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Abstract

Future broadband wireless communication systems are expected to increase both
their transmission (TX) rate and their spectrum efficiency under the constraints
of low TX power and a low computational complexity. In general, a data sequence
is transmitted together with overheads such as training sequence (TS) required
to perform energy- and computationally-efficient reception techniques. We hence
have a trade-off between the spectral efficiency and the receiver performance. The
objective of this thesis is to enhance robustness of the receiving algorithms with
reasonable complexity, aiming to improve the trade-off.

For this purpose, ℓ1 regularized channel estimation techniques are studied un-
der an assumption that broadband wireless channels observed at a receiver does not
fully exhibit dense nature in a low to moderate signal-to-noise ratio (SNR) regime.
This thesis proposes a novel conditional ℓ1 regularized minimum mean square error
(MMSE) channel estimation and chained turbo estimation (CHATES) algorithms
to solve the inter-block-interference (IBI) problem incurred as the result of pursu-
ing spectral efficiency. A new ℓ1 least squares (LS) and ℓ2 MMSE-based hybrid
channel estimation algorithm is also proposed to solve the tracking error problem
often observed with intermittent transmission. Moreover, performance analysis
shows that an ℓ1 regularized MMSE channel estimation algorithm can achieve the
Cramér-Rao bound (CRB) asymptotically even when random TSs are used.

This thesis further studies frequency domain turbo equalization techniques
without cyclic prefix (CP) transmission to improve the spectral efficiency. The
previously-proposed chained turbo equalization, referred to as CHATUE1, allows
us to use a lower rate code. However, it can suffer from the noise enhancement
problem at the equalizer output. As a solution to the problem, this thesis proposes
a new algorithm, CHATUE2. The theoretical analysis supported with simulation
results shows that the proposed CHATUE2 can solve the problem after performing
enough turbo iterations by utilizing a new composite replica constructed with the
conventional soft replica and received signals.

Keywords: Subspace-based channel estimation, compressive sensing, turbo
channel estimation, turbo equalization, spectral efficiency.
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Chapter 1

Introduction

Broadband wireless communication systems are expected to increase
both their transmission (TX) rate and their spectral efficiency [1, 2]

under the constraints of low TX power and a low computational complexity.
For the reliable data transmission, channel parameters must be estimated
online in practical systems, since the channel parameters can change in the
middle of communications. The training sequence (TS) [3] is, therefore,
transmitted together with a data sequence in general. The TS length has to
be long enough to perform channel estimation accurately.

However, the TS is an overhead from the viewpoint of data transmis-
sion because the TS is a known data at the receiver. Moreover, as shown in
Fig. 1.1, transmitters need to transmit cyclic prefix (CP) and guard interval
(GI) sections which are necessary for receivers to perform low-complexity fre-
quency domain equalization (FDE) [4] and to avoid inter-block-interference
(IBI), respectively. Notice that the CP and GIs are also overheads for data
transmission.

The objective of this thesis is, in summary, to ameliorate the trade-off be-
tween the spectral efficiency and the receiver performance. Specifically, this
thesis aims to eliminate or reduce the overheads for data transmission by en-
hancing reception performance with reasonable computational complexities.
This trade-off is detailed in Section 1.2 after briefly reviewing the background
of this thesis.
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Fig. 1.1: An example of TX burst format. The triangle parts illustrate the IBIs.

1.1 Background

An overview of channel parameters’ property is shown as background knowl-
edge. Necessity of the above-mentioned overheads is, then, discussed.

1.1.1 Channel parameters in broadband wireless com-
munications

The higher the symbol rate the data signals are transmitted with, the broader
the bandwidth the received signals are spread over. In broadband wireless
communications, thereby, the received signals can experience frequency se-
lective fading. It should be noticed that the frequency selectivity is caused
by multipath propagation, the propagation distance or time of which can be
determined by geometric properties of propagation paths. By observing the
frequency selectivity in the temporal domain, therefore, the channel param-
eters can be described as complex coefficients of a finite impulse response
(FIR) filter, the order of which depends on the TX bandwidth. The channel
parameter is, hence, referred to as channel impulse response (CIR).

1.1.2 The ISI and IBI problems

Received signals in broadband wireless communications can suffer from the
problem of inter-symbol-interference (ISI) due to multipath propagation. No-
tice that the ISI can leak to the next TX block, as illustrated in Fig. 1.1. The
IBI can, hence, be regarded as a block-wise ISI problem. This subsection,
therefore, focuses on the ISI problem.

For the sake of conciseness, let us consider a signal model in a single-
input single-output (SISO) system. Suppose that a length Nd data xd is
transmitted over a length W channel h, the length Ñd = Nd+W −1 received

2



signal yd can be described as a convolution of h and xd because the received
signal can be assumed as output of an FIR filter. Concretely,

yd(n) = z(n) +
W∑
j=1

h(j)x(n− j + 1), (1.1)

where yd(n), h(n) and xd(n) denote the n-th entry of the vectors yd, h and
xd, respectively. The noise z(n) follows the complex normal distribution
CN (0, σ2

z) with mean µ and variance σ2
z . The problem of the ISI is that

the n-th received sample yd(n) is interfered by the past W − 1 transmitted
signals: xd(n− 1), · · · , xd(n−W + 1).

1.1.3 Strategies for the ISI problem

We can take either of the following two strategies for the ISI problem.

• ISI avoidance: ISI can be avoided by decreasing the symbol rate of TX
signals. In other words, we may transmit signals every W symbol so
that the interference becomes [x(n−1), · · · , x(n−W +1)] = [0, · · · , 0].
Alternatively, a symbol may be assigned a long duration so that the
distortion due to the ISI becomes very minor.

• ISI cancelation: in a turbo receiver framework, feedback information
from a decoder is available. The receiver can hence cancel the interfer-
ence by using estimates of x(n− 1), · · · , x(n−W + 1).

Based on the first strategy, orthogonal frequency division multiple access
(OFDMA) avoids the ISI problem by using a low orthogonal frequency divi-
sion multiplexing (OFDM) symbol rate and CP-transmission to be mentioned
later. An OFDMA receiver requires, therefore, a low computational complex-
ity because there is no ISI. However, an OFDMA transmitter has another
problem: its radio frequency (RF) amplifier has to satisfy a high peak-to-
average-power ratio (PAPR) requirement which needs a high back-off power
(e.g., [4, 5]).

For long battery life of mobile terminals, thereby, single-carrier transmis-
sion is preferable, if an uplink receiver–usually a base station (BS)–is capable
of performing the ISI cancelation. Turbo equalization (e.g., [6, 7]) is known
as one of the most promising techniques to solve the ISI problem. In the
aspect of pursuing a low computational complexity system, a criticism is

3



that turbo equalization techniques centralize the complexity required for the
whole system into the receiver side. However, by assuming CP-transmission,
frequency domain turbo equalization (FD-TEQ) algorithm [8–11] can reduce
the computational complexity significantly. It is well-known that order of
complexity of the FD-TEQ is the same as that of the OFDMA receiver.

1.1.4 Necessity of CP-transmission for circulant struc-
tured channels

In either case of an OFDMA or single-carrier frequency division multiple
access (SC-FDMA) system, low-complexity FDE algorithms assume CP-
transmission. A mathematical background is summarized as follows: (1.1)
in a vector form is,

yd = Hxd + z, (1.2)

with z = [z(1), · · · , z(Ñd)]
T, where H ∈ CÑd×Nd is a Toeplitz matrix whose

first column is [hT 01×(Nd−1)]
T. The CP which is a copy of the last W TX

data symbols can be denoted as xCP = xd|Nd−W+1:Nd
. As is well-known, the

identity (e.g., [9, 10])

(H̃x̃d)|W :Ñd
= Hcxd (1.3)

holds for x̃d = [xT
CP xT

d ]
T, where H̃ ∈ C(Ñd+W−1)×Ñd is a Toeplitz matrix

whose first column is [hT 01×(Ñd−1)]
T, however, Hc ∈ CNd×Nd is a circulant

matrix, the first column of which is h̃ = [hT 01×(Nd−W )]
T. Specifically, they

can be written as

H̃ =



h(1)
... h(1)

h(W )
...

. . .

h(W )
... h(1)
. . .

...
h(W )


∈ C(Ñd+W−1)×Ñd

4



and

Hc =


h̃(1) h̃(Nd) . . . h̃(2)

h̃(2) h̃(1) h̃(3)
...

...
. . .

...

h̃(Nd) h̃(Nd − 1) . . . h̃(1)

 ∈ Nd ×Nd,

where h̃(i) denotes the i-th entry of the vector h̃. Note that the operation
on the left-hand side (LHS) of (1.3) is a so-called CP-removal at a receiver.

By a property of the circulant matrix [12], the matrix product

Ξc = FHcF
H

is a diagonal matrix, the diagonal entry of which is Fh̃, where F denotes
an Nd ×Nd discrete Fourier transform (DFT) matrix whose (i+ 1, j + 1)-th
entry is

exp
[
−2πij

√
−1/Nd

]
/
√

Nd (1.4)

with integer indexes 0 ≤ i, j ≤ Nd−1. Practically, the matrix multiplication
with F can be computed by using a fast Fourier transform (FFT) algorithm
(e.g., [13]), the complexity order of which is O(Nd logNd). The complex-
ity order needed to equalize the received signals in the diagonal structured
channel Ξc is O(Nd) since equalization is performed with element-by-element
operations. FDE algorithms can, hence, reduce the computational complex-
ity significantly.

1.1.5 Required lengths of the TS and the GI

In a turbo receiver framework, a soft replica of the transmitted sequence can
be generated using feedback information from the decoder. Turbo channel
estimation techniques [14–16] perform channel estimation using the TS and
the soft replica jointly. They can, hence, improve estimation accuracy even
with a short TS. However, we cannot eliminate the TS completely since
channel estimation has to be performed with the TS only in the first iteration.
It should be noted that, moreover, the received signals corresponding to the
transmitted TS should not suffer from IBI. The GIs in Fig. 1.1 are, thereby,
needed to avoid the IBIs in the received TS.

We look into the required TS length Nt and GI length NG by observing a
basic example of least squares (LS) channel estimation (e.g., [16, 17]) in the

5
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Fig. 1.2: Received TS ranges without the GI (a) and with the GI (b). The triangle
parts illustrate the IBIs. The received TS (a) suffers from the IBIs, whereas the
one (b) avoids the problem by the GIs.

SISO system. The received signal corresponding to the transmitted TS can
be described as

yt = Xth+ z (1.5)

for the length-W SISO channel h, where yt denotes a length Nt + 2NG −
W + 1 input signals, the range of which is defined as either (a) with NG = 0
or (b) with NG = W − 1 in Fig. 1.2. Let Xt ∈ C(Nt+2NG−W+1)×W be a
Toeplitz matrix whose first column vector is either xt|W :Nt for the range (a)
or [xT

t 01×(W−1)]
T for the range (b), where xt denotes a length Nt TS. The

LS estimate ĥ for (1.5) can be described generally as

ĥ = X†
tyt, (1.6)

where X†
t denotes the Moore-Penrose pseudoinverse of the matrix Xt. Notice

that the solution to (1.6) exists for any TS matrix Xt. Nevertheless, it is
required that

• the rank of Xt is greater than W , or equivalently,

• RXXt = XH
t Xt is invertible,

6



in order to obtain the length-W channel estimate ĥ with a certain precision.
To confirm the requirement, Fig. 1.3 shows a normalized mean squared

error (MSE) performance of the LS estimator (1.6), αNtMSE, where the nor-
malization factor αNt denotes αNt = Nt/W . CIRs follow the Vehicular-A
(VA) [18] channel model with 30 km/h mobility (VA30). The received TS
range (a) without the GI is assumed. The TSs are generated randomly. No-

tice that αNtMSE ∝ σ2
z since MSE

∆
= E[∥ĥ − h∥2] ∝ σ2

zW/Nt is expected
for the LS estimator with the ideally uncorrelated TS (e.g., [17]), where the
ideally uncorrelated TS is referred to as the TS such that RXXt/Nt = IW .
Therefore, the asymptotic performance in Fig. 1.3 is given by the noise vari-
ance σ2

z which is independent of the parameters W and Nt. We can observe
from Fig. 1.3 that the normalized performance with Nt = W does not follow
the noise variance σ2

z even in the very high signal-to-noise ratio (SNR) regime.
In addition, Fig. 1.4 shows the αNtMSE performance of the LS estimator
(1.6), where the received SNR is set at 30 dB. As observed from Fig. 1.4, the
αNtMSE performance deteriorates seriously for the range Nt < 2W . This is
because the condition number of the matrix RXXt is much greater than 1
when Nt < 2W , and hence, the LS estimate (1.6) using the pseudoinverse
computation based on the SVD algorithm becomes inaccurate. In practice,
thereby, the LS estimator (1.6) requires Nt ≥ 2W in the case the received
TS ranges without the GI (a) is assumed.

By assuming that RXXt is invertible, (1.6) can be rewritten1 as

ĥ = R−1
XXt
·XH

t yt. (1.7)

As mentioned above, in the case of the range (a) without GI, Nt ≥ 2W is
required so that the matrixRXXt becomes invertible. In the case of the range
(b) with GI, the TS can be minimized to Nt = W , however, the length of the
GI should be NG ≥ W − 1 to avoid IBIs. Notice that a TX format with GI
can decrease the total TX power since the GI is a duration transmitted noth-
ing. However, the GI decreases the spectral efficiency. Therefore, this thesis
focuses on the TX format (b) with GI hereafter, and, eventually, eliminates
the GI by improving channel estimation techniques.

1We introduce the LS estimator (1.7) with the matrix inverse because this thesis uses
the formulation mainly rather than (1.6) with the Moore-Penrose pseudoinverse, in order
to develop channel estimation techniques in MIMO systems.

7
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Fig. 1.3: The normalized performance of the LS estimator (1.6): αNtMSE in the
VA30 scenario, where the normalization factor αNt denotes αNt = Nt/W . The TS
range without the GI (a) is assumed. The CIR length W is set at 31.
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Fig. 1.4: The normalized performance of the LS estimator (1.6): αNtMSE against
different TS lengths Nt. The received SNR is set at 30 dB. The TS range without
the GI (a) is assumed. The CIR length W is set at 31.
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1.2 Motivation

The trade-off mentioned in the beginning of this chapter can be specifically
described by a contradiction between the spectral efficiency and the channel
estimation performance.

1.2.1 Definition of the spectral efficiency

Definition 1 (Spectral efficiency). The spectral efficiency η of the frame
format structure is defined as

η = Ninfo/Lfrm (1.8)

for single user communications, where Ninfo and Lfrm denote the number of
information bits in a frame and the frame length in symbol, respectively.

The frame length Lfrm includes the above-mentioned lengths of TS, GI,
CP and data sections. By the definition, the spectral efficiency η can be
improved by

(η-i) decreasing Lfrm by reducing the overheads of transmission;

(η-ii) increasing Ninfo by multiple-input multiple-output (MIMO) transmis-
sion and/or multi-level modulation techniques.

1.2.2 Channel estimation performance

The MSE performance of the unbiased channel estimation (e.g., [17]) is ex-
pected to have a property that

MSE(σ2
z) ∝

Nparam

Nt

σ2
z (1.9)

under an assumption that the TS is ideally uncorrelated. The MSE perfor-
mance (1.9) can hence be improved by

(M-i) increasing Nt, the TS length;

(M-ii) decreasing Nparam, the number of parameters to be estimated.

Notice that Nparam ≤ WNTNR, where NT and NR denote the number of
transmit (Tx) and receive (Rx) antennas, respectively. This is because the
CIR for a Tx-Rx link can be assumed as an FIR filter of order W . Therefore,
(M-ii) is possible when not all WNTNR parameters are dominant.

10



1.2.3 Trade-off between the spectral efficiency and the
receiver performance

The TS length should be shortened for (η-i), however, this deteriorates the
MSE performance due to (M-i). Moreover, MIMO transmission techniques
for (η-ii) increases Nparam due to spatial multiplexing, nevertheless, this con-
tradicts (M-ii).

1.2.3.1 An example of the trade-off between the throughput per-
formance and the TS length

Fig. 1.5 shows the throughput performance of the SISO system (1.5) in the
VA30 scenario. Two TS lengths Nt = W, 3W are examined. The other pa-
rameters are assumed as (NCP, Nd, NG,W,Nturbo, Ts) = (32, 512, 31, 31, 1, (7×
106)−1), where Nturbo and Ts denote the maximum number of turbo itera-
tions2 and the symbol rate in second, respectively. A half-rate convolutional
code is used. Further details of the system is postponed to Section 2.1.

As observed from Fig. 1.5, the throughput performance with LS channel
estimation is degraded from that with known CIR h in the moderate Eb/N0

regime. The throughput can be improved by using a long TS. The asymptotic
throughput performance in the high Eb/N0 regime can, however, be decreased
according to the TS length Nt.

This observation can be supported from Fig. 1.6 which shows the through-
put performance against different TS lengths Nt. As depicted in Fig. 1.6, the
best throughput performance with LS channel estimation can be achieved
with Nt = 62 (2W ) when Eb/N0 = 15 dB. Comparing the throughput per-
formances at Eb/N0 = 15 and 30 dB, however, we notice that, in the moder-
ate Eb/N0 regime, the throughput performance with channel estimation has
room for improvement. Therefore, this thesis pursues ameliorating channel
estimation performance with the aim of improving the trade-off.

1.2.4 Approaches for improving channel estimation per-
formance

As seen in Section 1.2.2, channel estimation performance (1.9) can be en-
hanced by the two approaches (M-i) and (M-ii). Turbo channel estimation

2Since Nturbo = 1, the receiver in this example does not use the feedback information
from the decoder.
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Fig. 1.5: Throughput performance in the SISO VA30 scenario. Two TS lengths
Nt = W, 3W are examined.
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Fig. 1.6: Throughput performance against different Nt setups. The SISO VA30
scenario is assumed. Eb/N0 is set at 15 or 30 dB.
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techniques [14–16] take the first approach (M-i) since they extend the TS
length virtually by utilizing the log-likelihood ratio (LLR) of transmitted
data fed back from the decoder.

The second approach (M-ii) is referred to as reduced-rank channel es-
timation [19–21], too. Specifically, subspace-based channel estimation tech-
niques [16,21–26] perform noise reduction under an assumption that the rank
r of significant parameters in eigen-domain is less than the CIR length W .

1.3 Thesis Outline

After this introductory chapter, Chapter 2 studies ℓ1 regularized channel es-
timation algorithms in addition to the approaches (M-i) and (M-ii), aim-
ing to further improve channel estimation performance. Chapter 3 explores,
then, spectrally efficient turbo receiving techniques by extending the ℓ1 reg-
ularized channel estimation algorithms shown in Chapter 2 for frame formats
having small overheads. Moreover, Chapter 3 shows a new FDE technique
without assuming the CP-transmission. Chapter 4 summarizes concluding
remarks of this thesis.

1.4 Contributions

Chapter 2 is described based on the first and second publications shown
below. Chapter 3 includes the spectrally efficient turbo receiving techniques
presented in the third publication, and provides technical evidence for the
fourth patent.

1. Y.Takano, M. Juntti, and T.Matsumoto, “ℓ1 LS and ℓ2 MMSE-based
hybrid channel estimation for intermittent wireless connections,” IEEE
Trans. Wireless Commun., vol. 15, no. 1, pp. 314–328, Jan 2016.

2. Y.Takano, M. Juntti, and T.Matsumoto, “Performance of an ℓ1 reg-
ularized subspace-based MIMO channel estimation with random se-
quences,” IEEE Wireless Commun. Lett., vol. 5, no. 1, pp. 112–115,
Feb 2016.

3. Y.Takano, K.Anwar, and T.Matsumoto, “Spectrally efficient frame
format-aided turbo equalization with channel estimation,” IEEE Trans.
Veh. Technol., vol. 62, no. 4, pp. 1635–1645, May 2013.
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4. T.Matsumoto, Y.Hatakawa, S.Konishi, Y.Takano, K.Anwar, and
T.Matsumoto, “Receiver and receiving techniques”, Japanese Patent
Application No. 2013-058999., Oct 2014.

Core contributions presented in the above publications are summarized,
respectively, as

1. proposals of new techniques such as ℓ1 LS, ℓ1 minimum mean square
error (MMSE) and hybrid channel estimation algorithms, and verifica-
tion of MSE and bit error rate (BER) performances with the proposed
algorithms in intermittent transmission scenarios;

2. clarification of MSE performance with the ℓ1 MMSE channel estimation
algorithm when random training sequences are assumed;

3. proposals of new channel equalization and channel estimation tech-
niques using a spectrally efficient frame format without the CP and GI
sections.
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Chapter 2

ℓ1 Regularized Channel
Estimation Algorithms

Compressive sensing (CS) [27]-based ℓ1 regularized channel estimation
can improve estimation performance over ordinary ℓ2 channel estima-

tion if a CIR observed at a receiver exhibits sparse structure having several
tap weights close to zero [28, 29]. This happens often, e.g., in under-water
communication channels [30–32]. Broadband wireless channels are, in gen-
eral, not observed as sparse channels at a receiver due to the effect of Tx1

and Rx filters required to perform discrete-time processing properly. How-
ever, they can be seen as approximately sparse channels in a low to moderate
SNR regime if the channels follow a typical propagation scenario such as VA
or Pedestrian-B (PB) [18]. The dominant path components in such propa-
gation scenarios are, as shown in Fig. 2.1, not uniformly distributed in the
observation domain after the Tx/Rx filtering. Furthermore, some of the
small path components can be completely buried under the noise in a low
SNR regime. Therefore, as described in [33], CS-based channel estimation
techniques are expected to improve estimation performance in broadband
wireless channels as well.

However, an ordinary ℓ2 multi-burst (MB) channel estimation can achieve
the Cramér-Rao bound (CRB) asymptotically in the multi-path channels
following the subspace channel model assumption [16, 23, 24, 26]. This is
because the ℓ2 MB technique formulated as an MMSE problem improves the
MSE performance by utilizing the subspace projection. It can be seen that

1We distinguish Tx (transmit) from TX (transmission).

16



� �� �� �� �� ��

��
����
����
����
�

��������	�	
�

�
��
��
�
��

��

��

���������

	�����	


�����	�������

���������������

Fig. 2.1: Channel delay profiles of VA and PB channel realizations. We note
that the receiver can observe CIRs only as that after the matched filtering. A
transmission bandwidth of 7 MHz with a carrier frequency of 2 GHz is assumed.
The implementation of the matched filter is described in Section 2.4.

the ℓ2 MB technique performs noise compression in eigen domain of the signal
of interest. Therefore, this chapter investigates if there are any advantages
of ℓ1 regularized channel estimation over the ℓ2 MB method in broadband
wireless channels. For this purpose, intermittent TX scenario is focused on.
As illustrated in Fig. 2.2, this chapter defines the intermittent TX scenario
as a generalized TX sequence which is constructed with a repetition2 of a
TX chunk and a TX interruption of arbitrary duration, where a TX chunk
is a certain length continuous data TX duration. The two TX chunks do
not always follow the identical channel model due to the TX interruption.
Thereby, the ℓ2 MB technique may suffer from a tracking error problem, since
the subspace channel model assumption can partially be incorrect at borders
of the TX chunks. As a solution to the problem, we propose a new channel
estimation algorithm which is a hybrid of ℓ1 LS and ℓ2 MB techniques.

