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Abstract— Massive uncoordinated multiway relay networks (mu-
mRN) is an mRN that can serve a massive number of users ex-
pecting to fully exchange information among them via a common
relay. In this paper, we aim to improve normalized throughput of
the mu-mRN using multiuser detection (MUD) technique with ca-
pability of K > 1. First, we present a network capacity bound
of the mu-mRN with general K to investigate the theoretical limit
of the network. Then, we search for many optimal degree dis-
tributions for the MUD-based mu-mRN. Second, we aim to im-
prove the normalized throughput by 10⇥ from the maximum nor-
malized throughput of conventional systems. To achieve the goal,
we propose the mu-mRN applying doubly irregular coded slotted
ALOHA.
Keywords— Multiway relay networks, random access, codes-on-
graphs, EXIT chart, optimization.

1 Introduction
In the near future, there will be billions of connected

devices. Multiway relay networks (mRN) [1] is a common
framework to model various communication systems hav-
ing a massive number (more than a hundred) of users. Fig-
ure 1 shows the mRN with (M + 1) users expecting to fully
exchange data via a common relay. In the mRN, there are
two di↵erent phases of transmission, i.e., multiple access
(MAC) phase (where each user transmits data to the relay)
and broadcast (BC) phase (where the relay broadcasts data
to all users) as shown in Figure 1. This model is su�cient
to describe various communication applications, e.g., satel-
lite systems, ad-hoc disaster recovery networks, or sensor
networks.

Let the massive number of users transmit data during the
MAC phase at the same time slot. It requires a very low-
rate code [2] having a high computational complexity. As
an alternative, a coordinated scheduling technique can be
used; however, it is also unpreferable due to its scheduling
complexity [3]. In this paper, we discuss an uncoordinated
transmission for the mRN serving the massive number of
users, called massive uncoordinated mRN (mu-mRN). Re-
cently, the uncoordinated transmission for mRN applying
graph-based random access (RA) is briefly introduced in
[4, 5].

The underlying notions of [4, 5] are that: (i) they de-
fine a pair-of-time-slot (PTS) consisting of an MAC phase
followed by a BC phase, (ii) each user randomly transmits
packet1 at a given PTS based on a degree distribution, and
(iii) at the same PTS, the relay always amplifies and for-
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1 Instead of data, we refer to packet in the context of the RA.

Figure 1. Multiway relay networks (mRN) with (M + 1) users.

wards its received packet using amplify-and-forward (AF)
protocol. The ideas enable adoption of irregular repetition
slotted ALOHA (IRSA) [6] and coded slotted ALOHA (CSA)
[7] into the mu-mRN. IRSA and CSA are an RA benefiting
from successive interference cancelation (SIC) to resolve
colliding packets. The SIC process can be represented by a
bipartite graph; hence, we refer IRSA or CSA graph-based
RA.

The representation of the SIC process assumes that each
user or the relay has prior knowledge to which PTS each
packet is sent. Practically, this can be done by inserting
a pointer to show the position of each packet. The di↵er-
ence between IRSA and CSA lies on the type of network
encoding (which is defined as packet-oriented linear block
code) that is used; IRSA uses repetition codes, and CSA
uses maximum distance separable (MDS) codes. IRSA’s
pointer shows to which PTS replicas of a packet are sent
within a frame, and CSA’s pointer indicates to which PTS
encoded packets are sent within a frame.

By carefully choosing the degree distribution, IRSA can
asymptotically achieve normalized throughput T (probabil-
ity of successful packet times o↵ered tra�c) of 0.97 pack-
ets/slot (p/s). A well-known benchmark for the normal-
ized throughput T is the maximum normalized throughput
of the conventional slotted ALOHA (SA) [8] TS A, where
TS A = 1/e ⇡ 0.37 p/s. Therefore, the fact that the IRSA’s
normalized throughput T can approach one p/s is very en-
couraging. There are a lot of works have been devoted to-
wards the graph-based technique since then, e.g., the CSA
(which is the generalization of IRSA). Other works have
been presented in [9, 10]. In this paper, we mainly focus on
improving T multiple times using MUD technique to jointly
decode colliding packets [11].

