
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Combined Model Checking and Testing Create

Confidence in Correctness of Commercial

Automotive Operating System

Author(s)
Aoki, Toshiaki; Satoh, Makoto; Tani, Mitsuhiro;

Yatake, Kenro; Kishi, Tomoji

Citation

Research report (School of Information Science,

Graduate School of Advanced Science and

Technology, Japan Advanced Institute of Science

and Technology), IS-RR-2016-002: 1-11

Issue Date 2016-05-23

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/13505

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学先端

科学技術研究科情報科学系）

Combined Model Checking and Testing Create Confidence in Correctness
of Commercial Automotive Operating System

Toshiaki Aoki
School of Information Science,

Japan Advanced Institute of Science and Technology

Makoto Satoh
Renesas System Design Co., Ltd.

Mitsuhiro Tani
DENSO CORPORATION

Kenro Yatake
School of Information Science,

Japan Advanced Institute of Science and Technology

Tomoji Kishi
Faculty of Science and Engineering

Waseda University

May 23th, 2016.
IS-RR-2016-002

Combined Model Checking and Testing Create
Confidence in Correctness of Commercial

Automotive Operating System
Toshiaki Aoki

School of Information Science
Japan Advanced Institute of Science and Technology

Email:toshiaki@jaist.ac.jp

Makoto Satoh
Renesas System Design Co., Ltd.

Email:makoto.sato.jz@renesas.com

Mitsuhiro Tani
DENSO CORPORATION

Email:tani@eeda.denso.co.jp

Kenro Yatake
School of Information Science

Japan Advanced Institute of Science and Technology
Email:k-yatake@jaist.ac.jp

Tomoji Kishi
Faculty of Science and Engineering

Waseda University
Email:kishi@waseda.jp

Abstract—The safety and reliability of automotive systems are
becoming a big concern in our daily life. Recently, a functional
safety standard which specializes in automotive systems has been
proposed by the ISO. In addition, electrical throttle systems have
been inspected by NHTSA and NASA due to the unintended
acceleration problems of Toyota’s cars. In light of such recent
circumstances, we are researching practical applications of for-
mal methods to ensure the high quality of automotive operating
systems. An operating system which we focus on is the one
conforming to the OSEK/VDX standard. This paper shows a
case study where model checking is applied to a commercial
automotive operating system. In this case study, the model
checking is combined with testing in order to efficiently and
effectively verify it. As a result, we acquired the confidence that
the quality of the operating system is very high.
Keywords: automotive operating systems, model checking, test-
ing, design verification, test case generation

I. INTRODUCTION

Recently, the safety and reliability of automotive systems
are becoming a large concern in society. Although vehicles
have been controlled by simple mechanics in the past, many
of electronic parts are embedded in them at present accord-
ing to the progress of electronic control technology and its
performance. These electronic parts can actualize the complex
control of the vehicles, and make it possible to provide high
functionality to vehicles such as automatic speed controlling
and emergency braking. The electronic control technology
makes the vehicles more convenient and safer. Unfortunately,
electronic parts also introduce the problems of the reliability
and safety of the vehicles because the automotive systems
become more complicated and their scale larger. In fact, highly
electronized automotive systems have received much attention
with respect to their reliability and safety. A functional safety
standard which specializes in automotive systems has been
proposed by the ISO[4]. Electronic throttle systems have been
inspected by NHTSA and NASA because of the unintended
acceleration problem of Toyota’s cars in 2010[1].

We are working on the verification of automotive operating
systems to ensure the high quality of automotive operating
systems. An operating system which we focus on is the one
conforming to the OSEK/VDX[2] standard. OSEK/VDX is an
organization which was established in 1993 and provides the
industrial standards of ECU(Electronic Control Unit) archi-
tectures. OSEK/VDX deals with many kinds of components
used in automotive systems and one of them is an operating
system. Although AUTOSAR[3] takes over this activity, the
OSEK/VDX standards is still used for automotive operating
systems in practice. We use OS for the abbreviation of
’operating system’ below.

Our purpose is to provide a high quality OS by applying
formal methods which are recommended in the functional
safety standards. OS has much impact on their safety eval-
uation because it is the base of automotive software which
is embedded into automotive systems. JAIST and DENSO
started a joint research project in 2006. DENSO develops
automotive software using OSs which are provided by the
other companies. We examined the feasibility of applications
of formal methods at this point. Then, we decided to apply
formal methods to a commercial OS whose target CPU is
V850. Renesas Electronics Corporation(REL) which develops
this OS and CPU joined this project in 2009. We call the OS
’REL OS’ below. REL OS has been already released and used
in a current series of cars at this time. It is needless to say that
traditional methods have been applied to REL OS in order to
check it then. Our aim is to achieve higher quality of the OS
for next series of cars by applying formal methods.

This paper shows a case study that model checking, which
is one of formal methods, is applied to a commercial OS,
that is, REL OS. REL OS is too complicated to convince
us that it correctly performs for any application. We adopted
exhaustive verification techniques to check REL OS. We have
conducted exhaustive testing based on a design model which

was exhaustively verified by model checking. As a result, we
acquired the confidence that REL OS correctly performs for
any application although no new bug was found since the
model checking and testing were more exhaustive and reliable
than the traditional methods. Such combined model checking
and testing are appropriate to convince us of the correctness
thanks to their exhaustive nature.

The rest of the paper is organized as follows. We briefly
introduce OSEK/VDX OSs in Section 2. Section 3 shows
the overview of our approach to apply model checking and
testing to the verification of REL OS. Section 4 discusses
related works. Section 5 and Section 6 explain the details and
results of our application. Section 7 discusses the approach
and results. Section 8 concludes this paper.

II. OSEK/VDX OPERATING SYSTEMS

OSEK/VDX OS, shortly, OSEK OS adopted a priority based
scheduling of multiple tasks. Mixing preemptive tasks with
non-preemptive tasks is allowed. It provides API functions
such as ActivateTask, TerminateTask, and ChainTask for con-
trolling the execution of tasks. ActivateTask activates a task,
TerminateTask terminates a task, and ChainTask activates a
tasks after terminating a task. A concept named resource exists
to manage shared resources. The resource is obtained and
released by API functions GetResouce and ReleaseResource
respectively. Mutual exclusion of tasks which have access to
the shared resource can be realized by these API functions.
They adopt a priority ceiling protocol[6] in order to avoid
a priority inversion problem. Interrupt service routines are
invoked when the interrupts occurred. We abbreviate interrupt
service routines as ISR below. A priority is assigned to an
ISR like a task. Synchronizing the tasks by events and alarms
which invoke tasks based on time are also provided in addition
to the API functions shown in the above.

