
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 動的認識論理のラベル付きシークエント計算の研究

Author(s) 野村, 尚新

Citation

Issue Date 2016-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/13517

Rights

Description Supervisor:東条　敏, 情報科学研究科, 博士

Doctoral Dissertation

Labelled Sequent Calculi
for

Dynamic Epistemic Logics

Shoshin Nomura

Supervisor: Satoshi Tojo

School of Information Science
Japan Advanced Institute of Science and Technology

(Degree conferment March 2016)

1

Abstract

Dynamic Epistemic Logic (DEL) is a field of modern epistemic logic that aims at for-
mally expressing the change of human knowledge through modifying Kripke models
which represent the state of agents’ knowledge. For example, if an agent called John
does not know if it will rain tomorrow and he gets information from a weather fore-
cast on TV which informs that it will rain tomorrow, then he is now not ignorant of
the condition of tomorrow’s weather (i.e., his knowledge-state was changed by the
information on TV). This is a typical example of public announcement (public infor-
mation), and Public Announcement Logic (PAL) by Plaza (1989) can formally express
such a situation regarding the knowledge-change of agents. PAL became the basis of
other DELs and we also started to investigate labelled sequent calculus from PAL. In
addition to public announcements, information is not always shared among all agents
(it is not always public) and it is totally possible to imagine that some information is
for only a single agent (private announcement) or for a specific group of agents. PAL
can cope with only public announcement (information), but Logic of Epistemic Actions
and Knowledge (EAK) by Baltag et al. (1989) is a logic for the formal expression of
such information flows which are more delicate than public announcements. EAK is
a generalized and developed version of PAL and our second target is this epistemic
logic. On the other hand, the term knowledge has philosophically profound meanings,
and historically, the notion of knowledge contains evidence or verification to justify
one’s belief. Intuitionistic epistemic logics are candidates which express knowledge
in a strict sense. Based on the intuitionistic modal logic IK by Fischer Servi (1984)
and Simpson (1994), Intuitionistic PAL (IntPAL)—an intuitionistic version of PAL—
is proposed by Ma et al. (2014), and this enables us to express the change of knowledge
defined in a strict sense.

In this thesis, we provide three different cut-free labelled sequent calculi for PAL,
EAK and IntPAL respectively. First, we investigate an existing labelled sequent cal-
culus for PAL and this investigation becomes an important foundation for the three
labelled sequent calculi of ours with respect to the soundness theorems, the complete-
ness theorems and the cut-elimination theorems for other labelled systems. A labelled
sequent calculus G3PAL for PAL is provided by Maffezioli and Negri (2011), but it in
fact lacks inference rules for deriving an axiom of the Hilbert-system of PAL. So, we
provide our revised calculus GPAL, and all the formulas derivable by Hilbert-system
of PAL are also derivable in GPAL together with the cut rule. We also establish the cut
elimination theorem. Moreover, we show the soundness of our calculus for Kripke se-
mantics with the notion of surviveness of possible worlds in a restricted domain. Then
we provide a direct proof of the semantic completeness of GPAL for the link-cutting
semantics of PAL.

Secondly, we move onto EAK based on the study of labelled sequent calculus for
PAL. We also provide a cut-free labelled sequent calculus (GEAK) on the background
of existing studies of the Hilbert-system (we call it HEAK) and labelled calculi for
PAL. Similar to the previous procedure, we first show that all the formulas derivable by
the Hilbert-system of EAK are also derivable in GEAK with the cut rule, and we show

that the cut rule is eliminable in GEAK. Then we show GEAK is sound for Kripke
semantics. After demonstrating that soundness, we derive the semantic completeness
of GIntPAL as a corollary of these theorems

Thirdly and lastly, we introduce a labelled sequent calculus GIntPAL for IntPAL.
Following the same manner of the construction of a labelled sequent calculus as the pre-
vious two, we show that all theorems of the Hilbert-system of IntPAL are also derivable
in GIntPAL with the cut rule. Then we prove the cut-eliminability of GIntPAL and
also its soundness for birelational Kripke semantics, and so its completeness for the
semantics.

Keywords— Dynamic Epistemic Logic, Public Announcement Logic, Intuitionistic
Public Announcement Logic, Logic of Epistemic Actions and Knowledge, Labelled
Sequent Calculus, Admissibility of Cut, Validity of Sequents

2

Contents

1 Introduction 6
1.1 Epistemic Logic and belief-revision 6
1.2 Dynamic Epistemic Logic (DEL) . 7
1.3 Sequent calculi for modal logics . 8
1.4 Proof-theoretic studies for DELs . 10
1.5 Contribution . 12

2 Preliminaries 14
2.1 Multi-modal logic (ML) . 14

2.1.1 Language LML and Kripke semantics 14
2.1.2 Hilbert-system HK of Multi-modal logic 16
2.1.3 Labelled sequent calculus G3K 19
2.1.4 Multi-agent epistemic logic 22

2.2 Public Announcement Logic (PAL) 23
2.2.1 Language LPAL and Kripke semantics 23
2.2.2 Examples of knowledge-change in PAL 24
2.2.3 Hilbert-system HPAL of PAL 27

2.3 Logic of Epistemic Actions and Knowledge (EAK) 29
2.3.1 Language LEAK and Kripke semantics 29
2.3.2 Examples of knowledge-change in EAK 31
2.3.3 Hilbert-system HEAK of EAK 32

3 Labelled sequent calculus for PAL 34
3.1 Sequent calculus for PAL . 35

3.1.1 G3PAL . 35
3.1.2 Problems of G3PAL . 36

3.2 Revised calculus GPAL . 39
3.2.1 GPAL . 40
3.2.2 All theorems of HPAL are derivable in GPAL+ 44
3.2.3 Cut Elimination of GPAL+ 47

3.3 Soundness of GPAL . 56
3.4 Completeness of GPAL for Link-cutting semantics 61
3.5 Extensions of PAL from K to S5 . 68

1

4 Labelled sequent calculus for EAK 75
4.1 Labelled sequent calculus GEAK 76
4.2 Cut elimination of GEAK+ . 79
4.3 All derivable formulas in HEAK are derivable in GEAK+ 87
4.4 Soundness of GEAK . 91
4.5 Extensions of EAK from K to S5 . 97

5 Intuitionistic Public Announcement Logic (IntPAL) 102
5.1 Language LIntPAL and birelational Kripke Semantics 103
5.2 Examples of knowledge-change in IntPAL 105
5.3 Hilbert-system HIntPAL of IntHPAL 105
5.4 Labelled sequent calculus GIntPAL 106
5.5 All theorems of HIntPAL are derivable in GIntPAL+ 107
5.6 Cut Elimination of GIntPAL+ . 115
5.7 Soundness of GIntPAL . 123

6 Conclusion 130
6.1 Summary of contributions . 130
6.2 Future directions . 131

A Implementations for Dynamic Epistemic Logics 132
A.1 Semantic tools for DELs . 132

A.1.1 Implementation for PAL . 132
A.1.2 Kripke semantics . 133
A.1.3 Implementation for EAK . 136

A.2 Automated theorem prover for DELs : Kripkenstein 146
A.2.1 GPAL of Kripkenstein 146
A.2.2 Core functions for automated theorem proving 152

2

List of Tables

2.1 Frame properties . 15
2.2 Hilbert-system for ML: HK . 16
2.3 Labelled sequent calculus for ML : G3K 20
2.4 Rules of G3-system for frame properties 20
2.5 Hilbert-system for PAL : HPAL . 27
2.6 Hilbert-system for EAK : HEAK . 32

3.1 Labelled sequent calculus for PAL : G3PAL 37
3.2 Revised labelled sequent calculus for PAL: GPAL 42
3.3 Rules for frame properties . 70

4.1 Hilbert-system for EAK : HEAK . 75
4.2 Labelled sequent calculus for EAK : GEAK 78
4.3 Rules for frame properties . 98

5.1 Hilbert-system for IntPAL : HIntPAL 106
5.2 Labelled sequent calculus for IntPAL : GIntPAL 108

A.1 Labelled sequent calculus for Kripkenstein : GPAL′ 147

3

List of Notations

Acronyms
ML Multi-modal Logic
PAL Public Announcement Logic
EAK Logic of Epistemic Actions and Knowledge
IntPAL Intuitionistic PAL

Set theoretic notations
x ∈ X the membership relation of x and X ∅ the emptyset
X ⊆ Y X is a subset of Y P(X) the power set of X
X ∪ Y the union of X and Y R ◦ Q the composition of R and Q
X ∩ Y the intersection of X and Y idX the identity relation on X
X × Y the Cartesian product of X and Y N the set of all natural numbers
X \ Y the relative complement X of Y

Common notations
a, b, ... ∈ Agt agents Ra,Rb, ... accessibility relations
p, q, ... ∈ Prop propositional atoms F,F′, ... Kripke frames
A, B, ... ∈ L formulas M,M′, ... Kripke models
x, y, ... ∈ Var variables F,F′, ... classes of Kripke frames
w, v, ... worlds M,M′, ... classes of Kripke models
W,W ′, ... sets of worlds

Notations for PAL and IntPAL
α, β, ... finite lists of formulas xRαay relational atom
x:αA labelled formula A,B, ... labelled expressions

Notations for EAK
a, b, ... ∈ Act actions α, β, ... finite lists of
x, y, ... ∈ CVar ⊆ Act meta-variables for actions pointed action models
S,S′, ... finite sets of actions ⟨x, α⟩:A labelled formula
∼a,∼b, ... action relations ⟨x, α⟩Ra⟨y, β⟩ relational atom
M,N, ... action models A,B, ... labelled expressions
aM, bN, ... ∈ PAct pointed action models

4

Acknowledgement

This thesis would not be possible without the devoted support of my supervisors,
Satoshi Tojo and Katsuhiko Sano. Their enthusiastic guidance enabled me to enter
the field of knowledge-revision and modal logic and to realize the aim of my research
in the Ph.D. program, and they taught me what a researcher should be. I wish, in
particular, to thank assistant Prof. Sano for teaching modal logic from the basics and
considering the essential parts, such as an adequate validity for a labelled sequent for
DELs and the application of Simpson’s lifting lemma in the proof of IntPAL’s sound-
ness. We used this information in our papers which became the basis of this thesis. I
would like to thank my supervisor of minor research, Hiroakira Ono. He gives a valu-
able opportunity to develop and discuss the idea regarding the third paper of Dynamic
Epistemic Logic, and I had unforgettable and fun times with him. I am immensely
indebted to members of my Ph.D. defense, Makoto Kanazawa, Ryo Kashima, Hajime
Ishihara and Norbert Preining. Their critical insight and suggestions improve my thesis
and help to enhance my understanding of logic. I also thank Prof. Kanazawa for not
only the defense but giving us valuable advice of the link-cutting semantics in the first
paper of ours. I wish to thank to Hiroaki Suzuki, Shinya Hirose and Takafumi Kodama
for supporting my coding, Sean Arn for helping to edit English documents, and all the
other members of Tojo laboratory for encouraging me in the Ph.D. program. Without
their help, this thesis would not be completed.

5

Chapter 1

Introduction

The prelude to this thesis is modal logics. In the late 50s to the early 60s, Kripke [46,
47] provided Kripke semantics to modal logic.1 This semantics provides an adequate
interpretation for a formal expression of ‘necessarily’ and ‘possibly.’ In modal logic,
‘it is possible that A,’ may be expressed by formula □A, and in Kripke semantics, it is
intuitively interpreted as ‘for all possible worlds which are accessible from a specific
world, A holds.’ This semantics gives both formal and intuitive understandings to the
once mysterious notion of modality. Since then, the field of modal logic has flourished
and deepened studies of several kinds of modalities, such as temporal modalities [70],
deontic modalities [43], doxastic modalities [36] and epistemic modalities. We are, in
this thesis, concerned with epistemic logic which handles the last modalities, epistemic
modalities.

1.1 Epistemic Logic and belief-revision
Epistemic logic is a logic which aims at formalizing knowledge, and has been devel-
oped by several logicians and philosophers, e.g., von Wright [86] and Hintikka [35].
The initial motivation for the study of this logic was to contribute to the field of philo-
sophical epistemology since the concept of the formalization of knowledge (or belief)
through formal languages suits the spirit of analytic philosophy in the early 20th cen-
tury where Anglo-American philosophers discussed the reasonable measure for mod-
ern philosophy and aimed for expulsion of traditional metaphysics. Although episte-
mology in analytic philosophy gradually strengthened academic relationship with other
natural sciences such as neuroscience and biology and left the formalization with modal
logic, another movement of formalization of knowledge and belief was, instead, started
in a different area, computer science. In the 80s, since the performance of computers
became much more powerful than before, the study of artificial intelligence blossomed,
and several works were submitted; for example, non-monotonic logics (default logic

1At the same period, similar semantics independently was given by Kanger [39], Hinttika [35], Mon-
tague [55] and Prior [70], and a closely related study had already been given by Jonsson and Tarski [37, 38]
about ten years ago (see more detail in [32, 74]).

6

by Reiter [72], circumscription by McCarthy [52]) and belief-revision by Levi [48]
and Gärdenfors and Makinson [29]. This area is called belief-revision (knowledge-
revision). However, another tradition of formalization of knowledge, epistemic logic,
was not popular in that field.

1.2 Dynamic Epistemic Logic (DEL)
In the last century, there were two movements of formalizing knowledge—philosophical
epistemology and belief-revision— but these two had not deeply connected with each
other. From the 90s, the movement of knowledge-revision (belief-revision) became
conspicuous in epistemic logic. Specifically, Public Announcement Logic (PAL) by
Plaza [68] and Logic of Epistemic Actions and Knowledge (EAK) by Baltag et al. [8]
(elaborated in several papers, e.g., [8, 31, 81, 83]) 2 are outstanding studies, and they
formed the field of Dynamic Epistemic Logic (DEL). Today, a number of followers
have developed and refined this area for a formalization of knowledge, and have been
specializing DEL to apply it to artificial intelligence, epistemology in philosophy, the-
oretical economics, formalizing law, and so on.

Public Announcement Logic Public Announcement Logic (PAL) was first presented
by Plaza [68], and it has been the basis of Dynamic Epistemic Logic. PAL is a logic
for formally expressing changes of human knowledge. When we obtain some infor-
mation through communication with others, our state of knowledge may change. For
example, if ‘John does not know whether it will rain tomorrow or not’ is true and he
gets information from the weather forecast which says that ‘it will not rain tomorrow,’
then the state of John’s knowledge changes, so ‘John knows that it will not rain to-
morrow’ becomes true. While a Kripke model of the standard epistemic logic stands
for the state of knowledge, the standard epistemic logic does not have any syntax for
properly expressing changes of the state of knowledge. PAL was introduced for the pur-
pose of dealing with the flexibility of human knowledge, and the change of knowledge
formally realized by the announcement operator which can restrict possible worlds of
Kripke semantics. A formula [A]B of PAL reads ‘after an announcement of A, B holds.’

Logic of Epistemic Actions and Knowledge (EAK) Another foundation of the field
of DEL is Logic of Epistemic Actions and Knowledge (EAK) provided by [8]. EAK is
a developed version of PAL; as the name PAL shows, it deals mainly with ‘public an-
nouncements,’ by which every agent shares the same information; however, the state of
knowledge may be changed not only by public announcements but also announcements
to a specific group in a community. A typical example is ‘private announcements,’
in which someone communicates something to only a single person (e.g., a personal
letter). An extension of PAL, EAK is a logic which can express not only public an-
nouncements, but more delicate and complicated flows of information such as private

2The original EAK by [8] has reformed and improved until today, and this is sometimes called by different
names, e.g., Dynamic Epistemic Logic (in a narrow sense) and Action Model Logic [83]. In fact, we basically
follow the definitions of this logic introduced in [83] from the next chapter, but we employ the original name
by [8].

7

announcement, and such a factor that causes a change of knowledge state is called an
action (or event) as a whole. Technically, the notion of action a is defined with the
action model which is almost the same as the Kripke model with a finite domain. In-
terestingly or oddly, an action model differs from a Kripke model and belongs to the
syntax field of EAK. A formula [a]B of EAK reads ‘after an action a occurs, B holds.’

1.3 Sequent calculi for modal logics
Sequent calculus is another principal of this thesis. We mainly refer to the survey
paper of Negri [56] and Bednarska and Indrzejczak [9] for this section regarding se-
quent calculi of modal logics. Sequent calculus for propositional logic LK was given
by Gentzen [30], and it has also applied to the proof theory of modal logics, and the
reader can find sequent calculi for the modal logics K, T, S4, and S5 in the introduction
of Ono [66]. The simple and standard sequent calculus for modal logic K includes the
following additional inference rule to the sequent calculus LK for classical proposi-
tional logic,

Γ⇒ A
□Γ⇒ □A

(□)
.

Modal logics T, S4 and S5 include other additional rules respectively, and cut-elimination
theorems of sequent calculi for some systems (in particularly S4) are established by
Ohnishi and Matsumoto [62]. Also contraction-free calculi (called a G3-system, and
we will see it in Section 2.1.3) for some systems are constructed respectively by Troel-
stra and Schwichtenberg [80]. However, in fact, the sequent calculus for modal logic S5
is problematic since Ohnishi and Matsumoto [63] also showed that the cut-elimination
does not hold in this standard sequent calculus for S5. This crucial failure in S5 led
several studies of the sequent calculus for modal logic. In this movement in the 70s and
80s, Mints [54] and Sato [75, 76] independently provided a cut-free calculus for S5,
but they are fairly complicated and contain the problem with the subformula property.
Shvarts [77] provided a cut-free sequent calculus for modal logic K45 and also showed
that formula A is derivable in modal logic S5 iff □A is derivable in modal logic K45;
so it can be said that he gave an indirect solution of cut elimination of S5. In the same
paper [77], he also provided a cut-free system for KD45. Moreover, many other re-
searchers attempted to construct an adequate cut-free sequent calculus for modal logics
including S5. For example, display calculus [10], nested sequent calculus [40, 79, 14],
hypersequent calculus [69, 5], labelled sequent calculus and so on. In the following,
we briefly introduce one of such new systems called labelled sequent calculus.

Labelled sequent calculus An original idea of labelled sequent calculus can be
found in Kanger [39], where a sequent for S5 consists of formulas with natural num-
bers and this formula is called spotted formula Am(m ∈ N)3. Modern labelled sequent
calculus was explained in Negri and Plato [58] introduces a special syntactic object (it
enriches the syntax) called labelled formula. The basic idea underlying this calculus

3The author is grateful to Hiroakira Ono who lent him Kanger’s precious original reference [39] and told
the origin of labelled formula.

8

is to internalize notations of the standard semantics of modal logic (Kripke semantics)
into the enriched syntax. In other words, this enriched syntax includes a label con-
sisting of variable x which corresponding to possible world w in Kripke semantics. A
labelled formula x:A which is a formula A with label x corresponds to a satisfaction
relation M, f (x) ⊩ A where M is a Kripke model and f is a function which assigns a
world to a variable. Moreover, this calculus includes another special syntax xRy called
a relational atom (where x, y are labels). As one can imagine, the relational atom cor-
responds to accessibility relation f (x)R f (y) in Kripke semantics where f is the func-
tion as above. By importing special notations corresponding to semantic notations,
inference rules of labelled sequent calculus are directly obtained from the definition of
satisfaction relation. For example, given a Kripke modelM = (W,R,V), the definition

M, w ⊩ □A iff wRv impliesM, v ⊩ □A for all v ∈ W.