The communication system assumed in this thesis is a turbo receiver
framework over broadband MIMO wireless channels due to the following
motivations: it is well-known that MIMO communication systems can im-
prove the spectral-efficiency and the transmission rate [34, 35]. However,
channel estimation needed for practical MIMO systems has the problem that
the number of the CIR parameters increases due to the spatial multiplexing.
Hence, ℓ1 regularized channel estimation is expected to improve estimation

2The repetition applies to the TX scenario structure only. Each TX chunk transmits
different data bursts.
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Fig. 2.2: Intermittent TX scenario having arbitrary length TX interruptions.
A TX chunk is referred to as a continuous data duration which is composed of
Lc/NB frames, where a frame is a data unit for forward error correction (FEC).
A burst is a short data duration, the channel parameters of which are assumed to
be constant.

performance in broadband MIMO wireless channels by compressing the num-
ber of parameters to be estimated. Furthermore, it is shown in [32, 36, 37]
that a turbo receiver with an ℓ1 regularized channel estimation can achieve
a BER gain over that with an ordinary ℓ2 channel estimation. However, the
channel estimation performance is not addressed in [32, 36, 37]. Therefore,
this chapter aims to clarify the MSE performance of ℓ1 regularized channel
estimation techniques in a MIMO turbo receiver through theoretical analysis.
Simulation results are also presented to verify the theoretical analysis.

This chapter is organized as follows. Section 2.1 describes the system
model assumed in this chapter. Section 2.2 proposes new ℓ1 regularized MB
and hybrid channel estimation algorithms. Section 2.3 describes analytical
performance bounds of the new techniques. Section 2.4 presents results of
computer simulations conducted to verify the analytical performance. This
chapter is concluded in Section 2.5 with some concluding remarks.
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Fig. 2.3: The system model and the transmission burst format assumed in this
thesis.

2.1 System Model

This thesis assumes a vertical-Bell laboratories layered space-time (V-BLAST)
type spatial multiplexing MIMO system [38] as depicted in Fig. 2.3.

2.1.1 Transmitter

A length Ninfo bit binary data information sequence b(i), 1 ≤ i ≤ Ninfo, is
channel-encoded into a coded frame c(ic) by a rate Rc convolutional code
(CC) with generator polynomials (g1, · · · , g1/Rc) and is interleaved by an in-
terleaver (Π). The interleaved coded frame cΠ(jc), 1 ≤ jc ≤ Ninfo/Rc, is
serial-to-parallel (S/P)-converted into NT data segments for MIMO trans-
mission using NT Tx antennas. A data segment is further divided into NB
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data blocks such that fading is assumed to be static over each burst. A data
block is modulated into binary phase shift keyed (BPSK) symbols3 xd,k(js; l)
with variance σ2

x and the modulation multiplicity Mb = 1. The k-th Tx an-
tenna transmits data symbols xd,k(l) = [xd,k(1; l), · · · , xd,k(Nd; l)]

T together
with a length-Nt symbol TS xt,k(l) and a length-NCP symbol CP, using single
carrier signaling, where l denotes the burst timing index. The data symbol
length Nd in a burst is defined as Nd = Ninfo/(RcNTNBMb). As depicted
in Fig. 2.3, the burst format has two length-NG symbol GIs following the
training and the data sequences, respectively, to avoid4 the IBI problem.

2.1.2 Signal Model

The receiver observes signal sequences yn(l) with NR Rx antennas. The
received signal suffers from ISI due to fading frequency selectivity, and from
complex additive white Gaussian noise (AWGN) as well. The ISI length is
at most LISI = W −1 symbols under the assumption that the maximum CIR
length is W . The received signal can be described in a matrix form Y(l) as,

Y(l) = H(l)X (l) + Z, (2.1)

where
Y(l) = [y1(l), · · · ,yNR

(l)]T ∈ CNR×LB ,
X (l) = [XT

1 (l), · · · ,XT
NT

(l)]T ∈ CWNT×LB ,
H(l) = [H1(l), · · · ,HNT

(l)] ∈ CNR×WNT ,
Z = [z1, · · · , zNR

]T ∈ CNR×LB ,

(2.2)

and the burst length is LB = Nt + NCP + Nd + 2NG. The W × LB matrix
Xk(l) is a Toeplitz matrix whose first row vector is

[xT
t,k(l),0

T
NG

,xT
d,k(l)|(Nd−W+1):Nd

,xT
d,k(l),0

T
NG

] ∈ C1×LB .

The expected variance of the CIR matrix Hk(l) for the k-th TX stream is

E[∥Hk(l)∥2] = σ2
H (2.3)

3For the sake of simplicity, we assume binary modulation in this thesis. However,
extension to higher order modulation is straightforward [39].

4The GIs can be eliminated by using the chained turbo estimation (CHATES) [40]
shown in Chapter 3.
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with a constant σ2
H. Furthermore, the CIR satisfies a property that the

spatial covariance matrix is of full-rank by assuming no unknown interfer-
ences [23, 26]:

rank
{
E[Hk(l)Hk(l)

H]
}

= NR, (2.4)

where the operation rank{M} denotes the rank of matrix M. The noise
vector at the n-th Rx antenna zn follows CN (0, σ2

zILB
) and has the spatially

uncorrelated property: E[zHn1
zn2 ] = 0 for n1 ̸= n2.

2.1.2.1 Semi-WSSUS model assumption

As mentioned in the beginning of this chapter, the intermittent TX scenarios
are assumed to investigate performance of ℓ1 regularized channel estimation
techniques. Due to the arbitrary length TX interruptions, we note that CIRs
have the following properties in addition to (2.3) and (2.4).

• CIRs in a TX chunk follow the wide-sense stationary uncorrelated scat-
tering (WSSUS) model assumption (e.g., [41]). Hence, it is assumed
that the CIRs in a TX chunk are generated from a single channel model
such as the PB or VA [18] channel model with a certain doppler fre-
quency (or mobility).

• However, two CIRs in different TX chunks do not always follow the
identical channel model, as illustrated in Fig. 2.4.

We refer to the above properties as semi-WSSUS model assumption. More-
over, due to the first property, the CIRH(l) is assumed to be a constant5 ma-
trix in the LB symbol duration at the burst timing l. However, H(l1) ̸= H(l2)
if l1 ̸= l2.

2.1.3 Receiver

As depicted in Fig. 2.3, the receiver performs channel estimation (EST) jointly
over the Rx antennas while also obtaining the extrinsic LLR λe

EQU,k for
the k-th TX stream by means of frequency domain soft-cancelation and
MMSE (FD/SC-MMSE) MIMO turbo equalization [10] (EQU). The NT

LLRs λe
EQU,k are parallel-to-serial (P/S)-converted to form an extrinsic LLR

5The CIR can change very slowly compared to the duration of the burst length LB.
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Fig. 2.4: Examples of intermittent TX scenarios following the semi-WSSUS model
assumption. CIRs in a TX chunk follow the WSSUS model assumption and, hence,
are generated from a single channel model. However, two CIRs in different TX
chunks do not always follow the identical channel model. The PB-PB scenario
shows an example that all CIRs follows the PB channel model, whereas the PB-VA
scenario shows the case that the channel models change between the TX chunks.

sequence λe
EQU corresponding to the interleaved coded frame cΠ(jc) at the

transmitter. An a priori LLR λa
DEC for the channel decoder (CC−1) is ob-

tained by deinterleaving λe
EQU. The channel decoder performs decoding for

λa
DEC by using the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [42],

and outputs the a posteriori LLR λp
DEC. After several iterations, CC

−1 out-

puts the estimates of the transmitted sequence b̂ by making a hard decision
on λp

DEC. Both EST and EQU utilize the soft replica6 of the transmitted sym-
bols x̂d,k which is generated from the equalizer’s a priori LLR λa

EQU. We note
that LLR λa

EQU is the interleaved version of the extrinsic LLR λe
DEC which is

obtained as λe
DEC = λp

DEC − λa
DEC according to the turbo principle [7].

2.2 Channel Estimation Algorithms

This section proposes new ℓ1 regularized MB and hybrid channel estimation
algorithms after showing ℓ1 regularized LS channel estimation. The compu-
tational complexity order required for the new techniques is discussed at the
end of this section.

6In the case of BPSK, as shown in [39], the i-th entry of x̂d,k is generated as x̂d,k(i) =
σx tanh(λ

a
EQU,k(i)/2), where λa

EQU,k(i) denotes the i-th S/P-converted the equalizer’s a
priori LLR for the k-th Tx stream.
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2.2.1 ℓ1 regularized LS channel estimation (ℓ1 LS)

2.2.1.1 Problem formulation

By imposing an ℓ1 regularizing term to an ordinary ℓ2 LS problem, ℓ1 LS
channel estimation becomes

ĤLS
ℓ1 (l) = arg min

H
Ltd(l,H) + λ(l)∥H∥1 (2.5)

with a Lagrange multiplier λ(l) [43,44]. Similar to [26], the equivalent nega-
tive log-likelihood function Ltd(l,H) is defined as

Ltd(l,H) = Lt(l,H) + Ld(l,H),

where we have

Lt(l,H) =
1

σ2
z

∥Yt(l)−HXt(l)∥2, (2.6)

Ld(l,H) =
1

σ2
z

∥Yd(l)−HX̂d(l)∥2Γ(l). (2.7)

Received signal matrices for the training and data sections are respectively
defined as Yt(l) = Y(l)|1:Ñt

and Yd(l) = Y(l)|(d+1):(d+Ñd)
, where input signal

lengths are Ñt = Nt + W and Ñd = Nd. The offset d is chosen as d =
Nt + NG + NCP +W so that the received data section avoids IBI from CP.
Correspondingly, we define a Toeplitz matrix

Xt(l) = X (l)|1:Ñt
. (2.8)

X̂d(l) is the soft replica of Xd(l), where we denote

Xd(l) = X (l)|(d+1):(d+Ñd)
. (2.9)

The weight matrix Γ(l) is defined as Γ(l) = σ2
z (σ

2
zINR

+∆σ2
dRHH(l))

−1
,

where we denote7 ∆σ2
d

∆
=

∑NT

k=1 E[∥x̂d,k(l)−xd,k(l)∥2]/(NdNT ) and RHH(l)
∆
=

H(l)H(l)H. The ℓ1 regularized LS problem can be solved with the zero-tap
detection (ZD) [29] or orthogonal matching pursuit (OMP) [45, 46]-based
algorithms. Before detailing a ZD-based algorithm, we briefly show a tem-
porally restricted MIMO channel estimation technique which can be utilized
commonly for the ZD and OMP-type ℓ1 solvers.

7Here we define ∆σ2
d andRHH(l) using the parameters to be estimated (the transmitted

data xd,k(l) and the CIR H), in order to describe the negative log-likelihood function (2.7)
correctly. As shown later in (2.15) and (2.16), however, we exploit the approximations
[16,26] which do not assume the parameters to be estimated.
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2.2.1.2 Temporally restricted MIMO LS channel estimation

Let us assume the symbol timings of significant path components are specified
in a column index set A of the CIR matrix H. This thesis refers to the index
set A as active-set [47], hereafter. Moreover, we denotes a column-shrunk
NR × |A| CIR matrix as GA = H|A, or equivalently GA = HPA, where the
notation M|I describe a submatrix composed of the column vectors in a
matrix M, the columns of which are defined by index set I. The WNT ×|A|
matrix PA is defined so that the (m,n)-th entry is set at 1 if the n-th element
in A is m, otherwise, at zero.

The ZD and OMP-type algorithms determine an active-set A under a
certain criterion. Simultaneously, the algorithms obtain a possible estimate
ĤA(l) = ĜA(l)PT

A by minimizing the conditional negative log-likelihood func-
tion, given the active-set A, as

ĜA(l) = arg min
G

Ltd(l,GPT
A | A). (2.10)

The problem (2.10) can be seen as an ℓ2 LS channel estimation technique
by using a temporally restricted (or row-shrunk) training Φt,A = PT

AXt =

[XT
t |A]T and data Φ̂d,A = [X̂T

d |A]T sequences.
Similar to the case of single-input multi-output (SIMO) [26], a MIMO

turbo receiver can obtain an LS estimate via its vectorization to take account
of the weight matrix Γ(l). Specifically, for an active-set A, a length |A|NR

compressed channel estimate vector ĝA = vec{ĜA} is described as

ĝA = R−1
ΦΦA
· vec{RYΦA} (2.11)

withRΦΦA = PT
ARXXPA andRYΦA = RYXPA, where we denote PA = PA⊗

INR
and omit the burst timing index l for the sake of simplicity. Furthermore,

we define

RXX = RT
XX t
⊗ INR

+ R̂T
XX d
⊗ Γ̂, (2.12)

RYX = RYX t
+ Γ̂RYX d

, (2.13)

where RXX t = XtXH
t , R̂XX d

= X̂dX̂H
d , RYX t

= YtXH
t and RYX d

= YdX̂H
d .

The matrix Γ̂ is obtained as

Γ̂ = σ2
z

(
σ2
zINR

+∆σ̂2
dR̂HH

)−1

, (2.14)
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with the approximations [16,26]

∆σ̂2
d ≈ σ2

x −
NT∑
k=1

∥x̂d,k(l)∥2/(NdNT ), (2.15)

R̂HH ≈ Ĥ(i−1)(Ĥ(i−1))H, (2.16)

where Ĥ(i−1) is the channel estimate obtained by the previous (i-1)-th8 turbo
iteration. Finally, the solution to (2.10) is described as ĜA = matNR

{ĝA},
where the operation matN(x) forms an N ×M matrix from the argument
vector x ∈ CNM×1, so that x = vec{matN{x}}.

2.2.1.3 The ℓ1 LS with adaptive active-set detection (AAD)

Based on the MSE performance analysis shown in Section 2.3.1, a new ZD-
type algorithm, AAD, can be formulated as

Â = arg min
A

∥ĜPT
A −H∥2, (2.17)

where Ĝ is the LS estimate given by (2.11). It should be noted that the
problem (2.17) is equivalent to

Â = arg min
A

Ltd(l,GPT
A | G) (2.18)

by Appendix A in [24], when the CIRs unsupported with Â are very minor
and both the training and data signals are ideally uncorrelated sequences.

We can solve (2.17) if a channel delay profile dH = diag{HHH} is given.
In general, however, dH is not known since it requires the parameter H to
be estimated. We show, thereby, Algorithm 1 to solve (2.17) with reasonable
computational complexity. In summary, Algorithm 1 solves the problems
(2.10) and (2.17) alternately in NAAD iterations. First of all, a possible
solution to the problem (2.17) is obtained by the steps 5 and 6. Algorithm
1 approximates the delay profile by using a possible channel estimate Ĝ[n]
obtained in the previous iteration, as

d̂
[n]
H = P[n] diag{ĜH[n] · Ĝ[n]}, (2.19)

8For the first turbo iteration, i = 1, the term RHH is discarded in (2.14) since the
channel estimation is performed with the TS only.
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where P[n] denotes PA[n]
. As detailed in Appendix 2.A, the active-set can be

detected by

A[n+1] =
{
j
∣∣∣ d̂[n]H,j >

(
f(σ2

z ,A[n]) + |∆d̂
[n]
H |

)
/|A[n]|, j ∈ A[n]

}
, (2.20)

where d̂
[n]
H,j denotes the j-th entry of d̂

[n]
H and we define f(σ2

z ,A) = σ2
ztr{R−1

ΦΦA
}.

The absolute error of the delay profile estimation can also be approximated
by |∆d̂

[n]
H | ≈ f(σ2

z ,A[n]). This is because, as shown in Section 2.3.1, f(σ2
z ,A)

is identical to the analytical MSE performance of the ℓ1 LS technique if the
CIR H to be estimated is exactly supported with the active-set A. Prob-
lem (2.10) is then solved at the step 7. Algorithm 1 obtains a possible
estimate Ĝ[n+1] via (2.11) with the detected active-set A[n+1]. However, let

Ĝ[n+1] = OWNT
if A[n+1] = ∅.

Algorithm 1 utilizes the Bayesian information criterion (BIC) [48] as a
stopping tool of the iteration. Suppose that the CIR estimate is described
as Ĥ = Ĝ[n]PT

[n], the BIC can be defined for the complex matrix normal

distribution Ltd(·), as

BIC(Ĝ[n]) = 2Ltd(l, Ĝ[n]PT
[n]) +KIC · log(NIC). (2.21)

The number KIC of free parameters in Ĝ[n] is KIC = 2NR|A[n]|, where the
factor 2 is to represent the degrees of freedom of the real and imaginary parts
in a complex parameter. The length NIC of input samples denotes NIC = Ñtd

with the input signal length Ñtd = Ñt + Ñd.
It should be noted that Algorithm 1 is a computational complexity-

efficient version of the iterative detection/estimation with threshold by “struc-
tured” least squared channel estimation (ITDSE) [29]. Algorithm 1 deter-
mines thresholds adaptively according to the analytical MSE of the ℓ1 or ℓ2
LS channel estimation. Therefore, as demonstrated in Section 2.4, Algorithm
1 can asymptotically achieve the analytical MSE performance even with the
first iteration by setting NAAD = 1 except in a very low SNR regime.
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Algorithm 1 The ℓ1 LS with the AAD.

Input: Yt,Yd,Xt, X̂d and NAAD.
1: Compute RYX (2.13), RXX (2.12) and Γ̂ (2.14).
2: Obtain the ℓ2 LS estimate Ĝ[0] = matNR

{ĝA[0]
} by (2.11) with A[0] =

{1, · · · ,WNT}.
3: β(0) = BIC(Ĝ[0]) by (2.21).
4: for n = 0 to NAAD − 1 do
5: Update the delay profile estimate d̂

[n]
H by (2.19).

6: Detect the active-set A[n+1] by (2.20).

7: Obtain an estimate Ĝ[n+1] = matNR
{ĝA[n+1]

} by (2.11) with A[n+1].

8: β(n+ 1) = BIC(Ĝ[n+1]) by (2.21).
9: if β(n+ 1) ≥ β(n) then
10: Let n = n− 1 and terminate the iteration.
11: end if
12: end for
Output: ĤLS

ℓ1 = Ĝ[n+1]P
T
A[n+1]

.

2.2.2 ℓ1 regularized multi-burst channel estimation (ℓ1
MB)

2.2.2.1 Problem formulation

ℓ1 MB channel estimation is described as an MMSE problem with ℓ1 regu-
larization:

ĤMB
ℓ1 (l) = arg min

H(l)
E

j∈JLM
(l)
[Ltd(j,H(j)) + λ(j)∥H(j)∥1] , (2.22)

where the operation Ej∈J [a(j)] is the expectation of sequence a(j) defined
by 1

|J |
∑

j∈J a(j) for the argument index set J . The consecutive index set

JLM
(l) is defined as {l − LM + 1, · · · , l} with a burst-wise sliding window

length LM , which denotes the last LM burst timings from the latest timing l.
To perform the principal component analysis (PCA) correctly, LM is required
to satisfy LM ≥W/NR.

This problem (2.22) can be solved by using the same concept as the sim-
plified component technique-LASSO (SCotLASS) [49] which is a version of
the least absolute shrinkage and selection operator (LASSO) [50]. A challenge
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of SCotLASS-based algorithms is that there is no certain method to deter-
mine λ(j). Notice that the number of possible active-sets corresponding to
λ(j) becomes

∑WNT

k=0

(
WNT

k

)
, where the operation

(
n
k

)
denotes the binomial

coefficient. In practice, however, a receiver is very difficult to examine all
possible

∑WNT

k=0

(
WNT

k

)
active-sets. We hence relax the problem (2.22) by in-

troducing an assumption that λ(j) can be approximately specified by a CIR
length constraint. The problem (2.22) can then be reduced into at most W
problems without ℓ1 regularization.

Since CIRs can be assumed as the output of an FIR filter in general,
they attenuate according to the elapse of time. Therefore, we notice that the
ℓ1 regularization may be replaced by a CIR length constraint. It is hence
sufficient to consider W active-sets defined as

A[w] =

NT−1∪
k′=0

{(1 + k′W ) : (w + k′W )} (2.23)

for 1 ≤ w ≤ W . With (2.23), the problem (2.22) can be decomposed into at
most W problems without ℓ1 regularization, as

ĤMB
[w] (l) = arg min

H[w](l,Θ)
E

j∈JLM
(l)

[
Ltd(j,H[w](j,Θ))

]
, (2.24)

where H[w](j,Θ) = G[w](j,Θ)PT
[w] with G[w](j,Θ) = H(j,Θ)|A[w]

and P[w] =
PA[w]

. The parameter vector Θ is defined as follows: the k-th TX-stream’s
CIR in H(j,Θ[w]) = [H1(l, θ1), · · · ,HNT

(l, θNT
)] can be described as

Hk(l, θk) = Bk(l)U
H
k , (2.25)

when the CIR follows the subspace channel model assumption [23]. The
parameter Θ describes the CIR models (2.25) for NT Tx streams in a vector
as Θ = [θT1 , · · · , θTNT

]T , where θk = [θTB,k, vec{Uk}T]T. The subvector θB,k

denotes
θB,k =

[
vec{Bk(j1)}T, · · · , vec{Bk(jLM

)}T
]T

for jn ∈ JLM
. It should be noticed that the NR × rk matrix Bk(l) is burst-

dependent. However, the W × rk matrix Uk is independent of the burst
timing since it represents a temporally invariant FIR filter. The parameter rk
denotes the rank of the temporal covariance matrix Kj∈JLM

(l)[Hk(j)], where

the operation Kj∈J [·] denotes Kj∈J [A(j)] = 1
LM

∑
j∈J A(j)HA(j) for the

argumented matrix sequence A(j) and the index set J .
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2.2.2.2 ℓ1 MB algorithm

By Appendix A in [24], the problems (2.24) is equivalent to minimizing
Ψ[w](l,Θ) =

∑NT

k=1Ψ[w],k(l, θk) with

Ψ[w],k(l, θk) = E
j∈JLM

(l)

[∥∥∥ˆ̃gLS
[w],k(j)− g̃[w],k(j, θk)

∥∥∥2
]
, (2.26)

where we define, for the noise whitening,

ˆ̃gLS
[w],k(j) = Q̄[w],kk · ĝLS

[w],k(j)

+

NT∑
i=k+1

Q̄[w],ki

{
ĝLS
[w],i(j)− g[w],i(j, θi)

}
(2.27)

g̃[w],k(j, θk) = Q̄[w],kk · g[w],k(j, θk) (2.28)

with a length wNR CIR vector g[w],k(j, θk) = vec{Hk(j, θk)|1:w} for the k-th
Tx stream’s and its LS estimate ĝLS

[w],k(j). The wNR ×wNR matrix Q̄[w],ki is

the (k, i)-th block matrix of the Cholesky decomposition for R̄ΦΦ[w]
(2.29).