The primary function of OSEK OS is to schedule tasks
and ISRs. It is not too much to say that OSEK OS is almost
a scheduler. In the scheduler, information needed for the
scheduling is managed by data structures such as a queue and
tables. The scheduler determines a task or ISR to be executed
by computing with those data structures. Such computation
is very complicated since there are various configurations of
priorities and preemptions, activation timings of tasks, and
ISRs, and synchronization mechanisms. It is very important to
ensure that the computation is correct for any configuration.
How the scheduling has to work is defined by OSEK/VDX
standard specification. In our joint research project, we verified
the fact that the scheduler of REL OS surely conforms to the
specification.

III. APPROACH

We show the overview of our approach in Figure 1. Our
approach is divided into two kinds of activities, design veri-
fication and testing. We have constructed a design model to
clarify computation carried out in REL OS. We confirmed
that the computation is correct by applying model checking
to the design model. Incorrect scheduling as shown in Section

OSEK/VDX
Specification

REL OS
Specification

Design Model
(Promela)

Test Model
(Promela)

Environment
Model

Design Verification

Spin

Spin

TCG/TPG

EnvGen
Environment
(Promela)

Test Case Generation

Test ProgramsREL OS
(Binary)

Simulator

Testing

Fig. 1. Overview of Approach

2 would be detected at this point. Then, we have conducted
testing based on the design model in order to confirm that
the implementation of REL OS conforms to the design model
in which the correct computation was realized. The testing
provides us the confidence that the implementation is correct
because it is actually performed. The activities associated with
the design verification and the testing are surrounded by solid
lines and dotted lines respectively.

A. Design Model

We constructed and verified a design model of REL OS
to analyze its scheduling mechanisms. The design model
was verified by a model checking tool Spin[7]. Spin checks
properties represented as LTL formulas, assertions and so
on against behavior represented as automata which are con-
currently executed with channels to communicate with each
other. Such behavior is described in a specification language
named Promela. A Promela description consists of concurrent
processes whose behavior is described as guarded commands
in an operational way. It also provides various datatypes
such as arrays and record types. Those datatypes allow us
to straightforwardly describe the scheduling mechanisms of
REL OS. In addition, the syntax of Promela is similar to C
language which is familiar with engineers who develop REL
OS. It is easy for the engineers to learn as well as communicate
with researchers based on Promela descriptions. Thus, we
constructed the design model in Promela.

B. Design Verification and Environment Modelling

1) Closing Open System By Environments: OSEK OS is an
open system which performs if an API function is invoked
by tasks and ISRs. It does not do anything if nothing is
invoked. Similarly, the design model is not executable by
itself. To check it by Spin, we need descriptions making
invocations of API functions in addition to the design model.
Such descriptions are usually called environments because it
is outside of the design model.

2) Types of Environments: The environments deal with
invocations of functions to a target, callback from the target,
inputs to the target and outputs from the target. There are
two types of the environments. One is that the environments
make completely non-deterministic invocations of functions
and inputs to the target. The other is that they make non-
deterministic invocations within specific execution contexts.
The former is called universal environments[22]. Although
the universal environments allow us to exhaustively check
behavior of the target, many spurious errors will be reported.
To avoid them, we need to constrain the behavior of the
universal environment, for example, provide a filter of the
behavior by the form of LTL formulas [10]. Our objective of
the design verification is to ensure the fact that a task selected
by the scheduler is correct with respect to the specification.
To define this fact, we need to constrain the behavior of
the environment so that it can make invocation sequences
which lead to the selection of a specific task. However, it is
very hard to describe LTL formulas representing those invoca-
tion sequences. In addition, the universal environment likely
causes a state explosion problem. Thus, in our approach, we
adopted the latter type of the environments, which make non-
deterministic invocations within specific execution contexts.
Those environments are described in automata which define
the contexts. They make it easier to describe the invocation
sequences as the environments.

3) Facilitating Variations of Environments: In our ap-
proach, the environments are described as an environment
model that we have proposed in [13]. There are a number
of variations of configurations such as the number of tasks,
the number of resources, priorities of tasks, and ceiling
priorities of resources for the environments. It is very hard
to manually describe those environments one by one. Thus,
we have proposed the environment model which represents
variations of the configurations and allows us to automatically
generate environments described in Promela. The variations
are modeled in the class diagram of UML[11] and OCL(Object
Constraint Language)[12]. The invocation sequences of API
functions are modeled in the statechart diagram of UML with
some extension. The expected results of the invocation of the
API functions are also described in the statechart diagram with
OCL. Then, we have developed a tool named EnvGen[13],
[14] which automatically generates environments described
in Promela from the environment model consisting of the
class diagram and statechart diagram. The environments are
generated within specific bounds of the variations of the
configurations. The expected results are realized as assertions
in them.

4) Constructing Environment Models: The possible config-
urations of the environments of REL OS are described in the
environment model. Such configurations are identified from
the specification of REL OS in addition to the OSEK/VDX
standard specification. The invocation sequences and expected
results of the API functions are also identified and described
in the environment model similarly. In verifying the design
model of REL OS, we generated environments from this

environment model. The design model is coupled with each
of the environments generated by EnvGen, then it is checked
by Spin. That is, the design model is checked as many times
as the number of the environments.

C. Testing

1) Ensuring Conformance by Testing: We made much
effort to ensure that the scheduling of tasks was correctly
realized in the design model. What we had to do next was
to ensure that the implementation of REL OS conforms to
the design model. There are two approaches to ensure that
an implementation conforms to a design model in general.
One is that we generate a source code from the design model.
The other is to check that the implementation conforms to
the design model after manual implementation. We selected
the second approach. A primary reason why we selected this
approach was that REL OS has been already implemented.
Another reason was that it was very hard to refine the design
model so that a source code can be generated. REL OS is
implemented in an assembly language of V850 to achieve
high performance of executions. In addition, there are many
mechanisms and optimizations, which are specific to V850.
However, some such mechanisms do not appear in the design
model since it focuses on the computation of the scheduling.
Therefore, it would be very hard to refine the design model so
that it can be isomorphic to the implementation of REL OS.

2) Regarding Design Model as Test Oracle: In our ap-
proach, we test the implementation of REL OS by test cases
which are generated from the design model in order to check
that the implementation conforms to the design model. We
assigned much importance to the verification of the design
model. We not only checked the design model by Spin but also
reviewed the design model and environment model carefully.
As the result of this effort, we put the assumption that the
design model is correct, that is, regard it as a test oracle.
This assumption is reasonable since the design model must
be relatively reliable in comparison to the other artifacts. Test
cases are generated from the design model. Those test cases
contain invocations of API functions in addition to expected
results of them. Obtaining the expected results is possible
because correct computation (which is the assumption) is done
in the design model.