Our contributions are summarized as follows.
i. To the best of our knowledge, an mu-mRN applying
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Figure 2. A toy example of the mu-mRN. (a) A circle (�), a square (⇤),
and a black diamond (_) describe a user, a PTS, and an amplifying factor,
respectively. (b) A bipartite graph representation shown in Figure 2(a) at
each user.

graph-based RA with K > 2 has not yet been ad-
dressed in any literature. In this paper, we present
a network capacity bound for the mu-mRN with gen-
eral K.

ii. We present the optimal degree distributions of the mu-
mRN applying graph-based RA, which are not dis-
cussed in [4, 5, 11].

iii. We aim to achieve multiple times improvement, e.g.,
T = 10 ⇥ TS A = 3.7 p/s. This goal can be intu-
itively achieved with K = 4. However, we find that as
K increases, performances of the mu-mRN applying
IRSA and CSA and their achievable bounds widen.
Accordingly, the mu-mRN applying optimal IRSA or
CSA cannot achieve the goal. To achieve the goal,
we introduce the mu-mRN applying doubly irregular
CSA (dir-CSA).

2 Graphical Representation of the mu-mRN
Each frame comprises a group of PTSs, and each PTS

consists of an MAC phase and a BC phase, where every
slot and frame transmissions are synchronized. We assume
each packet is transmitted over erasure channel (error only
happens because of colliding packets). This type of error
may also happen if the transmission power is high enough
to combat noise such that there is no bit-level error occurred.

Each frame can be represented by a bipartite graph G =
(U,S,E) consisting of a setU of (M+1) user nodes (UNs)
representing users, a set S of N slot nodes (SNs) represent-
ing PTSs, and a set E of edges. An edge connecting i-th
UN and j-th SN represents an encoded packet transmission
from i-th user at j-th PTS.

The mu-mRN using graph-based RA works as follows.
At each frame during MAC phase, each user (um, 1  m 
(M+1)) randomly transmits encoded packets2 to a common
relay based on a degree distribution ⇤= {⇤h}Ch=1 at given
PTS (denoted as sn, where 1  n  N). In the relay, the
received packets are always amplified by factor A and for-
warded to all users during BC phase. Figure 2(a) illustrates
the toy example with M = 3 and N = 4.

2 Note that the encoded packets are the generalization of replicas of pack-
ets.

(a) u1 (K = 1) at the 0th iteration (b) u1 (K = 1) at the 1st iteration

(c) u1 (K = 1) at the 2nd iteration (d) u1 (K = 2) at the 0th iteration

Figure 3. SIC process with K = 1 and K = 2 at u1 of the example in
Figure 2 with an assumption that replicas of a packet are sent by each user.

Figure 2(b) shows the bipartite graph shown in Figure 2(a)
at each user before subtracting its own packets from its re-
ceived packets. The bipartite graph shown in Figure 2(a)
can be simplified to the graph shown in Figure 2(b) since:
(i) the AF protocol is used, (ii) the received packets at the
relay are broadcast to all users, and (iii) a PTS comprises an
MAC phase followed by a BC phase.

After subtracting its own packets, each user has di↵erent
bipartite graph. The bipartite graph of user u1 is depicted
in Figure 3(a). Suppose IRSA is used so that replicas of
a packet are sent instead of the encoded packets. We also
assume K = 1 (without MUD) in this example. The SIC
process in u1 works as follows.
• In Figure 3(a), packets sent at s1 and s3 do not collide

other packets.
• Thus, packets from u2 and u4 can be resolved during

the 1st iteration as shown in Figure 3(b).
• Since packets from u2 and u4 are known at the 2nd

iteration, there are no longer colliding packets at s2
and s4. Hence, a packet from u3 can be successfully
resolved as shown in Figure 3(c).

The SIC processes for other users work similarly. For CSA,
encoded packets (which are output packets of a network en-
coder) are sent within a frame. For example, if the encoded
packets are output packets of a network encoder using (3, 2)
MDS code, it means that 2 original packets are encoded into
3 encoded packets. Then, to be able to recover the original
packet, there must be at least 2 non-colliding packets.

Figure 3(d) shows the SIC processes having K = 2. In
this case, we assume that each user can decode at most 2
colliding packets at a PTS. Therefore, at the 0th iteration, all
packets can be successfully decoded.