It should be noted that (2.26) is based on the approximation9 that

R̄ΦΦ[w]

∆
= E

[
PT

[w]RXX (j)P[w]

]
≈ PT

[w]RXX (j)P[w] (2.29)

for ∀j ∈ JLM
(l), where P[w] = PA[w]

⊗ INR
. In other words, the whitening

matrix Q̄[w],ki obtained from (2.29) is independent of the burst timing j.
Therefore, the w-th active-set is required to be independent of the burst
timing j, such as (2.23).

As shown in Section III in [24], the minimization problems of (2.26)
for 1 ≤ w ≤ W are solvable if we reduce them by descending order k =
NT , · · · , 1. Moreover, by following Section IV-C in [26], the solution ĝMB

[w],k(l)

that minimizes (2.26) can be obtained by the PCA for the covariance matrix
Kj∈JLM

(l)[matNR
{ˆ̃gLS

[w],k(j)}], where approximations g[w],i(l, θi) ≈ ĝMB
[w],i(l) for

i > k are used in (2.27). Correspondingly, the solution to (2.24) is described
as

ĤMB
[w] (l) = [ĜMB

[w],1(l), · · · , ĜMB
[w],NT

(l)]PT
[w]

9The conventional ℓ2 MB techniques [16, 23, 24, 26] also assume (2.29) with P[w] =
IWNTNR .

29



with ĜMB
[w],k(l) = matNR

{ĝMB
[w],k(l)}. We finally choose the best solution to

(2.22) from the W possible estimates as ĤMB
ℓ1 (l) = ĤMB

[ŵ] (l). The optimal

CIR length ŵ may be determined by Akaike information criterion (AIC) [51]:

AIC(ĤMB
[w] ) = 2Ltd(l, ĤMB

[w] ) + 2KIC,

where the number of free parameters is modified as KIC = 2
∑NT

k=1NRr
[w]
k

so that it describes the number of burst-dependent parameters in the CIR
model (2.25). The rank r

[w]
k of the temporal subspace is obtained together

with the estimate vector ĝMB
[w],k(l) by the PCA, as shown in [24,26].

This thesis exploits the temporal-subspace only to focus on developing the
ℓ1 regularized channel estimation techniques. Notice that estimation perfor-
mance of the MB channel estimation techniques can be further improved by
using the spatial-subspace projection [21,24,26], too. Under the assumption
(2.4) that the CIRs are of spatially full-rank, however, it is expected that
the spatial-subspace projection matrix becomes an identity matrix. Never-
theless, the assumption is not always correct in multi-user MIMO systems.
The extension of the proposed technique by jointly utilizing the temporal-
and spatial-subspace projections is a future work of this thesis.

2.2.3 Hybrid channel estimation

2.2.3.1 Problem statement

Later in Section 2.4.4.2, it is shown that the ℓ1 MB channel estimation can
improve the tracking error problem. Nevertheless, as discussed in Section
2.2.4, the ℓ1 MB channel estimation requires a higher complexity order than
that of the ordinary ℓ2 MB channel estimation. We thereby propose a new
hybrid channel estimation algorithm to improve robustness of the estimate
for abrupt channel changes with reasonable complexity.

2.2.3.2 Hybrid algorithm

In summary, the new hybrid algorithm performs the ℓ1 LS and the ordinary
ℓ2 MB channel estimation10 simultaneously, then selects better estimate under
the Bayesian information criterion.

10The ℓ2 MB channel estimation is formulated by (2.22) with λ(j) = 0.
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Specifically, the hybrid technique is shown in Algorithm 2, where the
counter Lm is initialized to 0 before starting the hybrid channel estimation.
The counter Lm is used to define the sliding window JLm(l) in the MMSE
problem (2.22). The guard constant LG in Algorithm 2 is set at ⌈W/NR⌉, be-
cause the PCA used in the ℓ2 MB channel estimation is numerically unstable
for Lm < ⌈W/NR⌉, where ⌈·⌉ denotes the ceiling function. At the first step,
the ℓ1 LS channel estimation is performed. The ℓ2 MB channel estimate can
then be obtained efficiently by reusing the ℓ2 LS estimate Ĥ[0] computed in
Algorithm 1.

The better estimate between the two possible solutions is then determined
by the steps 4 to 15. At the step 4, Algorithm 2 monitors the tracking
error by comparing the BIC of the ℓ1 LS channel estimate with that of the
ℓ2 MB channel estimate. The tracking error can be detected based on a
property that BIC(ĤLS

ℓ1 (l)) > BIC(ĤMB
ℓ2 (l)) is satisfied so far as CIRs follow

the subspace channel model assumption. In the case the tracking error is
detected, Algorithm 2 selects the channel estimate ĤLS

ℓ1 as the output ĤHB

of the hybrid estimation. Furthermore, at the step 7, Algorithm 2 resets the
counter Lm when the ℓ2 MB channel estimation performed for more than LG

bursts. The counter reset is performed so that the covariance matrix in the
PCA is adjusted to a change of channel models quickly. On the other hand,
if the tracking error is not detected, Algorithm 2 selects the channel estimate
ĤMB

ℓ2 at the step 13. However, Algorithm 2 selects ĤLS
ℓ1 at the step 11 if the

counter Lm is less than LG. This is because the channel estimate ĤMB
ℓ2 is

not accurate enough when Lm < LG.

2.2.4 Computational complexity order

The computational complexity orders O(·) required for the channel estima-
tion techniques investigated in this chapter are summarized in Table 2.1.
The complexity order required for the proposed hybrid algorithm is equiv-
alent to the ℓ2 MB channel estimation when NAAD = 1. However, the ℓ1
MB channel estimation requires a larger complexity order than the ℓ2 MB
by O(W 4N3

TN
3
R).

2.2.4.1 The ℓ1 LS

The computational complexity orders required for each step in Algorithm 1
and its details are shown in Tables 2.2(a) and (b), respectively. For example,
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Algorithm 2 Hybrid channel estimation at the burst timing l

1: Perform the ℓ1 LS (2.5) and obtain ĤLS
ℓ1 (l).

2: Update the counter as Lm = min(Lm + 1, LM) per a burst.
3: Perform the ℓ2 MB (2.22) with the sliding window JLm(l) and λ(j) = 0.

Obtain ĤMB
ℓ2 (l).

4: if BIC(ĤLS
ℓ1 (l)) < BIC(ĤMB

ℓ2 (l)) then
5: ĤHB(l) = ĤLS

ℓ1 (l)
6: if Lm ≥ LG then
7: Lm = 0
8: end if
9: else
10: if Lm < LG then
11: ĤHB(l) = ĤLS

ℓ1 (l)
12: else
13: ĤHB(l) = ĤMB

ℓ2 (l)
14: end if
15: end if

the step 2 in Algorithm 1 performs an |A[0]|NR × |A[0]|NR matrix inversion
and a matrix-vector product, the size of which is [|A[0]|NR × |A[0]|NR] ×
[|A[0]|NR × 1] with |A[0]| = WNT . The complexity order needed for these
operations is shown in the row (iv) of Table 2.2(b). It is, however, dominated
by O({|A[0]|NR}3) = O(W 3N3

TN
3
R), where we assume that an M×M matrix

inverse requires the complexity order O(M3) [52].
As shown in Table 2.2(a), the complexity order needed for the steps 1

to 3 is dominated by O(W 2N2
RÑtd + W 3N3

TN
3
R). This is because W 2N2

T >
WNTNR > N2

R is satisfied in the assumed frequency selective fading channel,
the CIR length of which isW ≫ NR ≥ NT . Moreover, the equivalent negative
log-likelihood functions in (2.21) may be calculated by using the following
equations:

Lt(ĜA) =
1

σ2
z

∥Yt − ĜAΦt,A∥2F , (2.30)

Ld(ĜA) =
1

σ2
z

∥Yd − ĜAΦ̂d,A∥2Γ, (2.31)

where the NR × |A| CIR estimate matrix ĜA is obtained via (2.11) for an
active-set A.
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The complexity order required for the steps 5 to 11 is dominated by that
of the steps 7 and 8. It should be noticed that, at the step 6, the matrix
inverse R−1

ΦΦA[n]
in f(σ2

z ,A) is already computed in the previous iteration.

Furthermore, the matrix inverse R−1
ΦΦA[n+1]

can be efficiently updated from

R−1
ΦΦA[n]

. Specifically, the complexity order needed for the step 7 is dominated

by O({|A[n]|2|∆A[n+1]|+|∆A[n+1]|3}N3
R), where ∆A[n+1] = A[n]\A[n+1]. This

is because, as shown in [53], if the matrix inverse of an M ×M Hermitian
matrix is known, the complexity order needed to compute the matrix inverse
of its arbitrary rank-1-downsized submatrix is O(M2). By extending the
algorithm in [53] straightforwardly, the matrix inverse of its arbitrary rank-N -
downsized submatrix11 can be computed with the complexity orderO(M2N+
N3).

Algorithm 1 performs at most max(NAAD) = WNT iterations sinceWNT ≥
|A[n]| ≥ |A[n+1]| ≥ 0 is guaranteed by (2.20). The complexity is, hence, max-
imized when WNT iterations are performed without the termination at the
step 10. This case happens when the active-sets are updated so that the car-
dinality changes |A[n]| = WNT −n at the n-th iteration. Therefore, the max-

imum complexity order required for Algorithm 1 becomes O({W 2N2
RÑtd +

W 3N3
TN

3
R}+

∑WNT

m=1 {m2N3
R+N3

R+((m−1)NR+N2
R)Ñtd}) = O(W 2(N2

TNR+
N2

R)Ñtd+W 3N3
TN

3
R), where m = WNT −n is used. Especially for NAAD = 1,

the complexity order is at most O(W 2N2
RÑtd + W 3N3

TN
3
R) due to |A[n]| ≤

WNT .

2.2.4.2 The ℓ2 LS

The ℓ2 LS channel estimation requires the complexity order of at most
O(W 2N2

T Ñtd + W 3N3
TN

3
R) since it is identical to the steps 1 and 2 in Al-

gorithm 1.

11Let Rn denote RΦΦA[n]
after relevant permutations so that Rn =

[
A BH

B Rn+1

]
.

R−1
n =

[
E FH

F G

]
∈ CM×M ⇒ R−1

n+1 = G−FE−1FH, where the sizes of submatrices E,

F and G are N ×N , (M −N)×N and (M −N)× (M −N), respectively.
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2.2.4.3 The ℓ1 MB

The ℓ1 MB algorithm performs a set of operations, which are CIR length-
shrunk ℓ2 LS channel estimation (2.11) and the PCA, for at most W possible
solutions. The complexity order required for obtaining the W LS chan-
nel estimates is, however, equivalent to that of the ordinary ℓ2 LS chan-
nel estimation. This is because, in (2.11), the matrices RΦΦA and RYΦA

are the submatrices of RXX and RYX , respectively. Furthermore, by us-
ing the matrix inverse downsizing or upsizing algorithm [53], the complexity
order needed for the W matrix inverses R−1

ΦΦ[w]
, 1 ≤ w ≤ W , is equiva-

lent to that of the single matrix inverse R−1
XX . Therefore, the complexity

order required for obtaining the W LS channel estimates is dominated by
O(W 3N3

TN
3
R) = O(W 3N3

TN
3
R +

∑W
w=1w

2N2
TN

2
R), where the summation term

describes the complexity for matrix-vector products according to the row (iv)
of Table 2.2(b).

The complexity analysis of the PCA for the w-th possible solution is
summarized as follows: the complexity orders required for the Cholesky
decomposition12 of R̄ΦΦ[w]

, the noise whitening (2.27) and the SVD13 are

O(w3N3
TN

3
R), O(w2N2

TN
2
R), and O(w3NT ), respectively, in total for NT Tx

streams. Consequently, the complexity order needed for the w-th PCA
is dominated by O(w3N3

TN
3
R). The complexity order required for the ℓ1

MB is, thereby, dominated by O(W 2N2
T Ñtd + W 4N3

TN
3
R) = O(W 2N2

T Ñtd +
W 3N3

TN
3
R) +O(

∑W
w=1 w

3N3
TN

3
R).

2.2.4.4 The ℓ2 MB

The ℓ2 MB technique performs the above-mentioned set of operations for the
W -th possible solution, only once. Hence, the complexity order needed for

12We assume that the Cholesky decomposition for an M ×M matrix requires the com-
plexity order O(M3) [52].

13As shown in [26], SVD for the w × w covariance matrices Kj∈JLM
(l)[

ˆ̃GLS
[w],k(j)] is

performed to find the principal components of the CIR for the k-th TX stream, where
ˆ̃GLS

[w],k(l) = matNR{ˆ̃gLS
[w],k(l)}. Hence, the complexity order becomes O(w3NT ) for NT Tx

streams, by assuming that an SVD operation for an M ×M matrix needs O(M3) [52].

Note that the complexity order needed for the covariance matrix Kj∈JLM
(l)[

ˆ̃GLS
[w],k(l)] is

minor since it can be updated recursively: KLM

l = (LM · KLM

l−1 + K1
l − K1

l−LM
)/LM , where

we denote KLM

l = Kj∈JLM
(l)[

ˆ̃GLS
[w],k(j)] by omitting the subscripts w and k.
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Table 2.1: Computational complexity orders for channel estimation algorithms

Algorithm Computational complexity order NAAD

ℓ1 LS O(W 2N2
T Ñtd +W 3N3

TN
3
R) 1

O(W 2(N2
TNR +N2

R)Ñtd +W 3N3
TN

3
R) WNT

ℓ2 LS O(W 2N2
T Ñtd +W 3N3

TN
3
R)

ℓ1 MB O(W 2N2
T Ñtd +W 4N3

TN
3
R)

ℓ2 MB O(W 2N2
T Ñtd +W 3N3

TN
3
R)

Hybrid O(W 2N2
T Ñtd +W 3N3

TN
3
R) 1

O(W 2(N2
TNR +N2

R)Ñtd +W 3N3
TN

3
R) WNT

the ℓ2 MB channel estimation is dominated by O(W 2N2
T Ñtd +W 3N3

TN
3
R) =

O(W 2N2
T Ñtd +W 3N3

TN
3
R) +O(

∑W
w=W w3N3

TN
3
R).

2.2.4.5 The hybrid algorithm

The hybrid algorithm performs the ℓ1 LS and ℓ2 MB techniques at a time.
However, its complexity order is equivalent to that of the ℓ1 LS, since

O({W 2(N2
TNR +N2

R)Ñtd +W 3N3
TN

3
R}+ {W 2N2

T Ñtd +W 3N3
TN

3
R})

= O(W 2(N2
TNR +N2

R)Ñtd +W 3N3
TN

3
R).

The complexity order needed for the BIC of the ℓ2 MB channel estimate is
O((WNTNR+N2

R)Ñtd) and hence it is very minor. Especially for NAAD = 1,
the complexity order required for the hybrid algorithm is the same as that
of the ℓ2 MB technique, although the number of operations are increased
slightly.

2.3 Performance Analysis

2.3.1 MSE performance of the ℓ1 LS

MSE performance of the ℓ1 LS channel estimation is discussed in the fol-
lowing two subsections: 1) Analytical MSE given active-set and 2) Optimal
active-set. This is because the ℓ1 LS channel estimation is formulated as the
conditional LS problem (2.10).
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Table 2.2: Complexity order in Algorithm 1

(a) Complexity order for each step in Algorithm 1
Step Computational complexity order Details

1: O(W 2N2
T Ñtd +WNTNRÑtd +N3

R) (i, ii, iii)
2: O(W 3N3

TN
3
R) (iv)

3: O( (WNTNR +N2
R)Ñtd ) (v, vi)

5: O(|A[n]|2NR) (vii)
6: O(WNT )
7: O({|A[n]|2|∆A[n+1]|+ |∆A[n+1]|3}N3

R) (iv), [53]

8: O( (|A[n+1]| NR +N2
R)Ñtd ) (v, vi)

(b) Details in Table 2.2(a)
Symbol Eqn. Computational complexity order

(i) Γ̂ (2.14) O(WNTN
2
R +N3

R)

(ii) RXX (2.12) O(W 2N2
T Ñtd)

(iii) RYX (2.13) O(WNTNRÑtd)
(iv) ĝA (2.11) O(|A|3N3

R + |A|2N2
R)

(v) Lt(ĜA) (2.30) O({|A|NR +N2
R}Ñt)

(vi) Ld(ĜA) (2.31) O({|A|NR +N2
R}Ñd +N3

R)

(vii) ĜHAĜA (2.19) O(|A|2NR)
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2.3.1.1 Analytical MSE given active-set

For a given A, an NR ×WNT sparse channel estimate matrix ĤA = ĜAPT
A

is vectorized as vec{ĤA} = PA · ĝA, where the NR×|A| compressed channel
estimate matrix ĜA is obtained via the vectorized channel estimate ĝA (2.11).
The MSE of the ℓ1 LS channel estimate can, thereby, be reduced to

MSE(ĤLS
ℓ1 , σ2

z ,A) = E
[
∥vec{ĤLS

ℓ1 (l)−H(l)}∥2
]

= σ2
z tr

{
E[R−1

ΦΦA
(l)]

}
+ E(A), (2.32)

where we define E(A) = E
[
∥B(A, l) · vec{H⊥

A(l)}∥2
]
with

B(A, l) = PAR−1
ΦΦA

(l)PT
ARXX (l)− IWNTNR

.

We note that, when A = ∅, the MSE of ĤLS
ℓ1 becomes E(A) = E [∥H(l)∥2].

The CIR unsupported with the active-set is denoted by H⊥
A(l) = H(l)J⊥

A,
where J⊥

A = IWNT
− JA with JA = PAP

T
A.

2.3.1.2 Optimal active-set

For an active-set A, denote the MSE residual ∆LS
ℓ1ℓ2(A), as

∆LS
ℓ1ℓ2(A) = MSE(ĤLS

ℓ1 , σ2
z ,A)−MSE(ĤLS

ℓ2 , σ2
z), (2.33)

where MSE(ĤLS
ℓ2 , σ2

z) = σ2
ztr{E[R−1

XX (l)]}. The optimal active-set which min-
imizes the MSE performance (2.32) may be reduced via the minimization of
(2.33). This is because MSE(ĤLS

ℓ2 , σ2
z) is independent of A. However, we

notice that, for any A,

MSE(ĤLS
ℓ2 , σ2

z) = σ2
z

[
tr
{
E
[
JAR−1

XX (l)
]}

+ tr
{
E
[
J⊥
AR−1

XX (l)
]}]

, (2.34)

where we denote JA = JA ⊗ INR
and J⊥

A = IWNTNR
− JA. By Theorem 7.7.8

in [54],

R−1
ΦΦA

(l) ≼ PT
A · R−1

XX (l) · PA (2.35)

is satisfied for ∀A, where A ≼ B denotes that a residual B−A is a positive
semidefinite matrix. We, hence, have

E
[
tr
{
R−1

ΦΦA
(l)

}
− tr

{
JAR−1

XX (l)
}]
≤ 0. (2.36)
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Substituting (2.32), (2.34) and (2.36) into (2.33) yields

∆LS
ℓ1ℓ2(A) ≤ E(A)− σ2

z tr
{
E
[
J⊥
AR−1

XX (l)
]}

. (2.37)

The MSE performance (2.32) is, thereby, minimized with the optimal active-
set A∗ given by

A∗ = arg min
A

[
E(A)− σ2

z tr
{
E
[
J⊥
AR−1

XX (l)
]}]

. (2.38)

Obviously, the problem (2.38) is a combinatorial optimization. The solution
to (2.38) can be found from all possible

∑WNT

k=0

(
WNT

k

)
active-sets if the delay

profile

E[dH(l)] = E[diag{HH(l) · H(l)}] (2.39)

is known.
Consequently, the analytical MSE performance of the ℓ1 LS channel es-

timation (2.10) is given by (2.32) with the optimal active-set (2.38).

2.3.2 MSE performance bound of the ℓ1 MB

Since the ℓ2 MB channel estimation techniques asymptotically achieve the
CRB [16, 23, 24, 26], MSE performance of the ℓ1 MB algorithm is discussed
through the CRB.

2.3.2.1 Definition of unbiased- and adaptive-subspace

We define terminologies unbiased- and adaptive-subspace which are used to
describe the performance bound of the new channel estimation algorithms.
Note that the reference signal length14 N̄ is defined by tr{XXH}/M , where
theM×M matrixX denotes the Toeplitz matrix used in a channel estimator.

Definition 2 (Unbiased-subspace). An unbiased-subspace for CIRs Gk(j, w) =
Hk(j)|1:w,∀j ∈ JL(l) with L ≥ w/NR, is a subspace spanned by column vec-
tors of Uk(l, w)|1:rk , where the unitary matrix Uk(l, w) can be obtained from
Uk(l, w)·Λk(l, w)·Uk(l, w)

H = svd
{
KL

l [Gk(l, w)]
}
and rk is the path number

of a channel model assumed for the k-th TX stream.

14The notation N̄ (bar over N) denotes a reference signal length of a channel estimation
algorithm, in order to distinguish it from an input signal length Ñ (tilde over N) for the
estimation algorithm.
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Definition 3 (Adaptive-subspace). An adaptive-subspace for CIRs Gk(j, w)
is spanned by column vectors of Uk(l, w)|1:raw,k(σ

2
z ,N̄), where the parameter

raw,k(σ
2
z , N̄) is defined as

raw,k(σ
2
z , N̄) =

rk∑
i=1

1
{
λi
k(l, w) > NRσ

2
z/N̄

}
(2.40)

for the ideally uncorrelated reference signal, the length of which is N̄ . The
i-th largest singular value λi

k(l, w) is obtained from Λk(l, w). The indicator
function 1{B} takes 1 if its argument Boolean B is true, otherwise 0.

It should be noted that the adaptive-subspace is an approximation of the
unbiased-subspace in the noisy covariance matrixKL

l [Gk(l, w)]+(NRσ
2
z/N̄)Iw.

We define another terminology complemental-subspace as a subspace spanned
by the column vectors of Uk(l, w)|raw,k(σ

2
z ,N̄)+1:rk .

2.3.2.2 CRB

The CRB for an unbiased estimator in a MIMO channel can be derived as
a sum of CRBs over NT TX streams in SIMO channels or their vectorized
SISO versions. This is because (2.27) is independent of θk. Therefore, by
utilizing the CRB of SISO channel estimation in [24], the CRB of MIMO
channel estimation can be described as

CRBN̄,w(σ
2
z , r) = CRBZ

N̄(σ
2
z , r) + CRBΠ

N̄,w(σ
2
z , r),

where we denote the unbiased-ranks of CIRs by a vector as r = [r1, ..., rNT
]T

and define

CRBZ
N̄(σ

2
z , r) =

NT∑
k=1

NRσ
2
zrk

N̄
(2.41)

CRBΠ
N̄,w(σ

2
z , r) =

NT∑
k=1

σ2
z

LMN̄
(w rk − r2k) (2.42)

under the assumption that the length N̄ ideally uncorrelated sequence is
used. The ℓ1 MB channel estimation can decrease the projection error (2.42)
by assuming a shorter CIR length w than W , so long as it does not distort
the original rk paths to perform the unbiased channel estimation. However, it
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should be noticed that (2.41) is independent of w. Therefore, the ℓ1 MB can
improve the projection error, nevertheless, it does not improve asymptotic
MSE performance (2.41) when LM tends to ∞.