3) Covering Implementation States: Conformance testing
based on automata has been studied for a long time[16].
By these studies, it is well-known that ideal assumptions are
needed to decide that one automata conforms to another one.
However, it is difficult for practical systems to discharge those
assumptions. Therefore, we do not aim at this theoretical
conformance but cover all the states, which appeared in the
design model. In this approach, in order to cover states that we
expect to test in the implementation, the design model needs to
contain corresponding states. Thus, we constructed the design
model so that if states of the implementation are different to
each other, corresponding states of the design model can be
also different to each other. This makes it possible to generate
test cases, which reach expected states of the implementation.

We use a model checking tool to obtain test cases which cover
all the states of the design model.

4) Environments for Test Case Generation: We need en-
vironments in generating test cases as well as in the design
verification since the design model does not perform if no
API function is invoked. We call the environments to generate
test cases test models. The test models are different from the
environments of the design verification. The test models do
not check the design model but only invoke API functions
non-deterministically within some bounds.

5) Tools to Automate Testing: We have developed two tools
named TCG and TPG for automatic testing based on the design
model. TCG automatically generates test cases using Spin. Our
approach is to generate test cases not by trap properties[18] but
exhaustive search algorithm of states with a model checking
tool. TCG generates test cases, which are reachable to all
the states appearing in the combination of the design model
and test models. Generated test cases consist of invocation
sequences of the API functions and expected results. TPG
transforms the test cases into programs to test REL OS. A
program generated by TPG is compiled with REL OS and
executed in a simulator and debugger of V850. TCG and TPG
allow us to automatically perform testing of REL OS using the
design model and test models as inputs.

IV. RELATED WORKS

A word ’verification’ is recognized as proving correctness
with theorem provers or deductive techniques. The verifica-
tion of OSs is challenging as demonstrated by the existing
researches[19]. The verification of seL4 kernel is known as a
recent notable success story[20], [21]. The word ’verification’
is not limited to such deduction based approaches but used
for model checking ones. J. Penix, et al.[22], [9] verifies the
time partitioning of DEOS. In this work, environments are
obtained by filtering a universal environment with assump-
tions described in LTL. This approach is effective when the
assumptions can be described simply, but shows weaknesses
when describing precise behavior of environments due to the
accumulation of complex LTL assumptions. In our approach,
we adopted different types of environments using automata
to simply describe properties of scheduling. In addition, this
work only verifies the design model despite that our approach
deals with not only the verification of the design model but
also the testing of the implementation.

There are several works on the verification of OSEK OS.
L.Zhu, et.al[23] verifies OSEK OS implemented in C lan-
guage. The primary purpose of this work is to formally specify
API functions of the OSEK OS. A part of such specifications is
verified by VCC[25]. Y.Huang, et.al[24] manually construct a
model of CSP based on the source code of OSEK OS. Then, it
is checked by a model checking tool PAT[26]. They do not take
the conformance between the model and the source code into
account. Y.Choi[27], [28] verifies an open source OS named
Trampoline[29], which is implemented in C language. In this
work, the source code of Trampoline is analyzed by Spin. A
model of Promela is manually constructed, then it is checked

against properties obtained by safety analysis. This work does
not take the conformance between the model and the source
code into account as well. In comparison to those works, the
originalities of our work can be summarized as follows. Firstly,
our approach covers both of design and testing phases of devel-
opments although the other works focus on a single activity or
phase of the developments. We combine the verification of the
design model with testing of the implementation seamlessly.
Secondly, our target is implemented in the assembly language
of V850. Thus, we cannot take existing techniques which are
specific to C language like [27], [28] and [23].

In our previous works, we have proposed a tool to automat-
ically generate environments [13] and it has been applied to a
design model of OSEK OS[15]. We adopt the tool for verifying
a design model of REL OS. The design model described in
[13], [15] is different from that of REL OS. We have proposed
an approach to automatically generate test cases from the
design model[17]. In the approach, test scenarios to generate
the test cases were described in Z notation[30]. We do not
describe the test scenarios in this paper. Instead of the test
scenarios, we describe a test model which non-deteministically
invokes API functions of OSEK OS to exhaustively generate
test cases since our purpose of the verification is to obtain
the confidence thanks to the exhaustive nature. In addition,
we made some trade-offs and decisions for obtaining the
confidence throughout the design verification and testing. In
this paper, we show a practically integrated approach to obtain
the confidence and experiences that we gained in the case
study.

V. DESIGN MODEL AND VERIFICATION

A. Construction of Design Model

We constructed the design model of REL OS in Promela.
As mentioned in Section 2, we focus on its scheduler. The
scheduler of REL OS has data structures consisting of a ready
queue, tables, and flags. The ready queue records activation
orders of tasks for each of the priorities. A task to be executed
is determined based on the ready queue. It is obtained by
searching the highest and firstly activated task recorded in
the ready queue. The tables record information of tasks such
as the current states and priority of tasks. The flags record
conditions needed for the scheduling. High performance of the
scheduling is required for the OS since it controls machinery
of automobiles. On the other hand, searching the ready queue
and switching tasks are costly in time. To achieve high
performance, the flags are used for identifying whether costly
operations are needed or not. Such data structures can be
straightforwardly described in Promela.

Figure 2 shows a part of the design model described in
Promela. In the implementation of REL OS, the ready queue is
realized as a specific memory area of ECU. Operations to en-
queue/dequeue a task to/from the ready queue is implemented
by instructions of V850 which compute addresses to update
the memory area. We did not model the ready queue based
on such memory area and instructions. We modeled the ready
queue as an array instead of the address computation. In Figure

#define N_PRIO_TASK 72 /* maximal tasks in a queue */
#define N_TASK 4 /* maximal tasks */
#define OS_ACT_MAX 2 /* maximal multiple activations */
#define TID byte /* task identifier as byte */
#define PRI byte /* priority as byte */
...
#define queue(x,y) ready[((x) * N_TASK * OS_ACT_MAX) + (y)]
TID ready[N_PRIO_TASK]; /* ready queue */
...
#define NOTEXIST 0
#define SUSPENDED 1
#define READY 2
#define RUN 3
#define WAITING 4
...

typedef TCB{
PRI tpriority; /* priority */
byte tstat; /* task state */
byte actcnt /* activation counter */
....
}
TCB tsk_state[N_TASK];
....
TID turn = EMPTY; /* context */
...
#define E_OK 0
#define E_OS_ACCESS 1
#define E_OS_CALLEVEL 2
#define E_OS_ID 3
byte ercd; /* error code */
...