3 Network Encoding
3.1 System Model

In network encoder (NE), a code from a set of C codes
denoted as {(nh, kh,⇤h)}Ch=1 with minimum distance at least
2 are mutually independently picked by all users, where
• nh shows how many output packets of the h-th codes,
• kh shows how many input packets of the h-th codes,

and
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(a) (b)

Figure 4. The network encoder of the mu-mRN with {(nh, kh,⇤h)}21 =
{(3, 2, 0.5), (4, 3, 0.5)}, M = 999, and C = 2: (a) user m 2 {1, 2, . . . , 500}
picks the first codes (h = 1), i.e., (n1, k1,⇤1) = (3, 2, 0.5) and (b)
user m 2 {501, 502, . . . , (M + 1)} picks the second codes (h = 2), i.e.,
(n2, k2,⇤2) = (4, 3, 0.5).

• ⇤h shows a degree distribution of the h-th codes, wherePC
h=1 ⇤h = 1 and 0  ⇤h  1,8⇤h.

Please note that the code {(nh, kh,⇤h)}Ch=1 is object of our
optimization in designing the network encoding.

A toy example with the massive number of users M =
999 and C = 2 is illustrated in Figure 4, where x̄m

l and ām
l

are the l-th packet of user m. In this example, there are
only 2 set of codes (C = 2) with {⇤1,⇤2} = {0.5, 0.5} and
1000 users3 in Figure 4. The 1st, 2nd, . . . , and 500th users
are assumed to pick the first codes which is (n1, k1) = (3, 2),
and the 501st, 502nd, . . . , and 1000th users are assumed to
pick the second codes which is (n2, k2) = (4, 3).

It is worth noting that for IRSA, kh = 1,8h, since repe-
tition codes are used. For CSA, the number of input packets
of the network encoder is constant, i.e., kh = k,8h, where
k 2 Z+ and k > 1. Here, we briefly introduce dir-CSA,
where we let kh be irregular. This additional irregularity
is important since it makes the dir-CSA has wider class of
codes. Consequently, the dir-CSA is shown later to have
better performances than those of IRSA and CSA.

3.2 Asymptotic Analysis
Asymptotic performances are evaluated by setting M !

1, N ! 1, and keeping the normalized o↵ered tra�c chan-
nel per user G constant, where

G =
M

PC
h=1 ⇤hkh

N
. (1)

The asymptotic performance of IRSA, CSA, or dir-CSA
depends on their degree distributions given K being con-
stant. The degree distribution, then, can be used to see evo-
lution of the SIC process in IRSA, CSA, or dir-CSA un-
der asymptotic assumption using an EXIT chart. The EXIT
chart displays evolution of average erasure probabilities em-
anating from both SNs and UNs, denoted as p and q respec-
tively.

Based on [11] and [7]

p = 1 � eq G
Rn

K�1X

j=0

(q G
Rn

) j

j!
= fs(q), (2)

where network rate per user for each frame Rn = k̄/n̄, k̄ =PC
h=1 ⇤hkh, and n̄ =

PC
h=1 ⇤hnh. The network rate Rn intu-

itively expresses how much total power required to transmit
3 Remember the (M + 1) users.

all packets in a frame. For example, IRSA with the network
rate per user Rn of 0.2 means that a packet is retransmit-
ted 5⇥ in a frame by each user in average. Therefore, the
lower the network rate, the higher the total transmit power
required. We aim to achieve our target of 0.4 < Rn < 0.6.

The average erasure probability from an SN is expressed
as

q =
CX

h=1

�h f (nh,kh)
u (p) = fu(p), (3)

where �h = ⇤hnh/n̄. This equation is derived with an as-
sumption that every UN’s local processor uses maximum a
posteriori decoding. The term f (nh,kh)

u (p) is called the aver-
age EXIT function of a type-h UN, which is expressed as

f (nh,kh)
u (p) =

kh�1X

l=0

 
nh � 1

l

!
(1 � p)l pnh�l�1, (4)

such that
• for IRSA, nh = h and kh,8h (a special case for IRSA,

(3) can be simplified into q =
PC

h=2 �h ph�1 [4])4,
• for CSA, nh = h + k, and
• for dir-CSA, nh = h + kh.
An EXIT chart analysis is based on two curves from (2)

and (3), i.e., 1 � fs(q) vs. 1 � q and 1 � fu(p) vs. 1 � p.
Since fs(q) = p and fu(p) = q, both curves can be drawn
altogether in one chart.