2.3.2.3 Adaptive-CRB

We define a new performance bound adaptive-CRB (aCRB) to describe the
performance bound of an unbiased channel estimation for the adaptive-
subspace:

aCRBN̄,w(σ
2
z) = CRBN̄,w(σ

2
z , r

a
w(σ

2
z , N̄)) + ∥Λc(w)∥, (2.43)

with raw(σ
2
z , N̄) = [raw,1(σ

2
z , N̄), · · · , raw,NT

(σ2
z , N̄)]T. The sum of singular val-

ues in the complemental-subspace is denoted by

∥Λc(w)∥ =
NT∑
k=1

E[∥Λk(l, w)|rak(σ2
z ,N̄)+1:rk∥1].

By the definition, the aCRB has a property that

aCRBN̄,w(σ
2
z) ≤ CRBN̄,w(σ

2
z , r).

The equality holds in a high SNR regime such that σ2
z ≤ E[λrk

k (l, w)] · N̄/NR

for ∀k ∈ {1, · · · , NT}.

2.3.2.4 Asymptotic MSE performance of MB techniques

The MSE performance of the ℓ1 MB is given by

MSE(ĤMB
ℓ1 , σ2

z) = min
w

aCRBN̄,w(σ
2
z).

As mentioned above, however, the asymptotic MSE performance of the ℓ1
MB with LM → ∞ is independent of the parameter w. The MSE perfor-
mances of both the ℓ1 and ℓ2 MB algorithms are, hence, lower bounded
by

aCRBN̄(σ
2
z) = CRBZ

N̄(σ
2
z , r

a
W (σ2

z , N̄)) + ∥Λc(W )∥. (2.44)
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2.4 Numerical Examples

After describing simulation setups, first of all, MSE performance of proposed
techniques is shown. The normalized MSE (NMSE) convergence property
of the new algorithms is then investigated. Moreover, tracking performance
against channel changes is demonstrated to show the robustness of the hybrid
algorithm. BER performance of a MIMO turbo receiver with the new channel
estimation algorithms is also presented at the end of this section.

2.4.1 Simulation setups

2.4.1.1 Channel models

The CIRs are generated with the spatial channel model (SCM) [18,55]. This
section assumes 4 × 4 MIMO channels, where the antenna element spacing
at the BS and the mobile station (MS) are, respectively, set at 4 and 0.5
wavelength. Spatial parameters such as the direction of arrival (DoA) are
randomly chosen per a TX chunk. Moreover, six path fading channel real-
izations based on the PB model with 3 km/h (PB3) mobility and the VA
model [18] with 30 km/h (VA30) mobility are assumed. The path positions
of PB and VA are respectively at {1 2.4 6.6 9.4 17.1 26.9} and {1 3.2 6 8.6
13.1 18.6} symbol timings assuming that a transmission bandwidth is 7 MHz
with a carrier frequency of 2 GHz.

The receiver can, however, observe CIRs only in the integer symbol tim-
ings due to the discrete-time signal processing. In practice, the CIRs are
observed as resampled signals so that the original channel parameters at frac-
tional path timings can be reconstructed as samples at the integer symbol
timings without distortion. We assume that the resampling is performed
by the matched filter (e.g., [56]) with a parameter set {α,Novs, Nflt} =
{0.3, 8, 6}, where the parameters denote the roll-off factor of the raised cosine
filter, the over-sampling factor and the filter order in symbol, respectively.
As shown in Fig. 2.1, the CIR length observed at the receiver can be around
30 symbols when it follows the PB channel model. The maximum CIR length
is hence set at W = 31 symbols.

2.4.1.2 TX scenarios

We focus on intermittent communication scenarios to verify robustness of ℓ1
regularized channel estimation. A length LC = 100 burst TX chunk is trans-
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Table 2.3: Examples of initial registers (in hexadecimal) for PN sequences.

Combination TX1 TX2 TX3 TX4

1 45 69 71 78
2 0E 31 5F 79
3 06 3A 4D 5C
4 0A 19 27 56
5 0D 1C 64 7F
6 12 22 52 70
7 03 1D 26 6E
8 2B 51 74 7B
9 2F 3C 43 6C
10 02 33 49 4B

mitted continuously. However, as illustrated in Fig. 2.4, a TX interruption of
arbitrary length is assumed between the TX chunks. Two scenarios VA-VA
and PB-VA are defined as follows. In the VA-VA scenario, all TX chunks fol-
low a single channel model VA30. The PB-VA scenario has a channel model
transition {PB3→ VA30→ PB3→ VA30→ ...} in the series of TX chunks.
The variations of the two TX chunks do not always smoothly change due to
the interruption, even in the VA-VA scenario.

2.4.1.3 System parameters

The 4 × 4 MIMO system transmits Ninfo = 2048 information bits. A data
frame is encoded by the Rc = 1/2 convolutional code with the generator
polynomials (g1, g2) = (7, 5)8. The number NB of bursts per a TX stream
in a frame is determined such that NB = Ninfo/(NTNd). The burst format
parameters are set at (Nt, NCP, NG, Nd) = (127,W,W, 512).

The TSs are generated with the pseudo noise (PN) sequence [13] with
the generator polynomial 1 + x6 + x7. Specifically, they are obtained by
initializing the shift register with the least significant 7 bits of hexadecimal
initial values15 shown in Table 2.3 so that the cross-correlations between TX
streams are ideally low.

15There are more than 10 combinations, but not all possible
(
127
4

)
combinations.
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2.4.2 Normalized MSE performance with LS channel
estimation techniques

We define the NMSE of a channel estimate Ĥ by

NMSE(Ĥ, σ2
z) = MSE(Ĥ, σ2

z)/E[∥H∥2].

Similarly, normalized aCRB (NaCRB) is denoted as

NaCRBN̄td
(σ2

z) = aCRBN̄td
(σ2

z)/E[∥H∥2] (2.45)

with asymptotic aCRB (2.44), where the length N̄td of reference signals com-
posed of TS and data sequences is defined by N̄td = tr{RXX}/(WNTNR).
The NaCRB for the PB-VA scenario is assumed as the mean of those for the
PB and VA channel models.

2.4.2.1 Comparison between the ℓ1 and ℓ2 LS techniques

Fig. 2.5 shows NMSE performance of the ℓ1 LS and ℓ2 LS channel estimation
techniques in the 4×4 MIMO system. The PB-VA scenario is assumed. The
channel estimation results are obtained after performing the first and the
sixth16 turbo iterations (Nturbo = 1, 6). The maximum number of iterations
in Algorithm 1 is set at NAAD = 1 or WNT . As observed from Fig. 2.5, the ℓ1
LS technique improves the NMSE significantly compared to the ℓ2 version in
a low to moderate SNR regime. This is because the dominant CIRs above the
noise level exist sparsely in the SNR regime. In a high SNR regime, however,
the CIRs cannot be assumed as sparse channels. Thereby, in the PB-VA
scenario, the ℓ1 LS does not improve NMSE performance over the ℓ2 version
in the high SNR regime, although enough turbo iterations (Nturbo = 6) are
performed.

In a very low SNR regime, the NMSE with the ℓ1 LS deviates from
the analytical MSE performance. This is because, even though the NMSE
performance is improved by setting NAAD > 1, the active-set detection (2.20)
can fail in the very low SNR regime such that NMSE(ĤLS

ℓ2 , σ2
z)≫ 1 since the

delay profile is approximated with LS estimates. As shown later, the problem
is improved with the hybrid algorithm since the ℓ2 MB method estimates the
path number correctly.

16The turbo iteration is stopped before the maximum number of iterations Nturbo if
|A| = 0 is detected. This is because the equalization is performed incorrectly for the null
channel estimate Ĥ = O.
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Fig. 2.5: NMSE performance with LS channel estimation techniques in the PB-
VA scenario. Nturbo denotes the number of turbo iterations.
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2.4.2.2 Illustration for the NMSE gain of the ℓ1 LS channel esti-
mation over the ℓ2 LS technique

As detailed in Section 2.A, the analytical NMSE performance (2.32) can be
approximated by

MSE(ĤLS
ℓ1 , σ2

z ,A) ≈
|A|
NT

· MSE(ĤLS
ℓ2 , σ2

z)

W
+ E[∥H⊥

A∥2] (2.46)

when the ideally uncorrelated reference signal is used. Hence, the NMSE
gain with the ℓ1 LS over the ℓ2 LS technique is determined by the trade-off
between the cardinality |A| and the bias E[∥H⊥

A∥2] due to inactive-set, the
complement of the active-set.

Fig. 2.6 illustrates the approximated MSE performance (2.46) of the ℓ1
LS technique, where the active-set is chosen optimally by (2.38). The VA-
VA scenario and Nturbo = 1 are assumed. As observed from the second
subfigure, the cardinality |A| is proportional to the SNR. In the case the
VA-VA scenario, |A|/NT ≪ W is expected in a moderate SNR regime. The
ℓ1 LS channel estimation can, hence, improve the NMSE performance by this
property. In a very low SNR regime, the first term in (2.46) vanishes due to
|A| = 0, however, the second term increases up to E[∥H∥2]. Therefore, the
NMSE performance of the ℓ1 LS saturates at 1 in the very low SNR regime.

Figs. 2.7(a), (b) and (c) illustrate the optimal active-set selection (2.38).
The SNR is assumed at 15 dB in the VA-VA scenario. The errors due to
the noise in Figs. 2.7(b) and (c) represent the entry-wise NMSE performance
given by a length-W symbol vector:

E

[
NT∑
k=1

diag{∆ĤH
k∆Ĥk}

]
/ E

[
NT∑
k=1

∥Hk∥2
]
, (2.47)

where ∆Ĥk = Ĥk −Hk. Intuitively, the active-set is the index of significant
CIR taps above the threshold according to a noise level. In the case of the
LS-based channel estimation techniques, the noise level can be determined by
σ2
ztr{RXX}/(WNT ). This is because, as depicted in Fig. 2.7(b), the symbol-

wise error of the ℓ2 LS channel estimate is distributed uniformly based on
the fact that the correlation (2.11)–the LS estimate itself–computes the ex-
pectation of the noise component consequently, together with the channel
estimate. As depicted in Fig. 2.7(c), the ℓ1 LS channel estimation aims to
decrease estimation errors by discarding the insignificant CIR taps.
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Fig. 2.6: Detalis of the NMSE gain with the ℓ1 LS channel estimation. The VA-
VA scenario and Nturbo = 1 are assumed. The second figure shows the normalized
cardinalities of the active-set (|A|/NT ) and the inactive-set (W − |A|/NT ) in the
ℓ1 LS technique. Notice that the ℓ2 LS always assumes |A|/NT = W .
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Fig. 2.7: Active-sets and estimation errors of LS channel estimation techniques.
The SNR is assumed at 15 dB in the VA-VA scenario. The errors due to the
noise in (b) and (c) are the entry-wise NMSE (2.47). Note that the area of the
estimation errors in (c) is decreased from that in (b).
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2.4.2.3 Comparison between ℓ1 solvers – AAD vs. OMP / SP

The following two subsections compare the AAD algorithm with well-known
ℓ1 solvers. Before discussing the comparison, it should be noticed that we can
straightforwardly extend ℓ1 solvers such as the OMP and subspace pursuit
(SP) [57] algorithms for MIMO channel estimation by using (2.11). Although
the OMP algorithms is detailed later in Section 2.B, we briefly describe a
note for the MIMO extension. The active-set in the OMP-based algorithms
can be constructed by using either of the following two criteria:

1. arg max
1≤j≤WNTNR

(|vec{Ξ}|)|j,

2. arg max
1≤j≤WNT

diag{ΞHΞ}|j,

where the residual correlation Ξ is defined as

Ξ = (Yt − ĤXt)XH
t + Γ̂(Yd − ĤX̂d)X̂H

d (2.48)

for a possible estimate Ĥ obtained in the OMP-based algorithms. In Figs. 2.8
and 2.9, the OMP algorithms with criteria 1) and 2) are referred to as vec-
torized OMP (vec-OMP) and OMP, respectively. As observed from Figs. 2.8
and 2.9, channel estimation with the criterion 2) achieves better NMSE per-
formance than the vec-OMP. This is because the diversity combining over
NR Rx antennas by the matrix product ΞHΞ improves the accuracy of the
active-set selection. We, hence, focus on the OMP with the criterion 2)
hereafter.

Fig. 2.8 shows NMSE performance with the OMP, SP and AAD algo-
rithms in the VA-VA scenario. Channel estimation is performed with the TS
only. As observed from Fig. 2.8, the AAD achieves the same NMSE perfor-
mance as that of the OMP and SP algorithms, where the degree of sparsity
(DoS) for OMP and SP is given by the cardinality of the estimated active-set
(2.20). In other words, the NMSE performance is not improved significantly
by combining the AAD with the OMP and SP algorithms. If the DoS is
known, of course, the NMSE performance with the OMP and SP algorithms
is improved. However, the knowledge of the delay profile is required to de-
termine the DoS correctly. It should be noted that, as shown in Figs. 2.5, 2.8
and 2.9, the AAD algorithm achieves the analytical MSE performance of the
ℓ1 LS exactly if the delay profile is known.
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2.4.2.4 Comparison between ℓ1 solvers – AAD vs. ITDSE

The ITDSE [29] algorithm detects the active-set iteratively by increasing a

threshold with a step-wise maxj d̂
[0]
H,j/NRES, where NRES denotes a resolution

constant. As observed from Fig. 2.8, the NMSE with the ITDSE algorithm
follows the analytical MSE performance if the resolution constant is set large
enough. (e.g., NRES = 104 is required in the VA-VA scenario for SNR ≥
25 dB.) The original ITDSE has to performNRES iterations, although NMSE
convergence performance shown in Fig. 2.10 suggests that the ITDSE may
terminate the process before the NRES-th iteration with a certain criterion.
We note that, even with NAAD = 1, the AAD algorithm can detect the
active-set very accurately since it decides the threshold adaptively according
to the SNR. Therefore, the computational complexity required for the AAD
algorithm is significantly decreased from that of the ITDSE.

2.4.2.5 Analytical NMSE performance of the ℓ1 LS

As shown in Figs. 2.5 and 2.8, the analytical NMSE of the ℓ1 LS channel es-
timation does not achieve the performance bound NaCRB in approximately
sparse channels. As an exception, Fig. 2.9 shows the NMSE performance in
sparse-VA channels, the path positions of which are set at integer symbol
timings {1, 3, 6, 9, 13, 19}. Effect of Tx/Rx filters is also neglected. As ob-
served from Fig. 2.9, the analytical NMSE of the ℓ1 LS technique coincides
with the NaCRB in the sparse-VA scenario. This is because the eigen domain
of the signal of interest is identical to the temporal domain in the exactly
sparse channels.

2.4.3 Normalized MSE performance with the MB and
hybrid algorithms

Fig. 2.11 shows NMSE with the MB channel estimation in the VA-VA sce-
nario. The MB sliding window length is set at LM = 50 bursts. We note
that NRLM = 200 is long enough so that NMSE converges. As shown in
Fig. 2.11, both the ℓ1 and ℓ2 MB algorithms achieve the NaCRB asymptot-
ically. This observation verifies the MSE performance analysis described in
the Section 2.3.2. Furthermore, it should be emphasized that the NaCRB
saturates at 1 if SNR ≤ -15 dB. This is because in the very low SNR regime,
the adaptive-rank (2.40) becomes E[rak(l)] = 0. The NMSEs with the ℓ1 and
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Fig. 2.8: Comparison between ℓ1 solvers: NMSE performance over SNR with ℓ1
LS channel estimation in the VA-VA scenario.
In Figures 2.8 to 2.10, channel estimation is performed with the TS only. For the
OMP and SP algorithms, known and estimated DoSs are given by the cardinality of
the optimal active-set (2.38) and the cardinality of the estimated active-set (2.20),
respectively. The numbers of the maximum iterations for the vec-OMP, OMP, SP
and AAD algorithms are set at WNTNR, WNT , WNT , and 1, respectively. The
ITDSE [29] in these figures determines the optimal solution from possible channel
estimates by the oracle criterion.
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Fig. 2.9: Comparison between ℓ1 solvers: NMSE performance over SNR with
ℓ1 LS channel estimation in the sparse-VA scenario. It should be noted that the
analytical NMSE of the ℓ1 LS technique coincides with the NaCRB in exactly
sparse channels.

51



� � �� �� �� �� �� �� �� ��

��
��

��
��

��
��

��
��

��
�

����������	

������
���	���������	

�����������������������	
���������

��	 �
����� dH

	�
 ���������

�
�
�
�

��������������������������

Fig. 2.10: Comparison between the AAD and ITDSE algorithms: NMSE conver-
gence over iteration in the VA-VA scenario.
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ℓ2 MB algorithms also saturate at 1 in the very low SNR regime, hence,
they follow the NaCRB rather than the ordinary normalized CRB (NCRB).
The NMSE with the hybrid algorithm follows that of the ℓ2 MB, where the
maximum number of iterations in the AAD algorithm is set at 1.

Fig. 2.12 shows the case of PB-VA scenario. The ℓ2 MB exhibits NMSE
deterioration from that in the VA-VA since the PB-VA scenario has abrupt
channel changes. The ℓ1 MB algorithm improves the NMSE in the low SNR
regime, nevertheless, the gain is slight even by using the oracle criterion
which minimizes the squared error ∥Ĥ − H∥2 between a possible channel
estimate Ĥ and a known CIR H. The robustness with the ℓ1 regularization
is investigated further in terms of NMSE convergence properties and BER
performance in the subsequent sections.

2.4.4 NMSE convergence properties

2.4.4.1 Effect of LLR’s accuracy onto NMSE

Figs. 2.13 and 2.14 depict NMSE performance over LLR’s accuracy at SNR =
15 dB in the VA-VA and PB-VA scenarios, respectively. We define the LLR’s
accuracy by the mutual information (MI) IaEQU between the LLR λa

EQU and
the coded bits c at the transmitter, as

IaEQU = I(λa
EQU; c)

=
1

2

∑
m=±1

∫ +∞

−∞
Pr(λ

a
EQU|m) log2

Pr(λ
a
EQU|m)

Pr(λa
EQU)

dλa
EQU, (2.49)

where Pr(λ
a
EQU|m) is the conditional probability density of λa

EQU given m =
1− 2c [58].

It is observed from Fig. 2.13 that all channel estimation techniques im-
prove the NMSE performance as MI increases. This is because the refer-
ence signal length N̄td is proportional to the MI IaEQU, since N̄td ≈ Nt +
γσ̂2

d{Nd− (W − 1)/2} with γ = σ2
z/(σ

2
z +∆σ̂2

dNTσ
2
H/NR) holds when RHH ≈

(NTσ
2
H/NR)INR

. The variance of λa
EQU tends to ∞ as IaEQU converges to

1 [58], which gets ∥x̂d,k∥2/Nd and ∆σ̂2
d converged to σ2

x and 0, respectively.
The ℓ1 MB algorithm improves the NMSE over the ℓ2 MB channel esti-

mation in the entire MI regime since it can decrease the projection error as
discussed in Section 2.3.2. The hybrid algorithm is inferior to the ℓ1 MB in
the VA-VA scenario since it behaves as the ℓ2 MB when CIRs follow a single
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Fig. 2.11: NMSE performance with MB channel estimation techniques in the VA-
VA scenario. Normalized CRB is given by NCRBN̄ (σ2

z) = CRBZ
N̄
(σ2

z , r)/E[∥H∥2]
with (2.41), where all NT entries of the rank vector r are set at 6 for the PB or
VA channel models. In the hybrid algorithm, NAAD = 1 is assumed.
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Fig. 2.12: NMSE performance with MB channel estimation techniques in the
PB-VA scenario. In the hybrid algorithm, NAAD = 1 is assumed.
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Fig. 2.13: NMSE convergence performance over the MI IaEQU (2.49) in the VA-VA
scenario at SNR is set at 15 dB.

channel model. Nevertheless, as shown in Fig. 2.14, the hybrid algorithm
improves NMSE over the ℓ1 MB if there are abrupt channel changes such
as in the PB-VA scenario. The reason for the improvement is clarified by
observing NMSE tracking performance.

2.4.4.2 Tracking performance

Fig. 2.15 shows the NMSE tracking performance in the PB-VA scenario. The
ℓ2 MB channel estimation suffers from the NMSE tracking errors as seriously
as that causes bit errors at the boarders between the TX chunks. The ℓ1
MB channel estimation also suffers from the NMSE tracking errors, however,
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Fig. 2.14: NMSE convergence performance over the MI IaEQU (2.49) in the PB-VA
scenario at SNR is set at 15 dB.
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improves bit errors at the boarders between the TX chunks. This is because,
as described in Section 2.3.2, the ℓ1 regularization decreases the projection
error. Nevertheless, as observed from Fig. 2.15, the ℓ1 MB cannot solve
the NMSE tracking error problem completely. This is because the ℓ1 MB
estimate inherits the past CIRs’ characteristics in the sliding window of the
MMSE formulation.

On the other hand, the ℓ1 LS channel estimation does not suffer from the
NMSE tracking error problem since it detects the active-set for each burst
independently. The hybrid algorithm can, therefore, avoid the tracking error
problem by utilizing the ℓ1 LS, while achieving the performance bound aCRB
asymptotically by the ℓ2 MB estimate when the tracking error problem is
not observed.

2.4.5 BER performance

The average SNR used in BER simulations is defined in association with the
average energy per bit to noise density ratio (Eb/N0) as

SNR = σ2
x (σ2

H/NR) η · Eb/N0, (2.50)

where we assume that the variances of a transmitted symbol and CIRs per a
TX stream are σ2

x = 1 and σ2
H = 1, respectively. The spectral efficiency η of

the frame format structure is defined as η = Ninfo/Lfrm with a frame length
Lfrm = LBNB in symbol. It is hence reduced to η = 1.4 for the MIMO
system used in the simulations.

Figs. 2.16 and 2.17 show BER performance with the receiver using the new
channel estimation techniques in the 4 × 4 MIMO system. BERs with the
receiver assuming known CIRs H(l) are also shown as the BER performance
bound of the system. BER is obtained after performing the first and sixth
turbo iterations. In the case the VA-VA scenario is assumed, as observed
from Fig. 2.16, the receiver using the ℓ1 MB achieves the BER performance
bound asymptotically. However, even with the oracle criterion, the ℓ1 MB
does not improve BER significantly over that of the ℓ2 MB technique.

