheme,
we propose a flowchart with the recovery scheme for CPS
as depicted in Fig. 3. In the flowchart, the proposed ETSDR
scheme will compute the model estimated data when there
is an input measured data from the sensors. If there is no
missing data, then the measured data is used as a feedback
data. At the same time the difference between the measured

Measured data from 

sensor (d
s
)

Is d
s
missing?

YesNo

d
s
is the measured data from sensor

d
m

is the computed data from model

e
i
is the error between d

si
and d

mi
for ith neighbor

Thresholdi is the maximum acceptable error between

model and measured data

Input d
m

as 

feedback data

Compute dm 

based on the 

temporal model

Is ei > Thresholdi?
YesNo

Adjust d
m

with spatial 

regression

Input d
m

as 

feedback data

Input ds as 

feedback data 

Does data fit with 

the model?

Compute the new 

model parameter

NoYes

Do Nothing

Update the model

Figure 3. Proposed flowchart for ETSDR scheme.

data and model estimated data is computed and if the
difference is greater than error offset, model is updated by
computing new parameters. On the other hand, when there
is a missing data, the neighbor’s model estimated data is
compared with neighbor’s measured data . If the neighbor’s
model estimated data cross the threshold, then the spatial
effect is considered. To estimate the missing data properly,
the model estimated data is adjusted with spatial effect and
is used as a feedback data.

As far as we are concerned, most of the spatial corre-
lation measures the linear correlation between the nearest
neighbors. If an environment is highly correlated in space,
then the spatial information can be used to estimate missing
data and the estimation function can achieve a high accuracy.
Pearson Correlation Coefficient (PCC) is a common measure
of the linear correlation between two random variablesi
and j. It reflects the degree of association between two
variables. But in real-life environment, the neighbor sensors
can be correlated non-linearly with their neighbors also. We
consider this phenomenon and calculate the spatial effect
based on the applications. Fig. 4 describes the proposed
ETSDR algorithm, which is used to produce an estimated
data from time to time.

IV. N UMERICAL STUDIES

In this section, we conduct the simulation studies to
evaluate our proposed ETSDR scheme compared to the WP
algorithm [9] and the EWMA algorithm [10]. We create
an simulation environment with five sensors and one base
station. We generate random series data in MATLAB sim-
ulator for one sensor. We add distance based non-linear co-
relationship to the generated data and assign to the other four
sensors. We estimate the model from the generated data by
calculating the ACF and PACF. We identify possible value of
p andq and findp = 2 andq = 0 for our simulation. Then,
we solve the parameters using Yule-Walker equations for the
identified AR(2) model. In the series, the autocorrelation
at lag 1 is r1 = 0.807 and autocorrelation at lag 2 is



Algorithm: Efficient Temporal and Spatial Data Re-
covery(ETSDR)
1: if ds = availablethen
2: for eachds from the sensors do
3: Computedms(t) from the model
4: if abs(ds(t)− dms(t)) > error offsetthen
5: Update the model with new parameters
6: end if
7: end for
8: else
9: for all one hop neighborj of sensors do
10: if abs(dj(t)− dmj(t)) > thresholdthen
11: de(t)←− ds(t) = dms(t)+ spatial effect
12: else
13: de(t)←− ds(t) = dms(t)
14: end if
15: end for
16: end for

Figure 4. Pseudo code for Efficient Temporal and Spatial Data Recovery
Algorithm

r2 = 0.429. The equations for the estimators of this series
are1.000φ̂1 + 0.807φ̂2 = 0.807 and0.807φ̂1 + 1.000φ̂2 =
0.429, which has a solution̂φ1 = 1.321 and φ̂2 = −0.637.
Since c = µ(1 − φ1 − φ2), then it can be estimated
c = 46.590(1− 1.321− 0.637) = 14.9. Thus the estimated
model isdsn = 1.321×ds(n−1)−0.637×ds(n−2)+14.9. This
model is used to generate the data and we set the maximum
tolerable error between model and measured data2.0 which
is denoted as error offset.

Based on the generated data, we investigate the perfor-
mance of our proposed scheme using a MATLAB. In this
simulation, we assume that the single sensor produces a
missing sensed data when it transmits its packet to the
base station. We randomly delete the data according to the
percentage of missing data from the original set and recover
them using the aforementioned data recovery algorithms. We
use the root mean square error (RMSE), mean absolute error
(MAE) and integral of absolute error (IAE) to evaluate the
performance of the said algorithms.

The RMSE is a frequently used measure of the difference
between values estimated by an algorithm and the values
actually measured from the real environment. The RMSE of
an algorithm estimation with respect to the estimated value,
de is defined as the square root of the mean squared error

as written asRMSE =

√∑N

n=1
(ds(n)−de(n))

2

N whereds is
original measured value.

The MAE is another statistical measurement that used
to measure how close the estimated values are to the
measured values. The MAE is given byMAE =
1
N

∑N
n=1 |de(n)− ds(n)|

The MAE measures the average magnitude of the errors

in a data set, without considering their direction. In [14],
Wilmott, et al. indicate that the MAE is the most natural
and unambiguous measure of average error magnitude.

On the other hand, the IAE is a widely used performance
metric in control community, which is recorded to measure
the performance of the control application. The IAE is
calculated asIAE =

∫ 1

0
|de(t)− ds(t)| dt

where, t denotes total simulation time. In general, the
larger the IAE values imply the worse the performance of
the control algorithm.

V. SIMULATION RESULT AND DISCUSSION

In this section, we present our simulation results and make
some discussions on the performance of algorithms. The
aim of this simulation is to examine the potential of the
proposed algorithm in coping with the data missing for the
CPS application. In our simulation, we investigate the impact
of increasing percentage of missing data on the data recovery
algorithm performance. The percentage of missing data is
varied from10% to 60% in steps of10%.

Fig. 5 depicts the RMSE comparison among data recovery
algorithms for stochastic traffic patterns. As the percentage
of data missing increases, the proposed algorithm always
shows better performance that is compared to the exist-
ing two algorithms. The reason for this improvement is
because, the proposed scheme estimates the data model
then uses that model to generate data. On the other hand,
other two algorithms always use the same combinations of
previous measurement without considering the effect from
the neighbors. Both WP and EWMA algorithm use the
fix combination of previous measurements only. Thus, they
unable to cope with long consecutive missing and frequent
changes in the environment.

Figure 5. The comparison of RMSE of stochastic data of all the data
recovery algorithms as the percentage of missing data changes from 10%
to 60%.

The MAE comparison for stochastic data traffic among
three data recovery algorithms is shown in Fig. 6. We



can see that the proposed scheme outperforms the WP
algorithm and the EWMA algorithm. Besides that, the
proposed scheme can steadily maintain a small value of
MAE regardless of the increment of missing data.

Figure 6. The comparison of MAE of stochastic data of all the data
recovery algorithms as the percentage of missing data changes from 10%
to 60%.

In Fig. 7, the accumulated IAE comparison for stochastic
data traffic of all the data recovery algorithms is plotted.
The simulation results demonstrate that the proposed scheme
outperforms the WP algorithm and the EWMA algorithm.
In the 30% data missing the proposed algorithm’s IAE is
0.62668 on the other hand the IAE of WP and EWMA
is 1.9211 and 4.02 respectively. At 50% data missing,
the proposed scheme’s IAE is five times smaller than the
EWMA algorithm.

Figure 7. The comparison of IAE of stochastic data of all the data recovery
algorithms as the percentage of missing data changes from 10% to 60%.

VI. CONCLUDING REMARKS

In this paper, we have proposed ETSDR scheme for
stochastic data traffics of CPS. In this research work, we also
identified that the stochastic data is more difficult to estimate
and thus to handle the stochastic data we incorporate the

model from that data pattern. Our simulation results reveal
that the proposed ETSDR scheme is very beneficial and
outperforms the WP and the EWMA algorithms regardless
of the increment of missing data. Moreover, further research
is required for examining more time-critical traffic patterns.
Besides that, a future work will focus on examining the real-
time recovery using the proposed ETSDR scheme.

REFERENCES

[1] A.L. Edward, “Cyber physical systems: Design challenges,”
IEEE Symp. on Object Oriented Real-Time Distributed Com-
puting, pp.363-369, 2008.

[2] A.L. Edward, “CPS foundations,” ACM/IEEE Design Automa-
tion Conf. (DAC), pp.737–742, 2010.

[3] F.J. Wu, Y.F. Kao, and Y.C. Tseng, “From wireless sensor
networks towards cyber physical systems,” J. Pervasive and
Mobile Comp., vol.7, no.4, pp.397–413, 2011.

[4] A.L. Edward, “Towards a science of cyber-physical system
design,” ACM/IEEE Conf. on Cyber-physical System, pp.99–
108, April 2011.

[5] N. Nower, T. Yasuo, A.O. Lim, “Efficient Spatial Data
Recovery Scheme for Cyber-physical System,” IEEE Int.
Conf. on Cyber-Physical Systems, Networks and Applications,
pp.72–77, 2013.

[6] D.C. Howell, University of Vermont. (2009). Treatment of
missing data [Online].

[7] J.G. Ibrahim, H. Zhu and N. Tang, “Model selection criteria for
missing-data problems using the EM algorithm,” J. American
Statistical Association. pp.1648–1658, 2008.

[8] J.H.Y. Chen, H. Xie and Y. Qian, “Multiple imputation for
missing values through conditional semi parametric odds ratio
models,” J. Biometrics vol.67, no.3, pp.799–809, 2011.

[9] F. Xia, X. Kong and Z. Xu, “Cyber-physical control over wire-
less sensor and actuator networks with packet loss,” Wireless
Networking Based Control, Springer, pp.85–102, 2011.

[10] R.H. Choi, S.C. Lee, D.H. Lee and J. Yoo, “WiP abstract:
Packet loss compensation for cyber-physical control systems,”
IEEE/ACM Int. Conf. on Cyber-Physical Systems (ICCPS),
pp.205, 2012.

[11] G. Li and Y. Wang, “Automatic ARIMA modeling-based data
aggregation scheme in wireless sensor networks,” EURASIP
J. Wireless Comm. and Networking, vol.2013, no.1, pp.1–13,
2013.

[12] K. Chen and S. Lien, “M2M Communications: Technologies
and challenges,” Elsevier Ad Hoc Networks, (in press) 2013.

[13] G. Box, G. Jenkins, G. Reinsel, Time Series Analysis: Fore-
casting and Control, 4th edn., NJ: Wiley, pp. 47–92, 2008.

[14] C.J. Wilmott and K. Matsuura, “Advantages of the mean
absolute error (MAE) over root means square (RMSE) in
assessing average model performance,” Climate Research,
vol.30, pp.79–82, 2005.