The asymptotic threshold G⇤ is defined as the maximum
value of G such that if G < G⇤, all colliding packets can be
successfully resolved. In other words,

G⇤ , sup{G � 0 : pi ! 0 as i! 1, p0 = 1} (5)
= sup{G � 0 : qi ! 0 as i! 1, q0 = 1}, (6)

where index i shows the iteration index of the SIC. Further-
more, for all G < G⇤, G⇤ is equal to the maximum normal-
ized throughput T in the asymptotic setting [12]. Our goal
is to achieve the threshold G⇤ = 3.7 p/s in the asymptotic
setting.

Using the EXIT chart, G⇤ is defined as the maximum
value of G such that the two EXIT curves do not intersect
each other by keeping the tunnel between the two curves
remains open.

A network capacity bound can also be derived using the
area theorem of the EXIT chart. A necessary condition for
successful decoding is that the tunnel in the EXIT chart
must be kept open, and the areas under the curves should
satisfy

Au + As < 1, (7)

where Au =
R 1

0 fu(p)dp and As =
R 1

0 fs(q)dq.5 Then, we
can obtain the bound of the mu-mRN with MUD capability

4 Note that it is necessary to define ⇤1 = 0 for IRSA.
5 This inequality is a necessary but not a su�cient condition. In practice,

we also need q < f �1
u (q),8p, q 2 (0, 1].
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K as

Rn +

 
K

Rn

G
+

K�1X

j=1

K � j
j!

✓ G
Rn

◆ j�1!
e
�G
Rn � K

Rn

G
< 0, (8)

such that G > 0, Rn > 0, and K > 1. For K = 1, the term
PK�1

j=1
K� j

j!

✓
G
Rn

◆ j�1
= 0; thus, the bound becomes Rn+

Rn
G e

�G
Rn �

Rn
G < 0 such that G > 0 and Rn > 0.

3.3 Optimization using Di↵erential Evolution (DE)
In (2), variable p depends on channel (the normalized

o↵ered tra�c G), the MUD capability K, and the network
rate per user Rn. Variable q primarily depends on the set of
codes {(nh, kh,⇤h)}Ch=1. Since the normalized o↵ered tra�c
G and the network rate per user Rn are obtained by designing
the set of codes {(nh, kh,⇤h)}Ch=1 first, the variable p depends
also on the set of codes {(nh, kh,⇤h)}Ch=1. Thus, it is impor-
tant to carefully pick a good set of codes {(nh, kh,⇤h)}Ch=1.

We search the optimal set of code {nh, kh,⇤h}C1 leading
to a high threshold G⇤. The optimization problem given C
number of codes is denoted as

maximize G⇤

subject to q < f �1
u (q),8q 2 (0, 1]

0  ⇤h  1,8h, and
CX

h

⇤h = 1.

The inequality q < f �1
u (q),8q 2 (0, 1] is to guarantee that

the two EXIT curves do not intersect each other. This opti-
mization is carried out using the so-called di↵erential evo-
lution (DE) [13]. We use EXIT-chart-based DE to pick a
good set of codes {(nh, kh,⇤h)}Ch=1. The DE setting is de-
scribes as follows. We choose 100 initial populations uni-
formly that satisfy 0  ⇤h  1,8h, and

PC
h ⇤h = 1. We

conduct the DE with representation ”DE/best/1-with-jitter”
and crossover constant CR = 0.8.6 In choosing a good code,
we define the allowed number of digits after decimal point
for the degree distribution ⇤ equals 2, i.e., fractional-part
number FP = 2, because the higher the number, the more
PTS M or number of users N is required. Moreover, we
prefer to relax the constraint Rn since if we include the Rn

in our constraints, the threshold G⇤ given the same C will
be lesser than that if we exclude the Rn.