Datatypes

inline enq(pr,id){
enqueue 'id' in a queue of 'pr'

}
inline deq(pr,id)

dequeue 'id' from a queue of 'pr'
}
.....

Basic operations on datatypes

API functions
inline ActivateTask(t){

error check;
get an array index idx corresponding to t;
if
:: tsk_state[idx].actcnt < OS_ACT_MAX ->

tsk_state[idx].actcnt++
if
:: tsk_state[idx].tstat == SUSPENDED ->

enq(tsk_state[ret_ix].tpriority, id);
tsk_state[idx.tsat = READY;
ercd = E_OK;
....

:: tsk_state[idx].stat == READY ->
....

fi
fi

}
inline TerminateTask(t){...}
inline ChainTask(t1,t2){...}
....

Fig. 2. Design Model

2, the ready queue is represented by an array named ’ready’
in the design model. Operations to enqueue and dequeue are
described as inline macros which update it. TCB (Task Control
Blocks) which hold information of tasks is represented by an
array named ’tsk state’ as well as the ready queue.

If an API function is invoked, a task to be executed is
determined after values of the datatypes are updated. For
example, if ActivateTask(t) where t is a task identifier is
invoked, t is enqueued into the corresponding position of the
ready queue as well as a current state of a task t which is
recorded in the tables is updated to a ready state. Then, a
search of the ready queue and switching a task are performed
if needed. Such operations are realized as inline macros of
Promela in the design model as shown in Figure2. Interrupt
handling mechanisms are described in the design model in ad-
dition to operations of API functions. The interrupts affect the
scheduling of tasks although they are processed by hardware
in actuality.

The design model has been constructed by the JAIST side in
our joint project. The initial design model has been constructed
based on the OSEK/VDX standard. However, its behavior was
not the same to REL OS due to some misunderstandings
and the ambiguity of the specification. It was reviewed by
engineers of DENSO and REL to make its behavior equivalent
to that of REL OS. We held regular meetings to consider
review results once a month. The improvements of the design
model were also done by the JAIST side according to the
review results. It took around six months to improve it and
we finally obtained the design model of REL OS.

B. Approximation of Environments

As mentioned in Section 2, in our approach, the environ-
ments are described as an environment model that we have
proposed. We describe our decisions and tradeoffs that we
made with brief introduction of the environment model here.
For more details, please refer to our earlier works [13], [14],

[15]. The environment model represents the set of invocation
sequences of API functions and their expected results. They
are analogous to test cases and their expected results in
a sense. We want to examine the design model ultimately
for all the invocation sequences. However, if we construct
the environment model which deals with those invocation
sequences, its complexity becomes similar to that of the design
model. For example, if we describe expected results in the
case where multiple tasks whose priorities are the same are
activated, we need a queue like the ready queue of the design
model in the environment model because activation orders of
tasks have to be recorded in it as well. Creating such an
environment model makes little sense because its reliability
becomes as uncertain as the design model. The reliability of
the environment model should be higher than the design model
from the viewpoint of practicality.

There are two approaches, over approximation and under
approximation, to solve this problem. In the former, we
construct an environment model so that it can contain more
invocation sequences and stronger expected results than exact
ones. For example, if there are multiple tasks whose priorities
are the same and in the ready states, an expected result is that
one of those tasks should be executed. In this case, we do
not need a queue to describe expected results and make the
environment model simpler. However, such expected results
make little sense because they are too strong. That is, for
example, the fact that one of tasks whose states are ready
should be running does not contribute to the correctness of
the scheduling very much. In addition, many false positive
counter examples would be reported because the environment
model contains many of non-deterministic invocations of API
functions. Hence, we took the latter approach which is under
approximation. In this approach, we construct an environment
model so that it can contain less invocation sequences and
weaker expected results than exact ones. This under approxi-
mation is achieved by case splittings of environment models.
Thus, we constructed the environment models separately such
that each model was as simple as possible. This separation
allows us to provide high reliability to them. In addition, the
separation of models can reduce the risk of state explosion.
If we check all aspects of the design model at once, state
explosion can easily occur. We can check each of them within
a relatively small state space by separating the environment
models.

C. Verification Result

We construct environment models separately. Such separa-
tion introduces a problem of coverage. This approach does not
cover all the invocation sequences of API functions because
it is based on the under approximation. On the other hand,
as discussed so far, neither fully non-deterministic nor over
approximated invocations of API function can be accepted in
our approach. Thus, we decided to take the under approxima-
tion approach and carefully separate the environment models
so that they can cover our concerns in the design model.

same prioritiesISRIsrEq12
different prioritiesISRIsrDiff11
same prioritieseventsEvEq10
different prioritieseventsEvDiff9
same prioritiesget and release of resourcesResEq8
different prioritiesget and release of resourcesResDiff7
same prioritiesmultiple activation of tasksMultEq6
different prioritiesmultiple activation of tasksMultDiff5
same prioritiesChainTaskCtEq4
different prioritiesChainTaskCtDiff3
same prioritiestermination and activation of tasksTaskEq2
different prioritiestermination and activation of tasksTaskDiff1
ConditionPurposeNameNo.

Fig. 3. Separated Environment Models

617.0 99347895.9 63IsrEq12
1245.0 491750213.9 182IsrDiff11
179.7 2617812841.6 9EvEq10
143.3 47153361.4 26EvDiff9
834.4 1124492610.9 63ResEq8

3828.5 1124489262.7 341ResDiff7
68.3 98505761.1 9MultEq6

119.71981990.9 26MultDiff5
45.9 2392730.3 9CtEq4

116.3 1341680.8 26CtDiff3
44.2 1692450.3 9TaskEq2

115.6 941530.6 26TaskDiff1

time(s)trans.stateslinestime(s)num.

model
checking

generated environmentsnameNo.

Fig. 4. Environment Generation and Model Checking Results

Figure 3 shows environment models that we have con-
structed. The environment models are divided into six groups
based on which the functionalities of OSEK OS are being
checked. Each group is further divided into two cases based
on the equality of task priorities. For example, environment
models No.1 (TaskDiff) and No.2 (TaskEq) check task man-
agement functions. They represent the cases with different
priorities and the same priority respectively.