In the PB-VA scenario, as shown in Fig. 2.17, the BER performance with
the ℓ2 MB deviates from that of known H by 4 dB at BER = 10−5, even after
performing the sixth turbo iteration. This is because, as shown in Fig. 2.15,
the ℓ2 MB suffers from the tracking error problem. The receiver with the ℓ1
MB improves the tracking error problem, however, its BER performance is
still away from the bound by roughly 2.5 dB.
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Fig. 2.15: NMSE tracking performance in the PB-VA scenario. The arbitrary
length TX interruptions are omitted in NMSE tracking results. The channel esti-
mation is performed with the TS only. SNR is set at 15 dB. In the second subfigure,
the number (num.) of bit errors in the i-th frame is shown at the {(i−1)NB+1}-th
burst timing.
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As shown in Fig. 2.17, the ℓ2 MB can, of course, improve the tracking
error problem by resetting the length Lm of the MMSE sliding window at
the start timing of each TX chunk. Nevertheless, as observed from Fig. 2.16,
the ℓ2 MB with the Lm resetting suffers from BER degradation if there is
no tracking problem. This is because MSE performance of the ℓ2 MB is
unstable for ⌈W/NR⌉ bursts after the Lm resetting. The proposed hybrid
algorithm compensates the MSE deterioration by utilizing the ℓ1 LS channel
estimate for the unstable duration. Moreover, the hybrid algorithm resets
the sliding window length only when the tracking error is detected. The
receiver with the hybrid algorithm can, therefore, achieve roughly a 2 dB
gain in Eb/N0 at BER = 10−5 over that of the ℓ2 MB method in the PB-VA
scenario, while obtaining the BER performance bound asymptotically in the
VA-VA scenario.

2.5 Summary

This chapter has studied the performance of ℓ1 regularized turbo channel
estimation algorithms in broadband MIMO wireless channels, via theoretical
analysis supported with simulation results. The ℓ1 LS channel estimation
does not achieve the MSE performance bound of broadband wireless channels
since the CIRs at the receiver are, in general, not observed as exactly sparse
channels due to the effect of Tx/Rx filters. The MSE performance of both
the ℓ1 MB and ℓ2 MB algorithms are bounded by the aCRB defined in this
chapter. Moreover, the ℓ1 MB technique does not improve MSE significantly
over the ℓ2 MB if the following four assumptions hold:

1. CIRs follow the subspace channel model.

2. The reference signals are ideally uncorrelated.

3. The MMSE formulation follows the complex normal distribution.

4. The sliding window length in the MMSE formulation is long enough.

However, the ℓ2 MB technique suffers from deterioration of the channel
estimation performance if the four assumptions only partially hold. By fo-
cusing on intermittent TX scenarios which do not always satisfy the first
assumption,17 this chapter has demonstrated robustness using ℓ1 regulariza-

17Appendix 2.C and Section 3.2.3 show the cases that, respectively, the second and third
assumptions are not always correct.
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Fig. 2.16: BER performance with the 4×4 MIMO system in the VA-VA scenario.
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Fig. 2.17: BER performance with the 4×4 MIMO system in the PB-VA scenario.
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tion. Simulation results shows that, due to the tracking error problem, the
receiver using the ℓ2 MB exhibits BER degradation in the PB-VA scenario
even though enough number of turbo iterations are performed. The ℓ1 MB
improves the tracking error by decreasing the projection error, however, it
requires a larger complexity order than the ℓ2 MB.

The hybrid algorithm proposed in this chapter solves the tracking error
problem completely. Therefore, the receiver with the proposed algorithm
achieves a significant BER gain over the ℓ2 MB technique in the PB-VA
scenario, while obtaining the BER performance bound asymptotically in the
VA-VA scenario. It should be noted that the computational complexity order
required for the hybrid algorithm is equal to that of the ℓ2 MB if the number
of the maximum iteration of the AAD algorithm is set to 1.
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Appendix

2.A Derivation of the AAD Algorithm

2.A.1 Approximation of the MSE (2.32)

For the sake of simplicity, the burst timing index l is omitted hereafter.
If both the training and data signals are ideally uncorrelated sequences,
RXX t/N̄t ≈ IWNT

and R̂XX d
/N̄d ≈ IWNT

, where N̄t = Nt and N̄d =
σ̂2
d{Nd − (W − 1)/2}. Hence, RXX/N̄td ≈ IWNTNR

with ∆σ̂2
d ≈ 0. Ac-

cordingly, we have approximations

tr{R−1
ΦΦA
} ≈ |A|

WNT

tr{R−1
XX} (2.51)

and E(A) ≈ E
[
∥H⊥

A∥2
]
. The analytical MSE (2.32) is, therefore, approxi-

mated by

MSE(ĤLS
ℓ1 , σ2

z ,A) ≈ |A|
MSE(ĤLS

ℓ2 , σ2
z)

WNT

+ E[∥H⊥
A∥2] (2.52)

= E[∥H∥2] +
∑
j∈A

{
MSE(ĤLS

ℓ2 , σ2
z)

WNT

− d̄H,j

}
, (2.53)

since E[∥H⊥
A∥2] = E[∥H∥2]−

∑
j∈A d̄H,j, where d̄H,j denotes the j-th entry of

the delay profile E[dH]. The problem (2.38) can also be approximated by

A∗ ≈ arg min
A

∑
j∈A

{
MSE(ĤLS

ℓ2 , σ2
z)

WNT

− d̄H,j

}

=

{
j

∣∣∣∣ d̄H,j > MSE(ĤLS
ℓ2 , σ2

z)/(WNT ),
j = 1, · · · ,WNT

}
. (2.54)

2.A.2 Derivation of the AAD

It is reasonable to assume that ∥ĤLS
ℓ1 − H∥2 ≈ E[∥ĤLS

ℓ1 − H∥2], when the
reference signal length is long enough. Under this assumption, the problem
(2.17) can be seen as an approximated version of the minimization of (2.33).
Hence, (2.17) can be reduced to a solution corresponding to (2.54). Accord-
ingly, the AAD algorithm approximates the delay profile E[dH] by using the
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channel estimate obtained in the previous iteration. The approximation er-
ror is dominated by the first term of (2.52) if the active-set can be selected
so that ∥H⊥

A∥2 is very minor. It should be noticed that

tr{R−1
ΦΦA∗} /

|A∗|
|A[n]|

tr{R−1
ΦΦA[n]

} / |A∗|
WNT

tr{R−1
XX} (2.55)

is satisfied for A∗ ⊆ A[n] ⊆ {1, · · · ,WNT} by (2.35) and (2.51). Thereby, the
active-set detection (2.20) is an extension of (2.54) so that it takes account
of the delay profile approximation error.

Specifically, at the first iteration (n = 0), Algorithm 1 performs

Â[0+1] =

{
j

∣∣∣∣ d̂
[0]
H,j > MSE(ĤLS

ℓ2 , σ2
z)/|A[0]|+ |∆d̂

[0]
H,j|,

j ∈ A[0]

}
, (2.56)

with A[0] = {1, · · · ,WNT}, where d̂[n]H,j and ∆d̂
[n]
H,j denote the j-th entries of a

delay profile estimation vector d̂
[n]
H and its estimation error ∆d̂

[n]
H = d̂

[n]
H −dH.

For the first iteration n = 0, (2.19) becomes d̂
[0]
H = PA[0]

· diag{ĜH[0]Ĝ[0]} with
PA[0]

= IWNT
and Ĝ[0] = ĤLS

ℓ2 . Moreover, by denoting ĤLS
ℓ2 = H +∆ĤLS

ℓ2 ,

∆d̂
[0]
H = diag

{
(∆ĤLS

ℓ2 )H∆ĤLS
ℓ2 +HH∆ĤLS

ℓ2 + (∆ĤLS
ℓ2 )HH

}
(a)
≈ diag

{
(∆ĤLS

ℓ2 )H∆ĤLS
ℓ2

}
(b)
≈

(
MSE(ĤLS

ℓ2 , σ2
z)/|A[0]|

)
· 1|A[0]|,

where the approximations (a) and (b) are due, respectively, to (a) E[HH∆ĤLS
ℓ2 ] =

O and (b) the estimation error of the ℓ2 LS estimate is distributed uniformly
over all symbol timings. Thereby, Algorithm 1 assumes

∆d̂
[0]
H,j = MSE(ĤLS

ℓ2 , σ2
z)/|A[0]|

for ∀j ∈ A[0]. After the second iteration (n ≥ 1), the recursive formula
(2.20) aims to improve detection accuracy by the inequality (2.55). However,
even with NAAD = 1, Algorithm 1 can detect the active-set accurately when
ideally uncorrelated reference signals are used. This is because the equalities
in (2.55) holds when RXX/N̄td = IWNTNR

.
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2.B ℓ1 LS Channel Estimation Techniques with

the OMP and ITDSE Algorithms

The ℓ1 LS channel estimation techniques with the OMP and/or ZD-based al-
gorithms can also be described with (2.11). However, the active-set detection
is different from (2.17).

2.B.1 ℓ1 LS channel estimation techniques with the
OMP algorithm

In the OMP algorithm, the active-set is selected so that the residual cor-
relation Ξ (2.48) is maximized. The active-set update can, specifically, be
described as either of the following two strategies:

1. maximizing the vectorized residual correlation:

S ← S ∪
{

arg max
1≤j≤WNTNR

(|vec{Ξ}|)|j
}
, (2.57)

A = {mod(s− 1,WNT ) + 1 | ∀s ∈ S } (2.58)

2. maximizing the Rx diversity combined residual correlation:

A ← A∪
{
arg max
1≤j≤WNT

diag{ΞHΞ}|j
}
, (2.59)

where the index sets S and A are initialized to ∅ before performing the
iteration of the OMP algorithm. The operation mod(n,m) denotes that n
modulo m.

Algorithm 3 shows the ℓ1 LS channel estimation with the OMP (e.g., [46]).
It should be noted that Algorithm 3 requires the DoS parameter NOMP which
may be given by the cardinality of the optimal active-set (2.38) if the delay
profile (2.39) of the CIRs is known.

2.B.2 The ℓ1 LS channel estimation with the ITDSE
algorithm

Algorithm 4 summarizes the ℓ1 LS channel estimation with the ITDSE [29].
The ITDSE algorithm updates the active-set by a step-wise threshold deter-
mined by the maximum entry of the ℓ2 channel estimate. Specifically, the
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Algorithm 3 The ℓ1 LS with the OMP.

Input: Yt,Yd,Xt, X̂d and NOMP.
1: Compute RYX (2.13), RXX (2.12) and Γ̂ (2.14).
2: Initialize: Ξ = RYX , A = ∅ and S = ∅.
3: for |A| < NOMP do
4: Update the active-set A by (2.58) or (2.59).
5: Obtain an estimate Ĥ = matNR

{ĝA} · PT
A by (2.11) with the updated

A.
6: Update the residual correlation Ξ (2.48).
7: end for

Output: ĤLS
ℓ1 = Ĥ.

step-wise ∆ is defined by

∆ = max
j
{d̂H[0],j}/NRESO (2.60)

with the resolution constant NRESO. The parameter d̂H[0],j denotes the j-th

entry of d̂H[0]
= diag{ĤH

[0] · Ĥ[0]}, where the ℓ2 LS channel estimate Ĥ[0] can

be obtained by (2.11) with A[0] = {1, · · · ,WNT}. At the n-th iteration, the
active-set A[n] is updated, as

A[n] =
{
j
∣∣∣ d̂HTMP,j > n∆, j ∈ A[n−1]

}
, (2.61)

where d̂HTMP,j denotes the j-th entry of the delay profile vector

d̂HTMP
= diag{ĤH

TMP · ĤTMP} (2.62)

with the temporary channel estimate matrix ĤTMP obtained in the iteration.
Notice that ĤTMP and A[n] are mutually dependent. Thereby, the ITDSE

algorithm has to perform the second loop, the iteration number of which is
pre-defined by NFINE, in order to refine accuracy of the active-set update.
According to [29], the constant NFINE is typically limited to 3. Nevertheless,
no certain method to determine the resolution constant NRESO can be found
in [29]. As discussed in Sections 2.2.1.3 and 2.4.2.4, the AAD algorithm
adaptively determines the threshold: n∆ according to the analytical MSE
performance of the LS channel estimation techniques.
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Algorithm 4 The ℓ1 LS with the ITDSE.

Input: Yt,Yd,Xt, X̂d, NRESO, NFINE and a small positive constant ϵ.
1: Compute RYX (2.13), RXX (2.12) and Γ̂ (2.14).
2: Determine the step-wise of the threshold by (2.60) according to the ℓ2

LS estimate Ĥ[0].
3: for n = 1 to NRESO do
4: HTMP = Ĥ[n−1].
5: for k = 1 to NFINE do
6: Update the delay profile (2.62) with HTMP.
7: Update the active-set A[n] by (2.61).

8: Obtain an estimate Ĥ[n] = matNR
{ĝA[n]

} ·PT
A[n]

by (2.11).

9: if ∥Ĥ[n] − ĤTMP∥2 < ϵ then
10: Break the loop of the counter k.
11: end if
12: ĤTMP = Ĥ[n].
13: end for
14: end for
Output: ĤLS

ℓ1 = Ĥ[n̂], where n̂ = arg min
n

Ltd(Ĥ[n]).
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2.C Performance of the ℓ1 MB Estimation

with Random Sequences

Conventional ℓ2 MB channel estimation techniques [16,23,24,26] can achieve
the CRB asymptotically under the four assumptions described in Section
2.5. However, as mentioned in Section 2.5, this claim is potentially not
true if the four assumptions only partially hold. It should be noticed that
finding optimal TS combinations is a non-polynomial (NP) hard problem in a
massive MIMO system, since binomial coefficients increase in factorial orders.
Moreover, the number of the ideally uncorrelated sequences with a given
bandwidth is limited, which can cause the pilot contamination problem [59].
This appendix studies, therefore, performance of the MB algorithm where the
second assumption does not always hold. Specifically, random TS is assumed
as a typical moderately uncorrelated sequence.

This appendix shows that the ℓ2 MB technique can suffer from the noise
enhancement problem when the noise whitening in the MB algorithm is not
accurate enough. However, the ℓ1 regularized MB channel estimation [60]
can improve the problem by a CIR length constraint. This appendix clarifies
the reason for the improvement. Furthermore, asymptotic channel estima-
tion performance with very long TSs and/or massive transmission streams is
discussed from the viewpoint of the noise whitening accuracy.

2.C.1 ℓ1 MB channel estimation with TSs only

We rewrite the ℓ1 MB method for channel estimation with TSs only, in
order to concentrate on its basic performance analysis. As described in
Section 2.2.2, the ℓ1 MB estimation performs the subspace projection per
a TX stream and it obtains NR × w channel estimate matrices ĜMB

[w]k(l),
1 ≤ k ≤ NT , for each TX stream. The w-th possible solution corre-
sponding to the length w CIR constraint is, hence, described as ĤMB

[w] (l) =

[ĜMB
[w]1(l), · · · , ĜMB

[w]NT
(l)]PT

[w], where P[w] = INT
⊗P[w] with the W ×w matrix

P[w] = [Iw O]T. The operator ⊗ denotes the Kronecker product.
In the case the channel estimation is performed with TSs only, the NR×w

estimated matrix ĜMB
[w]k(l) is given by

ĜMB
[w]k(l) = ˆ̃GLS

[w]k(l) ·
ˆ̃Π[w]k · Q̄−H

[w]kk (2.63)
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for the k-th TX stream, where the w × w matrix Q̄[w]ij denotes the (i, j)-

th block matrix of R̄
1/2
XX t[w] with R̄XX t[w] = Ej∈JLM

(l)[PT
[w]RXX t(j)P[w]]. The

index set JLM
(l) denote the length LM sliding window in the MB algorithm.

Moreover,

ˆ̃GLS
[w]k(l)

∆
= ĜLS

[w]k(l) · Q̄H
[w]kk

+

NT∑
i=k+1

{
ĜLS

[w]i(l)−G[w]i(l)
}
Q̄H

[w]ki.
(2.64)

with G[w]i(l) = ĜMB
[w]i (l), where ĜLS

[w]k(l) is the LS channel estimate corre-

sponding to an NR × w CIR matrix G[w]k(l) = Hk(l)P[w]. The projection

matrix ˆ̃Π[w]k denotes ˆ̃V[w]k|1:rk(
ˆ̃V[w]k|1:rk)†, where the unitary matrix ˆ̃V[w]k

is the singular vectors of the covariance matrix Kj∈JLM
(l)[

ˆ̃GLS
[w]k(j)]. The pa-

rameter rk denotes the number of paths for the k-th TX stream.
It should be noticed that (2.64) is performed for the noise whitening. Let

us denote ∆ ˆ̃GLS
[w]k(l) =

ˆ̃GLS
[w]k(l)− G̃[w]k(l) with G̃[w]k(l) = G[w]k(l)Q̄

H
[w]kk and

concatenate the NT residual matrices into an NR×wNT matrix as ∆ ˆ̃GLS[w] (l) =

[∆ ˆ̃GLS
[w]1(l), · · · ,∆

ˆ̃GLS
[w]NT

(l)]. Suppose G[w]i(l) = G[w]i(l) in (2.64), we ob-
serve that

K
j∈JLM

(l)
[∆ ˆ̃GLS[w] (j)] = σ2

zNRR̄
1/2
XX t[w] · E

j∈JLM
(l)

[
R−1

XX t[w](j)
]
· R̄H/2

XX t[w]

≈ σ2
zNRIWNT

(2.65)

holds when the TSs are fixed to a consistent sequence or the TSs are ideally
uncorrelated RXX t(l)/Nt ≈ IWNT

for ∀l.

2.C.2 MSE analysis

The burst index l is omitted for the sake of simplicity.

Theorem 1. Denote the channel estimation error ĤMB
[w]k −H[w]k by ∆ĤMB

[w]k.

The MSE for the ℓ1 MB estimate ĤMB
[w]k can be decomposed into the following

three terms:

E
[
∥∆ĤMB

[w]k∥2
]

= E
[
∥H⊥

[w]k∥2
]

+ E
[
∥ϵZ,k(w)∥2

]
+ E

[
∥ϵΠ,k(w)∥2

]
, (2.66)
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where the discarded part of CIR H⊥
[w]k due to the CIR length constraint, the

residual noise ϵZ,k(w) and the projection error ϵΠ,k(w) are respectively defined
as

H⊥
[w]k = Hk(IW −P[w]P

T
[w]), (2.67)

ϵZ,k(w) = ∆ ˆ̃GLS
[w]k ·

ˆ̃Π[w]k · Q̄−H
[w]kk, (2.68)

ϵΠ,k(w) = G̃[w]k ·∆ ˆ̃Π[w]k · Q̄−H
[w]kk. (2.69)

Furthermore, ∆ ˆ̃Π[w]k =
ˆ̃Π[w]k − Π̃[w]k, where Π̃[w]k is obtained from the first

rk singular vectors of K[G̃[w]k].

Proof. Obviously, E
[
∥∆ĤMB

[w]k∥2
]

= E
[
∥H⊥

[w]k∥2
]
+ E

[
∥∆ĜMB

[w]k∥2
]
, where

∆ĜMB
[w]k = ϵZ,k(w) + ϵΠ,k(w). Moreover, tr{E[ϵHΠ,k(w) · ϵZ,k(w)]} = 0 since

E[G̃H
[w]k ·∆

ˆ̃GLS
[w]k] = O.

Remark: For TSs satisfying Ej∈JLM
(l)[RXX t(j)]/Nt = IWNT

, we have

Q̄
−1/2
[w]kk = Iw/

√
Nt. Hence,

E[∥ϵZ,k(w)∥2] =
1

Nt

tr

{
K

j∈JLM
(l)

[
∆ ˆ̃GLS

[w]k(j)
]} rk

w

= σ2
zNR

ω(w)

Nt

rk, (2.70)

where we define whitening ratio ω(w) [61] as

ω(w) = tr

{
R̄XX t[w] · E

j∈JLM
(l)
[R−1

XX t[w](j)]

}
/ tr{IwNT

}

= Nt · tr

{
E

j∈JLM
(l)
[R−1

XX t[w](j)]

}
/ wNT . (2.71)

It should be noted that Ej∈JLM
(l)[R

−1
XX t[w](j)] = IwNT

/Nt is not always satis-

fied although R̄XX t[w] ≈ NtIwNT
. This is because (A+B)−1 = (A−1 +B−1)

does not hold in general for arbitrary invertible matrices A and B.
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2.C.3 Numerical examples

The same MIMO system as that in Section 2.4.1 are used. However, the
path number rk is assumed to be known in order to focus on analysis of the
residual error (2.68).

2.C.3.1 NMSE performance of the ℓ1 MB

Fig. 2.18 shows NMSE performance with random TSs, where the NMSE is
defined by E[∥ĤMB

[ŵ] −H∥2]/E[∥H∥2]. The TS length and the sliding window
length in the MB algorithm are set atNt = 127 and L = 50, respectively. The
TSs are re-generated every burst timing so that R̄XX t/Nt = IWNT

holds. As
shown in Fig. 2.18, the NMSE with the ℓ2 MB is 8 dB away from the perfor-
mance bound, NCRB, given by NCRB(σ2

z) = NRσ
2
z

∑NT

k=1 rk/(NtE[∥H∥2]).
This is because the whitening ratio with the random TSs becomes ω(W ) =
6.4 ≫ 1 and, thereby, the ℓ2 MB suffers from the noise enhancement in
(2.70). As observed from Fig. 2.18, the NMSE with the ℓ1 MB can be im-
proved significantly over that of the ℓ2 MB. The reason for the improvement
is detailed in the next section 2.C.3.2.

It should be noticed that the problem of the noise whitening can be
avoided by using a fixed TS pattern so that Ej∈JLM

(l)[R
−1
XX t

(j)] = R̄−1
XX t

.
Fig. 2.19 shows the NMSE performance with a fixed TS pattern. However,
as shown in Fig. 2.19, the NMSE with the ℓ2 MB is not improved due to
R̄XX t[W ]/Nt = RXX t[W ](l)/Nt ̸= IWNT

for a fixed random TS. Another

potential solution can be to process the noise whitening with R̃
1/2
XX t[W ]

∆
={

Ej∈JLM
(l)[R

−1
XX t[W ](j)]

}−1/2

so that the covariance matrixK[∆ ˆ̃GLS[W ](j)] yields

(2.65) correctly. Nevertheless, the ℓ2 MB does not improve the NMSE perfor-
mance significantly due to R̃XX t[W ]/Nt ̸= IWNT

, although simulation results
are omitted for the sake of conciseness.

After all, ideally uncorrelated TSs are needed to essentially solve the
problem of the noise whitening. As observed from Fig. 2.11 in Section 2.4.3,
both the ℓ1 MB and ℓ2 MB channel estimation techniques achieve the NCRB
asymptotically with the PN sequences.

In a large-scale MIMO system, nevertheless, finding the optimal sequence
combinations is an NP hard problem. The Gold sequence [62] is known as one
of the most promising solutions to the problem, although it can be inferior
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Fig. 2.18: The NMSE performance of the 4 × 4 MIMO system in the VA30
scenario by using the random TSs. The TSs are changed every burst timing.
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Fig. 2.19: The NMSE performance of the 4 × 4 MIMO system in the VA30
scenario by using the random TSs. The TSs are fixed to a certain sequence in to
avoid the noise whitening problem.
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Fig. 2.20: The NMSE performance comparison between the 4 × 4 and 16 × 16
MIMO systems. The Gold sequences are generated by initializing the two shift
registers with the indexes of the frame timing and the TX stream, where the
generator polynomials are {1+x3+x7, 1+x+x2+x3+x7} and {1+x4+x9, 1+
x3 + x4 + x6 + x9} for Nt = 127 and 511, respectively.

to the ideally chosen PN sequence.18 It is worth noting that, as shown in
Fig. 2.20, the NMSE improvement of the ℓ1 MB over the ℓ2 MB technique
becomes significant in a large-scale 16 × 16 MIMO system, where Nt = 511
is assumed.