4 Doubly Irregular CSA (dir-CSA)
First, we want to show an e↵ect of increasing K as shown

in Figure 5(a).7 Note that this EXIT curve is drawn based
on (2). As K increases the average erasure probability p
is not purely exponential since there is the second level of
iteration for SIC, i.e., the SIC works with iterated K. The
second level of iteration is represented by sum equation on
(2). It causes the EXIT curve for SN to be no longer convex.
The consequence is that the optimal IRSA (with K = 4 and
C = 16) cannot well match the curve as depicted in Fig-
ure 5(b). Even for the optimal CSA (with K = 4, k = 2, and

6 Readers who are interested in this configuration can refer to [13].
7 All EXIT charts are drawn by setting G = G⇤.

(a) (b)

(c) (d)

Figure 5. (a) SN EXIT curves showing that as K increases, the curve is no
longer convex, (b) EXIT chart for IRSA with K = 4 and C = 16 (⇤I,4

16 ), (c)
EXIT chart for CSA with K = 4, k = 2 and C = 16 (⇤CSA,4

2,16 ), and (d) EXIT
chart for dir-CSA with K = 4 and C = 8 (⇤DIC,4

8 ).

C = 16), which has wider class of codes than that of IRSA,
the gaps are still quite wide, see Figure 5(c). By introducing
more wider class of codes than those of IRSA and CSA, the
optimal dir-CSA (with K = 4 and C = 8) can better match
the SN EXIT curve as shown in Figure 5(d).

The aforementioned degree distributions in Figs. 5(b-d)
are obtained by using the EXIT-chart-based DE explained
in Section 3.3. In addition, we summarize many optimal set
of codes {(nh, kh,⇤h)}Ch=1 for IRSA (⇤I,K

C ), CSA (⇤CSA,K
k,C ),

and dir-CSA (⇤DIC,K
C ) in Table 1.8 For each set of code, the

achievable threshold G⇤ and network rate per user Rn are
given. Although we focus on the moderate Rn, 0.4  Rn 
0.6, several set of codes having Rn < 0.4 or Rn > 0.6 are
also presented because we want to show a fact that as C
increases, the achievable network rate per user Rn of a set
of codes having C codes decreases; it means that a larger
transmit power is required, while the increasing C shows
relatively more complex network decoding.9 The fact is im-
portant because it shows the superiority of dir-CSA than the
others.

As seen in Table 1, the optimal IRSA with K = 4 and
C = 16 (⇤I,4

16 ) has the threshold G⇤ of 3.555 p/s, which is still
below our target (G⇤ = 3.7 p/s). Even for CSA with K = 4,
k = 2 and C = 16 (⇤CSA,4

2,16 ), the achievable threshold G⇤ is
3.666 p/s. In fact, we have searched for several di↵erent C

8 Since our goal is G⇤ = 3.7 p/s, our search is only until K = 4.
9 In this paper, we justify the complexity by only considering the number

of network codes required. Practically, we also need to consider the
complexity of each code.
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Table 1. Optimal set of codes for IRSA (⇤I,K
C ), CSA (⇤CSA,K

k,C ), and dir-CSA (⇤DIC,K
C ).

K Label {(nh,kh,⇤h)}Ch G⇤ Rn

4

⇤DIC,4
22

{(22, 21, 0.1), (22, 20, 0.16), (23, 19, 0.03), (22, 17, 0.02), (8, 2, 0.02), (30, 23, 0.01),
(22, 13, 0.03), (29, 19, 0.01), (14, 3, 0.01), (35, 23, 0.04), (16, 2, 0.01), (31, 16, 0.02),

(30, 13, 0.04), (29, 11, 0.03), (21, 2, 0.2), (22, 2, 0.17), (29, 8, 0.1)}
3.876 0.45722

⇤DIC,4
16

{(18, 17, 0.24), (12, 8, 0.06), (22, 17, 0.03), (19, 13, 0.07), (11, 4, 0.04), (11, 3, 0.05),
(16, 6, 0.05), (23, 12, 0.01), (14, 2, 0.09), (27, 14, 0.02), (23, 9, 0.06), (18, 2, 0.28)} 3.86 0.47887

⇤DIC,4
8

{(10, 9, 0.35), (5, 3, 0.01), (5, 2, 0.14), (10, 6, 0.02), (8, 2, 0.03), (16, 9, 0.09), (10, 2,
0.36)} 3.806 0.53135