Figure 4 shows the results of environment generation and
model checking. We used a computer whose specification
is Intel Core2Duo CPU 2.4GHz with 4Gbyte memory in
them. The environment generation results show the number
of environments generated from each environment model, the
time taken for generation, the average length of the Promela
descriptions, and the average number of states and transitions
contained in each environment. The model checking results
show the time taken for checking all of the environments. We
limited the number of tasks, resources, and ISRs to a maximum
of 3. With these ranges, we were able to generate a total of
789 environments in about 100 s, which is quite efficient since
only about 0.1 s was needed to generate each environment.
This result demonstrates the effectiveness of using the SMT
solver. For model checking, we were able to check the design
model using all of the environments without state explosion
occurring due to the separation of the environment models.
The entire model checking took 122 min such that about 10
s per environment was required on average. Most of this time
was used for compilation, which grows exponentially with the
length of the Promela descriptions.

We conducted model checking several times while we were
constructing the design model. The results shown in Figure 4
are final ones. The design model was constructed and checked
in this way by the JAIST side. We found many errors such

as wrong conditions and wrong updates of data by model
checking during its construction and verification. However,
they were not the errors of REL OS but of the design model
itself. That is, we described the wrong conditions and updates
which do not appear in REL OS in constructing the design
model. Finally, no error was reported by model checking.
Nonetheless, we gained confidence that the design model was
highly reliable. We encountered many errors detected by our
approach even though they were not the errors of REL OS. It
made us believe that it was powerful enough to find errors.

VI. TESTING BASED ON DESIGN MODEL

A. Generation of Test Cases and Programs

We made much effort to verify the design model by review
and model checking. Then, we put an assumption that it is
correct and generate test cases with their expected results
from the design model. We have proposed a method to
automatically generate test cases from Promela descriptions
by Spin [17]. In this method, search paths during model
checking are recorded as search logs. Spin has an option to
generate debug information such as up and down operations
of depth-first search of model checking algorithm. In addition,
we can print out information about the status of the design
model such as invoked API functions and the current states
of tasks during model checking thanks to the embedded C
function of Promela. Such debug information and status make
it possible to restructure a search tree of model checking in
which expected results are contained. We obtain test cases,
which are reachable to all the states of the design model and
test models by scanning this search tree. We have developed
a tool named TCG for testing REL OS according to this
method. TCG inputs the design model and a test model. Then,
it outputs invocation sequences of API functions and their
expected results consisting of current states and priorities of
tasks.

The test cases generated by TCG are not programs but the
invocation sequences and expected results. Thus, we developed
a tool named TPG which translates them into programs to be
compiled with REL OS. The programs generated by TPG are
regarded as applications executed on REL OS. The programs
invoke API functions according to the test cases. In addition,
they have statements to check whether status of REL OS is
the same to those expected results. Such a check is realized
by debugger of a V850 development environment. The results
of the check is stored in a log file of testing.

TCG and TPG allow us to automate testing of REL OS
based on the design model. If we give the design model
with a test model, testing is automatically performed and then
its results are recorded in the log file. In our project, TCG
and TPG were developed by the JAIST side and REL side
respectively.

B. Test Models

We need environments in generating test cases as well as the
design verification since the design model does not perform
if no API function is invoked. The environments to generate

do
:: precondition1 -> API function1
:: precondition2 -> API function2
...
:: pre-conditionn -> API functionn
od

Fig. 5. Test Model

Task H

Task L

ActivateTask(Task H) ActivateTask(Task L)

Task H

Task L

ActivateTask(Task H)
ActivateTask(Task L)

TerminateTask()

Task M

ActivateTask(Task M)

TerminateTask()

TerminateTask()

t

t

Fig. 6. Task Switches

the test cases are called test models. Figure 5 shows a general
form of the test models. A test model invokes API functions
of the design model non-determistically. The reason why
preconditions are described is to prevent infeasible test cases
from being generated. For example, invoking TerminateTask()
by a task whose state is not running is infeasible in an actual
execution. Such invocations are excluded by the preconditions.
Execution context of the design model is needed to describe
preconditions. For example, the current states of tasks are
needed to describe the precondition of the invocation of
TerminateTask(). This execution context can be obtained by
referring to states of the design model. This is reasonable
because we put an assumption that the design model is correct
in testing. Checking the design model is not an objective in
testing. Reference to the states of the design model make it
easier to describe test models.

Configurations have to be bounded in the test models. We
have to determine the number of tasks, resources, ISRs, their
priority assignments and events for the generation of test cases.
We investigated behavior of task switches realized by REL OS
since we focus on its scheduling. We describe each of possible
variations of task switches as a use case. Then, we consider
that what configurations cover those variations. For example,
we show two of use cases in Figure 6. Two tasks which have
different priorities are sufficient to ensure the fact that a task
whose priority is the highest among tasks whose states are
ready. This case is shown in the left-hand side of Figure 6.
To ensure the fact that a task to be executed does not depends
on activation orders, we need three tasks which have different
priorities. This case is shown in the right-hand side of Figure 6.
In this way, we identified the following configurations which
cover the variations of task switches. The numbers of tasks,
resources, ISRs and events are 3,2,1, and 1 respectively.

C. Test Cases and Test Programs

Figure 7 shows a test case and test program generated
by TCG and TPG respectively. The test case represents an
invocation order of API functions as follows.

1) A task named task1 invokes ActivateTask(task2).
2) A task named task2 invokes ActivateTask(task3).

ISR(isr1){
if(exccnt1 == 1){
ercd = SetEvent(task1,Event1);
return;

} if(exccnt1 == 2){
ercd = SetEvent(task3,Event1);
ercd = ActivateTask(task2);
return;

}
if(exccnt1 == 3){
/* if branches continue */

}

TASK(task1){
ercd = ActivateTask(task2);
ercd = ActivateTask(task3);
ercd = ChainTask(task2);
return;
}
if(exccnt2 == 2){
exccnt2++;
ercd = ActivateTask(task3);
ercd = ActivateTask(task3);
ercd = ChainTask(task2);
return;
}
if(exccnt2 == 3){
/* if branches continue */

}

TASK(task2){
if(exccnt3 == 1){

exccnt3++;
ercd = ActivateTask(task3);
ercd = TerminateTask();
return;

/* if branches continue */
}
if(exccnt3 == 2){

ercd = TerminateTask();
return;

}
if(exccnt3 == 3){
/* if branches continue */
}

TASK(task3){
if(exccnt4 == 1){

exccnt4++;
ercd = TerminateTask();
return;

}
if(exccnt4 == 2){

exccnt4++;
ercd = SetIntr(1);
ercd = TerminateTask();
return;

}
if(exccnt4 == 3){
/* if branches continue */
}

task1:ActivateTask(task2) task2:ActivateTask(task3) SetINTR(1)
isr1:SetEvent(task1,Event1) ResetINTR(1) task3:TerminateTask()
task2:TerminateTask() task1:ActivateTask(task3) SetINTR(1)
isr1:SetEvent(task3,Event1) isr1:ActivateTask(task2) ResetINTR(1)
task3:TerminateTask() task2:TerminateTask() task1:ChainTask(task2)
task2:ActivateTask(task1) task2:TerminateTask() task1:ActivateTask(task3) ...