Since labelled sequent calculus has syntactic notations corresponding semantic nota-
tions, labelled formula x:□A (corresponding to M, f (x) |= A) can be intuitively inter-
preted as an implication of xRy→ y:A for all y (corresponding to f (x)R f (y) impliesM, f (y) ⊩
A); therefore, in such a labelled system, inference rules can be easily extracted from
the definition of satisfaction relation in Kripke semantics. Let us look at inference rules
for □ operator:

xRy,Γ⇒ y:□A,∆
Γ⇒ x:□A,∆

(R□)

where y does not appear in the lower sequent, and

y:A, x:□A, xRy,Γ⇒ ∆
x:□A, xRy,Γ⇒ ∆ (L□)

.

As you can see, these rules are obtained from the idea that x:□A is an implication of
xRy→ y:A for all y.

Moreover, labelled sequent calculus can internalize frame properties such as reflex-
ivity, symmetricity, transitiveness etc. quite easily as well. Assume we have a labelled
calculus for modal logic K, and we can obtain a calculus for modal logic T by adding
the following inference rules into the set of inference rules of it:

xRx,Γ⇒ ∆
Γ⇒ ∆ (ref)

.

This calculus which enriches syntax and has syntactic notations corresponding to se-
mantic notations can construct inference rules relating with frame properties and add
them straightforwardly. Because of that, the construction of this type of calculus starts
from K and then afterwards expand it to T, S4, S5 etc. by adding such inference rules.
We also follow this method. In other words, we will construct our labelled calculi
based on modal logic K at first in the following sections.

Cut elimination for S5, which was the primary interest of new version of sequent
calculus for modal logics, holds of course, and a contraction free calculus can also
be constructed in this system for S5. The more specific and formal definition of this
calculus will be given in the next section.

9

1.4 Proof-theoretic studies for DELs
Let us move onto the topic of proof-theoretic formalizations of DELs such as PAL and
EAK. For each of the two DELs, there exists the Hilbert-system (c.f. [8, 68]) which is
sound and complete with respect to Kripke semantics (we will discuss them in Chapter
2). Based on the Hilbert-systems, several proof-theoretic studies for PAL and EAK
have been appeared. We discuss such related works below other than a labelled sequent
calculus for PAL which will be introduced in Chapter 3 in detail.

Labelled tableaux method for PAL A tableaux method for PAL is introduced in
Balbiani el al. [7]. Its calculation is carried out with a labelled formula x:αA4 where
α is a finite list of formulas of PAL, x ∈ Var (Var is a set of variables) and A is a
formula of PAL. The labelled formula of this method is the same as that of labelled
sequent calculus, it corresponds to the definition of the satisfaction relation in PAL’s
Kripke semantics, and it intuitively reads that after the sequence of announcements
α, formula A still holds at world x. Added to that, this method included the ternary
relation Σ ⊆ Agt×Var×Var (Agt is a set of agents, and we denote the triple (a, x, y) by
xRay) which represents the accessibility relation. The below is two examples, (K) and
([.]), of the inference rules of this calculus which are for the box (knowledge) operator
and the announcement operator:

x:B1 ,B2 ,...,Bn□aA,Σ

(K)

��

ttiiii
iiii

iiii
iiii

iiii

xxppp
ppp

ppp
ppp

((PP
PPP

PPP
PPP

PPP

++XXXX
XXXXX

XXXXX
XXXXX

XXXXX
XXX

. . .

y:ϵ¬B1,Σ y:ϵB1,Σ y:ϵB1,Σ y:ϵB1,Σ

y:B1¬B2,Σ y:B1 ,...,Bn−2 Bn−1,Σ y:B1 ,...,Bn−2 Bn−1,Σ

y:B1 ,...,Bn−1¬Bn,Σ y:B1 ,...,Bn−1 Bn,Σ

where xRay ∈ Σ.

x:α[A]B,Σ

([.])

��

ssggggg
ggggg

gg

++WWWW
WWWWW

WWWW

x:α¬A,Σ x:αA,Σ

x:α,AB,Σ .

4The notation of labelled formula differs from the original paper [7]; however, since the labelled formula
here also has the same type as that of a labelled sequent calculus in this thesis, we unify different notations
of labelled formula into x:αA.

10

Further, a different tableaux method is given by Ma et al. [50] which is sound
and complete for a non-normal modal logic characterized by neighborhood models,
and this method does not include a syntactic expression of accessibility relation which
differs from above. This system also contains a labelled formula like the one above,
but they explicitly include the following labelled formula: x:α × . This semantically
means that a world corresponding to x does not survive after the sequence of public
announcements α. To be specific, possible worlds in Kripke semantics can be restricted
by an announcement, and this suggests that some worlds can be eliminated and the
others survive. The notation × in the labelled formula is a sign of a world which does
not survive. The idea of survival is also used in the semantics of labelled sequent calculi
in this thesis (see Sections 3.3 and 3.4). The following is examples of the inference
rules (□∩a) and ([.]):

x:α□aA

x:β¬□aB
(□∩a)

��

tthhhhh
hhhh

++WWWW
WWWWW

W

y:αA y:α×

y:β¬B y:β¬B ,

x:α[A]B

([.])

��

uujjjj
jjjj

j
**TTT

TTTT
TT

x:α¬A x:α,AB

Labelled tableaux method for EAK Tableau method for EAK is introduced by
Aucher et al. [3], and Aucher and Schwarzentruber [4] in the context of the study
regarding computational complexity of EAK. This method also contains a labelled for-
mula like the tableaux methods for PAL. A labelled formula has the following form,
x:αA where x ∈ N, α is a finite list of actions of EAK and A is a formula of EAK, and
it intuitively reads that after the sequence of actions α, formula A still holds at world x.
Moreover, this system includes a syntactic notation xRay of an accessibility relation as
the initial example of tableau method for PAL (and sequent calculi in this thesis). x:α✓
means that list of actions is executable in the world corresponding to x, and x:α⊗means
that list α of actions is not executable in the world corresponding to x. The meaning of
executable is that the precondintions of x which belong to actions in the list hold. The
reader may notice that this method resembles the tableaux method for PAL from the
following examples of the inference rules (□a) and ([.]):

x:a1 ,a2 ,...,an□aA,Σ

xRay

(□a)

��
rrffffff

fffff
,,XXXXX

XXXXXX

y:b1 ,b2 ,...,bn✓ y:b1 ,b2 ,...,bn⊗

y:b1 ,b2 ,...,bn A ,

x:α[a]A
[.]
��

uujjjj
jjjj

**TTT
TTTT

TT

x:α,a⊗ x:α,a✓

x:α,aA ,

where every bi is a state which is accessible from ai.

11

Display calculus for EAK Display calculus was first introduced in Belnap [10].
This calculus consists of an enriched syntax and introduces new structural connec-
tives (,). While the above labelled systems are semantic-dependent systems (a labelled
formula correspond to the semantic notion, the satisfaction relation), display calculus
is a semantic-independent system. A sequent X ⇒ Y is a pair of X and Y which are
structures consisting of formulas and structure constants using the structural connec-
tives. An outstanding feature of display calculi is a general cut-elimination theorem
which for all display calculi satisfying eight syntactic conditions.

This powerful proof-theoretic framework is widely applied to several logics includ-
ing EAK. Display calculus for EAK is given by Greco et al. [33]. It also provides an
enriched syntactics than the normal version of EAK, in which all logical operations
have adjoints. This calculus is sound and complete for semantics called the final coal-
gebra semantic (c.f. [1, 18]). The reason to employ such a non-standard semantics is
that the standard Kripke semantics may not provide a natural interpretation to the ex-
tended logical operators such as [·] and ⟨·⟩ which are adjoint to [·] and ⟨·⟩ (the action
operator and the dual of this) respectively, but the final coalgebra semantics can do this.
The following is an example of inference rule of this calculus:

A⇒ {a}X
A⇒ [a]X

([a]R)
,

where a is an action and {a} is a structural connective associated with [a] and ⟨a⟩. 5

1.5 Contribution
We mainly focused on the proof theories of PAL and EAK, which became the basis
of the flourishing field of epistemic logic, and constructed cut-free labelled sequent
calculi for them based on existing Hilbert-style proof systems. Specifically, in PAL,
our labelled sequent calculus was closely related with the study of Maffezioli and Ne-
gri [51], where a labelled sequent calculus for PAL was constructed, but Balbiani et
al. [6] suggested that this system is not semantically complete for Kripke semantics.
We specified this problem and revised it to be a complete calculus. We also focused
on the soundness of a labelled sequent calculus for PAL where the usual definition for
the validity of a sequent was not adequate, which has not been suggested by previous
works, and we provided a different and more suitable definition for it. Then, we in-
vestigated the completeness theorem for our calculus. In PAL, the Kripke model can
be restricted by an announcement, i.e., some possible world(s) where a contradiction
occurs that can be deleted, and this causes a difficulty for a direct proof of the com-
pleteness theorem. Therefore, for the proof, we also found that a different but suitable
Kripke semantics was required, which we called ‘link-cutting semantics,’ where only
the accessibility relation can be restricted by an announcement. Also, our calculus was
founded on modal logic K, the most basic modal logic, as a starting point of the con-
struction of our calculus, but the extensions from K to other modal logics were also

5In addition to related works mentioned above, a nested sequent calculus for EAK is provided by Dyck-
hoff and Sadrzadeh [24], but the syntax underlying their system varies from the normal syntax of EAK, so
we do not refer to it in detail.

12

given by providing additional inference rules corresponding to frame properties. The
extension to modal logic S5 is particularly significant since S5 is the usual basis of
epistemic logic. In EAK, there exists a calculus by [33] is complete for an unusual
semantics, the final coalgebra semantics. In this thesis, we, based on the argument of
the labelled sequent calculus for PAL, constructed a labelled sequent calculus for EAK
that was semantically complete for the standard Kripke semantics. Since EAK is a
generalization of PAL, a number of methods for the construction of a labelled sequent
calculus for PAL could be applicable to the construction of a calculus for EAK; how-
ever, we particularly pay attention to how to deal with the composition of accessibility
relations and action relations in a syntactic way. The treatment of these relations was
the core of our calculus for EAK and they differentiate it from [3]. We also provide
extensions from modal logic K to other modal logics, including S5, as in the case of
PAL. Moreover, recently, Intuitionistic PAL (IntPAL) was proposed by Ma et al. [49],
and we provided a cut-free labelled sequent calculus for it. The construction of the cal-
culus also follows a similar method to that of PAL; however, since IntPAL employs a
bi-relational Kripke semantics, which is one of the standard semantics for intuitionistic
modal logics, we face a different difficulty from the deletion of world(s). We settle the
problem by making use of Simpson’s solution [78]. Intuitionistic epistemic logic has
a philosophically profound meaning as it can be regarded to provide a strict sense of
knowledge, which is justified by evidence for knowledge. We expect that our cut-free
calculus is valuable to give concrete evidence. There is an underlying paper on each
of three labelled sequent calculi. Studies of three sequent calculi for PAL, EAK and
IntPAL are based on the author’s paper [61], [60] and [59] respectively.

The outline of this thesis is as follows: Chapter 2 provides technical preliminaries
of basic multi-modal logics and labelled sequent calculi for multi-modal logics, se-
mantics and their applications for PAL, and those of EAK; Chapter 3 introduces our
first calculus, which is for PAL, and shows the cut-elimination theorem, as well as
the soundness and completeness results; and Chapter 4 introduces our second calculus,
which is for EAK and shows the same results as above. Chapter 5 provides the language
and bi- relational Kripke semantics of IntPAL, and then introduces our third calculus,
in which we also show the results of the cut-elimination, soundness and completeness.

13

Chapter 2

Preliminaries

2.1 Multi-modal logic (ML)
Let us get started with Multi-modal Logic (ML for short), the foundation of epistemic
logics and dynamic epistemic logics. ML contains a finite set Mod = {□,□′,□′′, . . .}
of modal operators (modalities) is added to classical propositional logic. In fact, the
ordinary (multi-agent) epistemic logic is no different from (multi-) modal logic S5
(in Section 2.1.4) but only modalities are interpreted as states of knowledge. In this
section, we mainly refer to [11, 17]. Section 2.1.1 gives the language and Kripke
semantics of ML, while Section 2.1.2 and Section 2.1.3 introduce two different proof
systems and their basic results respectively.

2.1.1 Language LML and Kripke semantics
Let Prop = {p, q, r, . . .} be a countably infinite set of propositional atoms and Mod =
{□,□′,□′′, . . .} a nonempty finite set of modalities. Then the set LML = {A, B,C, . . .} of
formulas of ML is inductively defined by BNF as follows (p ∈ Prop, □ ∈ Mod):

A ::= p | ¬A | (A→ A) | □A.

Definition 2.1.1. Let A, B be any formulas in LML and p be any propositional atom in
Prop. Then ordinary logical connectives are defined as follows:

A ∧ B := ¬(A→ ¬B), A ∨ B := ¬A→ B,
⊥ := p ∧ ¬p, ♢A := ¬□¬A,
A↔ B := (A→ B) ∧ (B→ A), ⊤ := ⊥ → ⊥,∧{A1, ..., An} := A1 ∧ · · · ∧ An,

∧
∅ := ⊤.

Kripke Semantics Let us consider Kripke semantics. A (Kripke) frame is a pair
F = (W, (R□)□∈Mod) where W is a non-emptyset of elements, called (possible) worlds,
and each R□ ⊆ W × W is a binary relation on W, called an accessibility relation. We
call a pair M = (F,V) a (Kripke) model if F is a frame and V : Prop → P(W) is a
valuation function which assigns a subset of W to a propositional atom. Given a model

14

M, w ∈ D(M) and A ∈ LML, we define the satisfaction relation M, w ⊩ A as follows
(□ ∈ Mod):

M, w ⊩ p iff w ∈ V(p),
M, w ⊩ ¬A iff M, w ⊮ A,
M, w ⊩ A→ B iff M, w ⊩ A impliesM, w ⊩ B,
M, w ⊩ □A iff for all v ∈ W : wR□v impliesM, v ⊩ A.

The set W of worlds in a model M is also called the domain of M, denoted by D(M).
We write a class of frames by F etc. and a class of models byM etc.

Definition 2.1.2 (Validity). Let A be any formula in LML.

(i) A formula A is valid on a modelM (notation: M ⊩ A) ifM, w ⊩ A holds for any
w ∈ D(M).

(ii) A formula A is valid on a frame F = (W, (R□)□∈Mod) (notation: F ⊩ A) if (F,V) ⊩
A holds for any valuation V .

(ii) A formula A is valid on M (notation: M ⊩ A) if M ⊩ A holds for any model M
in a class of modelsM.

(iv) A formula A is valid on F (notation: F ⊩ A) if F ⊩ A holds for any frame F in a
class F of frames.

Frame definability We consider here the correspondence between a formula and a
condition of frames. Then we define the basic concept of modal logic underlying in
this thesis.

Definition 2.1.3 (Definability). Let A be a formula in LML and F a class of frames. We
say that A defines F if F ∈ F iff F ⊩ A for all F.

Here are five widely known formulas each of which is given a traditional name such as
T□,B□, 4□, 5□ and D□ (□ ∈ Mod) as follows:

T□ := □p→ p, 4□ := □p→ □□p, D□ := □p→ ♢p.
B□ := p→ □♢p, 5□ := ♢p→ □♢p,

In addition to that, we introduce other five well-known names of conditions on acces-
sibility relations (R□)□∈Mod in a frame. These conditions are shown in Table 2.1.

Table 2.1: Frame properties
R□ is reflexive wR□w for all w ∈ W
R□ is symmetric wR□v implies vR□w for all w, v ∈ W
R□ is transitive wR□v and vR□u imply wR□u for all w, v, u ∈ W
R□ is Euclidean wR□v and wR□u imply vR□u for all w, v, u ∈ W
R□ is serial wR□v for all w ∈ W for some v ∈ W

When we say a list (R□)□∈Mod of accessibility relations is reflexive, every accessi-
bility relation R□ in the list is reflexive. Then we can show the following proposition.

15

Proposition 2.1.1. Let F be a frame and R□ be any accessibility relation in F. Then
the following hold:
F ⊩ T□ iff R□ is reflexive, F ⊩ 5□ iff R□ is Euclidean,
F ⊩ B□ iff R□ is symmetric, F ⊩ D□ iff R□ is serial.
F ⊩ 4□ iff R□ is transitive,

As a result of Proposition 2.1.1, formulas T□,B□, 4□, 5□ and D□ (□ ∈ Mod) define
classes of frames which satisfy the corresponding frame property respectively, e.g., T□
defines the class of R□-reflexive frames. In what follows, we use the following set:

FrameAxiom := {T□,B□, 4□, 5□,D□ | □ ∈ Mod}.

Definition 2.1.4. Let Σ be a subset of FrameAxiom. Then we write FΣ to mean the
class of frames which is defined by

∧
Σ. Further, let us also define the class MΣ of

models byMΣ := {(F,V) | F ∈ FΣ and V is a valuation V on F}.

2.1.2 Hilbert-system HK of Multi-modal logic
We will introduce two proof systems: Hilbert-system in this section and labelled se-
quent calculus in the next section. Hilbert-system HK is given in Table 2.2, where
axiom (K) and inference rule (Nec) are added to the Hilbert-system of classical propo-
sitional logic. When we add one or more formulas in FrameAxiom as additional axiom

Table 2.2: Hilbert-system for ML: HK
Modal axiom scheme (Taut) all instantiations of propositional tautologies

(K) □(A→ B)→ (□A→ □B) (□ ∈ Mod)
Inference rules (MP) From A and A→ B, infer B

(Nec) From A, infer □A (□ ∈ Mod)

schemes (each of which can define a class of frame) to the set of axiom scheme of HK,
we obtain Hilbert-systems other than HK as follows.

Definition 2.1.5 (Extensions of HK). Let Σ be a subset of FrameAxiom. When each
element of Σ is added to HK as an axiom scheme by replacing p with an arbitrary
formula A, the extension of HK is the resulting Hilbert-system HKΣ.

For example, if the set {T□,B□′ } are added to HK, we obtain Hilbert-system HK{T□B□′ }.
Hilbert-systems with some particular combinations of axiom schemes are given names.

HT := HK{T□ | □ ∈ Mod}, HS5 := HK{T□, 5□ | □ ∈ Mod},
HB := HK{T□,B□ | □ ∈ Mod}, HD := HK{D□ | □ ∈ Mod}.
HS4 := HK{T□, 4□ | □ ∈ Mod},

Definition 2.1.6 (Derivation of HKΣ). Let HKΣ (where Σ ⊆ FrameAxiom) be a
Hilbert-system. A derivation in HKΣ consists of a sequence of formulas each of which
is an instance of an axiom or is the result of applying an inference rule to formula(s)
that occur earlier. If A is the last formula in a derivation, then A is derivable, and we
write ⊢HKΣ A. Given a subset Γ ∪ {A} of LML, A is derivable from Γ in HKΣ if there is
a finite subset Γ′ of Γ such that ⊢HKΣ

∧
Γ′ → A, and we write Γ ⊢HKΣ A.