⇤CSA,4
2,16

{(3, 2, 0.88), (6, 2, 0.01), (9, 2, 0.01), (10, 2, 0.02), (11, 2, 0.01), (12, 2, 0.01), (15, 2,
0.01), (16, 2, 0.01), (17, 2, 0.01), (18, 2, 0.03)} 3.66 0.4717

⇤DIC,4
4 {(6, 5, 0.51), (4, 2, 0.01), (5, 2, 0.01), (6, 2, 0.47)} 3.647 0.59129

⇤CSA,4
4,16

{(5, 4, 0.75), (6, 4, 0.01), (7, 4, 0.02), (8, 4, 0.03), (9, 4, 0.02), (10, 4, 0.04), (11, 4,
0.01), (12, 4, 0.02), (15, 4, 0.01), (19, 4, 0.01), (20, 4, 0.08)} 3.646 0.56657

⇤CSA,4
4,8 {(5, 4, 0.81), (12, 4, 0.19)} 3.562 0.63191

⇤I,4
16 {(2, 1, 0.95), (16, 1, 0.05)} 3.555 0.37037

⇤CSA,4
2,8 {(3, 2, 0.85), (7, 2, 0.02), (8, 2, 0.02), (9, 2, 0.02), (10, 2, 0.09)} 3.54 0.50891

⇤I,4
8 {(2, 1, 0.95), (8, 1, 0.05)} 3.438 0.43478

⇤I,4
4 {(2, 1, 1)} 3.399 0.5

2

⇤I,2
16

{(2, 1, 0.86), (5, 1, 0.01), (7, 1, 0.03), (9, 1, 0.01), (10, 1, 0.01), (11, 1, 0.01), (12, 1,
0.01), (13, 1, 0.01), (15, 1, 0.05)} 1.875 0.30488

⇤DIC,2
8

{(10, 9, 0.17), (4, 2, 0.09), (8, 5, 0.12), (9, 5, 0.13), (7, 2, 0.06), (8, 2, 0.04), (9, 2,
0.01), (10, 2, 0.38)} 1.872 0.44671

⇤I,2
8 {(2, 1, 0.87), (8, 1, 0.13)} 1.858 0.35971

⇤CSA,2
2,8 {(3, 2, 0.74), (4, 2, 0.02), (5, 2, 0.02), (8, 2, 0.01), (9, 2, 0.03), (10, 2, 0.18)} 1.839 0.43956

⇤DIC,2
4 {(6, 5, 0.33), (4, 2, 0.07), (6, 2, 0.6)} 1.779 0.51024

⇤I,2
4 {(2, 1, 0.81), (4, 1, 0.19)} 1.748 0.42017

1

⇤I,1
16

{(2, 1, 0.5), (3, 1, 0.11), (4, 1, 0.22), (5, 1, 0.01), (6, 1, 0.02), (10, 1, 0.01), (11, 1,
0.01), (12, 1, 0.01), (13, 1, 0.01), (14, 1, 0.01), (15, 1, 0.06), (16, 1, 0.03)} 0.949 0.22936

⇤I,1
8 {(2, 1, 0.51), (3, 1, 0.26), (4, 1, 0.01), (7, 1, 0.01), (8, 1, 0.21)} 0.938 0.27855

⇤CSA,1
2,16

{(3, 2, 0.34), (4, 2, 0.11), (5, 2, 0.26), (7, 2, 0.06), (8, 2, 0.05), (9, 2, 0.01), (12, 2,
0.01), (16, 2, 0.02), (17, 2, 0.01), (18, 2, 0.13)} 0.932 0.30211

⇤DIC,1
16

{(6, 5, 0.15), (16, 13, 0.04), (12, 6, 0.01), (20, 13, 0.02), (22, 14, 0.02), (11, 2, 0.17),
(18, 8, 0.04), (25, 14, 0.01), (20, 8, 0.06), (20, 7, 0.07), (16, 2, 0.08), (17, 2, 0.18),

(18, 2, 0.15)}
0.93 0.29773

⇤CSA,1
2,8 {(3, 2, 0.33), (4, 2, 0.34), (5, 2, 0.02), (9, 2, 0.01), (10, 2, 0.3)} 0.882 0.36101

⇤DIC,1
8

{(5, 4, 0.13), (4, 2, 0.07), (10, 7, 0.08), (11, 7, 0.05), (10, 5, 0.04), (11, 5, 0.04), (9, 2,
0.18), (10, 2, 0.41)} 0.88 0.35633