18It is expected that there exist ideally uncorrelated Gold sequences. However, the
number of combinations for a length Nt = 511 Gold sequence in a 16× 16 MIMO system

becomes
(
5112

16

)
= 2.2 × 1073. We are, hence, very difficult to find the optimal sequence

combinations in a large-scale MIMO system, even though an off-line process.
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2.C.3.2 Error analysis

Figs. 2.21 and 2.22 show the NMSE performance for possible CIR lengths w,
rk < w ≤ W , where the random and PN TSs are used in Figs. 2.21 and 2.22,
respectively. The received SNR is set at 15 dB. As observed from Figs. 2.21
and 2.22, δ̄(w) = δ̄⊥(w) + δ̄Z(w) + δ̄Π(w) is satisfied, according to Theorem
1, where we define δ̄(w) =

∑NT

k=1E[∥∆ĤMB
[w]k∥2]/E [∥H∥2]. δ̄⊥(w), δ̄Z(w) and

δ̄Π(w) are defined similarly corresponding to the variances of (2.67), (2.68)
and (2.69), respectively.

In the case the random TSs are used, as shown in Fig. 2.21, the ℓ1 MB can
improve the NMSE of channel estimates significantly by selecting the CIR
length as argminw{δ̄⊥(w)≪ δ̄(w)}. In the case the TSs are generated with
the PN sequences, however, the improvement by the CIR length constraint is
very slight as shown in Fig. 2.22. This is because the whitening ratio becomes
ω(w) = 1 for ∀w when the TSs are ideally uncorrelated sequences.

It should be emphasized that the NMSE of channel estimates is domi-
nated by δ̄Z(w) in the CIR length range {w | δ̄⊥(w)≪ δ̄(w)}. Furthermore,
in that CIR length range, the NMSE δ̄Z(w) follows the analytical curve given
by (2.70). In other words, the NMSE performance of the ℓ1 MB algorithm
can be described via the whitening ratio (2.71). The next subsection shows,
therefore, asymptotic property of the whitening ratio for system setups as-
suming very long training lengths and/or massive TX streams.

2.C.3.3 Asymptotic property of the whitening ratio

Fig. 2.23 illustrates asymptotic property of the whitening ratio for the length
Nt of random TSs. The maximum CIR length W and the number of TX
streams NT are fixed at 31 and 4, respectively. As observed from Fig. 2.23,
the whitening ratio becomes much greater than 1 for a short training length
Nt = WNT . However, because of (2.55), the whitening ratio can be decreased
significantly by the CIR length constraint. Specifically,

∃w ≤ W, tr{R−1
XX t[w](l)}/w ≤ tr{R−1

XX t[W ](l)}/W (2.72)

holds by Theorem 7.7.8 in [54]. In the case the training length is long enough,
nevertheless, the ℓ1 MB cannot improve NMSE performance over the ℓ2 MB
algorithm since ω(w) ≈ 1 for any CIR length constraint ∀w.

Fig. 2.24 depicts the whitening ratio (2.71) for massive numbers of the
TX streams. The training length is set at Nt = WNT for the number NT
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Fig. 2.21: The NMSE performance for possible CIR lengths w, where the random
TSs are used. δ̄(w) denotes the NMSE of the channel estimate ĤMB

[w] . δ̄
⊥(w), δ̄Z(w)

and δ̄Π(w) are normalized variances of (2.67), (2.68) and (2.69), respectively. The
red dotted curve Analytical δ̄Z(w) is the NMSE normalized (2.70) with E[∥H∥2].
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Fig. 2.22: The NMSE performance for possible CIR lengths w, where the PN TSs
are used. δ̄(w) denotes the NMSE of the channel estimate ĤMB

[w] . δ̄⊥(w), δ̄Z(w)

and δ̄Π(w) are normalized variances of (2.67), (2.68) and (2.69), respectively. The
red dotted curve Analytical δ̄Z(w) is the NMSE normalized (2.70) with E[∥H∥2].
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Fig. 2.23: The whitening ratio ω(w) (2.71) for the TS length. Random TSs are
assumed.
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Fig. 2.24: The whitening ratio ω(w) (2.71) for the number of the TX streams.
Random TSs are assumed.

of the TX streams, where the maximum CIR length W is fixed at 31. As
shown in Fig. 2.24, the whitening ratio deteriorates as the number of TX
streams increases. Therefore, the ℓ1 MB algorithm is expected to improve
NMSE performance significantly in a massive MIMO system [63] when ideally
uncorrelated TSs are not used. In the case NT = 24 for example, the ℓ1 MB
has a possibility to achieve up to 14 dB of NMSE gain over the ℓ2 MB.
However, in a SISO or SIMO system, the NMSE gain becomes at most 3 dB
since ω(w) ≤ 2 for ∀w ≤ W .
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2.C.4 Summary

In the case the ideally uncorrelated TSs are not used, the subspace-based
ℓ2 MB technique can suffer from the noise enhancement. This is because
the noise whitening in the MB algorithm is not accurate enough. The ℓ1
MB algorithm can, however, compensate for the problem according to the
property (2.72), if the length w of the effective CIRs above the noise level is
shorter than the maximum CIR length W assumed in the system.

Furthermore, this appendix has discussed the asymptotic NMSE perfor-
mance of the ℓ1 MB algorithm via the whitening ratio ω(w). The whitening
ratio deteriorates as the TS length decreases or the number of TX streams
increases. The ℓ1 MB algorithm can, therefore, improve the NMSE perfor-
mance over the conventional ℓ2 MB technique in a massive MIMO system
when the TSs are not long enough and not ideally uncorrelated.
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Chapter 3

Spectrally Efficient Frame
Format–Aided Turbo Receiving
Techniques

Cyclic prefix-aided block transmission has been recently gaining pop-
ularity in block transmission systems such as in SC-FDMA and/or

OFDMA. One of the benefits of utilizing CP is to reduce the computational
complexity for signal detection while keeping the robustness against fading
frequency selectivity. The CP-transmission, on the other hand, imposes an
overhead in the transmission format structure. It is hence preferable to mini-
mize the length of the CP to improve the transmission energy- and spectrum-
efficiencies. However, it causes serious degradation in BER performance if
the length of the CP is shorter than the actual length of the CIR.

Chained turbo equalization (CHATUE) proposed in [64] provides a solu-
tion to this problem. CHATUE makes it possible to perform the frequency
domain equalization processing, even without a CP, while requiring the same
order of computational complexity as that of conventional frequency domain
turbo equalization with CP-transmission (TEQ-CP) [9–11]. Since CHATUE
requires no CP-transmission, it provides us with more design flexibility in
terms of energy- and spectral-efficiency tradeoff. In other words, CHATUE
enables us to transmit more information bits or to use a lower rate code
by utilizing the time duration allocated for the CP-transmission. Thereby,
CHATUE has a potential to improve performance over TEQ-CP, as de-
tailed in [65], in terms of required SNR or throughput efficiency. Never-
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theless, the previously-proposed CHATUE–referred to as CHATUE version
1 (CHATUE1)–has the following two problems, which are the consequence
of eliminating CP-transmission.

1. Latency : the CHATUE algorithms studied so far in [64], [65], [66]
require a processing latency three times that of TEQ-CP, since it per-
forms iterations over at least three blocks (past, current and future
blocks) to cancel the IBI. On the other hand, TEQ-CP performs turbo
iterations within the current block alone.

2. Noise Enhancement : CHATUE1 utilizes a so called J-matrix [67] to
retrieve the circulant structure of the channel matrix. However, a part
of the signal after the transformation suffers from noise enhancement
because of the multiplication of the J-matrix, as detailed in Section
3.1.3. The SNR at the equalizer output of CHATUE1, as a consequence,
is decreased compared to that of TEQ-CP.

This chapter shows that Problem 1) can be easily solved under a practical
assumption on the training sequence transmission. For Problem 2), this
chapter proposes a novel algorithm, CHATUE version 2 (CHATUE2).

Furthermore, this chapter proposes a new channel estimation technique,
chained turbo estimation (CHATES), that inherits the CHATUE concept, to
pursue further improvement of the spectrum efficiency. The required length
Nt of the TS is determined according to the length W of CIR. Conventional
LS-based estimation techniques requires Nt ≥ W (NT +1) to achieve accurate
channel estimates if the transmission format does not have a GI between the
TS and its neighboring segments. However, the CHATES requires a TS
length of only Nt = WNT , while it achieves the CRB asymptotically.

This chapter is organized as follows. Section 3.1 reviews the conventional
CHATUE1 technique and discusses the above-mentioned problems in detail.
The new CHATUE2 algorithm is also shown in Section 3.1. Section 3.2
proposes the new turbo channel estimation technique, CHATES. Section 3.3
presents results of computer simulations conducted to verify the effectiveness
of the proposed techniques. Specifically, BER performance versus Eb/N0 is
shown to validate if the proposed techniques improve the spectral efficiency
over the conventional techniques. Section 3.4 summarizes this chapter with
concluding remarks.

83



3.1 Channel Equalization

3.1.1 Signal model for channel equalization

The signal model (2.1) can be re-formulated to develop MIMO channel equal-
ization algorithms. Assuming a TS is transmitted at the head of every burst,
the vectorized received data segment yd(l) ∈ CNRÑd×1 for the transmitted
burst in the current burst timing l can be described as

yd(l) = H(l)sd(l) + H′(l)s′d(l) + H′′(l + 1)s′′d(l + 1) + zd, (3.1)

where the noise vector zd follows CN (0NRÑd
, σ2

zINRÑd
) with Ñd = Nd + L.

The length NTNd signal vectors are defined as

sd(l) = [xT
d,1(l), · · · ,xT

d,NT
(l)]T,

s′d(l) = [s′d,1(l)
T, · · · , s′d,NT

(l)T]T,

s′′d(l) = [s′′d,1(l + 1)T, · · · , s′′d,NT
(l + 1)T]T,

where s′d,k(l) = [01×(Nd−Nt) xT
t,k(l)]

T and s′′d,k(l+1) = [xT
t,k(l+1) 01×(Nd−Nt)]

T.

The NRÑd ×NTNd CIR matrix H(l) is defined as

H(l) =

 H{1,1}(l) · · · H{1,NT }(l)
...

. . .
...

H{NR,1}(l) · · · H{NR,NT }(l)

 , (3.2)

where the (i, j)-th submatrix H{i,j}(l) denotes the Ñd × Nd Toeplitz matrix
whose first column vector is [hT

i,j(l) 01×(Ñd−W )]
T with hi,j(l) being the length-

W symbol CIR vector for the (i, j)-th Rx-Tx link. The NRÑd ×NTNd CIR
matrices H′(l) and H′′(l+1) are, similar to (3.2), structured with submatrices
given by

H′{i,j}(l) =

[
OL×(Nd−L) H′∇{i,j}(l)

ONd×(Nd−L) ONd×L

]
(3.3)

and

H′′{i,j}(l + 1) =

[
ONd×L ONd×(Nd−L)

H′′∆{i,j}(l + 1) OL×(Nd−L)

]
, (3.4)
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respectively, where we define

H′∇{i,j}(l) =


hi,j(W ; l) hi,j(W − 1; l) · · · hi,j(2; l)

hi,j(W ; l) · · · hi,j(3; l)
. . .

...
0 hi,j(W ; l)

 ,

and

H′′∆{i,j}(l) =


hi,j(1; l) 0
hi,j(2; l) hi,j(1; l)

...
...

. . .

hi,j(L; l) hi,j(L− 1; l) · · · hi,j(1; l)

 .

3.1.2 CHATUE1

By combining CHATUE1 [66] with the MIMO turbo equalization shown
in [10,11], the equalizer output of MIMO CHATUE1 for the k-th TX stream
can be described as

q
[1]
k (l) =

(
INd

+ Γk(l)Ŝk(l)
)−1

·
[
Γk(l)ŝd,k(l) + FH

NR
Φ̂H

k (l)Ω
−1
k (l)FNR

r̃d(l)
]
, (3.5)

where the residual r̃d(l) ∈ CNRNd×1 is given by

r̃d(l) = rd(l)− r̂d(l) (3.6)

= J̃yd(l)− J̃ŷd(l) (3.7)

with

ŷd(l) = Ĥ(l)ŝd(l) + Ĥ′(l)ŝ′d(l) + Ĥ′′(l + 1)ŝ′′d(l + 1). (3.8)

The J̃-matrix denotes INR
⊗J, where the J-matrix proposed in [67] are defined

as

J =

(
O(Nd−L)×L

INdIL

)
∈ RNd×(Nd+L). (3.9)

Moreover, Ŝk(l) = DIAG{ŝd,k(l)⊙ ŝ∗d,k(l)} ≈ (∥ŝd,k(l)∥2/Nd)INd
and

Φ̂k(l) = FNR
J̃Ĥk(l)F

H (3.10)
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is anNRNd×Nd sub-block-wise diagonalized matrix1, where Ĥk(l) ∈ CNRÑd×Nd

denotes a channel estimate matrix for the k-th TX stream which corresponds
to the k-th column block in (3.2). DIAG(x) forms a diagonal matrix from its
argument vector x. FN denotes IN ⊗ F, where F ∈ CNd×Nd is the DFT
matrix whose entry is defined by (1.4). The matrix Ω(l) ∈ CNRNd×NRNd in
(3.5) is given by

Ωk(l) = FNR
Σk(l)F

H
NR

, (3.11)

where

Σk(l) = J̃Ĥk(l)Λk(l){J̃Ĥk(l)}H

+ J̃Ĥ′k(l)Λ
′
k(l){J̃Ĥ′k(l)}H

+ J̃Ĥ′′k(l + 1)Λ′′
k(l + 1){J̃Ĥ′′k(l + 1)}H

+ σ2
nJ̃J̃

H (3.12)

with

Λk(l) = E
[
{ŝd,k(l)− sd,k(l)}{ŝd,k(l)− sd,k(l)}H

]
,

Λ′
k(l) = E

[
{ŝ′d,k(l)− s′d,k(l)}{ŝ′d,k(l)− s′d,k(l)}H

]
and

Λ′′
k(l + 1) = E

[
{ŝ′′d,k(l + 1)− s′′d,k(l + 1)} · {ŝ′′d,k(l + 1)− s′′d,k(l + 1)}H

]
.

However, taking account of Λ′
k(l) = Λ′′

k(l + 1) = O, because ŝ′d,k(l) and
ŝ′′d,k(l + 1) are the known training sequence, (3.11) is reduced to (3.14):

Ωk(l) = FNR

{
J̃Ĥk(l)Λk(l)(J̃Ĥk(l))

H + σ2
z J̃J̃

H
}
FH

NR
(3.13)

≈ Φ̂k(l)∆k(l)Φ̂k(l)
H + σ2

z

Nd + L

Nd

INRNd
, (3.14)

with approximations (3.15) and (3.16) proposed in [9–11] and [66], respec-
tively:

∆k(l) =
(
σ2
x − ∥ŝd,k(l)∥2/Nd

)
INRNd

≈ FNT
Λk(l)F

H
NT

, (3.15)

σ2
z

Nd + L

Nd

INRNd
= σ2

z

tr(J̃J̃H)

NRNd

INRNd
≈ σ2

zFNR
J̃J̃HFH

NR
. (3.16)

1The n-th Nd×Nd sub-block of Φ̂k(l) is a diagonal matrix, the diagonal entry of which
represents the frequency response corresponding to the time domain CIR vector hn,k for
the (n, k)-th Rx-Tx link.
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Similarly, Γk(l) ∈ CNd×Nd is approximated by (3.18).

Γk(l) = diag
[
(J̃Ĥk(l))

HΣ−1
k (l)J̃Ĥk(l)

]
(3.17)

≈ 1

Nd

tr
[
Φ̂H

k (l)Ω
−1
k (l)Φ̂k(l)

]
INd

. (3.18)

We assume the final output of CHATUE1 q
[1]
k (l) can be approximated as

an equivalent Gaussian channel output [6], [58] having input sd,k(l), as

q
[1]
k (l) = µq[1],k(l)sd,k(l) + zq[1],k(l), (3.19)

where

µq[1],k(l) =
1

Nd

tr
{
E[q[1]k (l)sHd,k(l)]

}
=
∥sd,k(l)∥2

N2
d

tr
{
(INd

+ Γk(l)Ŝk(l))
−1Γk(l)

}
(3.20)

and zq[1],k(l) ∼ CN (0Nd
, σ2

q[1],k(l)INd
) with

σ2
q[1],k(l) = µq[1],k(l)(1− µq[1],k(l)). (3.21)

We finally convert the equalizer output q
[1]
k (l) into its corresponding extrinsic

LLR, as

λe
EQU,k(l) =

4R(q
[1]
k (l))

1− µq[1],k(l)
, (3.22)

where R(v) denotes the real part of the complex vector v.

3.1.3 Noise enhancement with CHATUE1

By utilizing the J̃-matrix, CHATUE1 has the potential to improve the spectral-
and/or energy-efficiencies while keeping the computational complexity order
equivalent to that of TEQ-CP. However, CHATUE1 inevitably incurs a noise
enhancement problem shown as follows, where the subscript k of TX stream
is omitted for the sake of simplicity.
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After enough iterations, we can assume E[||ŝd(l)||2]/Nd → 1 at a certain
SNR.2 The mean (3.20) converges to

µq[1] →
Nd

Nd + (Nd + L)σ2
z

, (3.23)

as described in Appendix. The variance of the equivalent Gaussian channel
output (3.21) also converges into

σ2
q[1](l) →

Nd(Nd + L)σ2
z

{Nd + (Nd + L)σ2
z}2

. (3.24)

According to [9], the mean µq[CP] and the variance σ2
q[CP] of the output of

TEQ-CP converge into:

µq[CP] →
1

1 + σ2
z

, (3.25)

σ2
q[CP] →

σ2
z

{1 + σ2
z}2

, (3.26)

respectively, when E[||ŝd(l)||2]→ 1.
The asymptotic SNR, SNRq[1], of the equalizer output with CHATUE1 is

reduced to

SNRq[1] =
µ2
q[1]

σ2
q[1]

→ Nd

(Nd + L)σ2
z

. (3.27)

Similarly, the asymptotic SNR, SNRq[CP], of the equalizer output with TEQ-
CP is reduced to

SNRq[CP] =
µ2
q[CP]

σ2
q[CP]

→ 1

σ2
z

. (3.28)

The SNR ratio at the equalizer output of CHATUE1 to that of TEQ-CP is,
hence,

1

2
≤

SNRq[1]

SNRq[CP]

=
Nd

Nd + L
≤ 1. (3.29)

The inequality (3.29) is because Nd ≥ L ≥ 0. The final output (3.5) of
CHATUE1, thereby, suffers from the noise enhancement of up to 3 dB over
TEQ-CP as the IBI length L increases. Fig. 3.1 illustrates the noise en-
hancement problem of the CHATUE1 algorithm.

2The required SNR falls into the issue of matching between the equalizer and decoder’s
EXIT curves. However, it is out of the scope of this thesis.
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Fig. 3.1: Noise enhancement problem of CHATUE1 algorithm. Intuitively, the
operation with J-matrix adds the leaked current signal to the future block onto
the head part of the current signal, which causes the noise enhancement problem.

3.1.4 CHATUE2

A motivation of utilizing the J̃-matrix in CHATUE1 is to reduce the compu-
tational complexity by restoring the circulant structure of the channel matrix.
Although Hk ∈ CNR(Nd+L)×Nd is a Toepliz matrix, J̃Hk ∈ CNRNd×Nd becomes
a circulant matrix. Thereby, it is possible to reduce the complexity by ex-
ploiting frequency domain processing, since FNR

J̃HkF
H is a sub-block-wise

diagonalized matrix. On the other hand, the CHATUE1 incurs the noise
enhancement problem due to the exploitation of the J̃-matrix, as detailed in
Section 3.1.3. To cope with the noise enhancement problem, we propose a
new algorithm, CHATUE2, by introducing a new circulant property restora-
tion method, as follows.

rd(l) ≈ r̄d(l)
∆
= J̃L(1− β)yd(l) + G̃L(β)ŷd(l), (3.30)

with J̃L(1 − β) = INR
⊗ JL(1 − β) and G̃L(1 − β) = INR

⊗ GL(1 − β) where
Nd × (Nd + L) matrices JL and GL are respectively defined as

JL(1− β) =

(
O(Nd−L)×L

INd(1− β)IL

)
, (3.31)

GL(β) =

(
ONd

O(Nd−L)×L

βIL

)
. (3.32)
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Fig. 3.2: Composite replica. Note that the operation with J-matrix does not
cause the noise enhancement problem, if the leaked current signal to the future
block does not contain the noise.

Note that the original J-matrix (3.9) is identical to JL(1). Moreover, the
entries for the i-th Rx antenna in (3.30) can be described as

r̄d(l)|1+d:Nd+d =



yd(L+ 1 + d; l)
...

yd(Nd + d; l)
yd(1 + d; l) + ȳd(Nd + 1 + d; l, β)

...
yd(L+ d; l) + ȳd(Nd + L+ d; l, β)


(3.33)

with the index offset d = Nd(i− 1), where the composite replica ȳ(k; l, β) is
defined as

ȳ(k; l, β) = (1− β)yd(k; l) + βŷd(k; l). (3.34)

Fig. 3.2 shows a schematic diagram of the composite replica. We define the
factor β such that the squared error between ȳd(l, β) and cd(l) = H(l)sd(l) +
H′(l)s′d(l) + H′′(l)s′′d(l) is minimized, which can be formulated as

β = arg min
β

∥cd(l)− ȳd(l, β)∥2, (3.35)
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where ȳd(l, β) denotes the vector version of (3.34), defined as ȳd(l, β) =
(1 − β)yd(l) + βŷd(l). By taking ∥cd(l) − ȳd(l, β)∥2 ≥ 0 into account, the
problem (3.35) can be reduced by solving

∂

∂β
∥cd(l)− ȳd(l, β)∥2 = 0. (3.36)

Since cd(l) = yd(l)− zd, the solution to (3.35) is, therefore,

β =
σ2
zNRÑd

∥yd(l)− ŷd(l)∥2
. (3.37)

Accordingly, we rewrite (3.14) as,

Ω(l) = FNR

{
J̃L(1)Ĥk(l)Λk(l){J̃L(1)Ĥk(l)}H + σ2

z J̃L(1− β)J̃L(1− β)H
}
FH

NR

≈ Φ̂k(l)∆k(l)Φ̂k(l)
H + σ2

z

Nd + (1− β)L

Nd

INRNd
. (3.38)

3.1.5 Improvement of the noise enhancement by CHATUE2

The proposed CHATUE2 algorithm using (3.30) and (3.38) is expected to
have the following advantageous points: At the first iteration, (3.30) with
β ≈ 0 is equivalent to the original rd(l) = J̃L(1)yd(l) and CHATUE2 works
in the same way as in CHATUE1. After enough iterations are performed,
it is expected to satisfy both β → 1 and E

[
||Ĥ− H||2

]
< ϵ + aCRBN̄(σ

2
z)

with an arbitrary small positive value ϵ. The lower bound aCRBN̄(σ
2
z) of the

estimation accuracy is given by (2.44) in Section 2.3.2.4. The channel matrix
in r̄d approaches a matrix having a circulant structure when the estimate Ĥ
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is accurate. Concretely, for the {i, j}-th Rx-Tx link, it can be observed that

JL(1− β)Hd{i,j} +GL(β)Ĥd{i,j}
β→1
=

h(W ) · · · h{i,j}(2) h{i,j}(1)
. . .

... h{i,j}(2) h{i,j}(1)

h{i,j}(W )
... h{i,j}(2)

. . .

h{i,j}(W )
...

. . . h{i,j}(1)

ĥ{i,j}(1) h{i,j}(W ) h{i,j}(2)
...

. . . . . .
...

ĥ{i,j}(L) · · · ĥ{i,j}(1) h{i,j}(W )


,

(3.39)

where h{i,j}(w) and ĥ{i,j}(w) denote the w-th entries of the CIR vector h{i,j}

and its estimate ĥ{i,j}, respectively. The burst index l is omitted for the
sake of simplicity. The convergence β → 1 contributes to reducing the noise
variance (3.21), through (3.18), (3.20) and (3.38). The mean µq[2] and the
variance σ2

q[2] of the equalizer output with CHATUE2, respectively, converge
into:

µq[2] →
Nd

Nd + (Nd + (1− β)L)σ2
z

, (3.40)

σ2
q[2] →

Nd(Nd + (1− β)L)σ2
z

{Nd + (Nd + (1− β)L)σ2
z}2

, (3.41)

when E[||ŝ(l)||2] → 1. Thereby, CHATUE2 improves the signal to noise
power ratio SNRq[2] at the final equalizer output and it approaches that with
TEQ-CP when β → 1, as

SNRq[2] =
µ2
q[2]

σ2
q[2]

(3.42)

→ Nd

{Nd + (1− β)L}σ2
z

β→1−→ 1

σ2
z

= SNRq[CP].

3.1.6 Computational complexity order

The computational complexity ordersO(·) required for the TEQ-CP, CHATUE1
and CHATUE2 techniques are summarized in Table 3.1. It should be em-
phasized that we have O(NTNRNd logNd+NTNRW

2) = O(NTNRNd logNd)
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Table 3.1: Computational complexity orders for equalization algorithms

Algorithm Complexity order Details (i, · · · , xiii)
TEQ-CP O(NTNRNd logNd) all except (viii, ix)
CHATUE1 O(NTNRNd logNd +NTNRW

2) all except (viii, ix)
CHATUE2 O(NTNRNd logNd +NTNRW

2) all (i, · · · , xiii)

when W ≪ Nd. Therefore, the complexity order needed for CHATUE2 be-
comes the same as that of the conventional TEQ-CP technique. The com-
plexity order analysis is discussed further after detailing the complexity order
needed for (3.5) which can describe the equalizer outputs of all the TEQ-CP,
CHATUE1 and CHATUE2 techniques.

3.1.6.1 Details of the computational complexity order for the equal-
izer output (3.5)

Table 3.2 shows details of the complexity orders required for the equalizer
output (3.5). The complexity orders indicated by the rows (i,ii,iii,v,viii,x)
in Table 3.2 can be derived easily by noticing that the sub-block-wise diag-
onalized matrices Φ̂k(l) and Ωk(l) are sparse. For (xi, xii), we assume that
the FFT and inverse fast Fourier transform (IFFT) operations requires the
complexity order of O(N logN) for a length N input signal. The reasons for
(iv, vi, vii, ix, xiii) are as follows:

(iv) The inversion of an N × N matrix requires the complexity order of
O(N3), generally. However, by noticing the sparse structure of the
NRNd×NRNd matrix Ωk(l), the calculation of Ω−1

k (l) is reduced to Nd

problems of an NR ×NR matrix inversion.

(vi) The complexity order required for (3.18) is dominated by the multipli-
cation of the sparse matrices: (Φ̂H

k (l)Ω
−1
k (l)) · Φ̂k(l).

(vii) The complexity order required for (3.8) is dominated by the term
Ĥ(l)ŝd(l). The matrix-vector multiplication needs O(NRNTN

2
d ) if it is

computed in the time-domain purely. Similar to (3.5), however, notice
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Table 3.2: Details of the complexity orders O(·) in the equalizer output (3.5)

Symbol Eqn. O(·) for NT TX streams

(i) Φ̂k(l) (3.10) O(NT ·NRNd logNd)
(ii) ∆k(l) (3.15) O(NT ·Nd)
(iii) Ωk(l) (3.14) O(NT ·NRNd)
(iv) Ω−1

k (l) (3.5) O(NT ·N3
RNd)

(v) Φ̂H
k (l) ·Ω−1

k (l) (3.5) O(NT ·N2
RNd)

(vi) Γk(l) (3.18) O(NT ·N2
RNd)

(vii) ŷd(l) (3.8) O((NR +NT )Nd logNd

+ NTNRW
2)

(viii) β (3.35) O(NRÑd)
(ix) r̄d (3.30) O(NRW )
(x) r̃d (3.7) O(NRNd)

(xi) FNR
· r̃d(l) (3.5) O(NT ·NRÑd log(NRÑd))

(xii) FH
NR
· (3.5) O(NT ·NRNd log(NRNd)){

Φ̂H
k (l)Ω

−1
k (l)FNR

r̃d(l)
}

(xiii)
(
INd

+ Γk(l)Ŝk(l)
)−1

(3.5) O(NT )
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that we may utilize the frequency-domain operations. Concretely,

Ĥ(l)ŝd(l) =
{
K̃J̃Ĥ(l)−

(
Ĥ′(l) + Ĥ′′(l)

)}
ŝd(l) (3.43)

= K̃FH
NR

[
Φ̂1(l), · · · , Φ̂NT

(l)
]
FH

NT
Ĥ(l)ŝd(l)

−
(
Ĥ′(l) + Ĥ′′(l)

)
ŝd(l), (3.44)

where K̃ = INR
⊗ K with

K =

(
OL×(Nd−L) IL

INd

)
∈ RÑd×Nd . (3.45)

The complexity order needed for the first line of (3.44) is dominated
by the FFT and IFFT operations:

O(NRNd logNRNd +NTNd logNTNd) = O((NR +NT )Nd logNd)

since Φ̂k(l) is the sub-block-wise diagonalized matrix. The complexity
order needed for the second line of (3.44) is O(NRNTW

2). Notice that
the total complexity order of (vii) becomes

O((NR +NT )Nd logNd +NTNRW
2) = O((NR +NT )Nd logNd)

when W ≪ Nd.

(ix) As discussed in (3.33), the operations with the J̃L and G̃L matrices
performs the additions only for the L = W − 1 symbols in the NR

received signals.

(xiii) The matrix (INd
+ Γk(l)Ŝk(l)) is proportional to the identity matrix.

Thereby, the complexity order needed for the matrix inverse is O(1)
for a TX stream.

3.1.6.2 TEQ-CP

The conventional TEQ-CP technique performs the equations in Table 3.2
indicated by all the rows (i, · · · , xiii) except (viii, ix). The output of TEQ-
CP is also described with (3.5) by assuming J = INd

. The matrix Ωk(l) for
TEQ-CP is, therefore, denoted by (3.14) with L = 0. Notice that (vii) for
TEQ-CP becomes O((NR+NT )Nd logNd). This is because H(l) is a circulant
matrix due to the CP-transmission, and thereby, the second line of (3.44) is
eliminated.
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3.1.6.3 CHATUE1 and CHATUE2

The CHATUE2 algorithm performs all the equations of the rows (i, · · · , xiii)
in Table 3.2, whereas the CHATUE1 technique computes all the 13 equations
except (viii, ix) which are needed to construct the composite replica. Note
that the complexity order required for (viii, ix) is very minor. Hence, the
complexity order required for the CHATUE2 algorithm is the same as that
of CHATUE1, although the number of operations is increased slightly.

3.2 Channel Estimation

Turbo channel estimation can estimate the CIR accurately even though the
TS length is short, since it extends the reference signal by utilizing the LLR
of the transmitted data, fed back from the decoder. Obviously, a shorter
TS is preferable from the viewpoint of the spectral efficiency. In practice,
the TS length is designed such that Nt ≥ WNT to estimate length W CIRs
over NT TX streams. With Nt = WNT , however, the estimation accuracy
is degraded because the input signal to the estimator suffers from IBI, as we
can observe from the input data range (b) in Fig. 1.2 when NG1 = NG2 = 0.

To cope with this problem, we propose a new chained turbo channel es-
timation (CHATES) technique which performs IBI cancelation for channel
estimation. The proposed technique is based on the concept of the CHATUE
and improves the spectral efficiency without sacrificing the estimation accu-
racy after enough turbo iterations. It should be noted, however, CHATES
can be applied to the transmission format with a CP as well.

3.2.1 Signal model for channel estimation

We re-formulate the signal model to develop channel estimation algorithms.
The received signals Yt(l) corresponding to the transmitted TS section can
be described, as

Yt(l) = Hc(l)Xc(l) +Hp(l − 1)Xp(l − 1) +Hf (l)Xf (l) + Zt (3.46)

where the matrices Hc(l) and Xc(l) denote the CIR matrix H(l) (2.2) and the
TS matrix Xt(l) (2.8), respectively, for the current block l. The second and
third terms on the right-hand side (RHS) of (3.46) are the IBI from the past
and future blocks, where we denote the CIR matrices by Hp(l−1) = H(l−1)
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andHf (l) = H(l) by assuming that the burst format shown in Fig. 2.3 is used.
The matrices Xp(l − 1) and Xf (l) are composed of a submatrix of the data
matrix Xd (2.9). Specifically, they are defined by

Xp(l − 1) = [XT
p,1(l − 1), · · · ,XT

p,NT
(l − 1)]T, (3.47)

Xf (l) = [XT
f,1(l), · · · ,XT

f,NT
(l)]T (3.48)

with W × Ñt submatrices

Xp,k(l − 1) =
[
X̃d,k(l − 1)|(ÑD+N ′

G2−W+2):ÑD
, OW×(Nt+N ′

G2)

]
Xf,k(l) =

[
OW×(Nt+N ′

G1)
, X̃d,k(l)|1:(W−N ′

G1−1)

]
,

where X̃d,k(l) is the W × ÑD Toeplitz matrix, the first row vector of which
is [x̃T

d,k(l),0
T
W−1] with

x̃d,k(l) =

{
[xT

CP,k(l),x
T
d,k(l)]

T (NCP > 0)
xd,k(l) (NCP = 0)

(3.49)

and ÑD = NCP+Nd+W −1. We denote, moreover, N ′
G1 = min(NG1,W −1)

and N ′
G2 = min(NG2,W − 1). Notice that the IBI components Xp and Xf

vanish when both the guard interval lengths (NG1, NG2) are greater than
W − 1 since Xp,k(l − 1) = Xf,k(l) = OW×Ñt

. The j-th row vector in Zt ∈
CNR×Ñt follows CN (0T

Ñt
, σ2

zIÑt
).

3.2.2 CHATES

We define an IBI canceled version of the received training sequence Ỹ [i]
t (l) ∈

CNR×Ñt for the current burst l at the i-th iteration as follows:

Ỹ [i]
t (l) = Yt(l)−

{
Ĥ[i−1]

p (l − 1) X̂ [i−1]
p (l − 1) + Ĥ[i−1]

f (l) X̂ [i−1]
f (l)

}
, (3.50)

where Ĥ[i−1]
p (l − 1), X̂ [i−1]

p (l − 1), Ĥ[i−1]
f (l) and X̂ [i−1]

f (l) are obtained as the
result of the (i − 1)-th turbo iteration. Any channel estimation algorithm
shown in Chapter 2 can be performed with (3.50).
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3.2.3 Self-supervised ℓ1 MB channel estimation (s-ℓ1
MB)

The channel estimation technique with (3.50) is expected to improve the
estimation accuracy after performing enough turbo iterations. It should be
noticed that, however, in the first iteration i = 1, the receiver does not have
the soft replica matrix X̂ [i−1]

f (l) of the current l-th burst’s TX data sequence.
For this problem, the ℓ1 MB channel estimation shown in Section 2.2.2 may
be utilized to improve IBIs by the CIR length constraint. Nevertheless, the
ℓ1 MB technique also requires the soft replica X̂ [i−1]

f (l) in order to accurately
determine the best CIR length with the AIC. Therefore, this section proposes
a new self-supervised ℓ1 MB (s-ℓ1 MB) channel estimation algorithm [68]
under the subspace channel model assumption.

3.2.3.1 Problem formulation

The s-ℓ1 MB channel estimation is a version of the ℓ1 MB technique which

can be formulated by a conditional MMSE problem of (2.24), given ΘU
∆
=

[vec{U1}T, · · · , vec{UNT
}T]T, as

Ĥs-MB
[w] (l) = arg min

H[w](l,Θ)
E

j∈JLM
(l)

[
Ltd(j,H[w] (j,Θ) | ΘU)

]
. (3.51)

The CIR length w is determined by

ŵ = max
1≤k≤NT

ŵk, (3.52)

where

ŵk = arg min
w

E
[∥∥∥ĤMB

[w],k(l)−Hk(l)
∥∥∥2
]

(3.53)

for the k-th TX stream.

3.2.3.2 Solution to (3.51)

It should be noticed that (3.51) aims to derive the optimal burst dependent
parameter ΘB = [θTB,1, · · · , θTB,NT

]T if the CIR parameter description (2.25)
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is correct. Hence, as detailed in [24], problem (3.51) is reduced to an LS prob-
lem, the solution of which can be given by Ĥs-MB

[w] (l) = [Ĥs-MB
[w,i],1(l), · · · , Ĥs-MB

[w,i],NT
(l)]

with

Ĥs-MB
[w,i],k(l) = ĤLS

[w,i],k(l) · PΠ(Uk) (3.54)

and PΠ(Uk) = UkU
†
k, where the subscripts [w, i] describe the CIR length

constraint w and the i-th turbo iteration, respectively.
However, the parameter Uk is not known in general. Nevertheless, Uk

is independent of the burst timings under the subspace channel model as-
sumption. Thereby, PΠ(Uk) may be approximated by using the projection

matrix ˆ̃Π[W,Nturbo],k obtained as the result of the Nturbo turbo iteration in the
previous frame.3 The channel estimate matrix of the s-ℓ1 MB can concretely
be written, as

Ĥs-MB
[w,i],k(l) = ˆ̃HLS

[w,i],k(l) ·
ˆ̃Π[W,Nturbo],kQ̄

−H
[W,Nturbo],kk

(3.55)

for the k-th TX stream, where the W × W whitening matrix Q̄[W,Nturbo],kj

is the (k, j)-th block matrix of the Cholesky decomposition for R̄ΦΦ[W,Nturbo]
.

The matrix ˆ̃HLS
[w,i],k(l) is defined similarly by (2.27) with the ℓ1 LS channel

estimate and Q̄[W,Nturbo],kj.
As demonstrated later, (3.55) improves4 channel estimation accuracy sig-

nificantly over the ℓ2 MB channel estimate:

ĤMB
[W,i],k(l) = ĤLS

[W,i],k(l) ·
ˆ̃Π[W,i],kQ̄

−H
[W,i],kk (3.56)

in IBI scenarios for the first turbo iteration (i = 1). This is because the PCA

to derive ˆ̃Π[w,i],k cannot be performed accurately when the cancel terms in
(3.50) are not available.

3Therefore, the s-ℓ1 MB is a self-supervised technique.
4The improvement is expected when Nturbo > 1. In other words, (3.55) with Nturbo = 1

does not improve channel estimation performance since it becomes identical to (3.56).
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3.2.3.3 Solution to (3.52)

Since ĤMB
[w],k(l) = ĜMB

[w],k(l)P
T
[w] with P[w] = IW |1:w, the solution can be obtained

via (3.57):

E
[∥∥∥ĜMB

[w],kP
T
[w] −Hk

∥∥∥2
]

= E
[∥∥∥{ĜLS

[w],kP
T
[w] −Hk

}
PΠ(Uk)

∥∥∥2
]

=
rk
w
E
[∥∥∥ĜLS

[w],k −Gk

∥∥∥2
]
+ E

[∥∥H⊥
[w],k

∥∥2
]
, (3.57)

where Gk(l) = Hk(l)P[w], H
⊥
[w],k(l) = Hk(l)−Gk(l)P

T
[w] and the burst timing

l is omitted for the sake of simplicity. Notice that the second term of (3.57)
may be approximated as E[∥H⊥

[w],k∥2] ≈ E[∥ĤMB
[W,Nturbo],k

(IW − P[w]P
T
[w])∥2] by

using the ℓ2 MB channel estimate ĤMB
[W,Nturbo],k

obtained after Nturbo turbo
iterations.

We investigate, therefore, the MSE of the ℓ1 LS in IBI channels to clarify
the first term of (3.57). Moreover, the MSE analysis is focused on the channel
estimation with the TS only, because the s-ℓ1 MB aims to improve channel
estimation accuracy for the first turbo iteration.

Since the received signal (3.46) suffers from IBIs, the MSE of the ℓ1 LS
for NT TX streams becomes

E
[
∥ĤLS

[w] −H∥2
]

= E
[
∥Z̃XH

c P[w]R
−1
ΦΦt[w]∥

2
]
+ E

[
∥H⊥

[w]∥2
]

(3.58)

where Z̃ = Z +HpXp +HfXf , P[w] = INT
⊗ P[w], RΦΦt[w] = PT

[w]RXX tP[w]

and H⊥
[w] = H[w](IWNT

−P[w]P
T
[w]). The first term on the RHS can be reduced

to the following: by E[RΦΦt[w]]/N̄t = IwNT
,

E
[
∥Z̃XH

c P[w]R
−1
ΦΦt[w]∥

2
]

=
1

N̄2
t

E
[
∥ZXH

c P[w]∥2 + ∥(HpXp +HfXf )XH
c P[w]∥2

]
(3.59)

= 1T
wNT

[
1NT
⊗
{
NR

N̄t

σ2
zIw +PT

[w]eIBI

}]
, (3.60)

where we define

eIBI =
σ4
x

N̄2
t

Tc (Tp(NG2) +Tf (NG1))
T

NT∑
k=1

d̄H,k (3.61)
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with the delay profile vector for the k-th TX stream

d̄H,k = diag{K[Hk]}. (3.62)

The W × Ñt matrix Tc denotes a Toeplitz matrix, the first row vector
of which is [1T

Nt
, 0T

W−1] ∈ R1×Ñt . We define, moreover, that Tp(NG2) =[
T∆|(1+NG2):W , OW×(Ñt−(W−NG2))

]
andTf (NG1) =

[
OW×(Ñt−(W−NG1))

, TT
∆|1:(W−NG1))

]
with

T∆ =


0 0

1
. . .

...
. . . . . .

1 · · · 1 0

 ∈ RW×W .

The derivation of (3.60) is detailed in Appendix 3.B. Therefore, the MSE
for the k-th TX stream is reduced to

E
[
∥ĤLS

[w],k −Hk∥2
]

= E
[∥∥∥ĜLS

[w],k −Gk

∥∥∥2
]
+ E

[∥∥H⊥
[w],k

∥∥2
]

= NR
w

N̄t

σ2
z + 1T

w(eIBI|1:w) + E
[∥∥H⊥

[w],k

∥∥2
]
. (3.63)

By the definition of the matrices Tc, Tp and Tf , we notice that

eIBI = eIBI,p + eIBI,f , (3.64)

where the i-th entries of eIBI,p and eIBI,f are, respectively,

eIBI,p|i =
σ4
x

N̄2
t

W∑
j=i+NG2+1

(j − i−NG2)

NT∑
k=1

d̄H,k,j, (1 ≤ i ≤ W )

eIBI,f |i =


0, (i ≤ NG1)

σ4
x

N̄2
t

i−NG1−1∑
j=1

(i− j −NG1)

NT∑
k=1

d̄H,k,j, (1 +NG1 ≤ i ≤ W )

with d̄H,k,j denoting the j-th entry of the delay profile vector d̄H,k.
Consequently, problem (3.53) is reduced to

ŵk = arg min
1≤w≤W

{
r̂k

(
NR

N̄t

σ2
z +

1T
w(eIBI|1:w)

w

)
+ 1T

W−w(d̄H,k|(w+1):W )

}
, (3.65)
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which can be solved easily with the delay profile vector d̄H,k given by (3.62).
The rank r̂k of the CIR Hk can be approximated with that for the channel
estimate ĤMB

[W,Nturbo]
(lp) obtained by the ℓ2 MB technique at the last Nturbo-th

iteration, where lp = ⌊(l− 1)/NB⌋NB denotes the last NB-th burst timing in
the previous frame. The operation ⌊·⌋ is the floor function.

3.2.3.4 The s-ℓ1 MB algorithm

Algorithm 5 summarizes the above-mentioned s-ℓ1 MB technique, where the
self-supervised subspace projection is applied for the first turbo iteration
only. It should be noted that, as demonstrated in Section 3.3.2.3, Algorithm
5 can achieve the asymptotic MSE performance in two iterations, as long as
the subspace projection obtained in the previous frame is accurate enough.
The s-ℓ1 MB technique may, however, be applied after the second iteration
as well, when the soft replica signals is not accurate enough. Convergence
performance improvement including such the approach is a future work of
this thesis.

Algorithm 5 The CHATES with the s-ℓ1 MB techniques.

1: The counter i denotes the i-th turbo iteration.
2: if i = 1 then
3: Estimate the CIR length ŵ by (3.53).
4: Obtain ĤLS

[ŵ] by performing the ℓ1 LS (2.5) with the estimated CIR
length ŵ.

5: Obtain Ĥs-MB
[ŵ] (3.55) with ĤLS

[ŵ], where the subspace projection and
whitening matrices are that obtained in the previous frame.

6: else
7: Perform the ℓ2 MB (2.22) with λ(j) = 0 for the IBI canceled received

signal (3.50).
8: end if

3.2.4 Computational complexity order

The computational complexity orders O(·) required for the CHATES tech-
niques are summarized in Table 3.3. The CHATES techniques combined with
the ℓ2 MB and/or s-ℓ1 MB algorithms require the same complexity order as
that of the ordinary ℓ2 MB channel estimation assumed the length-W symbol
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Table 3.3: Computational complexity orders for the CHATES algorithms

Algorithm Computational complexity order

ℓ2 MB (GI assumed) O(W 2N2
T Ñtd +W 3N3

TN
3
R)

CHATES with ℓ2 MB O(W 2N2
T Ñtd +W 3N3

TN
3
R)

CHATES with s-ℓ1 MB O(W 2N2
T Ñtd +W 3N3

TN
3
R)

GI. This is because the complexity order required for the IBI canceling (3.50)
is O(W 2NTNR) by noticing the sparse structure of the matrices X̂p and X̂f .
Moreover, the complexity order needed for the CIR length estimation (3.52)
is very minor, O(W (W − NG,min)NT ) with NG,min = min(NG1, NG2), since
the complexity is dominated by that of (3.64).

3.3 Numerical Examples

First of all, performance of the proposed CHATUE2 and CHATES techniques
are shown in Section 3.3.1 and 3.3.2, respectively. Performance of the system
combining these new methods is, then, presented in 3.3.3.

Note that this section assumes the same system model as that in Chapter
2 except that the soft replica symbols x̂d, k for channel estimation algorithms
is generated from the a posteriori LLR λp

DEC fed back from the decoder. This
is because, as detailed in Section 3.3.2.3, the CHATES method with the a
posteriori LLR improves MSE convergence performance over that with the
extrinsic LLR.

3.3.1 Channel equalization performance

Performance of CHATUE2 is discussed by comparing with that of the con-
ventional TEQ-CP and/or CHATUE1 techniques. This subsection assumes
a SISO system with known CIRs in order to focus on the verification for the
noise enhancement analysis shown in Section 3.1.3.

The parameters used in this subsection are detailed in Table 3.4. Burst
format 11 is used for both CHATUE1 and CHATUE2, whereas Burst format
12 is used for TEQ-CP. In the CHATUE algorithms, a data frame encoded
by a convolutional code (g1, g2) = (7, 5)8 with code rate Rc = 1/2 was divided
into NB = 10 bursts. The information bits in TEQ-CP, the length of which is
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Table 3.4: Burst Formats for a SISO system.

Format No. Nt NG1 NCP Nd NG2 Rc η
11 63 0 0 256 0 1/2 0.4
12 63 0 64 192 0 2/3 0.4

the same as the one in the CHATUE algorithms, is encoded with a code with
rate Rc = 2/3 derived from a half-rate mother convolutional code (g1, g2) =
(7, 5)8 by using a puncturing matrix

Px,n/(n−1) =

[
1 · · · 1
1 · · · 1 0

]
∈ R2×(n/2) (3.66)

with n = 4 for puncturing rate 4/3. It should be noted the spectral efficiency
is η = 0.4 in both Burst format 11 for the CHATUE algorithms and Burst
format 12 for the TEQ-CP. Thereby, the following comparisons are fair.

3.3.1.1 EXIT analysis

Convergence property of CHATUE2 is shown by using extrinsic information
transfer (EXIT) charts. Burst format 11 described in Table 3.4 is used for
both the CHATUE1 and CHATUE2 algorithms, whereas Burst format 12 is
used for TEQ-CP.

Fig. 3.3 shows EXIT curves of the CHATUE1 and CHATUE2 algorithms
as well as TEQ-CP. The equalizer’s EXIT curves were obtained, in all the sys-
tem setups tested, for a 64-path frequency selective Rayleigh fading channel
realization with average SNR = 2.4 dB. Ideal channel estimation is assumed.
The MI IeEQU between the LLR λe

EQU (3.22) and the coded bits c at the
transmitter is defined by (2.49).

It is found from Fig. 3.3 that the equalizer’s EXIT curve of CHATUE1 is
located below the TEQ-CP’s EXIT curve over entire value range of a priori
MI IaEQU. This is because of the noise enhancement described in Section
3.1.3. In contrast, CHATUE2 improves IeEQU and achieves almost the same
point as that with TEQ-CP when IaEQU = 1, although its left most point
at IaEQU = 0 is almost the same as that of CHATUE1. This observation
verifies the asymptotic perfect elimination of the noise enhancement with
the CHATUE2 algorithm.
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A trajectory of turbo equalization with CHATUE2 is also presented in
Fig. 3.3. The trajectory reaches a point very close to IeDEC = 1 without inter-
section in the channel realization used and hence the MI between the a pos-
teriori LLR of decoder λp

DEC and the binary source information approaches
1. This is because of two reasons: 1) CHATUE2 improves the equalizer’s
EXIT curve by eliminating the noise enhancement; 2) the CHATUE algo-
rithms allows us to use a lower rate code by utilizing the time duration
allocated for the CP. On the other hand, the EXIT curves of the CHATUE1
and TEQ-CP algorithms have the intersection at (0.98, 0.8) and (0.92, 0.85),
respectively. Thereby the trajectories of the CHATUE1 and TEQ-CP tech-
niques can rarely approach points very close to IeDEC = 1 for an SNR of
2.4 dB, although they are not presented in Fig. 3.3 to avoid too dense a rep-
resentation. This is because CHATUE1 incurs the noise enhancement at the
equalizer output or TEQ-CP can not use a lower rate code with the same
spectral efficiency due to CP-transmission.

3.3.1.2 BER performance with known CIR

The average SNR used in BER simulations is defined in association with the
average Eb/N0 (2.50). Burst format 11 described in Table 3.4 was used for
both the CHATUE1 and 2 algorithms, whereas Burst format 12 was used for
TEQ-CP.

Verification for the noise enhancement analysis: In Fig. 3.4, the BER
performance of turbo equalization for a single path static AWGN channel are
presented to verify the noise enhancement analysis described in Section 3.1.3,
even though equalization is not needed in single path channels. For reference,
the BER performance of BCJR decoders with the parameters mentioned
above are also presented.

The BER with TEQ-CP is the same as that with a) BCJR decoder
(Rc = 2/3) used in TEQ-CP, as depicted in Fig. 3.4. However, the BER
with CHATUE1 is degraded compared to c) BCJR decoder (Rc = 1/2) due to
the noise enhancement detailed in Section 3.1.3. The BER with CHATUE1
is identical to that with b) BCJR decoder (Rc = 1/2) assumed the noise
enhancement to its input before interleaving.5 The noise enhancement local-

5The noise power of input signal to the BCJR decoder b) is intentionally enhanced to
reproduce the noise enhancement problem incurred by CHATUE1. The noise power of the
input signal to the BCJR decoder b) is increased to 2σ2

z for the first L bits. The BCJR
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Fig. 3.3: EXIT charts and trajectory of iterative processing over a 64-path
Rayleigh fading at average SNR = 2.4 dB.
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Table 3.5: Burst Formats for a 4× 4 MIMO system.

Format No. Nt NG1 NCP Nd NG2 Rc η
41 127 0 0 512 0 1/2 1.6
42 127 31 32 512 31 1/2 1.4
43 127 0 32 480 0 8/15 1.6

ized in the L symbols is not uniformly distributed over a frame even after
interleaving and hence it degrades the performance of a BCJR decoder more
than expected (0.97 dB), as shown in (3.29).

The BER with CHATUE2, on the other hand, achieves exactly the same
as that with c) BCJR decoder (Rc = 1/2), in the same way as for TEQ-CP.
It should be noted that the proposed CHATUE2 algorithm can fully exploit
the time duration made available by eliminating the CP, which allows for the
use of a lower rate code (Rc = 1/2) when the channel estimate is accurate
enough.

BER performance in a fading channel: Fig. 3.4 also shows the BER
performance of turbo equalization for the PB3 channel realizations. The
path positions are at {0, 3, 12, 18, 34.5, 55.5} symbol timings assuming that
a transmission bandwidth of 15 MHz. The CHATUE2 algorithm improves
the BER over CHATUE1 by 0.5 dB at BER = 10−5 since the proposed
technique with the composite replica improves the SNR at the equalizer
output. Moreover, CHATUE2 achieves a gain of 1.5 dB or more over TEQ-
CP at BER = 10−5 because the CHATUE algorithms allows of the use of
lower rate codes when the spectral efficiency η is fixed.

3.3.2 Channel estimation performance

This subsection verifies the channel estimation performance by using the
proposed joint IBI cancelation and channel estimation technique, CHATES.
The same 4× 4 MIMO system and its setups as that in Section 2.4 are used.
However, two Burst formats 41 and 42 described in Table 3.4 are assumed
because of the reasons as follows: Burst format 41, which can cause IBIs in

decoder b) decodes the noise enhanced input signal following interleaving. The BCJR
decoder b) itself is the same as BCJR decoder c).
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Fig. 3.4: BER performance in the 1-path static AWGN and in the PB3 scenario.
The spectral efficiency is fixed to η = 0.4. The CHATUE1 and CHATUE2 algo-
rithms use Burst format 11 with the coding rate Rc = 1/2, whereas TEQ-CP uses
Burst format 12 with Rc = 2/3. The known CIR H and six turbo iterations are
assumed.
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the TS section, is used to verify CHATES with the s-ℓ1 MB algorithm; Burst
format 42 has GIs on both the sides in time of TS such that the TS section
does not suffer from the IBIs due to the neighboring data sections. The reason
for presenting the simulation result with Burst format 42 is to provide a basis
for the performance comparison of the IBI cancelation, although its spectral
efficiency is less than that of Burst format 41.

3.3.2.1 NMSE performance of CHATES with ℓ2 MB

Fig. 3.5 shows the NMSE of the channel estimate with CHATES with the
ℓ2 MB technique in the VA30 scenario. Similar to the ℓ2 MB channel esti-
mation assuming Burst format 42, CHATES using Burst format 41 achieves
the performance bound NaCRB (2.45) asymptotically after the sixth turbo
iteration. In the case Burst format 41 without the IBI cancelation technique
is assumed, the estimation accuracy diverges from the NaCRB due to the
IBI even after performing enough iterations.

3.3.2.2 NMSE performance of CHATES with s-ℓ1 MB

In the first iteration, however, the CHATES with the ℓ2 MB technique also
suffers from MSE deterioration due the IBI. As observed from Fig. 3.5, the
s-ℓ1 MB algorithm can improve the MSE deterioration significantly. This is
because the s-ℓ1 MB algorithm can avoid the IBI by utilizing the ℓ1 regu-
larization onto the CIR length. Of course, the s-ℓ1 MB algorithm cannot
always improve the MSE deterioration when the significant paths are dis-
tributed over a long CIR. As shown in Fig. 3.6, however, the MSE gain can
be observed in the PB3 scenario, too. This is because, as shown in Fig. 2.1,
the significant paths of the PB channel model do not exist in the entire W
symbol duration when a low to moderate SNR regime is assumed.

It should be noted that CHATES with both the ℓ2 MB and s-ℓ1 MB algo-
rithms can achieve the performance bound NaCRB after performing enough
turbo iterations. Improvement of NMSE convergence performance with the
s-ℓ1 MB algorithm is verified in the next subsection.

3.3.2.3 NMSE convergence performance

Fig. 3.7 shows NMSE convergence performance of the CHATES algorithms
in the VA30 scenario at SNR = 15 dB. Burst format 41 is assumed. As
mentioned in the beginning of Section 3.3, we assume that the soft replica
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Fig. 3.5: NMSE performance in the VA30 scenario. The analytical NMSE of the
s-ℓ1 MB algorithm for the 1st iteration is the normalized version of (3.57), where
the normalization factor is E[∥H∥2], similar to the performance bound NaCRB
(2.45).
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Fig. 3.6: NMSE performance in the PB3 scenario.
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Fig. 3.7: NMSE convergence performance of the CHATES algorithms over turbo
iterations. SNR is set at 15 dB. The VA30 scenario and Burst format 41 are
assumed.

for the channel estimation algorithm is generated from the a posteriori LLR
λp
DEC. We can observe from Fig. 3.7 that CHATES with the ℓ2 MB technique

assuming the a posteriori LLR improves NMSE convergence performance
over that with the extrinsic LLR.

It should be noticed that CHATES with the s-ℓ1 MB algorithm improves
NMSE convergence performance further. Specifically, CHATES with the s-
ℓ1 MB algorithm asymptotically achieves the performance bound NaCRB
in two iterations whereas the one with the ℓ2 MB technique requires three
iterations in this simulation setup.

112



3.3.3 System performance

This subsection presents BER performance of the CHATUE2 receiver with
the CHATES algorithm in the 4×4 MIMO system. The proposed techniques
can be verified from the following two viewpoints: 1) BER performance with-
out a frame length constraint; 2) BER performance with a fixed frame length.
The first verification aims to investigate whether the receiver with the burst
format 41 removed the CP and GIs can improve BER performance over that
with Burst format 42 when channel estimation is actually performed. The
second item verifies effectiveness of the CHATUE algorithm over the conven-
tional TEQ-CP receiver by using Burst formats 41 and 43, respectively. This
is because the frame length should be a constant in a practical communica-
tion system.

3.3.3.1 BER performance without a frame length constraint

Since the definition of Eb/N0 (2.50) takes account of the frame length, we can
compare Burst format 41 with the format 42 although their frame lengths are
different. It should be noticed that, moreover, expected BER gains between
burst formats having the same coding rate Rc can be calculated from the
spectral efficiencies. Specifically, the expected BER gain with Burst format
41 over the baseline format 42 becomes at most

10 log10(η42/η41) = 0.6 dB,

in Eb/N0, where ηN denotes the spectral efficiency of the burst format N .
Fig. 3.8 shows a BER performance comparison between Burst formats 41

and 42. The VA30 scenario is assumed. As observed from Fig. 3.8, CHATUE2
with the ℓ2 MB technique achieves a BER gain of 0.5 dB over TEQ-CP after
performing six turbo iterations. Therefore, the receiver with Burst format
41 can improve BER performance over that with Burst format 42 even when
channel estimation is performed.

However, in the first iteration, CHATUE2 with the ℓ2 MB technique suf-
fers from an error floor. It should be noticed that, as depicted in Fig. 3.8,
the proposed s-ℓ1 MB algorithm can solve the problem completely. The
CHATUE2 receiver with the s-ℓ1 MB algorithm can, hence, improve BER
convergence performance over that with the ℓ2 MB channel estimation tech-
nique. Specifically, as observed from Fig. 3.9, the receiver with the s-ℓ1 MB
algorithm achieves BER = 10−5 in four iterations, whereas the one with the
ℓ2 MB technique requires six iterations at Eb/N0 = 11.5 dB.

113



� � �� �� ��
��

����
����
����
����
����
�

�������

�	
������

�����

��������
��������

�
�
��

��
����

�
�
�

Fig. 3.8: BER performance in the VA30 scenario without constraint on the frame
length. Burst formats 41 and 42 are used for the CHATUE and TEQ-CP tech-
niques, respectively.
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Fig. 3.9: BER convergence performance over turbo iterations at Eb/N0 =
11.5 dB. The CHATUE2 receiver with Burst format 41 is used in the VA30 sce-
nario.
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3.3.3.2 BER performance with a fixed frame length

Fig. 3.10 shows BER performances with the CHATUE2 and TEQ-CP re-
ceivers in the PB3 scenario. Burst formats6 41 and 43 are used for the
CHATUE2 and TEQ-CP techniques, respectively. As depicted in Fig. 3.10,
the CHATUE2 algorithm improves BER performance over TEQ-CP by 1 dB
after performing six iterations. Relevance of the BER gain can be supported
by observing BER performance of the BCJR decoders in the single path
static AWGN SISO channel shown in Fig. 3.10.

Similar to Fig. 3.8, we can observe from Fig. 3.10 that CHATUE2 with
the ℓ2 MB estimation exhibits an error floor in the first iteration. However,
the proposed s-ℓ1 MB algorithm can improve the problem in the PB3 chan-
nel scenario, too, although its CIR length is longer than that of the VA30
scenario.

3.4 Summary

The primary objective of this chapter has been to provide solutions to the
problems inherent in chained turbo equalization techniques, which are: 1)
the latency due to the time-concatenation of equalization, and 2) noise en-
hancement at the equalizer output. This chapter has showed that Problem
1) can easily be solved with a practical and reasonable assumption that the
training sequence is transmitted in every burst. To cope with Problem 2),
this chapter has proposed chained turbo equalization version 2, CHATUE2.
By utilizing the composite replica to retrieve the circulant structure of the
channel matrix in the received signal, the CHATUE2 algorithm improves the
equalizer output SNR to the same level as that with TEQ-CP.

Furthermore, this chapter has proposed a new IBI cancelation technique
for channel estimation, CHATES, to improve spectral efficiency. The conven-
tional channel estimation technique can suffer from an MSE floor problem if
the signals are transmitted with a burst format having no GIs. The CHATES
algorithm can, however, achieve the CRB asymptotically even in IBI scenar-
ios after performing enough turbo iterations. CHATES can be applied to the
CHATUE1, CHATUE2 and TEQ-CP receivers, although CHATES inherits
the CHATUE concept in the sense that the cancelation of IBI occurring in the
TS section utilizes the LLR of transmitted data, fed back from the decoder,

6Burst format 43 uses the puncturing matrix (3.66) with n = 16.
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Fig. 3.10: BER performance in the PB3 scenario with a frame length con-
straint. For reference, BER performance with the BCJR decoder in the 1-path
static AWGN SISO channel is also shown. The CHATUE2 receiver and the BCJR
decoder with Rc = 1/2 use Burst format 41, whereas the TEQ-CP receiver and
the BCJR decoder with Rc = 8/15 assume Burst format 43.
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not only in the current but also in the past bursts.
A receiver with the CHATES algorithm can, nevertheless, suffer from

a bit error floor in the first turbo iteration. This is because the feedback
information from the decoder needed to perform the IBI cancelation is not
available in the first turbo iteration. As a solution to the problem, this
chapter has proposed a novel s-ℓ1 MB channel estimation which can be de-
scribed as a conditional ℓ1 MMSE formulation, under the subspace channel
model assumption. The s-ℓ1 MB algorithm can improve the IBI problem
by simultaneously exploiting the CIR length constraint and the subspace
projection obtained at the previous frame. The receiver with the s-ℓ1 MB
algorithm can, therefore, completely solve the bit error floor problem. Sim-
ulation results have shown that, moreover, it can improve BER convergence
performance over turbo iterations.
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Appendix

3.A Derivation of the Asymptotic Mean (3.23)

Assuming that E[||ŝd,k(l)||2]→ 1 after enough iterations, the noise covariance
matrix (3.14) converges to

Ωk(l) → σ2
z

Nd + L

Nd

INRNd
. (3.67)

Hence, the equation (3.18) converges to

Γk(l) →
Nd

(Nd + L)σ2
z

INd
, (3.68)

under the assumption E[||Ĥk(l)||2] = E[||Hk(l)||2] = 1. The asymptotic mean
(3.23) is reduced by substituting (3.67), (3.68) and Ŝ(l)→ INd

into (3.20).

3.B Derivation of the MSE (3.60)

For the sake of conciseness, the case of w = W is shown. The second term
in (3.59) can be written as

E
[
∥(HpXp +HfXf )XH

c ∥2
]

= 1T
WNT

diag
{
E[XcDXH

c ]
}
, (3.69)

where D = XH
p KHHpXp + XH

f KHHf
Xf with KHHp = HH

pHp and KHHf
=

HH
fHf . By noticing that E[D] is a diagonal matrix, we have

diag
{
E[XcDXH

c ]
}

= 1NT
⊗

(
σ2
xTcdiag{E[D]}

)
, (3.70)

since non-zero entries in Xc follow CN (0, σ2
x). Moreover,

diag{E[D]} = σ2
x(Tp +Tf )

T

NT∑
k=1

d̄H,k, (3.71)

since, according to the definition (3.47) of Xp,

diag{E[XH
p KHHpXp]} = diag

{
E

[
NT∑
k=1

XH
p,kKHHp,kXp,k

]}

=

NT∑
k=1

σ2
xT

T
p diag {E [KHH,k]} ,
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where the W ×W matrix KHHp,k denotes the (k, k)-th block matrix in KHHp

and E
[
KHHp

]
= E [KHH] is used. The future term in (3.71) can be reduced

similarly. The second term in the brackets {·} of (3.60) is obtained by plug-
ging (3.70) and (3.71) into (3.69). Derivation of the first term in the brackets
{·} is obvious.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

Goals of pursuing the spectral efficiency and improving receiving perfor-
mance cannot simultaneously be achieved under constraints of low TX

power and a low computational complexity, since overheads in a frame for-
mat required for energy- and computationally-efficient reception techniques
decrease the spectral efficiency.

This thesis has studied ℓ1 regularized channel estimation algorithms with
the aim of solving the problem. Chapter 2 has shown that, however, ℓ1 regu-
larized channel estimation algorithms do not improve their MSE performance
beyond the aCRB which is the performance bound for the conventional ℓ2
channel estimation techniques. In the case that the assumptions required
for the conventional ℓ2 techniques do not always hold, nevertheless, the ℓ1
regularized algorithms can compensate the performance deterioration from
which the ℓ2 techniques can suffer seriously. Therefore, the ℓ1 regularized
algorithms are robust in the sense that they can achieve the expected es-
timation performance even under the deficient assumptions. Based on the
theoretical analysis, this thesis has proposed new robust channel estimation
algorithms as follows:

• the ℓ1 LS and ℓ2 MMSE-based hybrid algorithm [60] to solve the track-
ing error problem in intermittent TX scenarios;

• the ℓ1 MB algorithm [60, 61] to improve the noise whitening problem
when TSs are not ideally uncorrelated;
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• the CHATES algorithm [40] to solve the IBI problem after performing
sufficient turbo iterations required for a turbo receiver to obtain BER
convergence;

• the s-ℓ1 MB algorithm, which is formulated as a conditional ℓ1 MMSE
problem [68], to improve the IBI problem in the first turbo iteration.

These new algorithms were detailed in Section 2.2.3, 2.C, 3.2.2 and 3.2.3,
respectively.

Moreover, this thesis has proposed a new frequency domain turbo equal-
ization technique, CHATUE2 [40]. The CHATUE algorithms do not as-
sume CP-transmission and allows us to use a lower rate code by utilizing
the time duration allocated for a CP. Section 3.1.3 has shown that, however,
the previously-proposed CHATUE1 algorithm can suffer from the noise en-
hancement at the equalizer output. The theoretical analysis supported with
simulation results shows that the CHATUE2 algorithm proposed in Section
3.1.5 can solve the noise enhancement problem after performing sufficient
turbo iterations by utilizing the composite replica.

A communication system utilizing the proposed channel estimation and
equalization algorithms can improve the spectral- and/or energy-efficiencies
with reasonable computational complexity, as demonstrated in Section 3.3.
It should be noticed that, however, as mentioned in Section 1.2.1, the spec-
tral efficiency can be improved by MIMO transmission and/or multi-level
modulation techniques. Therefore, as shown in Section 3.3.3, a significant
BER performance gain is not always promised in a massive MIMO system.

4.2 Future Work

This thesis has concentrated on exploring spectrally efficient wireless com-
munications for single-user SISO and MIMO systems. The proposed chan-
nel estimation algorithms can, however, be extended for multi-user MIMO
systems with/without unknown interferences by combining spatial-subspace
projection techniques [21,24,26].

The proposed ℓ1 regularized algorithms has been verified in a turbo re-
ception framework with the single carrier signaling, however, they can be
applicable to other transmission schemes. For example, as shown in Section
2.C, the ℓ1 MB channel estimation algorithm can improve the pilot con-
tamination problem [59] in massive MIMO systems. It should be noticed
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that the pilot contamination problem can happen both in the SC-FDMA
and OFDMA systems. Application of the proposed algorithms to OFDMA
systems is, therefore, an interesting topic.
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