Test Case

Test Program

Fig. 7. Test Case and Test Program

3) An interrupt whose number is 1 occurs.
4) An interrupt service routine isr1 invokes SetEvent(task1,

Event1).
5) An interrupt which occurs in 3 is reset.
6) · · ·
The expected current states such as ready queue and TCB

exist in the test case, however; they are omitted here for
the sake of simplicity. Timings that interrupts occur are also
described. SetINTR(1) and ResetINTR(1) represent that the
interrupt which triggers an interrupt service routine named isr1
is set and reset respectively.

The test program realizes the invocation order described
in the test case as well as check the expected current states.
Although the test program consists of tasks, the test case is an
invocation sequence of API calls. Thus, we need to transform
the test case to the tasks which cause the invocation sequence.
The test case contains information which makes it possible to
assign invocations of API functions to tasks. The invocation
order of assigned API functions has to be controlled inside of
each of the tasks. The variables exccnt1 to exccnt4 control the
invocation order so that it can follow the one represented in
the test case. The expected current states and execution order
of API functions are checked using debug functions of the
simulator. The timings that the interrupts occur are controlled
by a library of the simulator. Code fragments to check them
and control the interrupts exist in the test program, however;
those are omitted in Figure 7.

D. Test Results

Figure 8 shows results to generate test cases and programs
by TCG and TPG. Three tasks and two resources are named

TaskA, TaskB, TaskC, ResourceA, and ResourceB respec-
tively. An ISR and event are omitted in this figure. Priority
assignments of the tasks and resources are described in their
rows. For example, upper-left of Figure 8 represents that
the priorities of TaskA, TaskB, and TaskC are 1,2, and 3
respectively. Furthermore, there exist six variations of ceiling
priorities of the resources. Regarding to these values, greater
values mean higher priorities. Note that variations of priority
assignments are reduced by their symmetry. The row of ’#test
cases’ represents the number of test cases generated by TCG.
The rows of ’pan exe. time’, ’TCG exe. time’, and ’TPG exe.
time’ represent amounts of time which are taken to search
reachable states by Spin, generate test cases by TCG and
generate test programs by TPG respectively where time units
are seconds. We generated the test cases and test programs
by a computer whose specification is Intel(R)Core2Duo CPU
3.00GHz with 1Gbyte memory. The total number of test
programs generated by these configurations is 742,748.

Each of the test programs generated was compiled with
REL OS and executed on the simulator of V850. These test
programs can be executed independently. Thus, it is possible
to perform testing in parallel theoretically. However, we used a
debugger to check REL OS and the number of its licenses that
we can use is limited to three. In addition, some of them are
often occupied by engineers of REL. Therefore, we executed
the test programs in a single computer in the daytime of
weekdays, and in parallel on weekends and in the midnight
of weekdays. As a result, we took around three months to
complete checking all the test cases. Surprisingly, no failure
of test cases was found in the testing.

We could not measure exact time taken to check all of
them because testing was parallelize in an ad-hoc way. We
measured time taken to execute a part of the test programs
instead. For example, it took 165.75 hours to check 26,489
test programs where time to compile and execute them are
42.5 and 127.25 hours respectively. It took 265 hours to check
44,723 test programs where time to compile and execute
them are 80.25 and 184.75 hours. The test programs were
complied and executed by a computer whose specification is
Pentium4 3.2GHz CPU with 1Gbyte memory. We can estimate
the whole of time to be taken to complete the execution
of the test programs based on these data as around 4,535
hours, that is, 189 days. We can say from this estimation that
our parallelization (even though it is ad-hoc) contributed to
the reduction of time taken for the testing because around 3
months were taken to complete it in fact.

VII. DISCUSSION

A. Practical Applications of Model Checking

An important technical achievement of this study is that we
succeeded in seamlessly connecting two verification activities;
verification of a design model with model checking and testing
of a product. A point to achieve this is to regard a design model
as a test oracle after making much effort to verify it. We rely on
the design model when we generate test cases and programs.
In this approach, construction and verification of the design

model are directly associated with testing of products which
are recognized as an important activity in industries. That fact
makes it easier to motivate engineers to construct a formal
design model and use model checking to verify it. We could
concentrate on constructing and verifying the design model by
showing a way to effectively use them in developments.

It is ideal to apply formal methods to every phase of
developments theoretically; however, it is often not feasible
in practice due to their high cost. Therefore, it is important
to find an activity to be concentrated on and apply formal
methods in the activity. In addition, making the best use of an
artifact obtained by the application of formal methods in other
activities is also important. Such concentration and effective
use of the artifact make the cost to apply formal methods
reasonable in practice. It is needless to say that this is a trade-
off between theory and practice. The degree of correctness will
become less, in a sense, by restricting activities to apply formal
methods. In our approach, we concentrate on the construction
and verification of a design model in addition to adopting
testing to check a product. As a result, we succeeded in making
the cost reasonable so that model checking can be applied to a
commercial product. The reason why we concentrated on the
design model is that it is easy to characterize behavior of OSs
like OSEK OS in an imperative specification language which
is used to the design model. Actually, a ready queue appeared
in the standard specification of OSEK/VDX to explain the
behavior of the OSs. Such precise behavior of the OS is
taken into account from an early stage of developments. Thus,
constructing a formal design model is relatively natural in
development.

B. Verification Results

Our project consists of two researchers of JAIST and
several engineers of REL and DENSO. The construction and
verification of the design model were conducted by the JAIST
side in which both of two researchers are involved. The review
of the design model and verification results was conducted by
all of members of this project. We took around 6 months to
construct the design model. Although we did not measure the
exact period to obtain the design model, it must be actually
much less than 6 months since they had not only this project
but also the other works. On the other hand, REL is developing
this kind of OSs including REL OS more than ten years. In
addition, REL OS was plentifully verified by REL and DENSO
before it was assembled in the current series of cars. Actually,
they discovered and had fixed bugs many times at that point.
REL OS was already sufficiently sophisticated when we started
our project.

It was still surprising that no bug of REL OS was discovered
in our verification because testing was conducted by a huge
number of the test cases. Furthermore, we were surprised at
the fact that the quality of the design model is as same as REL
OS even though the development period of the design is much
less than that of REL OS. Remind that the design model was
constructed by the researchers of the JAIST side who have
much less experience than the engineers of REL and DENSO

PrioritiesPriorities

TaskATaskA 11
TaskBTaskB 22
TaskCTaskC 33

ResouceAResouceA 11 11 22 33 22 11
ResouceBResouceB 22 33 33 33 22 11

#Test cases#Test cases 1248312483 1507715077 2637326373 3712737127 2503525035 84958495 2648926489 2648926489 6636166361 6636166361 6636166361 1330113301
PrioritiesPriorities

Task ATask A 11
TaskBTaskB 11

TaskCTaskC 22

ResouceAResouceA 11 11 22 33 22 11

ResouceBResouceB 22 33 33 33 22 11

#Test cases#Test cases 1715117151 2242722427 4472344723 6070760707 3945739457 1033110331
pan exe. timepan exe. time 19.019.0 22.722.7 45.045.0 60.560.5 40.240.2 11.511.5
TCG exe. timeTCG exe. time 35.635.6 44.744.7 117.6117.6 179.7179.7 99.499.4 16.816.8
TPG exe. timeTPG exe. time 290.7290.7 320.2320.2 799.8799.8 1353.51353.5 694.4694.4 138.9138.9

PrioritiesPriorities11111111 11 22 33 22 1122 33 33 33 22 11
PrioritiesPriorities

11
22

22

11 11 22 33 22 11

22 33 33 33 22 111301113011 2070720707 3311733117 5628156281 2545925459 9425942513.713.7 21.921.9 33.433.4 55.655.6 25.525.5 9.99.921.821.8 38.838.8 78.378.3 161.8161.8 55.155.1 14.114.1175.2175.2 317.9317.9 546.8546.8 1486.51486.5 442.8442.8 125.3125.3

pan exe. timepan exe. time 12.912.9 16.816.8 26.026.0 38.738.7 26.726.7 10.710.7
TCG exe. timeTCG exe. time 19.019.0 24.924.9 67.967.9 73.173.1 58.558.5 12.712.7
TPG exe. timeTPG exe. time 176.8176.8 174.4174.4 508.5508.5 522.8522.8 433.9433.9 95.095.0 27.627.6 30.630.6 66.366.3 66.966.9 68.368.3 14.614.681.881.8 93.793.7 289.2289.2 287.2287.2 282.6282.6 27.227.2548.4548.4 626.9626.9 2267.42267.4 2694.12694.1 2692.22692.2 232.5232.5

Fig. 8. Test Results

with respect to OS developments. We expected before starting
the testing that if testing would fail, that should be due to bugs
of the design model or misunderstanding of behavior of REL
OS. However, all the test cases have been passed at a time.
There was no backtrack to improve the design model once
we started the testing. We succeeded in making the design
model whose quality is similar to REL OS in six months. We
can say from this fact that model checking effectively works
for ensuring the quality of the design model. Although an
objective of the testing is not to check the design model but
the implementation, effectiveness to apply model checking to
the design model has been proved consequently.

Our approach is based on exhaustive search methods. We
encounter state explosion problem as far as we use those
methods. Thus, we introduced techniques to prevent the state
explosion problem as follows. Firstly, we bounded variations
of configurations such as the numbers of tasks and resources
in the verification of the design model. Secondly, we separated
the possible behavior of environments into twelve cases.
Finally, we bounded variations of configurations in the testing.
We could not guarantee to cover the whole behavior of the
design model and implementation due to the techniques. In
addition, the verification of the design model relies on the
environment models. Even though the environment models
are simpler than the design model, they might still be wrong.
Our verification depends on the validity of such bounds and
environment models.

To convince that they are valid, we made effort to review the
environment models and variations of configurations. There
are techniques to make the validity more convincing. For
example, we use theorem proving to verify the design model
for unbounded variations. We construct a formal specification
of OSEK OS, then verify the design model and environment
model against it to make sure that they meet the specification.
On the other hand, we have to pay additional cost if we adopt
those techniques furthermore. We need to carefully decide
what techniques we should take from not only the theoretical
but also practical point of view. The combination of techniques
including model checking and testing as shown in this paper is

an approach whose cost is acceptable in the field of automotive
systems.

C. Meaning of Testing

As mentioned so far, REL OS was already plentifully
verified REL and DENSO. This verification was conducted
based on ordinary testing methods. Some bugs were found
with respect to the scheduling of REL OS then. We confirmed
that those bugs could be also discovered by testing with our
approach. As all the test cases have been passed, we can say
that no such bugs exist within behavior represented by them.

Test cases generated by our approach contain invocation
sequences of API functions which we do not usually make
because they are obtained by searching reachable states of non-
deterministic invocation of those functions. Such test cases
allow us to check behavior which is not realized in current
applications but will be realized in future ones. This is similar
to acceleration testing applied in the field of materials. One
can say that we conducted acceleration testing of software in
a sense. We think that this testing is important for OSs since
they are used in various ways for a long time.

A test case generated can be regarded as an application
performed with REL OS. In this sense, we gained evidence to
perform a number of applications on the OS. The evidence is
important for satisfying safety standards such as IEC61508[5]
and ISO26262[4].

D. Creating the confidence in correctness

In the verification of seL4 kernel [20], [21], C imple-
mentations of the kernel as well as specifications described
in Haskell were automatically translated into descriptions
of Isabelle/HOL according to pre-defined translation rules.
The kernel was verified based not on the implementations
themselves but on the translated descriptions. Theorem proving
with Isabelle/HOL allows us to create the strong confidence in
the correctness of proofs done in the verification. On the other
hand, a gap between the descriptions of Isablelle/HOL and the
implementations still remains. In our approach, the implemen-
tation of REL OS was exhaustively executed within specific

bounds in testing. We think that executing the implementation
itself is very important in order to create the confidence in
its correctness. Even though the translated descriptions are
verified, it is unimaginable to release the implementations
without executing them. Although it is impossible to check all
of cases which may happen in the testing, the testing provides
evidence that the implementation really works well.

In the existing works on the verification of OSEK OS [23],
[24], [27], [28], source codes are only targets to be verified.
Since we suspect that the source codes might be wrong, we
need another description which we rely on. In our approach,
we rely on the design model which was verified by the model
checking. We made much effort to verify the design model so
that we could agree that it realized correct behavior of the OS.
That is, we created the confidence in the correctness via such
design model.

VIII. CONCLUSION

Applying formal methods to developments of commer-
cial products is often recognized as hard in industries. In
fact, we have the experience to educate engineers in formal
methods[31], [32] and heard such opinions from many of
them. In order to persuade them so that formal methods can
be practically applied, it is important to show a successful
case study of a practical system. In this paper, we showed
a case study that model checking, which is one of formal
methods, was applied to an automotive OS. What we should
emphasize here is that our target is a commercial product, that
is, REL OS. In addition, engineers who develop the product are
involved in this project. Showing evidence that model checking
has been successfully applied to the commercial product is a
primary contribution of this paper.

We encountered various pragmatical problems in the ap-
plication of model checking as shown in the paper. We
solved them by combining with engineering techniques such
as review and testing. We used informal methods with formal
methods for making our approach practical. No bug was found
as a result; however, we obtained the confidence that the
quality of REL OS is very high. We think that obtaining
the confidence is quite different from finding bugs by testing.
Clearly, the former is much harder than the latter. The exhaus-
tive techniques that we have adopted allow us to convince that
REL OS is correct.

The OS is going to use in a next series of cars not only for
parts which it is currently embedded to but also the other ones.
We are convinced that REL OS performs correctly even for
the other parts since we have conducted the exhaustive testing
which can be regarded as the acceleration testing. The same
approach is being applied to another function of REL OS. We
continue to verify it and extend the approach so that we can
acquire more confidence with respect to the quality.

REFERENCES

[1] Technical Assessment of Toyota Electronic Throttle Control Systems,
NHTSA, 2011.

[2] OSEK/VDX Operating System Specication 2.2.3., 2005.
[3] Specification of Operating System 4.0.0, AUTOSAR, 2009.

[4] ISO 26262 Road vehicles - functional safety, 2011.
[5] IEC 61508: Functional safety of electrical/electronic/programmable elec-

tronic safety-related systems, 1998.
[6] L.Sha, et.al: Priority Inheritance Protocols: An Approach to Real-Time

Synchronization, IEEE Transactions on Computers 39 (9), pp.1175–1185,
1990.

[7] G.J.Holzmann: The Spin Model Checker, 2004.
[8] J.Penix, et.al: Verifying Time Partitioning in the DEOS Scheduling

Kernel, Formal Methods in System Design, Vol.26, No.2, pp.103–135,
2005.

[9] C.Pasareanu: DEOS Kernel: Environment Modeling using LTL Assump-
tions, Nasa ames technical report nasa-arc-ic-2000-196, NASA Ames
Research Center, 2000.

[10] M. Dwyer and C. Pasareanu: Filter-based model checking of partial
systems, Foundations of Software Engineering, pp.189–202, 1998.

[11] Object: Unified Modeling Language: Superstructure, version 2.1.2, 2007.
[12] J. Warmer and A. Kleppe. The Object Constraint Language: Precise

Modeling with UML. Addison-Wesley, 1999.
[13] K.Yatake and T.Aoki: Automatic Generation of Model Checking Scripts

based on Environment Modeling, International SPIN Workshop on Model
Checking of Software, pp.58–75, 2010.

[14] K.Yatake and T.Aoki: SMT-based Enumeration of Object Graphs from
UML class diagrams, International workshop UML and Formal Methods,
ACM SIGSOFT Software Engineering Notes, 37(4), pp.1–8, 2012.

[15] K.Yatake and T.Aoki: Model Checking of OSEK/VDX OS Design
Model Based on Environment Modeling, International Colloquium on
Theoretical Aspect of Computing, pp.183–197, 2012.

[16] D.Lee and M.Yannakakis: Principles and Methods of Testing Finite State
Machines - a Survey, Proceedings of the IEEE, vol. 84, no. 8, pp.1090–
1123, 1996.

[17] J.Chen and T.Aoki: Conformance Testing for OSEK/VDX Operating
System Using Model Checking, Asia-Pacific Software Engineering Con-
ference, pp.274–281, 2011.

[18] G.Fraser, F.Wotawa and P.Ammann: Testing with Model Checkers: A
Surv ey. Journal for Software Testing, Verification and Reliability, Volume
19 Issue 3, pp.215–261, 2009.

[19] G.Klein: Operating System Verification - An Overview, Sādhanā , 34(1),
pp.26–69, 2009.

[20] G.Klein, et.al: seL4: Formal verification of an OS kernel, ACM Sym-
posium on Operating Systems Principles, pp.207–220, 2009.

[21] G.Klein, et.al: Comprehensive formal verification of an OS microkernel
ACM Transactions on Computer Systems, Volume 32 Issue 1, pp.1–70,
2014.

[22] J.Penix, et.al: Verifying Time Partitioning in the DEOS Scheduling
Kernel, Formal Methods in System Design, Vol.26, No.2, pp.103–135,
2005.

[23] L.Zhu, et.al:Formalizing Application Programming Interfaces of the
OSEK/VDX Operating System Specification, Theoretical Aspects of
Software Engineering, pp.27–34, 2011.

[24] Y.Huang, et.al:Modeling and Verifying the Code-Level OSEK/VDX
Operating System with CSP, Theoretical Aspects of Software Engineering
, pp.142–149, 2011.

[25] E.Cohen, et.al: VCC: A Practical System for Verifying Concurrent C,
International Conference on Theorem Proving in Higher Order Logics,
pp.23–42, 2011.

[26] PAT, Process Analysis Toolkit 2.9 User Manual. Software Engineering
Lab, School of Computing, National University of Singapore, 2007.

[27] Y.Choi: Safety Analysis of Trampoline OS Using Model Checking:
An Experience Report, International Symposium on Software Reliability
Engineering, pp.200–209, 2011.

[28] Y.Choi: Model checking Trampoline OS: a case study on safety analysis
for automotive software, Software Testing, Verification and Reliability,
vol.24, Issue 1, pp.38–60, 2014.

[29] Trampoline - open source RTOS project,
http://trampoline.rtssoftware.org.

[30] J.M.Spivey:The Z notation: a reference manual, 1992.
[31] Y.Tahara, N.Yoshioka, K.Taguchi, T.Aoki and S.Honiden: Evolution of

a course on model checking for practical applications, ACM SIGCSE
Bulletin, Vol.41 , Issue 2, pp.38–44, 2009.

[32] H.Nishihara, K.Shinozaki, K.Hayamizu, T.Aoki, K.Taguchi and
F.Kumeno:Model checking education for software engineers in Japan,
ACM SIGCSE Bulletin, Vol. 41 , Issue 2, pp.45–50, 2009.