⇤I,1
4 {(2, 1, 0.5), (4, 1, 0.5)} 0.868 0.33333

⇤CSA,1
3,8

{(4, 3, 0.26), (5, 3, 0.32), (6, 3, 0.01), (7, 3, 0.01), (8, 3, 0.02), (10, 3, 0.01), (11, 3,
0.37)} 0.833 0.42254

⇤CSA,1
2,4 {(3, 2, 0.42), (5, 2, 0.01), (6, 2, 0.57)} 0.805 0.42283

⇤CSA,1
4,8 {(5, 4, 0.21), (6, 4, 0.31), (7, 4, 0.02), (9, 4, 0.02), (11, 4, 0.03), (12, 4, 0.41)} 0.784 0.4717

and k; none of the results can achieve the threshold G⇤ = 3.7
p/s. Increasing irregularity of CSA (dir-CSA) can improve
the performances of IRSA and CSA. With only K = 4 and
C = 8, dir-CSA (⇤DIC,4

8 ) can achieve the threshold G⇤ =
3.806 p/s. This superiority becomes clearer since the dir-
CSA ⇤DIC,4

8 has the highest Rn and the smallest C of the
IRSA ⇤I,4

16 and the CSA ⇤CSA,4
2,16 , which means that the total

transmit power of the dir-CSA is the lowest of the others and
the network decoding of dir-CSA is relatively less complex
than the others. In addition, the network rate per user Rn of

dir-CSA ⇤DIC,4
8 lies between 0.4 and 0.6, which fulfills our

target.
Relative position of the optimal IRSA, CSA, and dir-

CSA shown in Table 1 and their bounds obtained from (8)
are depicted in Figure 6. The figure strengthens our anal-
ysis on the asymptotic analysis until K = 4 to achieve the
threshold G⇤ = 3.7 p/s. For example, if we want to achieve
G⇤ = 2.9 p/s, then it is easy for IRSA or CSA with K = 4. In
this case, it is highly possible that we can find a code capa-
ble of achieving the threshold G⇤ = 2.9 p/s even without op-
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Figure 6. Threshold G⇤ shown in Table 1 vs. network rate per user Rn for
IRSA (⇤I,K

C ), CSA (⇤CSA,K
k,C ), and dir-CSA (⇤DIC,K

C ) with K 2 {1, 2, 4}.

timizing the set of codes of IRSA or CSA with K = 4. How-
ever, there is the penalty of K since in fact we can achieve
the threshold G⇤ = 2.9 p/s with K = 3 and carefully choos-
ing a good set of codes.

As shown in Figure 6, the superiority of dir-CSA in
achieving the threshold G⇤ = 3.7 p/s compared to the oth-
ers becomes more apparent since only ⇤DIC,4

22 , ⇤DIC,4
16 , and

⇤DIC,4
8 can achieve G⇤ = 3.7 p/s at moderate network rate

per user Rn. With the same Rn, dir-CSA is asymptotically
better than both IRSA and CSA for 1  K  4. This shows
that dir-CSA has lower total power transmission while hav-
ing better performance than the others.

5 Conclusions
This paper focussed on the application of graph-based

RA, i.e., IRSA and CSA, to the mu-mRN. In this paper, we
have derived the theoretical network capacity bound for the
mu-mRN with general MUD capability K. We searched for
many optimal degree distributions of IRSA and CSA with
K 2 {1, 2, 4}. We found that the gap between the threshold
G⇤ of the optimal IRSA or CSA and their bounds widened
as K increased. Correspondingly, the 10⇥ improvement
(T = 3.7 p/s) was not achievable by IRSA and CSA. There-
fore, we introduced an improvement of CSA, namely dir-
CSA having a wider class of codes than that of the CSA.
The mu-mRN applying dir-CSA with K = 4 could achieve
maximum normalized throughput T = G⇤ = 3.806 p/s while
the optimal IRSA and CSA could not achieve it even with
lower Rn and higher number of codes C (higher total trans-
mit power and higher complexity). This result shows that
our proposed system has better performances, lower com-
plexity, and lower total power transmission than the con-
ventional systems.
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