16

Additionally, when A is not derivable in a proof system HKΣ (where Σ ⊆ FrameAxiom),
we write ⊬HKΣ A. Finally, we define basic MLs. For any Σ ⊆ FrameAxiom, modal
logic KΣ is the set of all derivable formulas in HKΣ. Some modal logics are also given
special names in some particular combinations of axiom schemes.

K := K∅, S4 := K{T□, 4□ | □ ∈ Mod},
T := K{T□ | □ ∈ Mod}, S5 := K{T□, 5□ | □ ∈ Mod},
B := K{T□,B□ | □ ∈ Mod}, D := K{D□ | □ ∈ Mod}.

Soundness and Completeness The soundness and completeness theorems are in-
tegral parts of a proof system, and the completeness of HK is especially important
through this thesis since the semantic completeness theorems of DELs depend on the
completeness of HK (we will see it in the next section).

Theorem 2.1.1 (Soundness of HKΣ). Let Σ be a subset of FrameAxiom. If ⊢HKΣ A,
thenMΣ ⊩ A, for any formula A ∈ LML.

We briefly look at a proof of the completeness theorem of HKΣwith a similar argument
in [11, Section 4.3].

Definition 2.1.7 (Maximal KΣ-consistent set). Let Γ ⊆ LML. Then Γ is KΣ-consistent
if ⊥ is not derivable from Γ (Γ ⊬HKΣ ⊥). Γ is maximal if A ∈ Γ or ¬A ∈ Γ for any
A ∈ LML. Γ is a maximally KΣ-consistent set (a KΣ-MCS for short) if Γ is maximal
and KΣ-consistent.

Lemma 2.1.1 (Lindenbaum). Every KΣ-consistent set of formulas is a subset of a
KΣ-MCS.

Lemma 2.1.2. If Γ is a KΣ-MCS, then
(i) Γ ⊢HKΣ A implies A ∈ Γ (Deductively closed),

(ii) A ∈ Γ iff ¬A < Γ,

(iii) A→ B ∈ Γ iff A ∈ Γ implies B ∈ Γ,

(iv) if □A < Γ, then {¬A} ∪ {B | □B ∈ Γ} is KΣ-consistent.

Definition 2.1.8 (Canonical model). The canonical modelMKΣ = (WKΣ, (RKΣ
□)□∈Mod,VKΣ)

is defined as follows:

WKΣ = {Γ | Γ is a KΣ-MCS},
ΓRKΣ
□ ∆ iff {A | □A ∈ Γ} ⊆ ∆ (□ ∈ Mod),

VKΣ(p) = {Γ ∈ WKΣ | p ∈ Γ}.

Lemma 2.1.3 (Truth lemma). For any formula A ∈ LML and any KΣ-MCS Γ, A ∈ Γ
iffMKΣ, Γ ⊩ A.

Lemma 2.1.4. Let MKΣ = (WKΣ, (RKΣ
□)□∈Mod,VKΣ} be the canonical model for modal

logic KΣ. Then the following hold:
(i) if ⊢HKΣ □A→ A for all formulas A, then RKΣ

□ is reflexive,

17

(ii) if ⊢HKΣ A→ □♢A for all formulas A, then RKΣ
□ is symmetric,

(iii) if ⊢HKΣ □A→ □□A for all formulas A, then RKΣ
□ is transitive,

(iv) if ⊢HKΣ ♢A→ □♢A for all formulas A, then RKΣ
□ is Euclidean,

(v) if ⊢HKΣ □A→ ♢A for all formulas A, then RKΣ
□ is serial.

Theorem 2.1.2 (Completeness of HKΣ). Let Σ be a subset of FrameAxiom. IfMΣ ⊩
A, then ⊢HKΣ A, for any formula A ∈ LML.

Proof. Fix any A ∈ LML. We show the contraposition i.e., if ⊬HKΣ A, then A is not
valid. Suppose ⊬HKΣ A which is equivalent to {¬A} ⊬HKΣ ⊥. So, {¬A} is KΣ-consistent.
By Lemma 2.1.1, there is a KΣ-MCS ∆ such that {¬A} ⊆ ∆. By Lemma 2.1.2 (Truth
lemma),MKΣ,Γ ⊩ ¬A. By Lemma 2.1.3, the canonical modelMKΣ satisfies the corre-
sponding frame property(ies). Therefore, we obtainMKΣ,Γ ⊮ A as desired. □

Decidability and Finite model property We add one more basic property of MLs
i.e., decidability. To establish the notion of decidability, we need to mention the finite
model property.

Definition 2.1.9 (Finite model property). Let Σ be a subset of FrameAxiom. KΣ has
the finite model property iff each non-theorem of KΣ is false in some finite model in
MΣ.

Definition 2.1.10 (Decidability). A system KΣ of modal logic is decidable if there is
an effective method1 for deciding of any formula whether or not it is a theorem of the
system.

The following is a well-known result of modal logics.

Theorem 2.1.3. Modal logics K,T,B,S4,S5 and D have the finite model property.

Its proof is conducted by the standard filteration-method (c.f. [17, Theorem 5.21] and
[65, Section 5] for uni-modal logic).2

Theorem 2.1.4. A system of modal logic KΣ is decidable if KΣ has the finite model
property.

1In [19], a method (procedure) M is said to be effective (or mechanical) if (1) M is set out in terms
of a finite number of exact instructions (each instruction being expressed by means of a finite number of
symbols); (2) M will, if carried out without error, produce the desired result in a finite number of steps; (3)
M can (in practice or in principle) be carried out by a human being unaided by any machinery save paper
and pencil; (4) M demands no insight or ingenuity on the part of the human being carrying it out.

2A different approach for the finite model property of multi-modal logics is by the fusion of modal logics
in [12, Chapter 15]. For any modal logics X1 and X2 where they have disjoint modal operators □1, ...,□n and
□n+1, ...,□n+m respectively, the fusion X1 ⊗ X2 of X1 and X2 is the smallest multi-modal logic containing
□1, ...,□n,□n+1, ...,□n+m. Then the following [12, Theorem 4 in Chapter 15] holds: if both X1 and X2 are
modal logics having the finite model property, then their fusion X1 ⊗ X2 has the finite model property as
well. Let Y1 and Y2 be modal logics containing □ and □′ (□,□′ ∈ Mod and □ , □′) respectively. Since they
are uni-modal logics, the finite model property holds respectively. Then by the above theorem, the fusion
Y1⊗Y2 has the finite model property. By doing the same step finite times, we obtain that a multi-modal logic
containing a finite number of modalities □1,□2, ...,□n ∈ Mod has the property, since an arbitrary multi-modal
logic is equal to a fusion Y1 ⊗ · · · ⊗ Yn.

18

Proof (Outline). Assume KΣ has the finite model property. Let us consider an effective
method for deciding of any formula A whether it is a theorem of the system. We call
such a method for deciding A is a theorem a positive test, and call such a method for
deciding A is a non-theorem a negative test. By assumption, KΣ clearly has a finite
number of axioms, so there is a positive test.

Next, a negative test is given as follows. If M has a finite domain, there is an
effective method to check whether an arbitrary formula X is valid at M. Let us call
such a method δ. Besides, we have an effective method to permutate all finite models,
and let us call it γ. By the methods of δ and γ, we have a complete enumeration
M1,M2, ... ∈ MΣ of finite models in each of which

∧
Σ is valid (the validity is checked

by δ). If A is a non-theorem of KΣ, then A is false in some Mk ∈ MΣ. To find such
a model Mk, the falsity of A is checked at Mi by the method of δ, and if A is false at
the model, then it is a countermodel of A, else A is checked by the next model Mi+1.
Starting from this procedure from i = 1, a countermodel Mk of A can be found in a
finite step, and therefore, we obtain the way to check whether A is a theorem or not can
be checked by alternating these tests. □

Corollary 2.1.1. Multi-modal logics K,T,B,S4,S5 and D are decidable.

2.1.3 Labelled sequent calculus G3K
We introduce in this section one of the most uniform approaches for sequent calculus
for ML, labelled sequent calculus G3K by Negri and von Plato [57]. and Negri [56].
G3K is a basic G3-style sequent calculus for modal logic K, where each formula has
a label corresponding to a world of a domain in Kripke semantics. In fact, the la-
belled sequent calculus can be regarded as a formalized version of this Kripke seman-
tics. We note that a G3-style sequent calculus (or G3-system) is a sequent calculus
that does not have any structural rules, and outstanding features of G3K are that all
inference rules are height-preserving invertible and that the contraction rules are ad-
missible3. The specific introduction of the G3-system itself can be found in Troelstra
and Schwichtenberg [80] and Negri and von Plato [57], and in this section we follow
[57]’s introduction.

Let Var = {x, y, z, . . .} be a countably infinite set of variables. Then, given any
x, y ∈ Var and any formula A, we say x:A is a labelled formula, and say xR□y is
a relational atom for any modality □ ∈ Mod. Intuitively, the labelled formula x:A
corresponds to ‘M, x ⊩ A.’ We also use the term, labelled expressions to indicate that
they are either labelled formulas or relational atoms, and we denote them by A,B, etc.
A sequent Γ ⇒ ∆ is a pair of finite multi-sets of labelled expressions. The set of
inference rules of G3K is given in Table 2.3. Hereinafter, for any sequent Γ ⇒ ∆, if
Γ ⇒ ∆ is derivable in G3K, we write ⊢G3K Γ ⇒ ∆. We call labelled expression A in
the lowersequent at each inference rule principal if A is not in either Γ or ∆.

3The definitions of the height-preserving invertibility and admissibility will be soon given in this section.
We would like to remark a short history of the G3-system. According to von Plato [85], Ketonen [42]
obtained the invertibility of inference rules for classical propositional logic (CL), and Curry [20] showed
the height-preserving invertibility of them. Moreover, the height-preserving admissibility of the contraction
rules (G3-system for CL) was given by Dragalin [22]. Subsequently, Troelstra and Schwichtenberg [80] gave
a G3-system in the intuitionistic single suceedent calculus.

19

Table 2.3: Labelled sequent calculus for ML : G3K
(Initial Sequent)

x:p, Γ⇒ ∆, x:p xR□y, Γ⇒ ∆, xR□y

(Rules for propositional connectives)

Γ⇒ ∆, x:A
x:¬A,Γ⇒ ∆ (L¬)

x:A,Γ⇒ ∆
Γ⇒ ∆, x:¬A

(R¬)

Γ⇒ ∆, x:A x:B,Γ⇒ ∆
x:A→ B,Γ⇒ ∆ (L→)

x:A,Γ⇒ ∆, x:B
Γ⇒ ∆, x:A→ B

(R→)

x:⊥,Γ⇒ ∆ (L⊥)

(Rules for modal operators)

y:A, x:□A, xR□y, Γ⇒ ∆
x:□A, xR□y, Γ⇒ ∆

(L□)
xR□y,Γ⇒ ∆, y:A
Γ⇒ ∆, x:□A

(R□)†

† y does not appear in the lower sequent.

Extensions of G3K Similar to the situation of HK, extensions of G3K are obtained
by adding to G3K one or more of the following rules shown in Table 2.4, which also
correspond to the frame properties. Let ∗ be a function such that FrameAxiom →
{(ref□), (sym□), (tra□), (euc□), (ser□) | □ ∈ Agt}, and defined as follows:

T□∗ := (ref□), B□∗ := (sym□), 4□∗ := (tra□),
5□∗ := (euc□), D□∗ := (ser□).

Let Σ be a subset of FrameAxiom then Σ∗ is defined to be the set {X∗ | X ∈ Σ}.

Definition 2.1.11 (Extensions of G3K). Let Σ be a subset of FrameAxiom. A G3-
system G3KΣ∗ is an extension of G3K, when each element of Σ∗ is added to G3K as

Table 2.4: Rules of G3-system for frame properties

xR□x,Γ⇒ ∆
Γ⇒ ∆ (ref□)

xR□z, xR□y, yR□z,Γ⇒ ∆
xR□y, yR□z,Γ⇒ ∆ (tra□)

yR□x, xR□y, Γ⇒ ∆
xR□y,Γ⇒ ∆

(sym□)
yR□z, xR□y, xR□z,Γ⇒ ∆

xR□y, xR□z, Γ⇒ ∆ (euc□)

xR□v, Γ⇒ ∆
Γ⇒ ∆ (ser□)†

† v does not appear in the lowersequent.

20

an inference rule.

G3-systems with some particular combinations of inference rules are given names.

G3T := G3K{(ref□) | □ ∈ Mod},
G3B := G3K{(sym□) | □ ∈ Mod},
G3S4 := G3K{(ref□), (tra□) | □ ∈ Mod},
G3S5 := G3K{(ref□), (euc□) | □ ∈ Mod},
G3D := G3K{(ser□) | □ ∈ Mod}.

Features of G3KΣ∗ Let G3KΣ∗ be an arbitrary extension of G3K. We introduce
some definitions and outstanding features of G3KΣ∗. Each extension has properties of
G3-system such as the height-preserving invertibility of inference rules and the admis-
sibility of the contraction rules and cut-admissibility as well as the completeness for
the corresponding Kripke semantics.

Definition 2.1.12 (Derivation of G3KΣ∗). Let Σ be a subset of FrameAxiom. A deriva-
tion of sequent Γ ⇒ ∆ in G3KΣ∗ is a tree of sequents satisfying the following condi-
tions:

(1) The uppermost sequent of the tree is an initial sequent or a conclusion of (L⊥).

(2) Every sequent in the tree except the uppermost sequent(s) is a lowersequent of
an inference rule of G3K.

(3) The lowest sequent is Γ⇒ ∆.
Given a sequent Γ ⇒ ∆, it is derivable in G3KΣ∗ and we write ⊢G3KΣ∗ Γ ⇒ ∆ if there
is a derivation of the sequent. The height of the derivation of Γ ⇒ ∆ is the maximum
length of branches of the derivation, and we write ⊢nG3KΣ∗ Γ ⇒ ∆ to be explicit on the
meaning of ⊢G3KΣ∗ Γ⇒ ∆ at derivation height n.

Definition 2.1.13 (Admissible). Let Σ be a subset of FrameAxiom. A rule is admissible
if, whenever the premise(s) of the rule is derivable in G3KΣ∗, the conclusion of the
rule is derivable in G3KΣ∗. A rule is height-preserving admissible if, whenever the
premise(s) of the rule is derivable in G3KΣ∗ with the derivation height at most n, the
conclusion of the rule is derivable in G3KΣ∗ with the derivation height at most n.

Definition 2.1.14 (Invertible). Let Σ be a subset of FrameAxiom. A rule is height-
preserving invertible in G3KΣ∗ if, whenever the conclusion of the rule is derivable
with the derivation height at most n, premise(s) of the rule is also derivable with the
derivation height at most n.

Proposition 2.1.2. Let Σ be a subset of FrameAxiom. All the inference rules of G3KΣ∗
are height-preserving invertible.

Proposition 2.1.3. The following structural rules are height-preserving admissible:

Γ⇒ ∆
A,Γ⇒ ∆ (Lw), Γ⇒ ∆

Γ⇒ ∆,A (Rw),
A,A,Γ⇒ ∆
A,Γ⇒ ∆ (Lc),

Γ⇒ ∆,A,A
Γ⇒ ∆,A (Rc).

21

Theorem 2.1.5. Let Σ be a subset of FrameAxiom. The following rule (Cut) is admis-
sible in G3KΣ∗,

Γ⇒ ∆, x:A x:A,Γ′ ⇒ ∆′
Γ,Γ′ ⇒ ∆,∆′ (Cut),

where labelled formula x:A in (Cut) is called a cut expression.

Now, we move onto the part of the soundness theorem of G3KΣ∗. For the theorem,
we extend Kripke semantics to cover the labelled expressions. Given any modelM, we
say that f : Var→ D(M) is an assignment.

Definition 2.1.15. LetM be a model and f : Var→ D(M) an assignment:

M, f ⊩ x:A iff M, f (x) ⊩ A,
M, f ⊩ xR□y iff (f (x), f (y)) ∈ R□.

Definition 2.1.16 (Validity for sequents). Let Γ⇒ ∆ be any sequent.

• Γ ⇒ ∆ is valid on a model M if for all assignments f : Var → D(M) such that
M, f ⊩ A for all A ∈ Γ, there exists B ∈ ∆ such thatM, f ⊩ B.

• Γ⇒ ∆ is valid on a classM of frames if Γ⇒ ∆ is valid onM for allM in a class
M of models.

Let us recall Definition 2.1.4 by which the class MΣ of models is defined by MΣ :=
{(F,V) | F ∈ FΣ and V is a valuation V on F}. The following results of soundness and
completeness are shown in Negri and von Plato [58, Theorem 11.27, Theorem 11.28].

Theorem 2.1.6 (Soundness and completeness of G3KΣ∗). Let Σ be a subset of FrameAxiom.
Γ⇒ ∆ is valid onMΣ iff ⊢G3KΣ∗ Γ⇒ ∆.

Combining Theorem 2.1.1 and Theorem 2.1.2 and Theorem 2.1.6, we have the follow-
ing.

Corollary 2.1.2. Let Σ be a subset of FrameAxiom and A a formula of LML. Then the
following are equivalent:

(i) MΣ ⊩ A,

(ii) ⊢HKΣ A,

(iii) ⊢G3KΣ∗⇒ x:A.

2.1.4 Multi-agent epistemic logic
Multi-agent epistemic logic is basically the same as Multi-modal Logic S5 where a
finite set Agt of agents a, b, c, ... are given as an index set of modal operators, and
so the set Mod of modal operators is defined by {□a | a ∈ Agt} and also a list of
accessibility relations in a model is given with the index set of agents as (Ra)a∈Agt.4 It is

4In epistemic logics, operator □a is sometimes written as Ka by the initial of “Know.”

22

usually assumed that Ra is an equivalent relation in Kripke semantics for the standard
epistemic logic. A modal operator □a is called a knowledge operator and interpreted
as ‘agent a knows that’; for example a formula □aA reads ‘agent a knows that A.’ By
using such operators, a sentence like ‘agent a knows A and agent b doesn’t know B’
can be formally expressed as □aA ∧ ¬□bB. Moreover, a nesting knowledge of distinct
agents is also representable such as □a□bA which reads ‘agent a knows that agent b
knows that A.’

In terms of epistemic logic, the formulas 4□a (□aA → □a□aA) and 5□a (¬□aA →
□a¬□aA) are called positive introspection and negative introspection respectively, since
4□a may be interpreted as ‘if agent a knows A, he/she knows that their own knowledge
state of A,’ and similarly 5□a may be interpreted as ‘if agent a does not know that A,
he/she knows their own knowledge state of A.’ Besides, the formula T□a (□aA→ A) is
called truth-axiom since this means here that what is known is actually true.5

Example 2.1.1. Let us consider Agt = {a, b} and the following model such as: M =
(W,Ra,Rb,V) = ({w1, w2},W2, idW ,V) where V(p) = {w1}. This model can be shown in
graphic forms as follows.

M GFED@ABCw1a,b
,, a //

⊩p

GFED@ABCw2 a,b
rr

oo

⊮p

Intuitively, for any agent x, a bidirectional arrow of x between two worlds stands for
that x cannot distinguish between two, and he/she is ignorant of sentences which dis-
tinguish the two worlds. The above model M stands for the knowledge state of both
a and b where a is ignorant of p but b is not. In other words, agent a does not know
whether p holds. This formally means that formula ¬(□a p ∨ □a¬p) is valid in M but
not valid in the case of agent b,

2.2 Public Announcement Logic (PAL)
In this section, we introduce the first DEL in the thesis, and this becomes the basis of
other DELs. Section 2.2.1 introduces the language and Kripke semantics of PAL, Sec-
tion 2.2.2 gives specific examples (one of which is called the Muddy children puzzle)
of how to formalize knowledge-change through public announcements. Section 2.2.3
introduces Hilbert-system HPAL.

2.2.1 Language LPAL and Kripke semantics
First of all, we address the language of PAL. Let Prop = {p, q, r, . . .} be a countably
infinite set of propositional atoms and Agt = {a, b, c, . . .} a finite set of agents. Then
the set LPAL = {A, B,C, . . .} of formulas of PAL is inductively defined as follows (p ∈
Prop, a ∈ Agt):

5Formula T□a implies a quite strong meaning in terms of knowledge. Actually, doxastic logic (logic of
belief) usually includes D□a instead of that.

23

A ::= p | ¬A | (A→ A) | □aA | [A]A.

Other logical connectives are defined as usual (see Definition 2.1.1), and ⟨A⟩B is de-
fined by ¬[A]¬B. [A]B reads ‘after public announcement of A, it holds that B.’

Example 2.2.1. Let us consider a propositional atom p to read ‘it will rain tomorrow’.
Then a formula ¬(□a p ∨ □a¬p) means that a does not know whether it will rain to-
morrow or not, and [¬p]□a¬p means that after a public announcement (e.g., a weather
report) of ¬p, a knows that it will not rain tomorrow.

We should now consider Kripke semantics of PAL in which we mainly follow the
semantics introduced in van Ditmarsch et al. [83]. We call M = (W, (Ra)a∈Agt,V) a
model if W is a nonempty set of worlds, Ra ⊆ W × W, and V is a valuation function
which assigns a propositional atom to a subset of W. W is also called the domain ofM,
denoted byD(M). Next, let us define the satisfaction relation.

Definition 2.2.1 (The satisfaction relation). Given a model M, w ∈ D(M), and A ∈
LPAL, we defineM, w ⊩ A as follows:

M, w ⊩ p iff w ∈ V(p),
M, w ⊩ ¬A iff M, w ⊮ A,
M, w ⊩ A→ B iff M, w ⊩ A impliesM, w ⊩ B,
M, w ⊩ □aA iff for all v ∈ W : wRav impliesM, v ⊩ A (a ∈ Agt),
M, w ⊩ [A]B iff M, w ⊩ A impliesMA, w ⊩ B,

where the restriction MA, at the definition of the announcement operator, is the re-
stricted model to the truth set of A, defined asMA = (WA, (RA

a)a∈Agt,VA) with

WA := {x ∈ W | M, x ⊩ A},
RA

a := Ra ∩ (WA ×WA),
VA(p) := V(p) ∩WA (p ∈ Prop).

As above, the restriction of a model is based on the restriction of the set of worlds,
so that this can be said to be the world-deleting semantics of PAL, and this will be
distinguished from the link-cutting semantics in Section 3.4. In the semantics above,
we do not assume any requirement on accessibility relations (Ra)a∈Agt (not assuming Ra

is an equivalent relation), since the previous works [6, 51] also start with a model with
an arbitrary accessibility relation, we also follow them in this respect. The validity of
formula A is defined similarly as in the case of ML.

Definition 2.2.2. A formula A ∈ LPAL is valid in a model M if M, w ⊩ A for all
w ∈ D(M).

2.2.2 Examples of knowledge-change in PAL
We now have a complete set of PAL i.e., its language, Kripke semantics and Hilbert-
system, but a reader who is not familiar with PAL may not easily see what it is. The
following each example formally represents knowledge-change of agents through mod-
els and it might help for understanding the heart of PAL.

24

Example 2.2.2. First of all, we formalize Example 2.2.1 with models as follows. Let us
consider Agt = {a} and the following two models such as: M = ({w1, w2},W2,V) where
V(p) = {w1}, and M¬p = ({w2}, {(w2, w2)},V¬p) where V¬p(p) = ∅. These models can
be shown in graphic forms as follows.

M GFED@ABCw1a
,, a //

⊩p

GFED@ABCw2 a
rr

oo

⊮p

[¬p] ///o/o/o GFED@ABCw2 a
rr

⊮p

M¬p

InM, agent a does not know whether p or ¬p (i.e., ¬(□a p ∨ □a¬p) is valid inM), but
after announcement of ¬p, agent a comes to know ¬p in the restricted modelM to ¬p.

Example 2.2.3 (Muddy children puzzle). Logical puzzles are sometimes utilized for
formal expressions of knowledge-change as concrete examples of DELs. ‘the Muddy
children puzzle’ introduced in [68, Example 2.17] and [83, pp.93-96] is one such puzzle
and is probably the most famous in knowledge-representation.

The situation is that there are three children Ann, Bill and Cath, and they may
have mud on their foreheads. They can see each others’ foreheads but not their own
forehead. In other words, they know if children other than oneself are muddy or not.
This is the initial situation. Then their father who knows who is muddy said ‘at least
one of you is muddy’ (1st public announcement). Then, the father said ‘tell me if you
know who is muddy,’ and no child said anything (2nd public announcement). After
that, the father repeats the request, and Ann and Bill said ‘yes, I know’ (3rd public
announcement).Who is muddy?

Let Agt be {a, b, c} each of whose elements represents Ann, Bill and Cath respec-
tively, and let x_knows be a formula □xxm∨□x¬xm (x ∈ Agt) which intuitively means
that agent x knows whether x is muddy or not (propositional atom xm reads agent x is
muddy). Then we formalize the changes of the children’s knowledge.

First, let us formalize the three public announcements.

• The first public announcement ‘at least one of you is muddy,’ can be expressed as
a formula inLPAL as ‘am∨bm∨cm,’ and let the formula be somebody_is_muddy.

• The second public announcement (in this context public information) is the chil-
dren’s reaction to the father’s request ‘tell me if you know who is muddy,’ and it
is no body said anything.’ The announcement (information) can also be formal-
ized as ‘¬a_knows ∧ ¬b_knows ∧ ¬c_knows’

• The third public announcement is also the children’s reaction to the father’s same
request, and Ann and Bill said ‘yes, I know,’ but Cath said nothing, i.e., Cath is
still ignorant of who is exactly muddy. The announcement can also be formalized
as ‘a_knows ∧ b_knows ∧ ¬c_knows’

Children’s initial knowledge-states in which they do not know if their own forehead is
muddy can be formalized through a model as follows. Let Agt be {a, b, c} and model

25

M = (W,Ra,Rb,Rc,V) where

W = {xyz | x, y, z ∈ {m, l}}, V(am) = {mmm,mlm,mll,mml},
Ra = {(xyz, x′yz) | x, x′, y, z ∈ {m, l}}, V(bm) = {lml, lmm,mml,mmm},
Rb = {(xyz, xy′z) | x, y, y′, z ∈ {m, l}}, V(cm) = {llm, lmm,mlm,mmm}.
Rc = {(xyz, xyz′) | x, y, z, z′ ∈ {m, l}},

Each world represents the states of children’s forehead, e.g., mll means a is muddy, b
is clean and c is clean. ModelM representing the initial state of children’s knowledge
can be shown in graphic forms as follows (omitting reflexivity).
• Initial modelM ONMLHIJKmmm

b

cc
FF

FF

##F
FF

F

c

OO

��

aoo // ONMLHIJKlmm

c

OO

��

bb

b
DD

DD

""D
DD

DONMLHIJKmlm

c

OO

��

oo a // GFED@ABCllm
OO

c

��

ONMLHIJKmml oo a //
cc

b
FF

FF

##FF
FFF

GFED@ABClml bb

b
DD

DD

""D
DD

DGFED@ABCmll oo a // ?>=<89:;lll

As we have mentioned in the previous section, a bidirectional arrow of agent x linking
two worlds means in epistemic logics that x does not distinguish the two; therefore,
this model suggests that each children does not distinguish a world where their own
forehead is muddy from a world where it is clean.

But, after the first announcement somebody_is_muddy, the model is modified since
this formula does not hold at world lll where every child is clean, i.e., ‘M, lll ⊮ somebody_is_muddy.’
This restricted model is written asMsomebody_is_muddy and depicted as follows:
• Second modelMsomebody_is_muddyONMLHIJKmmm

b

cc
FF

FF

##F
FF

F

c

OO

��

aoo // ONMLHIJKlmm

c

OO

��

bb

b
DD

DD

""D
DD

DONMLHIJKmlm

c

OO

��

oo a // GFED@ABCllm

ONMLHIJKmml oo a //
cc

b
FF

FF

##FF
FFF

GFED@ABClml

GFED@ABCmll

26

Next, announcement¬a_knows∧¬b_knows∧¬c_knows modifies modelMsomebody_is_muddy

and the secondly restricted model is written as (Msomebody_is_muddy)¬a_knows∧¬b_knows∧¬c_knows,
in which every child knows at least two children are muddy.
• Third model (Msomebody_is_muddy)¬a_knows∧¬b_knows∧¬c_knowsONMLHIJKmmm

b

cc
FF

FF

##F
FF

F

c

OO

��

aoo // ONMLHIJKlmm

ONMLHIJKmlm

ONMLHIJKmml

The next restricted model after a_knows∧b_knows∧¬c_knows is depicted as follows:
• Forth model ((Msomebody_is_muddy)¬a_knows∧¬b_knows∧¬c_knows)a_knows∧b_knows∧¬c_knowsONMLHIJKmml

Finally, we obtain the model consisting of only one world mml. That means the answer
is only Cath is clean.

2.2.3 Hilbert-system HPAL of PAL

Table 2.5: Hilbert-system for PAL : HPAL
Modal Axioms (Taut) all instantiations of propositional tautologies

(K) □a(A→ B)→ (□aA→ □aB)
Recursion Axioms (RA1) [A]p↔ (A→ p)

(RA2) [A](B→ C)↔ ([A]B→ [A]C)
(RA3) [A]¬B↔ (A→ ¬[A]B)
(RA4) [A]□aB↔ (A→ □a[A]B)
(RA5) [A][B]C ↔ [A ∧ [A]B]C

Inference Rules (MP) From A and A→ B, infer B
(Nec□a) From A, infer □aA

Hilbert-system HPAL is defined in Table 2.5 below where there are some axioms
with announcement operators as additional axioms to the Hilbert-system of HK. These
five additional axioms (from (RA1) to (RA5)) are called recursion axioms (or reduc-
tion axioms). They exist for reducing each of the theorems of HPAL into theorems of
Hilbert-system HK. The proof of the completeness and soundness theorem of HPAL
is carried out by a translation method whose basic idea was given in the previous

27

work [68, Theorem 2.7]. We define the derivation and derivability of HPAL in the
same manner as that of HK in Definition 2.1.6. Then we briefly look at established
results.

Theorem 2.2.1 (Soundness of HPAL). For any formula A, A is valid only if A is
derivable in HPAL.

In the case of the soundness theorem, it suffices to show the validity of HPAL’s recur-
sion axioms, which is straightforward.

For the proof of the completeness theorem, we follow the proof in [83, pp.186-7]
whose essential idea is that every formula in LPAL is reducible into a formula in LML

by the following translation function t : LPAL → LML. In other words, translated
formula t(A) ∈ LML is semantically equivalent to the original formula A ∈ LPAL,
which is guaranteed by the validity of the recursion axioms. The translation function
t : LPAL → LML and the complexity function c : LPAL → N are given in the following.

Definition 2.2.3 (Complexity). The complexity function c : LPAL → N is inductively
defined as follows:

c(p) = 1, c(□aA) = 1 + c(A),
c(¬A) = 1 + c(A), c([A]B) = (4 + c(A)) · c(B).
c(A→ B) = 1 + max{c(A), c(B)},

Definition 2.2.4 (Translation). The translation function t : LPAL → LML is inductively
defined as follows:

t(p) = p, t([A]p) = t(A→ p),
t(¬A) = ¬t(A), t([A]B→ C) = t([A]B→ [A]C),
t(A→ B) = t(A)→ t(B), t([A]□aB) = t(A→ □a[A]B),
t(□aA) = □at(A), t([A][B]C) = t([A ∧ [A]B]C).

By these settings, we can easily show the following lemma.

Lemma 2.2.1. For any A, B,C ∈ LPAL, the following hold:
(1) c([A]p) > c(A→ p), (4) c([A]□aB) > c(A→ □a[A]B),
(2) c([A]¬B) > c(A→ ¬[A]B), (5) c([A][B]C) > c([A ∧ [A]B]C).
(3) c([A]B→ C) > c([A]B→ [A]C),

Proof. We only check (5), and it is trivial by the following equations:
c([A][B]C) = (4 + c(A)) · ((4 + c(B)) · c(C))

= (16 + 4c(B) + 4c(A) + c(A)c(B)) · c(C)

c([A ∧ [A]B]C) = (4 + c(¬(A→ ¬[A]B))) · c(C)
= (6 +max{c(A), 1 + c([A]B)}) · c(C)
= (6 +max{c(A), 1 + 4c(B) + c(A)c(B)}) · c(C)
= (7 + 4c(B) + c(A)c(B)) · c(C)

Therefore, (5) holds. □

Lemma 2.2.2. For any A ∈ LPAL, ⊢HPAL A↔ t(A) holds.

28

Theorem 2.2.2 (Completeness of HPAL). For any formula A, A is valid only if A is
derivable in HPAL.

Proof. Suppose A is valid. So, since A ↔ t(A) is valid by Lemma 2.2.2 and Theo-
rem 2.2.1 (the soundness of HPAL) , we obtain t(A) is valid. Then by Theorem 2.1.2
(the completeness of HK), we obtain ⊢HK t(A) and trivially ⊢HPAL t(A) holds; therefore,
⊢HPAL A by Lemma 2.2.2 again. □

Added to them, the decidability of PAL may be shown easily with the help of the
recursion axioms and Corollary 2.1.1.

Corollary 2.2.1. PAL is decidable.

Proof. We show that there is an effective method for deciding of any formula A ∈
LPAL whether or not it is a theorem of PAL. Fix any A ∈ LPAL. Note that translation
t : LPAL → LEL is inductively and so provides an effective method. Then since modal
logic K is decidable, t(A) ∈ LML can be decided whether it is a theorem of K or not. □

2.3 Logic of Epistemic Actions and Knowledge (EAK)
Section 2.3.1 gives the language and Kripke semantics of EAK, Section 2.3.2 shows
examples of EAK and Section 2.3.3 briefly looks at the soundness and completeness
results of its Hilbert-system.

2.3.1 Language LEAK and Kripke semantics
We define the language and Kripke semantics of EAK, we mainly follow the definition
of EAK as given in van Ditmarsch et al. [83]. Let Agt = {a, b, c, . . .} be a finite set of
agents and Prop = {p, q, r, . . .} a countably infinite set of propositional atoms. An (S5)
action frame is a pair (S, (∼a)a∈Agt) where S is a non-empty finite set of actions and ∼a is
an equivalence relation on S, which represents agent a’s uncertainty like PAL. In what
follows, we use an element of a countable set Evt = {a, b, c, s, t, . . .} as a meta-variable
to refer to an action.

Definition 2.3.1. We define the set LEAK = {A, B, . . .} of all formulas of EAK and
the set of all (S5) action models M = (S, (∼a)a∈Agt, pre) by simultaneous induction as
follows (p ∈ Prop, a ∈ Agt, and a ∈ S)6:

A ::= p | ¬A | (A→ A) | □aA | [aM]A,

where (S, (∼a)a∈Agt) is an action frame, pre is a function which assigns an LEAK-
formula pre(b) to each action b ∈ S, and an expression aM is an abbreviation of a
pointed action model (M, a). We read [aM]A as ‘after an action aM occurs, A holds.’
Other logical connectives are defined as usual (see Definition 2.1.1).

6Ditmarsch et al. [83] includes union of actions aM ∪ bN in the language, but we omit [aM ∪ bN]A as
[aM]A ∧ [bN]A.

29

For any action model M = (S, (∼a)a∈Agt, pre), we use M as a superscript of S, ∼a

and pre such as SM, ∼M
a and preM to emphasize that they belong to the action model M.

PEvt is used to denote the set {aM, bN, . . .} of all pointed action models.

Definition 2.3.2 (Composition of Actions). Given any two action models M and N, the
composition of the actions M; N is the action model such that:

SM;N = SM × SN,

(a, a′)∼M;N
a (b, b′) iff a∼M

a b and a′∼N
a b′,

preM;N((a, b)) = preM(a) ∧ [aM]preN(b).

Given any pointed action models aM and bN, the composition of the pointed action
models, aM; bN, is the pointed action model such that (a, b)M;N with M; N.

Note that the above action model (a, b)M;N is a pointed action model (but only with a
complex name of action (a, b)) by the definition above, and so it is included in PEvt.

Kripke semantics of EAK is, in fact, exactly the same as the that of PAL. A model
M is a triple (W, (Ra)a∈Agt,V) such that W is a non-empty set of worlds (W of M is
also written as D(M)), An accessibility relations (Ra)a∈Agt is an Agt-indexed family
of binary relations on W (a ranges over Agt) and V : Prop → P(W) is a valuation
function. Like the case of PAL, we define EAK based on modal logic K; therefore, we
do not assume any frame property on Ra.

Given a model M and a world w ∈ D(M), the satisfaction relation M, w ⊩ A for a
formula A is inductively defined as follows:

M, w ⊩ p iff w ∈ V(p),
M, w ⊩ ¬A iff M, w ⊮ A,
M, w ⊩ A→ B iff M, w ⊩ A impliesM, w ⊩ B,
M, w ⊩ □aA iff for all v ∈ W : wRav impliesM, v ⊩ A,
M, w ⊩ [aM]A iff M, w ⊩ pre(a) impliesM⊗M, (w, a) ⊩ A,

where M⊗M = (W⊗M, (R⊗M
a)a∈Agt,V⊗M) is the updated model of M by an action model

M and it is defined as:

W⊗M = {(w, a) ∈ W × SM | M, w ⊩ preM(a)},
(w, a)R⊗M

a (v, b) iff wRav and a∼M
a b,

(w, a) ∈ V⊗M(p) iff w ∈ V(p),

where a ∈ Agt and p ∈ Prop. A formula A is valid ifM, w ⊩ A holds in any modelM
and any world w ∈ D(M). Intuitively,M⊗M meansM updated by action M. We briefly
give an example which will show a way how EAK expresses a changing knowledge
state, by taking an example of an action model Read (the simplest example of ‘private
announcement’) in [83, p.166]. Additionally, multiple updates (· · · (M⊗M1)⊗···)⊗Mn on
M are also possible, which we write as M⊗M1⊗···⊗Mn for simplicity. Each Greek letters
α, β, . . . indicates a finite list aM1

1 , . . . , a
Mn
n of pointed action models, and ϵ is the empty

list. Moreover, if α is a list aM1
1 , . . . , a

Mn
n of pointed action models, then we define

αevt := (a1, . . . , an) and αmdl := (M1, . . . ,Mn), and αevt := ϵ and αmdl := ϵ if α is ϵ.
The symbolM⊗αmdl indicatesM⊗M1⊗M2⊗···⊗Mn when αmdl = (M1,M2, . . . ,Mn), andM⊗αmdl

indicatesM when α = ϵ.

30

2.3.2 Examples of knowledge-change in EAK
In this section, we look at some examples of change of knowledge states in EAK.
At first, it is significant to mention that EAK is a generalized version of PAL and
this logic is able to emulate PAL (Excise 6.14 in [83]). Let us consider action model
Pub(A) = ({a}, (∼a)a∈Agt, pre) where each ∼a is the identity relation and pre(a) = A for
any formula A ∈ LEAK .

Proposition 2.3.1 (PAL in EAK). The following equivalence holds,M, w ⊩ [aPub(A)]B
iffM, w ⊩ [A]B for any formulas A, B ∈ LML and any modelM.

Now, let us see a specific example of the emulation of PAL by EAK.

Example 2.3.1. Let Agt = {a} and Kripke modeM = ({w, v},W2,V) where V(p) = {w},
and action model Pub(¬p) = ({a}, {(a, a)}, pre) where pre(a) = ¬p. These models can
be shown in graphic forms as follows.?>=<89:;w a //

⊩p

a
))

M ?>=<89:;v a
ww

oo

⊮p

?>=<89:;aa
((
Pub(¬p)

pre(a)=¬p

update ///o/o/o ONMLHIJK(v, a)

⊮p

a
99
M⊗Pub(¬p)

Next, let us look at a peculiar example of knowledge change by EAK. This is called
‘private announcement.’

Example 2.3.2. Suppose there are two agents a and b, and neither of them knows
whether p. Then only a reads a letter where p is written. As a consequence, a’s
knowledge changes and she knows p, but b does not. Let Agt = {a, b}. Then a model
M and an action model Read are defined as follows:

M = (W,Ra,Rb,V) = ({w1, w2},W2,W2,V)
where V(p) = {w1},

Read = (S,∼a,∼b, pre) = ({p, np}, idS,S2, pre)
where pre(p) = p, pre(np) = ¬p.

This situation of the agent a and b can be semantically formalized by a pointed Kripke
model (M, w), a pointed action model (Read, p), and these two models are depicted as
follows.

(M, w) GFED@ABC?>=<89:;wa,b
.. b //

//

⊩p

GFED@ABCv a,b
rr

a
oo
oo

⊮p

ONMLHIJKGFED@ABCpa,b
--

b //

pre(p)=p pre(np)=¬p

GFED@ABCnp a,b
rr

oo (Read, p)

Then the pointed updated model (M⊗Read, (w, p)) is as follows.WVUTPQRSONMLHIJKw, pa,b
>> b //

⊩p

ONMLHIJKv, np a,b
hh

oo

⊮p

(M⊗Read, (w, p))

Each double circle indicates the given or resulting point (world or action) which stands
for the actual world or actual action. For any agent x, a bidirectional arrow of x between

31

two worlds (or actions) intuitively stands for that agent x cannot distinguish between
two, and x is ignorant of the reality (or actually what occurred) if one side of the
arrow is the actual world (or action). Pointed Kripke model (M, w) stands for the initial
knowledge state of both a and b where both are ignorant of p (the actual world w).
Pointed action model (Read, p) stands for an action such that only a reads the letter
containing information p, and that is because a does not have her bidirectional arrow
between the two worlds. The updated model (M⊗Read, (w, p)) stands for the knowledge
state of both a and b where a knows p but b is still ignorant of p.

2.3.3 Hilbert-system HEAK of EAK
Hilbert-system HEAK of EAK was introduced by Baltag et al. [8], and this system is
defined in Table 2.6 where the axioms for action operators are added to the Hilbert-
system of modal logic K. These additional axioms (from (RA1) to (RA5)) are often
called recursion axioms, as they express a way of reducing each formula of HEAK
equivalently into a formula of K.

Table 2.6: Hilbert-system for EAK : HEAK
Modal Axioms (Taut) all instantiations of propositional tautologies

(K) □a(A→ B)→ (□aA→ □aB)
Recursion Axioms (RA1) [aM]p↔ (pre(a)→ p)

(RA2) [aM]¬A↔ (pre(a)→ ¬[aM]A)
(RA3) [aM](A→ B)↔ [aM]A→ [aM]B
(RA4) [aM]□aA↔ (pre(a)→ ∧a∼M

a x □a[xM]A)
(RA5) [aM][bN]A↔ [aM; bN]A

Inference Rules (MP) From A and A→ B, infer B
(Nec□a) From A, infer □aA

The completeness theorem of HEAK can be shown by a similar argument in [8,
Proposition 4.5].

Theorem 2.3.1 (Soundness of HEAK). For any formula A, A is valid only if A is
derivable in HEAK.

In the case of the soundness theorem, it suffices to show the validity of HEAK’s recur-
sion axioms, which is straightforward.

For the proof of the completeness theorem, we follow the proof in [83, pp.186-7]
whose essential idea is that every formula in LEAK is reducible into a formula in LML

by the following translation function t. The translation function t : LEAK → LML and
the complexity function c : LEAK → N are defined.

Definition 2.3.3 (Complexity). The complexity function c : LEAK → N is inductively
defined as follows:

c(p) = 1, c(□aA) = 1 + c(A),
c(¬A) = 1 + c(A), c([aM]A) = (4 + c(aM)) · c(A),
c(A→ B) = 1 + max{c(A), c(B)}, c(aM) = max{c(preM(x)) | x ∈ SM}.

32

Definition 2.3.4 (Translation). The translation function t : LEAK → LML is inductively
defined as follows7:

t(p) = p, t([aM]p) = t(preM(a)→ p),
t(¬A) = ¬t(A), t([aM]A→ B) = t([aM]A→ [aM]B),
t(A→ B) = t(A)→ t(B), t([aM]¬A) = t(preM(a)→ ¬[aM]A),
t(□aA) = □at(A), t([aM]□aA) =

∧
a∼M

a x t(preM(a)→ □a[xM]A),
t([aM][bN]A) = t([aM; bN]A).

By these settings, we can easily show the following lemma.

Lemma 2.3.1. For any A, B,C ∈ LEAK , the following hold:
(1) c([aM]p) > c(preM(a)→ p),
(2) c([aM]¬A) > c(preM(a)→ ¬[preM(a)]B),
(3) c([aM]A→ B) > c([preM(a)]A→ [preM(a)]B),
(4) c([aM]□aB) > c(preM(a)→ □a[preM(a)]B),
(5) c([aM][bN]A) > c([aM; bN]A).

Lemma 2.3.2. For any A ∈ LEAK , ⊢HEAK A↔ t(A) holds.

Theorem 2.3.2 (Completeness of HEAK). For any formula A, A is valid only if A is
derivable in HEAK.

Proof. Suppose A is valid. So, since A ↔ t(A) is valid by Lemma 2.3.2 and Theo-
rem 2.3.1 (the soundness of HEAK), we obtain t(A) is valid. Then by Theorem 2.1.2
(the completeness of HK), we obtain ⊢HK t(A) and trivially ⊢HEAK t(A) holds; there-
fore, ⊢HPAL A by Lemma 2.3.2 again. □

Added to them, the decidability of EAK may be shown easily as the case of PAL.

Corollary 2.3.1. EAK is decidable.

Proof. We show that there is an effective method for deciding of any formula A ∈ LEAK

whether or not it is a theorem of EAK. Fix any A ∈ LEAK . Note that translation
t : LEAK → LEL is inductively and so provides an effective method. Then since modal
logic K is decidable, t(A) ∈ LML can be decided whether it is a theorem of K or not. □

7In [83, p.195], t([aM]□aA) is defined by t(preM(a) → □a[aM]A), but since it is not sufficient when we
look at (RA4) of EAK, we change it. (In (RA4), [aM]□aA is equivalent to the conjunctive formula whose
conjuncts are the elements of the set {preM(a) → □a[xM]A | a∼M

a x}, so preM(a) → □a[aM]A which only
looks at a is not equivalent to [aM]□aA and the translation fails.)

33

Chapter 3

Labelled sequent calculus for
PAL

We have introduced in Preliminaries a basic proof system for PAL, Hilbert system
HPAL; however an easier system to calculate theorems should be desirable, since
Hilbert systems are, in general, hard to handle for proving theorems. One possible
candidate for such a proof system is a celebrated Gentzen-style sequent calculus [30],
where a basic unit of a derivation is the notion of a sequent

Γ⇒ ∆,

which consists of two lists (or multi-sets or sets) of formulas. How can we read Γ⇒ ∆
intuitively? There are at least two ways of reading it. First, we may read it as ‘if all
formulas in Γ hold, then some formula in ∆ holds’. Second, we may also read it as ‘it
is not the case that all formulas in Γ hold and all formulas in ∆ fail’. We may wonder
if these two readings are equivalent, but in fact the equivalence depends on an under-
lying logic. For example, two readings are equivalent in the classical propositional
logic, provided we understand that ‘a formula A holds’ by ‘A is true in a given truth
assignment’ and ‘A fails’ by ‘A is false under the assignment’ (note that, under these
readings, A does not hold if and only if A fails). One of the most uniform approaches
for sequent calculus for modal logic is labelled sequent calculus (c.f., [57]), where
each formula has a label corresponding to an element of a domain in Kripke semantics
for modal logic. The proof system we are concerned with in this paper is one of the
variants of labelled sequent calculus. An existing labelled sequent calculus for PAL,
named G3PAL, was devised by Maffezioli and Negri [51]; however, a deficiency of
G3PAL has been pointed out by Balbiani et al. [6]. They stated that there are some
valid formulas such as [p ∧ p]A ↔ [p]A which may be underivable in G3PAL. Here,
we also suggest a different defect in it. In brief, because G3PAL does not have infer-
ence rules relating to accessibility relations, there exists a problem in case of deriving
one of axioms of HPAL. Therefore, we introduce a revised labelled sequent calculus
GPAL (with the rule of cut, GPAL+) to compensate for the deficiency by adding some
rules for accessibility relations.

34

Moreover, we especially focus on the soundness theorem of GPAL, since there is
a hidden factor behind the definition of the validity of the sequent Γ⇒ ∆, of which the
researchers of this field (e.g., [6, 51]) seemingly have not made a point. In particular,
we notice that the above two readings of a sequent in our setting are not equivalent and
that the notion of validity based on the first reading of a sequent is not sufficient to prove
the soundness of our calculus for Kripke semantics; however, we employ the notion
of validity based on the second reading of a sequent to establish GPAL’s soundness.
One of the reasons why two notions of validity are not equivalent consists of deleting
worlds by a (truthful) public announcement. In fact, we will show the completeness
of our calculus for PAL’s another semantics, a version of the link-cutting semantics by
van Benthem and Liu [82] where only the accessibility relation is restricted in a model
and two notions of validity become equivalent.

The outline of Chapter 3 is as follows: Section 3.1 reviews an existing labelled
sequent calculus G3PAL by [51] and specifies which part of G3PAL is problematic.
Section 3.2 introduces our calculus GPAL, a revised version of G3PAL, and we show
that all the theorems of HPAL are derivable in GPAL+ (Theorem 3.2.1), and establish
the cut elimination theorem of GPAL+ (Theorem 3.2.2). Section 3.3 focuses on its
soundness theorem (Theorem 3.3.1) in terms of two notions of validity based on the
above two readings of a sequent. Section 3.4 introduces the link-cutting semantics
of PAL to provide a direct proof of the completeness of GPAL for the link-cutting
semantics (Theorem 3.4.1). Section 3.5 extends the basis of GPAL from K to S5.

3.1 Sequent calculus for PAL
A labelled sequent calculus called G3PAL has been provided by [51] based on G3-
system for modal logic K.

3.1.1 G3PAL
In order to introduce G3PAL, as in [51], it is better to explicitly confirm the satisfaction
relation with a list of formulas, that restricts a model, since the following inference
rules of G3PAL are all obtained from those satisfaction relations. We denote finite
lists (A1, A2, ..., An) of formulas by α, β, etc., and do the empty list by ϵ from here and
after. As an abbreviation, for any list α = (A1, A2, ..., An) of formulas , we define Mα

inductively as: Mα := M (if α = ϵ), and Mα := (Mβ)An = (Wβ,An , (Rβ,An
a)a∈Agt,Vβ,An)

(if α = β, An). We may also denote (Mβ)An by Mβ,An for simplicity. The satisfaction
relation with restricting formulas is shown as follows (a ∈ Agt):

Mα,A, w ⊩ p iff Mα, w ⊩ A andMα, w ⊩ p,
Mα, w ⊩ ¬A iff Mα, w ⊮ A,
Mα, w ⊩ A→ B iff Mα, w ⊩ A implies Mα, w ⊩ B,
Mα, w ⊩ □aA iff for all v ∈ W : wRαav impliesMα, v ⊩ A,
Mα, w ⊩ [A]B iff Mα, w ⊩ A impliesMα,A, w ⊩ B,

where p ∈ Prop, A, B ∈ LPAL,M is any model, w ∈ D(M), and α is any list of formulas.
According to Kripke semantics defined in Section 2.2, (w, v) ∈ Rα,Aa is equivalent to the

35

following conjunction:

(w, v) ∈ Rα,Aa iff (w, v) ∈ Rαa andMα, w ⊩ A andMα, v ⊩ A.

A point to notice here is that from an accessibility relation with restricting formulas,
we may obtain three conjuncts.

Now we will introduce G3PAL. Let Var = {x, y, z, . . .} be a countably infinite set
of variables. Then, given any x, y ∈ Var, any list of formulas α and any formula A, we
say x:αA is a labelled formula, and that, for any agent a ∈ Agt, xRαay is a relational
atom. Intuitively, the labelled formula x:αA corresponds to ‘Mα, x ⊩ A’ and is to read
‘after a sequence α of public announcements, x still survives1 and A holds at x’, and
the relational atom xRαay is to read ‘after a sequence α of public announcements both
x and y survive and we can still access from x to y’. We also use the term, labelled
expressions to indicate that they are either labelled formulas or relational atoms, and
we denote them by A,B, etc. A sequent Γ⇒ ∆ is a pair of finite multi-sets of labelled
expressions. The set of inference rules of G3PAL is given in Table 3.1. For any
sequent Γ ⇒ ∆, if Γ ⇒ ∆ is derivable in G3PAL, we write ⊢G3PAL Γ ⇒ ∆. The
rules of (Lat) and (Rat) are obtained from the above satisfaction relation, hence if
there is an announcement A and a propositional atom p, we get p with the restricting
formula A. In the case of (L[.]) and (R[.]), although the satisfaction relation of the
announcement operator is the same as that of implication only with the exception of
restricting formulas, the rules, (L[.]) and (R[.]), are (probably) modified for G3-system.
The last two rules (Lcmp) and (Rcmp) are for dealing with the proof of (RA5) of HPAL
(we will discuss them shortly afterwards). Other inference rules result naturally from
the semantics. As we have referred to in the previous paragraph, while we could have
sound inference rules corresponding to restricted relational atoms, there is, actually,
no rule of relational atoms in G3PAL, and due to this fact, G3PAL may not have an
ability to derive one of the reduction axioms, (RA4).

3.1.2 Problems of G3PAL
As we mentioned, Balbiani et al. [6] suggested that there is a valid formula such as
[B ∧ B]A ↔ [B]A which cannot be derivable in G3PAL, but their short paper does
not contain the argument regarding the underivability of such a formula. So, we, in the
following, show that a particular case of one direction of [B ∧ B]A ↔ [B]A, which is
[p ∧ p]□a p→ [p]□a p, is not derivable in G3PAL.

Proposition 3.1.1. The following holds:

⊬G3PAL⇒ x:[p ∧ p]□a p→ [p]□a p,

where p ∈ Prop, x ∈ Var.

Proof. Suppose for a contradiction that there is a derivation of G3PAL for ⇒ x:[p ∧
p]□a p → [p]□a p, and fix such a derivation D. The last applied rule of D must be
(R →) which is the only applicable rule G3PAL, and so we obtain ⊢G3PAL x:[p ∧

1The notion of survival will be referred in Section 3.4.2 more specifically.

36

Table 3.1: Labelled sequent calculus for PAL : G3PAL
(Initial Sequent)

x:ϵ p,Γ⇒ ∆, x:ϵ p

(Rules for propositional connectives)

x:α⊥,Γ⇒ ∆ (L⊥)

Γ⇒ ∆, x:αA
x:α¬A,Γ⇒ ∆ (L¬)

x:αA,Γ⇒ ∆
Γ⇒ ∆, x:α¬A

(R¬)

Γ⇒ ∆, x:αA x:αB,Γ⇒ ∆
x:αA→ B,Γ⇒ ∆ (L→)

x:αA, Γ⇒ ∆, x:αB
Γ⇒ ∆, x:αA→ B

(R→)

(Rules for knowledge operators)

y:αA, x:α□aA, xRαay,Γ⇒ ∆
x:α□aA, xRαay,Γ⇒ ∆

(L□a)
xRαay,Γ⇒ ∆, y:αA
Γ⇒ ∆, x:α□aA

(R□a)†

† y does not appear in the lower sequent.

(Rules for PAL)

x:αA, x:αp,Γ⇒ ∆
x:α,A p,Γ⇒ ∆

(Lat)
Γ⇒ ∆, x:αA Γ⇒ ∆, x:αp

Γ⇒ ∆, x:α,A p
(Rat)

x:α,AB, x:α[A]B, x:αA,Γ⇒ ∆
x:α[A]B, x:αA,Γ⇒ ∆ (L[.])

x:αA,Γ⇒ ∆, x:α,AB
Γ⇒ ∆, x:α[A]B

(R[.])

x:α,A,BC,Γ⇒ ∆
x:α,A∧[A]BC,Γ⇒ ∆

(Lcmp) Γ⇒ ∆, x:α,A,BC
Γ⇒ ∆, x:α,A∧[A]BC

(Rcmp)

p]□a p ⇒ x:[p]□a p. Then the second last applied rule of D must be (R[.]) which is
the only applicable rule, and so on. By doing so, we may find that there is only one
possibility to construct derivationD for the sequent of the statement by the application
of (R →), (R[.]), (R□a) and (Rat), each of which is the only applicable rule to each
corresponding lowersequent as follows:

xRp
ay, x:[p ∧ p]□a p, x:p⇒ y:p xRp

ay, x:[p ∧ p]□a p, x:p⇒ y:p
xRp

ay, x:[p ∧ p]□a p, x:p⇒ y:p p
(Rat)

x:[p ∧ p]□a p, x:p⇒ x:p□a p
(R□a)

x:[p ∧ p]□a p⇒ x:[p]□a p
(R[.])

⇒ x:[p ∧ p]□a p→ [p]□a p
(R→)

.

However, the uppermost sequents above are both not initial sequents, and no inference

37

rule in G3PAL can be applicable to either of them, so both are not derivable. Therefore,
the attempt for deriving⇒ x:[p ∧ p]□a p → [p]□a p in G3PAL fails. A contradiction.

□

Next, we also noticed another but the same rooted problem in G3PAL. Maffezioli
and Negri stated, in Section 5 of [51], that G3PAL may derive all inference rules
and axioms of HPAL, namely if ⊢HPAL A, then ⊢G3PAL⇒ x:ϵA (for any A and x).
Nevertheless, there are, in fact, some problems in deriving (RA4):

[A]□aB↔ (A→ □a[A]B).

This axiom cannot be derived in G3PAL. Let us look at possible but plausible attempts
to derive both directions of (RA4). First, a possible attempt of deriving the direction
from right to left is given as follows:

.... D1

x:ϵA⇒ x:ϵA, x:A□aB

.... ?
x:ϵA, x:ϵ□a[A]B, xRA

a y⇒ y:AB

x:ϵA, x:ϵ□a[A]B⇒ x:A□aB
(R□a)

x:ϵA, x:ϵA→ □a[A]B⇒ x:A□aB
(L→)

x:ϵA→ □a[A]B⇒ x:ϵ[A]□aB
(R[.])

⇒ x:ϵ(A→ □a[A]B)→ [A]□aB
(R→)

(∗)
Starting from the bottom sequent, the bottom sequent of D1 is clearly derivable, but it
is difficult to find the way to go step forward from the right uppermost sequent of the
derivation. The problem here is that A in xRA

a y and ϵ in x:ϵ□a[A]B on the left side of
the sequent do not match, and therefore we cannot apply the rule (L□a).

Secondly, the other direction of (RA4) also seemingly cannot be derived by G3PAL.
A possible attempt to derive it may be as follows:

.... ?
y:ϵA, xRϵay, x:A□aB, x:ϵA, x:ϵ[A]□aB⇒ y:AB

xRϵay, x:A□aB, x:ϵA, x:ϵ[A]□aB⇒ y:ϵ[A]B
(R[.])

x:A□aB, x:ϵA, x:ϵ[A]□aB⇒ x:ϵ□a[A]B
(R□a)

x:ϵA, x:ϵ[A]□aB⇒ x:ϵ□a[A]B
(L[.])

x:ϵ[A]□aB⇒ x:ϵA→ □a[A]B
(R→)

⇒ x:ϵ[A]□aB→ (A→ □a[A]B)
(R→)

(∗∗)

The derivation also comes to a dead end (in fact, the rule (L[.]) is applicable infinitely
many times, but no new labelled expression is obtained by the application). The prob-
lem here is also that ϵ in xRϵay and A in x:A□aB on the left side of the left uppermost
sequent do not match, and again the rule (L□a) cannot be applied.2.

2In fact, the rule of cut makes (∗∗) derivable, but if we follow (L□a), the rules of (Lcmp) and (Rcmp) may
be indispensable to derive (RA5). Nevertheless, when we reformulate (L□a) in a natural way (as (L□′a) in
the next section), (Lcmp) and (Rcmp) are derivable (Lemma 3.2.1). We selected to reduce the inference rules
rather than keeping G3-system.

38

In brief, for applying the rule (L□a), α in xRαay, and β in x:β□aB must be the same
and (L□a) is indispensable for deriving both directions of (RA4); however there seems
no way to make them equal in G3PAL. To settle the problems, we introduce rules for
relational atoms for decomposing xRA

a y into xRϵay and related labelled formulas.

3.2 Revised calculus GPAL
In this section, we revise G3PAL to make it possible to cope with (RA4) of HPAL.
Let us examine the problem of (∗) first. To overcome the dead end of the derivation,
we introduce rules of the relational atom with a list of formulas, i.e., (Lrela1), (Lrela2),
(Lrela3) and (Rrela), and it is not trivial if these rules are derivable in G3PAL. Here
are our additional rules:

x:αA,Γ⇒ ∆
xRα,Aa y,Γ⇒ ∆

(Lrela1)
y:αA,Γ⇒ ∆

xRα,Aa y, Γ⇒ ∆
(Lrela2)

xRαay,Γ⇒ ∆
xRα,Aa y,Γ⇒ ∆

(Lrela3)

Γ⇒ ∆, x:αA Γ⇒ ∆, y:αA Γ⇒ ∆, xRαay

Γ⇒ ∆, xRα,Aa y
(Rrela)

These inference rules are obtained in PAL’s Kripke semantics. Namely, as we have
already seen in Section 3.1.1, any restricted accessibility relation wRα,Aa v is equivalent
to the conjunction of the following such as: wRαav andMα, w ⊩ A andMα, v ⊩ A. These
three conjuncts correspond to three (Lrelai) rules and three uppersequents of (Rrela).
If we use (Lrela3) to the dead end of (∗), xRϵay which we desire is obtained and it is
obvious that the new emerged sequent is derivable as follows:

.... D2

y:AB, y:ϵ[A]B, x:ϵA, x:ϵ□a[A]B, xRϵay⇒ y:AB

y:ϵ[A]B, x:ϵA, x:ϵ□a[A]B, xRϵay⇒ y:AB
(L[.])

x:ϵA, x:ϵ□a[A]B, xRϵay⇒ y:AB
(L□a)

x:ϵA, x:ϵ□a[A]B, xRA
a y⇒ y:AB

(Lrela3)
.... ,

whereD2 can be given since y:AB⇒ y:AB is clearly derivable.
However, in the case of (∗∗), the additional inference rules are not sufficient to make

the branch reach initial sequent(s). This is because the new rules could not be applied
to xRϵy and they will not change the situation. To settle the problem, we reformulate
the rule of (L□a) in a semantically natural way. Our reformulated rule (L□′a) is then
defined as follows.

Γ⇒ ∆, xRαay y:
αA,Γ⇒ ∆

x:α□aA, Γ⇒ ∆ (L□′a)

39

It is necessary to note that, by this change of the rule, we need to depart from G3-
system. 3 Although a solution with keeping G3-style might be a better solution than
ours, we choose the semantically natural way to reformulate the rule (L□a) first, and at
the same time we reformulate the rule (L[.]) in a natural form.

3.2.1 GPAL
Now, we introduce our revised calculus, GPAL. The definition of GPAL is presented
in Table 3.2. Hereinafter, we use the following abbreviation in a derivation for drawing
simpler derivations:

Initial Seq.
A,Γ⇒ ∆,A

which is obvious by the rules (Lw) and (Rw). Besides, we also use the following deriv-
able rules:

x:αA, x:αB,Γ⇒ ∆
x:αA ∧ B,Γ⇒ ∆ (L∧)

Γ⇒ ∆, x:αA Γ⇒ ∆, x:αB
Γ⇒ ∆, x:αA ∧ B

(R∧)

xRav, v:αA, Γ⇒ ∆
x:α♢aA, Γ⇒ ∆ (L♢a)†

Γ⇒ ∆, xRay Γ⇒ ∆, y:αA
Γ⇒ ∆, x:α♢aA

(R♢a)
.

where † means that v does not appear in the lower c-sequent.
Let us now show the derivations of (RA4) of HPAL.

Proposition 3.2.1. ⊢GPAL⇒ x:ϵ[A]□aB↔ (A→ □a[A]B)

Proof. We may find a derivation of x:ϵ[A]□aB→ (A→ □a[A]B) in GPAL as follows:

D =


Initial Seq.

x:ϵA, y:ϵA, xRϵay⇒ x:ϵA

Initial Seq.

x:ϵA, y:ϵA, xRϵay⇒ y:ϵA
Initial Seq.

x:ϵA, y:ϵA, xRϵay⇒, xRϵay

x:ϵA, y:ϵA, xRϵay⇒ xRA
a y

(Rrel)

3Of course, there might still exist a possibility to keep G3-system with the additional rules for relational
atoms. As mentioned in this page and the previous footnote, the rule (L□a) may contain a difficulty for
a labelled G3-system for PAL, since the matching of restricting formulas can be problematic; and so we
reformulate the rules as (L□′a). But one of examiners of this thesis, Makoto Kanazawa, gave us a comment
regarding another formulation of (L□a) as follows:

x:α□aA, Γ⇒ ∆, xRαay x:α□aA, y:αA,Γ⇒ ∆
x:α□aA,Γ⇒ ∆ .

This might be an adequate candidate for forming a G3-system for PAL. Since x:α□aA can be interpreted as
∀y(xRαay → y:αA), the rule above is naturally obtained by the combination of the rules such as (L∀) and
(L→) in the existing G3-systems for predicate logic.

40

Initial Seq.

x:ϵA⇒ x:ϵA, x:ϵ□a[A]B

.... D
x:ϵA, y:ϵA, xRϵay⇒ xRA

a y

x:ϵA, y:ϵA, xRϵay⇒ y:AB, xRA
a y

(Rw)
Initial Seq.

y:AB, x:ϵA, y:ϵA, xRϵay⇒ y:AB

x:ϵA, y:ϵA, x:A□aB, xRϵay⇒ y:AB
(L□′a)

x:ϵA, x:A□aB, xRϵay⇒ y:ϵ [A]B
(R[.])

x:ϵA, x:A□aB⇒ x:ϵ□a[A]B
(R□a)

x:ϵA, x:ϵ [A]□aB⇒ x:ϵ□a[A]B
(L[.]′)

x:ϵ [A]□aB⇒ x:ϵA→ □a[A]B
(R→)

⇒ x:ϵ [A]□aB→ (A→ □a[A]B)
(R→)

.

We may also find a derivation of x:ϵ(A→ □a[A]B)→ [A]□aB in GPAL as follows:

Initial Seq.

x:ϵA⇒ x:A□aB, x:ϵA

Initial Seq.

xRϵay⇒ y:AB, xRϵay

xRA
a y⇒ y:AB, xRϵay

(Lrela3)

Initial Seq.

y:ϵA⇒ y:AB, y:ϵA

xRA
a y⇒ y:AB, y:ϵA

(Lrela2)
Initial Seq.

y:AB, xRA
a y⇒ y:AB

y:ϵ [A]B, xRA
a y⇒ y:AB

(L[.]′)

xRA
a y, x:ϵ□a[A]B⇒ y:AB

(L□′a)

x:ϵ□a[A]B⇒ x:A□aB
(R□a)

x:ϵ□a[A]B, x:ϵA⇒ x:A□aB
(Lw)

x:ϵA, x:ϵA→ □a[A]B⇒ x:A□aB
(L→)

x:ϵA→ □a[A]B⇒ x:ϵ [A]□aB
(R[.])

⇒ (x:ϵA→ □a[A]B)→ [A]□aB
(R→)

.

□

As we can see above, the proof of (RA4) in GPAL can be done thanks to the rules of
relational atoms.

Moreover, GPAL+ is defined to be GPAL with the following rule (Cut),

Γ⇒ ∆,A A,Γ′ ⇒ ∆′
Γ,Γ′ ⇒ ∆,∆′ (Cut).

Labelled expression A in (Cut) is called a cut expression, and we say that A is a prin-
cipal expression of an inference rule of GPAL+ if A is newly introduced on the left
uppersequent or the right uppersequent by the rule of GPAL+.

Let us briefly summarize our revised calculus in order. GPAL is different from
G3PAL in respect to the following features:

(i) GPAL is based on Gentzen’s standard sequent calculus [30] but not in G3-
system, and so it contains structural rules.

(ii) GPAL includes rules for relational atoms which G3PAL lacks.

(iii) (L[.]) and (L□a) are redefined in a semantically natural way, and each of them is
denoted by (L[.]′) and (L□′a) in GPAL.

(iv) GPAL does not contain (Lcmp) and (Rcmp) of G3PAL, but without them it can
derive (RA5). These rules are also derivable in GPAL+ (see Proposition 3.2.2).

41

Table 3.2: Revised labelled sequent calculus for PAL: GPAL
(Initial sequents)

x:αA⇒ x:αA xRαav⇒ xRαav

(Structural Rules)
Γ⇒ ∆
A,Γ⇒ ∆ (Lw) Γ⇒ ∆

Γ⇒ ∆,A (Rw)

A,A,Γ⇒ ∆
A,Γ⇒ ∆ (Lc)

Γ⇒ ∆,A,A
Γ⇒ ∆,A (Rc)

(Rules for propositional connectives)

Γ⇒ ∆, x:αA
x:α¬A,Γ⇒ ∆ (L¬)

x:αA,Γ⇒ ∆
Γ⇒ ∆, x:α¬A

(R¬)

Γ⇒ ∆, x:αA x:αB,Γ⇒ ∆
x:αA→ B,Γ⇒ ∆ (L→)

x:αA, Γ⇒ ∆, x:αB
Γ⇒ ∆, x:αA→ B

(R→)

(Rules for knowledge operators)

Γ⇒ ∆, xRαay y:
αA,Γ⇒ ∆

x:α□aA,Γ⇒ ∆ (L□′a)
xRαay,Γ⇒ ∆, y:αA
Γ⇒ ∆, x:α□aA

(R□a)†

† y does not appear in the lower sequent.

(Rules for PAL)

x:αp,Γ⇒ ∆
x:α,A p,Γ⇒ ∆

(Lat′)
Γ⇒ ∆, x:αp
Γ⇒ ∆, x:α,A p

(Rat′)

Γ⇒ ∆, x:αA x:α,AB,Γ⇒ ∆
x:α[A]B,Γ⇒ ∆ (L[.]′)

x:αA,Γ⇒ ∆, x:α,AB
Γ⇒ ∆, x:α[A]B

(R[.])

x:αA,Γ⇒ ∆
xRα,Aa y,Γ⇒ ∆

(Lrela1)
y:αA,Γ⇒ ∆

xRα,Aa y, Γ⇒ ∆
(Lrela2)

xRαay,Γ⇒ ∆
xRα,Aa y,Γ⇒ ∆

(Lrela3)

Γ⇒ ∆, x:αA Γ⇒ ∆, y:αA Γ⇒ ∆, xRαay

Γ⇒ ∆, xRα,Aa y
(Rrela)

(v) (Lat) and (Rat) are redefined taking into account of the notion of survival, and
each of them is denoted by (Lat′) and (Rat′) in GPAL.

The last two features have not been mentioned so far, and the last feature of GPAL
will be considered at the beginning of Section 3.4. In this paragraph, we focus on

42

feature (iv). In [51], the following rules

x:α,A,BC,Γ⇒ ∆
x:α,A∧[A]BC,Γ⇒ ∆

(Lcmp) Γ⇒ ∆, x:α,A,BC
Γ⇒ ∆, x:α,A∧[A]BC

(Rcmp)

are required to derive (RA5) of HPAL:

[A][B]C ↔ [A ∧ [A]B]C.

In what follows, however, we reveal that these rules of (Lcmp) and (Rcmp) are not nec-
essary in the set of inference rules of GPAL. Let us see the details. First, let us define
the length of a labelled expression A.

Definition 3.2.1. For any formula A, ℓ(A) is equal to the number of the propositional
atoms and the logical connectives in A.

ℓ(α) =

0 if α = ϵ
ℓ(β) + ℓ(A) if α = β, A

ℓ(A) =

ℓ(α) + ℓ(A) if A = x:αA
ℓ(α) + 1 if A = xRαay

Then, let us show the following lemma.

Lemma 3.2.1. For any A, B ∈ Form, x, y ∈ Var and for any list α, β of formulas,
(i) ⊢GPAL x:α,A,B,βC ⇒ x:α,A∧[A]B,βC,

(ii) ⊢GPAL x:α,A∧[A]B,βC ⇒ x:α,A,B,βC,

(iii) ⊢GPAL xRα,A,B,βa y⇒ xRα,(A∧[A]B),β
a y,

(iv) ⊢GPAL xRα,(A∧[A]B),β
a y⇒ xRα,A,B,βa y.

Proof. The proofs of (i), (ii), (iii) and (iv) are done simultaneously by double induction
on C and β. We only see the case where C is of the form □aD and the case where C is
of the form [D]E, because the derivability of the other sequents (ii), (iii) and (iv) can
also be shown similarly. First, let us consider the case where C is of the form □aD. Let
γ be (α, A, B, β) and θ be (α, A ∧ [A]B, β).

.... D1

xRθay⇒ xRγay

xRθay⇒ y:θD, xRγay
(Rw)

.... D2

y:γD⇒ y:θD
y:γD, xRθay⇒ y:θD

(Lw)

x:γ□aD, xRθay⇒ y:θD
(L□′a)

x:γ□aD⇒ x:θ□aD
(R□a)

Both D1 and D2 are obtained by induction hypothesis, since the length of the labelled
expressions is reduced. We may need to pay attention to the length of the labelled
expression at the bottom sequent ofD1, but according to Definition 3.2.1, ℓ(x:γ□aD) >
ℓ(xRγay) (for any γ).

43

Second, let us consider the case where C is of the form [D]E. Let γ be (α, A, B, β)
and θ be (α, A ∧ [A]B, β).

.... D3

x:θD⇒ x:γD
x:θD⇒ x:γD, x:θ,DE

(Rw)

.... D4

x:γ,DE ⇒ x:θ,DE
x:γ,DE, x:θD⇒ x:θ,DE

(Lw)

x:γ[D]E, x:θD⇒ x:θ,DE
(L[.]′)

x:γ[D]E ⇒ x:θ[D]E
(R[.])

The derivationsD3 andD4 are obtained by induction hypotheses. □

Now with the help of the rule (Cut), we can also show the derivability of more
general rules than (Lcmp) and (Rcmp) of G3PAL as follows:

Proposition 3.2.2. The following rules (L′cmp) and (R′cmp) are derivable in GPAL+.

x:α,A,B,βC,Γ⇒ ∆
x:α,A∧[A]B,βC,Γ⇒ ∆

(L′cmp) Γ⇒ ∆, x:α,A,B,βC
Γ⇒ ∆, x:α,A∧[A]B,βC

(R′cmp)

where a ∈ Agt, A, B,C ∈ Form and α and β are arbitrary lists of formulas.

Proof. It is shown immediately from Lemma 3.2.1 and (Cut). 4 □

3.2.2 All theorems of HPAL are derivable in GPAL+

We first define the substitution of variables in labelled expressions.

Definition 3.2.2. Let A be any labelled expression. Then the substitution of x for y in
A, denoted by A[x/y], is defined by

z[x/y] := z (if y , z)
z[x/y] := x (if y = z)
(z:αA)[x/y] := (z[x/y]):αA
(zRαaw)[x/y] := (z[x/y])Rαa (w[x/y])

Substitution [x/y] to a multi-set Γ of labelled expressions is defined as

Γ[x/y] := {A[x/y] | A ∈ Γ}.

Next, for a preparation of Theorem 3.2.1, we show the next lemma.

Lemma 3.2.2 (Substitution lemma).
(i) ⊢GPAL Γ⇒ ∆ implies ⊢GPAL Γ[x/y]⇒ ∆[x/y] for any x, y ∈ Var.

(ii) ⊢GPAL+ Γ⇒ ∆ implies ⊢GPAL+ Γ[x/y]⇒ ∆[x/y] for any x, y ∈ Var.

4The following rules are also derivable in GPAL+.

xRα,A,B,βa y,Γ⇒ ∆
xRα,(A∧[A]B),β

a y,Γ⇒ ∆
(Lcmpr)

Γ⇒ ∆, xRα,A,B,βa y

Γ⇒ ∆, xRα,(A∧[A]B),β
a y

(Rcmpr)

44

Proof. By induction on the height of the derivation, we go through almost the same
procedure in the proof in Negri and von Plato [58, p.194]. □

Finally, let us show the following theorem:

Theorem 3.2.1. For any formula A, if ⊢HPAL A, then ⊢GPAL+⇒ x:ϵA (for any x).

Proof. The proof is carried out by the height of the derivation in HPAL. Since the case
of reduction axiom (RA5) has been shown in Proposition 3.2.1, let us prove the other
base cases (the derivation height of HPAL is equal to 0).

• Case of (RA1)

Initial Seq.

x:ϵA⇒ x:ϵ p, x:ϵA

Initial Seq.

x:ϵ p, x:ϵA⇒ x:ϵ p

x:ϵA, x:A p⇒ x:ϵ p
(Lat′)

x:ϵA, x:ϵ [A]p⇒ x:ϵ p
(L[.]′)

x:ϵ [A]p⇒ x:ϵA→ p
(R→)

⇒ x:ϵ [A]p→ (A→ p)
(R→)

Initial Seq.

x:ϵA⇒ x:ϵA, x:A p

Initial Seq.

x:ϵ p, x:ϵA⇒ x:ϵ p

x:ϵ p, x:ϵA⇒ x:A p
(Rat′)

x:ϵA, x:ϵA→ p⇒ x:A p
(L→)

x:ϵA→ p⇒ x:ϵ [A]p
(R[.])

⇒ x:ϵ (A→ p)→ [A]p
(R→)

⇒ x:ϵ [A]p↔ (A→ p)
(R∧)

• Case of (RA2): left to right

Initial Seq.

x:ϵA, x:ϵ [A](B→ C)⇒ x:ϵA, x:AC

Initial Seq.

x:ϵA, x:AB⇒ x:ϵA, x:AC

Initial Seq.

x:ϵA, x:AB⇒ x:AB, x:AC

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AC

x:ϵA, x:AB, x:AB→ C ⇒ x:AC
(L→)

x:ϵA, x:ϵ [A](B→ C), x:AB⇒ x:AC
(L[.]′)

x:ϵA, x:ϵ [A]B, x:ϵ [A](B→ C)⇒ x:AC
(L[.]′)

x:ϵ [A]B, x:ϵ [A](B→ C)⇒ x:ϵ [A]C
(R[.])

x:ϵ [A](B→ C)⇒ x:ϵ [A]B→ [A]C
(R→)

⇒ x:ϵ [A](B→ C)→ ([A]B→ [A]C)
(R→)

• Case of (RA2): right to left

Initial Seq.

x:ϵA, x:AB⇒ x:AB, x:AC

x:ϵA, x:AB⇒ x:ϵ [A]B, x:AC
(R[.])

Initial Seq.

x:ϵA, x:AB⇒ x:ϵA, x:AC

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AC

x:ϵA, x:ϵ [A]C, x:AB⇒ x:AC
(L[.]′)

x:ϵA, x:ϵ [A]B→ [A]C, x:AB⇒ x:AC
(L→)

x:ϵA, x:ϵ [A]B→ [A]C ⇒ x:AB→ C
(R→)

x:ϵ [A]B→ [A]C ⇒ x:ϵ [A](B→ C)
(R[.])

⇒ x:ϵ ([A]B→ [A]C)→ [A](B→ C)
(R→)

• Case of (RA3)

Initial Seq.

x:ϵA⇒ x:ϵA, x:ϵ¬[A]B

Initial Seq.

x:ϵA⇒ x:ϵA, x:AB

Initial Seq.

x:ϵA, x:AB⇒ x:AB

x:ϵA, x:ϵ [A]B⇒ x:AB
(L[.]′)

x:ϵA⇒ x:ϵ¬[A]B, x:AB
(R¬)

x:ϵA, x:A¬B⇒ x:ϵ¬[A]B
(L¬)

x:ϵA, x:ϵ [A]¬B⇒ x:ϵ¬[A]B
(L[.]′)

x:ϵ [A]¬B⇒ x:ϵA→ ¬[A]B
(R→)

⇒ x:ϵ [A]¬B→ (A→ ¬[A]B)
(R→)

Initial Seq.

x:ϵA⇒ x:ϵA, x:A¬B

Initial Seq.

x:ϵA, x:AB⇒ x:AB

x:ϵA⇒ x:AB, x:A¬B
(R¬)

x:ϵA⇒ x:ϵ [A]B, x:A¬B
(R[.])

x:ϵA, x:ϵ¬[A]B⇒ x:A¬B
(L¬)

x:ϵA, x:ϵA→ ¬[A]B⇒ x:A¬B
(L→)

x:ϵA→ ¬[A]B⇒ x:ϵ [A]¬B
(R[.])

⇒ x:ϵ (A→ ¬[A]B)→ [A]¬B
(R→)

⇒ x:ϵ [A]¬B↔ (A→ ¬[A]B)
(R∧)

45

• Case of (RA5): left to right where Lemma 3.2.1 is required.

Initial Seq.

x:ϵA, x:ϵ [A][B]⇒ A, x:ϵA

Initial Seq.

x:AB, x:ϵA⇒ A, x:ϵA

Initial Seq.

x:AB, x:ϵA⇒ A, x:AB

Lemma 3.2.1
x:A,BC,⇒ A

x:A,BC, x:AB, x:ϵA⇒ A
(Lw)

x:A[B]C, x:AB, x:ϵA⇒ A
(L[.]′)

x:AB, x:ϵA, x:ϵ [A][B]C ⇒ A
(L[.]′)

x:ϵA, x:ϵ [A]B, x:ϵ [A][B]C ⇒ A (R→)

x:ϵA ∧ [A]B, x:ϵ [A][B]C ⇒ A (L∧)

x:ϵ [A][B]C ⇒ x:ϵ [A ∧ [A]B]C
(R[.])

⇒ x:ϵ [A][B]C → [A ∧ [A]B]C
(R→)

where A = x:A∧[A]BC.
• Case of (RA5): right to left where Lemma 3.2.1 is required.

Initial Seq.

x:ϵA, x:AB⇒ x:ϵA, x:A,BC

Initial Seq.

x:ϵA, x:AB⇒ x:AB, x:A,BC

x:ϵA, x:AB⇒ x:ϵ [A]B, x:A,BC
(R[.])

x:ϵA, x:AB⇒ x:ϵA ∧ [A]B, x:A,BC
(R∧)

Lemma 3.2.1
x:A∧[A]BC ⇒ x:A,BC

x:ϵA, x:AB, x:A∧[A]BC ⇒ x:A,BC
(Lw)

x:ϵA, x:ϵ [A ∧ [A]B]C, x:AB⇒ x:A,BC
(L[.]′)

x:ϵA, x:ϵ [A ∧ [A]B]C ⇒ x:A[B]C
(R[.])

x:ϵ [A ∧ [A]B]C ⇒ x:ϵ [A][B]C
(R[.])

⇒ x:ϵ [A ∧ [A]B]C → [A][B]C
(R→)

In the inductive step, we show the inference rules, (MP) and (Nec), by GPAL.

Case of (MP): It is shown with (Cut).

Assumption
⇒ x:ϵA

Assumption
⇒ x:ϵA→ B

Initial Seq.
x:ϵA⇒ x:ϵB, x:ϵA

Initial Seq.
x:ϵB, x:ϵA⇒ x:ϵB

x:ϵA→ B, x:ϵA⇒ x:ϵB
(L→)

x:ϵA⇒ x:ϵB
(Cut)

⇒ x:ϵB
(Cut)

Case of (Nec□a): In the case, we show the admissibility of the following rule:

⇒ x:ϵA
⇒ x:ϵ□aA

(Nec□a)
.

Suppose ⊢GPAL⇒ x:ϵA. By Lemma 3.2.2, we obtain ⊢GPAL⇒ y:ϵA where vari-
able y does not appear in the derivation of ⊢GPAL⇒ x:ϵA. Therefore, we obtain
⊢GPAL⇒ x:ϵ□aA by the application of (Lw) and (R□a).

□

46

3.2.3 Cut Elimination of GPAL+

Here we prove the (syntactic) cut elimination theorem of GPAL+.

Theorem 3.2.2 (Cut elimination theorem of GPAL+). For any sequent Γ ⇒ ∆, if
⊢GPAL+ Γ⇒ ∆, then ⊢GPAL Γ⇒ ∆.

Proof. The proof is carried out using Ono and Komori’s method [67] introduced in the
reference [41] by Kashima where we employ the following rule (Ecut) instead of the
usual method of ‘mix cut’. We denote the n-copies of the same labelled expression A
by An (when n = 0, An = ∅), and (Ecut) is defined as follows:

Γ⇒ ∆,An Am,Γ′ ⇒ ∆′
Γ,Γ′ ⇒ ∆,∆′ (Ecut)

where n,m ≥ 0. The theorem is proven by double induction on the height of the
derivation and the length of cut expression A of (Ecut). If n = 0 or m = 0, the
lowersequent of (Ecut) is derivable by using (Lw) and (Rw) mutiple times instead of
(Ecut), so we in the following consider the case where n , 0 and m , 0. The proof is
divided into four cases. In brief,

(1) at least one of the uppersequents of (Ecut) is an initial sequent;

(2) the last inference rule of either uppersequents of (Ecut) is a structural rule;

(3) the last inference rule of either uppersequents of (Ecut) is a non-structural rule5,
and the principal expression introduced by the rule is not the cut expression; and

(4) the last inference rules of two uppersequents of (Ecut) are both non-structural
rules, and the principal expressions introduced by the rules used on the upperse-
quents of (Ecut) are both cut expressions.

Case of (1) where the right uppersequents of (Ecut) is initial sequent x:A ⇒ x:A. In
this case, we obtain the following part of derivation:

.... D
Γ⇒ ∆, (x:αA)n

Initial Seq.
x:αA⇒ x:αA

Γ⇒ ∆, x:αA
(Ecut)

This is transformed into the derivation:
.... D

Γ⇒ ∆, (x:αA)n

Γ⇒ ∆, x:αA
(Rc)

where (Rc) is applied n − 1 times. Similarly to the above, we can show the case where
the left uppersequent is an initial sequent.

5Non-structural rules indicate the all inference rules except (Lc), (Rc), (Lw) and (Rw).

47

Case of (2) where the right uppersequent of (Ecut) is structural rule (Lc) which con-
tracts the same expression as the cut expressin.

.... D1

Γ⇒ ∆, (x:αA)n

.... D2

(x:αA)m+1,Γ′ ⇒ ∆′
(x:αA)m,Γ′ ⇒ ∆′ (Lc)

Γ,Γ′ ⇒ ∆,∆′ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆, (x:αA)n

.... D2

(x:αA)m+1,Γ′ ⇒ ∆′
Γ,Γ′ ⇒ ∆,∆′ (Ecut)

.

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Lc).

Case of (2) where the right uppersequent of (Ecut) is structural rule (Lc) which con-
tracts a different expression from the cut expressin.

.... D1

Γ⇒ ∆, (x:αA)n

.... D2

(x:αA)m,B,B,Γ′ ⇒ ∆′
(x:αA)m,B,Γ′ ⇒ ∆′ (Lc)

Γ,B,Γ′ ⇒ ∆,∆′ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆, (x:αA)n

.... D2

(x:αA)m,B,B,Γ′ ⇒ ∆′
Γ,B,B, Γ′ ⇒ ∆,∆′ (Ecut)

Γ,B,Γ′ ⇒ ∆,∆′ (Lc)
.

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Lc).

Case of (2) where one of the uppersequents of (Ecut) is structural rule (Lw) which
reduces the same formula as the cut formula.

.... D1

Γ⇒ ∆, (x:αA)n

.... D2

(x:αA)m−1,Γ′ ⇒ ∆′
(x:αA)m,Γ′ ⇒ ∆′ (Lw)

Γ,Γ′ ⇒ ∆,∆′ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆, (x:αA)n

.... D2

(x:αA)m−1,Γ′ ⇒ ∆′
Γ,Γ′ ⇒ ∆,∆′ (Ecut)

.

48

Note that (Ecut) is applicable, even if m − 1 = 0. Similarly to this, we can show the
case where the left uppersequent of (Ecut) is structural rule (Lw).

Case of (2) where one of the uppersequents of (Ecut) is structural rule (Lw) which
reduces a different formula from the cut formula.

.... D1

Γ⇒ ∆, (x:αA)n

.... D2

(x:αA)m,Γ′ ⇒ ∆′
(x:αA)m,B,Γ′ ⇒ ∆′ (Lw)

Γ,B,Γ′ ⇒ ∆,∆′ (Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ ∆, (x:αA)n

.... D2

(x:αA)m−1,Γ′ ⇒ ∆′
Γ,Γ′ ⇒ ∆,∆′ (Ecut)

Γ,B,Γ′ ⇒ ∆,∆′ (Lw)
.

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Lw).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (R¬).

.... D1

Γ⇒ ∆,An

.... D2

x:αA,Am,Γ′ ⇒ ∆′
Am,Γ′ ⇒ ∆′, x:α¬A

(R¬)

Γ,Γ′ ⇒ ∆,∆′, x:α¬A
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An

.... D2

Am, x:αA,Γ′ ⇒ ∆′
x:αA,Γ,Γ′ ⇒ ∆,∆′ (Ecut)

Γ,Γ′ ⇒ ∆,∆′, x:α¬A
(R¬)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (R¬).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (L¬).

.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, x:αA
Am, x:α¬A,Γ′ ⇒ ∆′ (L¬)

x:α¬A,Γ,Γ′ ⇒ ∆,∆′ (Ecut)

49

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, x:αA
Γ,Γ′ ⇒ ∆,∆′, x:αA

(Ecut)

x:α¬A,Γ,Γ′ ⇒ ∆,∆′ (L¬)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (L¬).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (R→).

.... D1

Γ⇒ ∆,An

.... D2

x:αA,Am,Γ′ ⇒ ∆′, x:αB
Am,Γ′ ⇒ ∆′, x:αA→ B

(R→)

Γ,Γ′ ⇒ ∆,∆′, x:αA→ B
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An

.... D2

Am, x:αA,Γ′ ⇒ ∆′, x:αB
x:αA,Γ,Γ′ ⇒ ∆,∆′, x:αB

(Ecut)

Γ,Γ′ ⇒ ∆,∆′, x:αA→ B
(R→)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (R→).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (L→).

.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, x:αA

.... D3

x:αB,Am,Γ′ ⇒ ∆′
Am, x:αA→ B,Γ′ ⇒ ∆′ (L→)

x:αA→ B,Γ,Γ′ ⇒ ∆,∆′ (Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, x:αA
Γ,Γ′ ⇒ ∆,∆′, x:αA

(Ecut)

.... D1

Γ⇒ ∆,An

.... D3

Am, x:αB,Γ′ ⇒ ∆′
x:αB,Γ,Γ′ ⇒ ∆,∆′ (Ecut)

x:αA→ B,Γ,Γ′ ⇒ ∆,∆′ (L→)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (L→).

50

Case of (3) where one of the uppersequents of (Ecut) is inference rule (R□a).

.... D1

Γ⇒ ∆,An

.... D2

Am, xRαay,Γ
′ ⇒ ∆′, y:αA

Am,Γ′ ⇒ ∆′, x:α□aA
(R□a)

Γ,Γ′ ⇒ ∆,∆′, x:α□aA
(Ecut)

If y does not appear in Γ⇒ ∆,An, it does not matter and leave y as it is. We consider the
case where y appears in the sequent. In this case, label y is, by Lemma 3.2.2, replaced
with z which does not appear in both Γ ⇒ ∆,An and Am,Γ′ ⇒ ∆′, x:α□aA, and let the
derivation of Am, xRαa z,Γ′ ⇒ ∆′, z:αA be D′2. Then the derivation is transformed into
the following:

.... D1

Γ⇒ ∆,An

.... D
′
2

Am, xRαa z,Γ′ ⇒ ∆′, z:αA
xRαa z,Γ,Γ′ ⇒ ∆,∆′, z:αA

(Ecut)

Γ,Γ′ ⇒ ∆,∆′, x:α□aA
(R□a)

Case of (3) where one of the uppersequents of (Ecut) is inference rule (L□′a).

.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, xRay

.... D3

y:αA,Am,Γ′ ⇒ ∆′
Am, x:α□aA,Γ′ ⇒ ∆′ (L□′a)

x:α□aA,Γ,Γ′ ⇒ ∆,∆′ (Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, xRay

Γ,Γ′ ⇒ ∆,∆′, xRay
(Ecut)

.... D1

Γ⇒ ∆,An

.... D3

Am, y:αA,Γ′ ⇒ ∆′
y:αA,Γ,Γ′ ⇒ ∆,∆′ (Ecut)

x:α□aA,Γ,Γ′ ⇒ ∆,∆′ (L□′a)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (L□′a).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (Rat′).

.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, x:αp
Am,Γ′ ⇒ ∆′, x:α,A p

(Rat′)

Γ,Γ′ ⇒ ∆,∆′, x:α,A p
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, x:αp
Γ,Γ′ ⇒ ∆,∆′, x:αp

(Ecut)

Γ,Γ′ ⇒ ∆,∆′, x:α,A p
(Rat′)

51

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Rat′).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (Lat′).

.... D1

Γ⇒ ∆,An

.... D2

x:αp,Am,Γ′ ⇒ ∆′

x:α,A p,Am,Γ′ ⇒ ∆′
(Lat′)

x:α,A p,Γ,Γ′ ⇒ ∆,∆′
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An

.... D2

x:αp,Am,Γ′ ⇒ ∆′
x:αp, Γ, Γ′ ⇒ ∆,∆′ (Ecut)

x:α,A p,Γ,Γ′ ⇒ ∆,∆′
(Lat′)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Lat′).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (R[.]).

.... D1

Γ⇒ ∆,An

.... D2

x:αA,Am,Γ′ ⇒ ∆′, x:α,AB
Am,Γ′ ⇒ ∆′, x:α[A]B

(R[.])

Γ,Γ′ ⇒ ∆,∆′, x:α[A]B
(Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ ∆,An

.... D2

Am, x:αA,Γ′ ⇒ ∆′, x:α,AB
x:αA,Γ,Γ′ ⇒ ∆,∆′, x:α,AB

(Ecut)

Γ,Γ′ ⇒ ∆,∆′, x:α[A]B
(R[.])

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (R[.]).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (L[.]′).

.... D1

Γ⇒ ∆,An

.... D2

Am, Γ′ ⇒ ∆′, x:αA

.... D3

x:α,AB,Am,Γ′ ⇒ ∆′
Am, x:α[A]B,Γ′ ⇒ ∆′ (L[.]′)

x:α[A]B,Γ,Γ′ ⇒ ∆,∆′ (Ecut)

This is transformed into the derivation:

52

.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, x:αA
Γ,Γ′ ⇒ ∆,∆′, x:αA

(Ecut)

.... D1

Γ⇒ ∆,An

.... D3

Am, x:α,AB,Γ′ ⇒ ∆′
x:α,AB,Γ,Γ′ ⇒ ∆,∆′

(Ecut)

x:α[A]B,Γ,Γ′ ⇒ ∆,∆′ (L[.]′)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (L[.]′).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (Rrela).

.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, y:αA

.... D3

Am,Γ′ ⇒ ∆′, x:αA

.... D4

Am,Γ′ ⇒ ∆′, xRαay

Am,Γ′ ⇒ ∆′, xRα,Aa y
(Rrela)

Γ,Γ′ ⇒ ∆,∆′, xRα,Aa y
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An

.... D2

Am,Γ′ ⇒ ∆′, x:αA
Γ,Γ′ ⇒ ∆,∆′, x:αA

(Ecut)

.... D1

Γ⇒ ∆,An

.... D3

Am, Γ′ ⇒ ∆′, y:αA

Γ, Γ′ ⇒ ∆,∆′, y:αA
(Ecut)

.... D1

Γ⇒ ∆,An

.... D4

Am, Γ′ ⇒ ∆′, xRαay

Γ, Γ′ ⇒ ∆,∆′, xRαay
(Ecut)

Γ,Γ′ ⇒ ∆,∆′, xRα,Aa y
(Rrela)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Rrela).

Case of (3) where one of the uppersequents of (Ecut) is inference rule (Lrela).

.... D1

Γ⇒ ∆,An

.... D2

x:αA,Am,Γ′ ⇒ ∆′

Am, xRα,Aa y,Γ
′ ⇒ ∆′

(Lrela1)

xRα,Aa y, Γ,Γ
′ ⇒ ∆,∆′

(Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ ∆,An

.... D2

Am, x:αA,Γ′ ⇒ ∆′
x:αA,Γ,Γ′ ⇒ ∆,∆′ (Ecut)

xRα,Aa y,Γ,Γ
′ ⇒ ∆,∆′

(Lrela)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Lrela1). Moreover, the case of (Lrela2) and (Lrela3) can also be shown
similarly.

53

Case of (4) where both sides of A are x:α¬A and principal, when we obtain the follow-
ing derivation:

.... D1

x:αA,Γ⇒ ∆, (x:α¬A)n−1

Γ⇒ ∆, (x:α¬A)n (R¬)

.... D2

(x:α¬A)m−1,Γ′ ⇒ ∆′, x:αA
(x:α¬A)m,Γ′ ⇒ ∆′ (L¬)

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

This is transformed into the derivation:
.... D

+
1

Γ⇒ ∆, (x:α¬A)n

.... D2

(x:α¬A)m−1,Γ′ ⇒ ∆′, x:αA
Γ, Γ′ ⇒ ∆,∆′, x:αA

(Ecut)

.... D1

x:αA,Γ⇒ ∆, (x:α¬A)n−1

.... D
+
2

(x:α¬A)m, Γ′ ⇒ ∆′
x:αA, Γ,Γ′ ⇒ ∆,∆′ (Ecut)

Γ,Γ,Γ′, Γ′ ⇒ ∆,∆,∆′,∆′ (Ecut)

Γ, Γ′ ⇒ ∆,∆′ (Lc)/(Rc)

Case of (4) where both sides of A are x:αA → B and principal, when we obtain the
following derivation:

.... D1

x:αA,Γ⇒ ∆, x:αB, (x:αA→ B)n−1

Γ⇒ ∆, (x:αA→ B)n (R→)

.... D2

(x:αA→ B)m−1,Γ′ ⇒ ∆′, x:αA

.... D3

x:αB, (x:αA→ B)m−1,Γ′ ⇒ ∆′

(x:αA→ B)m,Γ′ ⇒ ∆′ (L→)

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

This is transformed into the derivation:

A =


.... D

+
1

Γ⇒ ∆, (x:αA→ B)n

.... D2

(x:αA→ B)m−1, Γ′ ⇒ ∆′, x:αA
Γ,Γ′ ⇒ ∆,∆′, x:αA

(Ecut)

A′ =


.... D

+
1

Γ⇒ ∆, (x:αA→ B)n

.... D3

(x:αA→ B)m−1, x:αB,Γ′ ⇒ ∆′

x:αB,Γ,Γ′ ⇒ ∆,∆′
(Ecut)

.... A
Γ,Γ′ ⇒ ∆,∆′, x:αA

.... D1

x:αA,Γ⇒ ∆, x:αB, (x:αA→ B)n−1

.... D
+
2,3

(x:αA→ B)m,Γ′ ⇒ ∆′
x:αA,Γ⇒ ∆, x:αB

(Ecut)

.... A
′

x:αB,Γ,Γ′ ⇒ ∆,∆′
x:αA,Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′

(Ecut)

Γ,Γ,Γ, Γ′,Γ′,Γ′ ⇒ ∆,∆,∆,∆′,∆′,∆′
(Ecut)

Γ,Γ′ ⇒ ∆,∆′ (Lc)/(Rc)

Case of (4) where both sides of A are x:α□aA and principal, when we obtain the fol-
lowing derivation:

.... D1

xRαay,Γ⇒ ∆, y:αA, (x:α□aA)n−1

Γ⇒ ∆, (x:α□aA)n (R→)

.... D2

(x:α□aA)m−1,Γ′ ⇒ ∆′, xRαa v

.... D3

v:αA, (x:α□aA)m−1,Γ′ ⇒ ∆′

(x:α□aA)m,Γ′ ⇒ ∆′ (L→)

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

54

This is transformed into the derivation:

A =


.... D

+
1

Γ⇒ ∆, (x:α□aA)n

.... D2

(x:α□aA)m−1,Γ′ ⇒ ∆′, xRαa v

Γ,Γ′ ⇒ ∆,∆′, xRαa v
(Ecut)

A′ =


.... D

+
1

Γ⇒ ∆, (x:α□aA)n

.... D3

(x:α□aA)m−1, v:αA,Γ′ ⇒ ∆′

v:αA,Γ,Γ′ ⇒ ∆,∆′
(Ecut)

Additionally, by using Lemma 3.2.2 to the bottom sequent of D1, we obtain the deriva-
tionD′1 whose bottom sequent is xRαav,Γ⇒ ∆, v:αA, (x:α□aA)n−1.

.... A
Γ,Γ′ ⇒ ∆,∆′, xRαa v

.... D
′
1

xRαa v, Γ⇒ ∆, v:αA, (x:α□aA)n−1

.... D
+
2,3

(x:α□aA)m,Γ′ ⇒ ∆′

xRαa v, Γ⇒ ∆, v:αA
(Ecut)

.... A
′

v:αA,Γ,Γ′ ⇒ ∆,∆′

xRαa v,Γ,Γ,Γ
′,Γ′ ⇒ ∆,∆,∆′,∆′

(Ecut)

Γ,Γ,Γ,Γ′,Γ′,Γ′ ⇒ ∆,∆,∆,∆′,∆′,∆′
(Ecut)

Γ,Γ′ ⇒ ∆,∆′ (Lc)/(Rc)

Case of (4) where both sides of A are x:α[A]B and principal, when we obtain the
following derivation:

.... D1

x:αA,Γ⇒ ∆, x:α,AB, (x:α[A]B)n−1

Γ⇒ ∆, (x:α[A]B)n (R[.])

.... D2

(x:α[A]B)m−1,Γ′ ⇒ ∆′, x:αA

.... D3

x:α,AB, (x:α[A]B)m−1,Γ′ ⇒ ∆′

(x:α[A]B)m,Γ′ ⇒ ∆′ (L[.]′)

Γ,Γ′ ⇒ ∆,∆′
(Ecut)

This is transformed into the derivation:

A =


.... D

+
1

Γ⇒ ∆, (x:α[A]B)n

.... D2

(x:α[A]B)m−1,Γ′ ⇒ ∆′, x:αA
Γ,Γ′ ⇒ ∆,∆′, x:αA

(Ecut)

A′ =


.... D

+
1

Γ⇒ ∆, (x:α[A]B)n

.... D3

(x:α[A]B)m−1, x:α,AB,Γ′ ⇒ ∆′

x:α,AB,Γ,Γ′ ⇒ ∆,∆′
(Ecut)

.... A
Γ,Γ′ ⇒ ∆,∆′, x:αA

.... D1

x:αA,Γ⇒ ∆, x:α,AB, (x:α[A]B)n−1

.... D
+
2,3

(x:α[A]B)m,Γ′ ⇒ ∆′

x:αA,Γ⇒ ∆, x:α,AB
(Ecut)

.... A
′

x:α,AB,Γ,Γ′ ⇒ ∆,∆′
x:αA,Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′

(Ecut)

Γ,Γ,Γ,Γ′, Γ′,Γ′ ⇒ ∆,∆,∆,∆′,∆′,∆′
(Ecut)

Γ,Γ′ ⇒ ∆,∆′ (Lc)/(Rc)

55

Case of (4) where both sides of A are xRα,Aa y and principal. When we obtain the
following derivation:

.... D1

Γ⇒ ∆, (xRα,Aa y)n-1, x:αA

.... D2

Γ⇒ ∆, (xRα,Aa y)n-1, y:αA

.... D3

Γ⇒ ∆, (xRα,Aa y)n-1, xRαay

Γ⇒ ∆, (xRα,Aa y)n
(Rrela)

.... D4

x:αA, (xRα,Aa y)m-1, Γ′ ⇒ ∆′

(xRα,Aa y)m,Γ′ ⇒ ∆′
(Lrela3)

Γ, Γ′ ⇒ ∆,∆′
(Ecut)

,

it is transformed into the following derivation:

.... D1

Γ⇒ ∆, (xRα,Aa y)n-1, x:αA

.... D
′
4

(xRα,Aa y)m,Γ′ ⇒ ∆′

Γ, Γ′ ⇒ ∆,∆′, x:αA
(Ecut)

.... D
′
123

Γ⇒ ∆, (xRα,Aa y)n

.... D4

x:αA, (xRα,Aa y)m-1,Γ′ ⇒ ∆′

x:αA,Γ,Γ′ ⇒ ∆,∆′
(Ecut)

Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′
(Ecut)

Γ,Γ′ ⇒ ∆,∆′ (Rc)/(Lc)
,

where (Ecut) to the two uppersequents is applicable by induction hypothesis, since
the derivation height of (Ecut) is reduced by comparison with the original deriva-
tion. Additionally, the application of (Ecut) to the lowersequents is also allowed
by induction hypothesis, since the length of the cut expression is reduced, namely
ℓ(x:αA) < ℓ(xRα,Aa y). □

As a corollary of Theorem 3.2.2, the consistency of GPAL+ is shown.

Corollary 3.2.1 (Consistency of GPAL). The empty sequent ⇒ cannot be derived
in GPAL+.

Proof. Suppose for contradiction that ⇒ is derivable in GPAL+. By Theorem 3.2.2,
⇒ is derivable in GPAL; however, there is no inference rule in GPAL which can
derive the empty sequent. This is a contradiction. □

3.3 Soundness of GPAL
Now, we switch the subject to the soundness theorem of GPAL. For the theorem, we
extend Kripke semantics of PAL to cover the labelled expressions. Given any model
M, we say that f : Var→ D(M) is an assignment.

Definition 3.3.1. LetM be a model and f : Var→ D(M) an assignment.

M, f ⊩ x:αA iff Mα, f (x) ⊩ A and f (x) ∈ D(Mα)
M, f ⊩ xRϵay iff (f (x), f (y)) ∈ Ra
M, f ⊩ xRα,Aa y iff M, f |= xRαay andMα, f (x) ⊩ A andMα, f (y) ⊩ A

Here we have to be careful of the fact that f (x) and f (y) above must be defined in
D(Mα). In the clause M, f ⊩ x:αA, for example, f (x) should survive (well-defined)
in the restricted model Mα. Taking into account this fact, it is essential that we pay
attention to the negation ofM, f ⊩ x:αA.

56

Proposition 3.3.1. M, f ⊮ x:αA iff f (x) < D(Mα) or (f (x) ∈ D(Mα) and Mα, f (x) ⊮
A).

As far as, we know, this point has not been suggested in previous works (e.g., [6,
51]). Then, the reader may wonder if the following ‘natural’ definition of the validity
for sequents (which we call s-valid) also works. The following notion can be regarded
as an implementation of the reading of a sequent Γ ⇒ ∆ as ‘if all of the antecedent Γ
hold, then some of the consequents ∆ hold’.

Definition 3.3.2 (s-validity). Γ ⇒ ∆ is s-valid in M if, for all assignments f : Var →
D(M) such thatM, f ⊩ A for all A ∈ Γ, there exists B ∈ ∆ such thatM, f ⊩ B.

However, following this natural definition of validity of sequents, we come to a dead-
lock on the way to prove the soundness theorem, especially in the case of rules for
logical negation, as we can see the following proposition with Example 2.2.2.

Recall (Example 2.2.2). First of all, we formalize Example 2.2.1 with models as
follows. Let us consider Agt = {a} and the following two models such as: M =
({w1, w2},W2,V) where V(p) = {w1}, andM¬p = ({w2}, {(w2, w2)},V¬p) where V¬p(p) =
∅. These models can be shown in graphic forms as follows.

M GFED@ABCw1a
,, a //

⊩p

GFED@ABCw2 a
rr

oo

⊮p

[¬p] ///o/o/o GFED@ABCw2 a
rr

⊮p

M¬p

InM, agent a does not know whether p or ¬p (i.e., ¬(□a p ∨ □a¬p) is valid inM), but
after announcement of ¬p, agent a comes to know ¬p in the restricted modelM to ¬p.

Proposition 3.3.2. There is a model M such that (R¬) of GPAL does not preserve
s-validity inM.6

Proof. We use the same model as in Example 2.2.2, and consider the particular instance
of the application of (R¬) is as follows:

x:¬p p⇒
⇒ x:¬p¬p

(R¬)

We show that the uppersequent is s-valid in M but the lowersequent is not s-valid in
M, and so (R¬) does not preserve s-validity in this case. Note that w1 does not survive
after ¬p, i.e., w1 < D(M¬p) = {w2}.

First, we show that x:¬p p ⇒ is s-valid inM, i.e.,M, f ⊮ x:¬p p for any assignment
f : Var→ D(M). So, we fix any f : Var→ D(M). We divide our argument into: f (x)
= w1 or f (x) = w2. If f (x) = w1, f (x) does not survive after ¬p, and soM, f ⊮ x:¬p p by
Proposition 3.3.1. If f (x) = w2, f (x) survives after ¬p but f (x) < ∅ = V(p) ∩D(M¬p),
which impliesM¬p, f (x) ⊮ p henceM, f ⊮ x:¬p p by Proposition 3.3.1.

Second, we show that⇒ x:¬p¬p is not s-valid inM, i.e., M, f ⊮ x:¬p¬p for some
assignment f : Var → W. We fix some f : Var → W such that f (x) = w1. Since
f (x) < D(M¬p) (f (x) does not survive after ¬p),M, f ⊮ x:¬p¬p by Proposition 3.3.1,
as desired. □

6This proposition and the following definition of t-validity are suggested by Katsuhiko Sano.

57

Therefore, Proposition 3.3.2 forces us to abandon the notion of s-validity and have
an alternative notion of validity. Here we recall the second intuitive reading (in the
introduction) of sequent Γ ⇒ ∆ as ‘it is not the case that all of the antecedents Γ
hold and all of the consequents fail.’ In order to realize the idea of ‘failure’, we first
introduce the syntactic notion of the negated form A of a labelled expression A and
then provide the semanticsM, f ⊩ x:αA with such negated forms, where we may read
M, f ⊩ x:αA as ‘A fails in M under f .’ Moreover, with this definition, our second
notion of validity of a sequent, which we call t-valid,7 is defined.

Definition 3.3.3 (t-validity). Let M be a model and f : Var → D(M) an assignment.
Then,

M, f ⊩ x:αA iff Mα, f (x) ⊩ ¬A and f (x) ∈ D(Mα),
M, f ⊩ xRϵay iff (f (x), f (y)) < Ra,

M, f ⊩ xRα,Aa y iff M, f ⊩ xRαay orM, f ⊩ x:αA orM, f ⊩ y:αA.

We say that Γ⇒ ∆ is t-valid inM if there is no assignment f : Var→ D(M) such that
M, f ⊩ A for all A ∈ Γ, andM, f ⊩ B for all B ∈ ∆.

In this definition, we explicitly gave a condition of survival that f (x) ∈ D(Mα), e.g., in
M, f ⊩ x:αA. Therefore, ‘x:αA fails inM under f ’ means that f (x) survives after α but
A is false at f (x) inMα. The following proposition shows that the clauses for relational
atoms and their negated forms characterize what they intend to capture.

Proposition 3.3.3. For any modelM, assignment f , a ∈ Agt and x, y ∈ Var,

(i) M, f ⊩ xRαay iff (f (x), f (y)) ∈ Rαa ,
(ii) M, f ⊩ xRαay iff (f (x), f (y)) < Rαa .

Proof. Both are easily shown by induction of α. Let us consider the case of α = α′, A
in the proof of (ii).

We show M, f ⊮ xRα
′,A

a y iff (f (x), f (y))∈Rα′,Aa . M, f ⊮ xRα
′,A

a y is, by Defini-
tion 3.3.3 and the induction hypothesis, equivalent to (f (x), f (y)) ∈ Rα

′
a andMα

′
, f (x) ⊩

A andMα
′
, f (y) ⊩ A. That is also equivalent to (f (x), f (y)) ∈ Rα

′,A
a . □

Following this, we may prove the soundness of GPAL properly. Let Γ is a finite set of
labelled expressions. Then in what follows, we write M, f ⊩ Γ to mean M, f ⊩ A for
all A ∈ Γ, andM, f ⊩ Γ to meanM, f ⊩ A for all A ∈ Γ.

Theorem 3.3.1 (Soundness of GPAL). Given any sequent Γ ⇒ ∆ in GPAL, if ⊢GPAL
Γ⇒ ∆, then Γ⇒ ∆ is t-valid in every modelM.

Proof. The proof is carried out by induction of the height of the derivation of Γ ⇒ ∆
in GPAL.

Base case: we show that xRαav ⇒ xRαav is t-valid. Suppose for contradiction that
M, f ⊩ xRαav andM, f ⊩ xRαav. By Proposition 3.3.3, this is impossible.

7We note that t-validity is close to the validity in the tableaux method of PAL [7].

58

Case where the last applied rule is of the form (L¬): We show the contraposition. Sup-
pose that there is some f : Var→ W such that,M, f ⊩ x:α¬A andM, f ⊩ Γ, and
M, f ⊩ ∆. Fix such f . It suffices to showM, f ