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Abstract—Feedback data loss can severely degrade the overall
system performance and as well as it can affect the control
and computation of the cyber-physical systems (CPS) in the
provision of real-time, efficient, dependable, safe, and secure
operations of a wide range of emerging applications. In CPS
applications, a wide range of data patterns are observed in
different applications which make a great challenge in efficient
and real-time recovery whenever the data is lost. In this paper,
we propose a data recovery scheme called efficient temporal and
spatial data recovery scheme with Kalman filter (ETSDR/KF)
to ensure efficient and real-time recovery for any data patterns
of CPS. In the proposed scheme, the data recovery ETSDR/KF
algorithm is presented to recover incomplete feedback data. We
identify the temporal model of the pattern using ARIMA model
and consider the spatial effect of the neighbors as a data pre-
processing step. However, the temporal model, generated from
ARIMA has internal errors and the model parameters may not
remain constant. Thus, to improve the accuracy of the estimated
data, we incorporate a Kalman filter to reduce the error. Before
that, we fix the window for Kalman filter to determine the proper
process noise co-variance in online. Numerical results reveal that
the proposed ETSDR/KF are very promising regardless of the
increment percentage of missing data in terms quality of result
(QoR).

I. INTRODUCTION

Cyber-physical systems (CPS) are a collection of compu-
tational (cyber) and physical components that interact with
each other to achieve a particular objective within a specific
time frame. CPS enable the virtual world to interact with the
physical world in order to monitor and control the intended
parameter in real-time basis [1]. To facilitate the interactions
between cyber world and the physical world, sensor networks
will become a crucial ingredient of CPS due to the need for
coupling geographically distributed computing devices with
physical elements. In particular, CPS [2] requires the employed
sensor networks to support real-time, efficient, dependable,
safe, and secure operations. Among them, real-time and ef-
ficiency are the most critical criteria for ensuring CPS.

Since the CPS exploit the physical information collected
by wireless sensor and actuator networks (WSANs), it also
inherit the wireless contention problem of WSAN. This is
a very challenging issue for control in real-time. Wireless
channels have many adverse properties like path loss, fading,
adjacent channel interference, node/link failure, etc. Besides
these, wireless signal can be easily affected by noise, physical
obstacles, node movement, environmental change and so on
[3]-[4]. Because of this unpredictable and dynamic nature,
sensing data loss is a common phenomenon, which makes

hamper in controlling decision in real-time. In particular by
using WSAN, the CPS with point-to-multipoint mode of
communication cannot guarantee reliable and real-time. Thus,
for point-multi-point CPS, feedback data must have to arrive on
time, to make decision. In these cases, re-transmission cannot
provide appropriate solution because of the unpredictable
network behavior, which can cause high delay.

Moreover, the applicability of CPS is found in numerous
time-critical applications including smart house to smart grid.
Emerging applications of CPS include, medical devices and
systems, aerospace systems, transportation vehicles and intel-
ligent highways, defense systems, robotic systems, and so on
[5]. In this wide spectrum of CPS applications, different data
properties are observed, in terms of their shape, trend, variation
and periodicity. Some series maintain stable stage, some show
large variation in their evaluation and others exhibit repetition
in their evolution [6]. In [7], we proposed a Efficient Spatial
Data Recovery (ESDR) scheme that deals with stable or small
variation of data pattern like temperature, humidity, moisture
etc. In [6], we proposed different algorithms for different data
patterns and mainly concentrate on the data patterns that has
a large variation. To handle the data with large variation, we
proposed a scheme called Efficient Temporal and Spatial Data
Recovery (ETSDR) scheme by considering the nature. The first
phase of our proposed scheme is to identify the temporal model
for large variation of data using Auto Regressive Integrated
Moving Average (ARIMA)[8] and to determine the spatial
effects of neighbors in pre-processing step. In the next phase,
which is real-time, the temporal model and spatial effect is
used to recover data.

In this paper, we improve our previously proposed frame-
work to a universal framework for data recovery scheme that
can handle any type of data patterns. To do this, we utilized a
pre-processing step that used to identify the nature of data
using auto-correlation coefficient function (ACF) and then
built a temporal model based on the analysis of ACF of the
data. Besides this, the performance of the ETSDR real-time
algorithm depends on the temporal model identification, more
specifically on the parameter estimation and outliers detection
of ARIMA model which always has some internal error.
Moreover, previously it is also assumed that the estimated
parameters of temporal model are constant throughout the
series. But, in real-life CPS applications, the parameters may
not remain constant and it is quite impossible to refine the
parameter estimation in real-time.

In order to improve the accuracy and ensure real-time
computation, in this paper we incorporate a Kalman filter (KF)



[9] to minimize the error from the estimated data of temporal
model. In KF, state model and error co-variance act as key
role of controlling the performance of KF. We get the state
space model from ARIMA temporal model. Next, we need to
determine the correct error covariance to get the best optimal
performance of KF. In order to do that we determine a window
to get the proper process noise co-variance. When the error co-
variance is computed from the actual error of the measurement,
satisfactory results are obtained without divergence of Kalman
performance. Thus to get the proper error co-variance, we
fix the window for KF whenever the original measurement
is available.

The rest of the paper is organized as follows. Section 2
summarizes research background and state-of-the-art research
works that are related to this paper. In Section 3, the proposed
the data recovery scheme with Kalman filter is presented. We
describe the simulation scenario and the evaluation parameters
in Section 4. Simulation results and discussions are presented
in Section 5. Section 6 concludes with conclusion and future
works.

II. RESEARCH BACKGROUND AND RELATED WORK

Data recovery is a part of most research and there exist
several methods to handle this. Even though, there exist several
methods, the recovery of data loss for CPS still poses an
open problem because of its unique requirement. The whole
recovery process for CPS must be held in real-time and need
to maintain QoR. In this section, we discuss the requirements
for CPS and the existing data recovery procedures for CPS.

We concentrate on the key issues of CPS: real-time and
efficient. In CPS, the passage of time becomes a central feature
to ensure real-time system, in fact, it is one of the important
constraint distinguishing these systems from distributed com-
puting in general. According to [10], ”A real-time system must
react to stimuli from the controlled object (or the operator)
within time intervals dictated by its environment”. Depending
on the time constraints, there are two types of real time system:
hard real-time and soft-real time as shown in Fig. 1. In a hard
real-time system, the system must produces result before the
deadline has expired. In a soft real-time system, an answer
may still be useful for some time interval after the deadline
has expired. CPS is intended to meet the hard real-time, such
that the desired outcome is guaranteed within the specific
deadline [11]. Depending on the particular environments and
applications the deadline for hard real-time CPS may vary.

The another challenge for CPS is to maintain the QoR.
QoR [11] is used to evaluate the outcome/result of a scheme
or process. In this paper, the evaluation merits of accuracy
such as root mean square error (RMSE), mean absolute error
(MAE) and Integral of absolute error (IAE) are used. Among
them, MAE provides the unbiased result in terms of accuracy
[12]. To define the QoR, we use efficiency and execution time.
The efficiency is defined as the improvement of the scheme
with respect to the MAE in term of the percentage of missing
data. Whereas, the execution time is defined as the elapsed
time to produce a loss data of the scheme. In this paper, we
define that the QoR is specified as an acceptable range of
efficiency, i.e., above 80% and a deadline of execution time,
i.e., below 1 millisecond. If a scheme does not achieve both
said parameters, then the scheme cannot achieve its QoR.

Fig. 1. Efficiency vs. execution time in (a) hard and (b) soft real-time systems

Xia, et al. [13] first proposed a solution for CPS over
WSANs to cope with packet loss. They illustrate three pre-
diction algorithms and provide a comparison between them.
First algorithm based on the assumption that, the state of
the physical system does not change during the last sampling
period. The second algorithm computes a moving average of
the previous m samples to restore the lost data. Thus it treats
every previous measurement equally. In third algorithm, which
is known as weighted prediction (WP), weighted average of all
previous samples is taken to replace the missing one. Simula-
tion result shows that third algorithm works well compared
with others. All of their procedures are bound for specific
situation where current data depends on the previous data or
the combination of previous data but not for all conditions.

Choi, et al. [14] exploit an exponentially weighted moving
average (EWMA) based value estimation algorithm to reduce
the impact of packet loss. When some packets are randomly
dropped in wireless network environment, the EWMA algo-
rithm filters an abrupt increase or decrease by exponentially
smoothing commands or data based on the past value profile.
This method is only suitable, when the data series is an
exponentially weighted combination of past data sets. But in
real-life there is no guarantee that data will always maintain
this combination. We believe that successful identification of
data model and error reduction using KF can ensure accurate
and timely recovery.

In the existing literature, there is no direction of data
recovery based on data patterns. Thus, the recovery process
without considering the nature can not provide a solution for
all. To recover data accurately, we first need to understand the
nature of the data and their spatial relationship with others.
To achieve our motivation, we propose a data pre-processing
stage, where the ACF is used to identify the nature of the data
pattern and based on that property, then a model is built for
real time recovery process.

III. PROPOSED DATA RECOVERY WITH KALMAN FILTER

BASED SCHEME

In this section, we propose a data recovery framework
for CPS. The designed data recovery framework contains two
phases: i) Pre-processing and ii) Real-time processing. The
universal framework for data recovery scheme is shown in
Fig. 2.

A. Pre-processing

We analyzed the data series trend by analyzing it’s ACF
and then modeled it into ARIMA model. The ACF is a set



Fig. 2. Proposed data recovery framework for CPS

of correlation coefficients between the series and lags of itself
over time [15]. The k-order auto-correlation coefficient of a
data series ds1, ds2, ..., dsn of sensor s is defined as

rk =

n−k∑

i=1

(dsi−

−

dsi)(ds(i+k)−

−

dsi)

n∑

i=1

(dsi−

−

dsi)
2 where, rk is the k-lag sam-

ple auto-correlation and d̄si is the average of n observations.
The ACF of small variation or stable data show almost straight
line, on the other hand, data with the large variation show slow
decaying in their ACF. Thus from the result of ACF, the data
pattern can be identified. After identification of data pattern,
the temporal model is built using ARIMA model. The details
of temporal model construction is discussed in [6].

B. Real-time Processing (Proposed Data Recovery with
Kalman Filter)

To deploy our proposed data recovery with Kalman filter
based scheme, we propose a flowchart as depicted in Fig. 3(a).
Here, the temporal model is used to compute the estimated data
and the error is calculated, when there is an input measured
data from the sensors. If there is no missing data, then the
measured data is used as a feedback data. At the same time,
error is computed from the measured data and model computed
data to get the actual error for ensuring the better performance
from the KF.

On the other hand, when there is a missing data, we utilize
the model estimated data and apply KF on the model estimated
data to make it more accurate. The KF has been used in a wide
range of applications for error minimization. It is an efficient
recursive filter that estimates the state of a process in a way
that minimizes the mean of the squared error when the process
and measurement models are accurate. We discuss the details
of KF setting in the following subsection C.

To consider the spatial effect, neighbor’s model estimated
data and neighbor’s measured data is compared. Whenever
the difference between two data crosses the spatial regressive
threshold (SRth), the spatial regression is considered. SRth is
the maximum tolerable error value as a threshold indicator
to determine the spatial regression to be applied or not in

the ETSDR algorithm. At the initialization step, SRth is a
predefined constant value in order to cope with the dynamic
environmental changes (i.e., the disturbance effects). Since
the temporal model is based only on the property of data
series itself, but in real life, the sensor measurement can be
effected by the surrounding environment factors. In the case
of a missing data of a sensor, we utilize the temporal model
to estimate the model computed data and at the same time we
check all the one-hop neighbor’s measurements to determine
whether we should consider the spatial regression or not.
To handle the spatial regression, we compare the neighbor’s
measured data and the neighbor’s model computed data. In
this paper, we define that ei is the average error between all
the one-hop neighbor’s sensor of the measured data and the
model computed data. If this ei is greater the SRth, the spatial
regression is added to the model computed data. Otherwise, the
only the model computed data is used as a feedback data.

C. Modeling of temporal model in Kalman filter

KF is based on a state-space approach in which a state
equation models the dynamics of the data generation process
with process error and an observation equation models the
generated data with observation error. Thus, we need to
convert our temporal model into a state-space approach that
contains state and observation equations. The performance of
KF depends on the proper modeling of these equations and
error co-variances. The steps of KF for error reduction is
depicted in Fig. 3(b).

The temporal pattern of the data is identified by ARIMA
model in the pre-processing phase. An auto-regressive (AR)
model is a simplified version of ARIMA model which de-
scribes linear stochastic process with large variation of data.
The AR model of sensor s data series ds1, ds2, ..., dsn with
order p is defined as follows

dsn = c+ϕ1ds(n− 1)+ϕ2ds(n− 2)+...+ϕpds(n− p)+Vsn
(1)

where, p is the order of auto-regressive terms, ϕ1, ϕ2, ...ϕp

are the parameter of the model, c is a constant and Vsn is
error. The variables ϕ1, ϕ2, ..., ϕp are the state-space model
framework. From this, the state equation is formed as follows

[

dsn
ds(n− 1)

]

=

[

ϕ1, ϕ2, ..., ϕp

1, 0, ..., 0

]







ds(n− 1)
ds(n− 2)

...
ds(n− p)






+

[

c
0

]

+

[

1
0

]

Ws(n−1)

(2)

where,

[

ϕ1, ϕ2, ..., ϕp

1, 0, ..., 0

]

= A is a state transition matrix and

Ws(n− 1) is the process error. The observation equation is as
follows.

ysn = [1, 0, ..., 0]







dsn
ds(n− 1)

...
ds(n− p)






+ Vsn (3)

where, H = [1, 0, ..., 0] is the observation matrix and Vsn is
the measurement error. Thus, from (1) and (2) we get the state



Fig. 3. (a) Flowchart of ETSDR/KF algorithm (b) Steps of KF for error reduction.

space model as follows

dsn = A

p
∑

i

ds(n− i) +Ws(n− 1) (4)

ysn = Hdsn+ Vsn (5)

Equation (4) represents a linear stochastic equation where, dsn
is a linear combination of its previous value and a process
error. Equation (5) indicates that any measurement value is
a linear combination of the data value with the measurement
error. From the temporal model, we derive the state transition
matrix and observation matrix A and H and then left is to
set the co-variances (Q) and (R) of process error (Ws(n− 1))
and measurement error Vs(n) respectively. We can derive the
the state space model for MA and ARIMA temporal model by
using the same process.

The KF requires that all of the error co-variances to be
known exactly. Error co-variances in the KF play a key role
in controlling the Kalman gain. At first, we choose the values
of Q and R from the pre-processing stage during the temporal
model verification step. Our main purpose is to minimize the
error from the model, which is the process error Vsn. Thus, we
need to set the co-variance Q of process error Vsn properly.
Since, we assume, the measurement noise is almost zero, we
can set the R close to zero. Initially, we get the value of Q from
the pre-processing step of model verification. In the real-time
processing, whenever the sensor measured data is available, we
get the actual error and the refine Q to be more appropriate. In
order to do that, we define a window in which the value of Q
will become stable. Before doing that, we assume that, there is
no missing data within this window length, thus the actual error
is used to converge to the stable value of Q. As long as the
window length is higher, the more accurate Q can be achieved,
but at the same time, the assumption become unrealistic. To

Fig. 4. Determination of window size for stable Q

determine the suitable window length, we have analyzed seven
data series with 200 samples without any missing data and
found that the Q becomes stable within window length 14.8
(on average). From this analysis, we fix the window length 15
to get the stable process noise co-variance in real-time without
any missing data. We believe that, to utilize the window is
easier, simple and requires less memory compare to training
process.

The KF algorithm involves two stages: Time update (pre-
diction) and measurement update (correction). The time update
equations are responsible for projecting forward (in time) the
current state and error co-variance estimates to obtain the a
previous estimates for the next time step.

d̂sn = A

p
∑

i

d̂s(n− i) (6)

P̂k = AP̂k−1A
T +Q (7)

The measurement update equations are responsible for the



TABLE I. PSEUDO-CODE FOR EFFICIENT TEMPORAL AND SPATIAL

DATA RECOVERY WITH KALMAN FILTER ALGORITHM

Algorithm: Efficient Temporal and Spatial Data Recovery with Kalman

Filter (ETSDR/KF)

1: if ds(t) = available then

2: for each ds(t) from the sensor s do

3: Compute dms(t) from the temporal model

4: Apply KF on dms(t) to reduce error

6: end if

7: end for

8: else

9: for all one-hop neighbors, r of sensor s do

10: if avg(abs(dr(t)− dmr(t))) > SRth then

11: de(t) ←− ds(t) = KF (dms(t))+ spatial regression

12: else

13: de(t) ←− ds(t) = dms(t)
14: end if

15: end for

16: end for

feedback of KF, it incorporates a new measurement into the a
previous estimate to obtain a next improved estimate.

d̂s(n+ 1) = d̂sn+Kk(ysn−Hd̂sn) (8)

Pk = (1−KkH)P̂k (9)

where, Kk is a Kalman gain, which is defined as follows

Kk = P̂kH
T (HP̂kH

T +R)−1 (10)

Table I describes the proposed ETSDR/KF algorithm, which
is used to produce an estimated data from time to time.

IV. NUMERICAL SIMULATIONS

In this section, we conduct the simulation studies to evalu-
ate our proposed ETSDR/KF scheme compared to the ETSDR
algorithm [7], the WP algorithm [13] and the EWMA algo-
rithm [14]. In this simulation the data with large variation is
considered, which is more difficult to recover when data is lost.
We create a small scenario for simulation that can resemble
to smart grid applications for energy consumption control in
smart community. We assume a community with five houses,
where each sensor (e.g., smart meter) in a house measures the
energy consumption and communicates with the controller, that
placed in a cloud for computing the energy demand and supply
in real-time manner. The value of created energies (e.g., solar
panel, fuel cell, or electric vehicle, wind energy, etc) from
different houses may or may not linearly correlate with other
houses as a spatial correlation. In our simulation environment,
five sensors and one controller are considered. We generate
data with large variation data series using MATLAB simulator
and assign it to the five sensors. We assume that the one-
hop sensors are linearly co-related. Moreover, to make the
scenario more realistic we add some disturbance effects at the
certain period of time. We use SRth [7] as 1.09 to cope with
the spatial effect. We construct the temporal model from the
generated data by following the steps in [7]. We identify the
temporal model as d(n) = 0.11 ∗ d(n − 1)− 0.96 ∗ d(n − 2)
which is a AR(2) model. From this model, we get the matrix
A = [.11 − .96] and use H = [1, 0] for Kalman filtering.
Since, our goal is to reduce the error form the model and we
assume that there is almost no measurement error, thus we set
the value of R as = 1e− 3. In order to determine the process

error we utilize the window with length (15) and the value of
Q converges from 2.009 and become stable at 0.5.

Based on the generated data, we investigate the per-
formance of our proposed scheme using a MATLAB. In
this simulation, we assume that the single sensor produces
a missing sensed data when it transmits its packet to the
base station. We randomly delete the data according to the
percentage of missing data from the original set and recover
them using the aforementioned data recovery algorithms. We
use the root mean square error (RMSE), the mean absolute
error (MAE) and the integral of absolute error (IAE) to
evaluate the performance of the said algorithms. The RMSE
of an algorithm estimation with respect to the estimated value,
de is defined as the square root of the mean squared error

as written as RMSE =

√∑
N

n=1 (ds(n)−de(n))
2

N
where ds

is original measured value. The MAE is another statistical
measurement that used to measure how close the estimated
values are to the measured values. The MAE is given by

MAE = 1
N

∑N

n=1 |de(n)− ds(n)|. On the other hand, the
IAE is a widely used performance metric in control com-
munity, which is recorded to measure the performance of
the control application. The IAE is calculated as follows

IAE =
∫ t

0
|de(t)− ds(t)| dt where, t denotes total simulation

time. In general, the larger the IAE values imply the worse the
performance of the control algorithm.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present our simulation results and make
some discussions on the performance of algorithms based on
QoR that is efficiency and execution time. The aim of this sim-
ulation is to examine the potential of the proposed algorithm
in coping with the data missing for the CPS application. The
percentage of missing data is varied from 10% to 60% in steps
of 10%.

Fig. 5(a) depicts the RMSE comparison among data recov-
ery algorithms for data with large variation. As the percentage
of data missing increases, the proposed ETSDR/KF always
shows better performance that is compared to the ETSDR and
other two algorithms. The reason for this improvement over
ETSDR is because ETSDR/KF reduces the model generated
error using Kalman filter. On the other hand, WP and EWMA
algorithm always use the same combinations of previous
measurement. In addition, they do not consider the effect from
the neighbors. Through this simulation, we can observe that
this problem also can be found at the EWMA algorithm.
Both WP and EWMA algorithm use the fixed combination
of previous measurements only.

The MAE comparison among four data recovery algo-
rithms is shown in Fig. 5(b). We can see that the ETSDR/KF
outperforms the ETSDR, the WP algorithm and the EWMA
algorithm. Besides that, the proposed scheme with Kalman
filter can steadily maintain a small value of MAE regardless
of the increment of missing data because of accurate setting
of process error co-variance through the window. This also
means that the distance between the real measured data and
estimated data of the proposed scheme is always stable.

In Fig. 5(c), the accumulated IAE comparison of all the
data recovery algorithms is plotted. The simulation results



Fig. 5. Comparison of (a) RMSE (b) MAE and (c) IAE of all the data recovery algorithms as the percentage of missing data changes from 10% to 60% and
(d) average percentage of QoR of algorithms for 10% to 60% missing data

demonstrate that the proposed scheme with Kalman filter
outperforms the others. We believe that, this for properly
incorporating the Kalman filter with ETSDR algorithm.

To measure the execution time of the all the said online
algorithms, we use the computer with the Intel Core i7 3.0
GHz processor and the 8 GB memory to run each algorithm
10 times. The average execution time of each algorithm is
given in Table II, which shows that all of the said algorithms
can meet the deadline.

TABLE II. EXECUTION TIME IN UNIT OF SECONDS

Algorithms

ETSDR/KF ETSDR [7] WP [13] EWMA [14]

1.5565e-04 1.0263e-06 2.7368e-06 2.0526e-06

To illustrate the QoR of all the algorithms, we depicted
one more graph in Fig. 5(d) which shows the average MAE of
all said algorithms from 10% to 60% missing data. It is easily
observed that only ETSDR/KF can achieve more then 80%
in terms of QoR. On the other hand, none of the others can
achieve 80% efficiency. Although ETSDR/KF requires higher
execution time compare to other three, but it still maintain
the deadline. Thus ETSDR/KF maintains QoR in terms of
efficiency and deadline compare to the others.

VI. CONCLUDING REMARKS

In this paper, we have proposed a data recovery with KF
based scheme for any type of data of CPS. Since, data series
with large variation is more difficult to estimate than the
others, we incorporate Kalman filter to improve the accuracy
in estimation. However, the same scheme can be applicable to
the data with small variation also. Our simulation results reveal
that the proposed ETSDR/KF scheme is very beneficial and
outperforms the ETSDR, the WP and the EWMA algorithms
regardless of the increment of missing data. Moreover, further
research will focus on examining the real communication
environment to ensure the performance of real-time execution
of ETSDR/KF scheme.
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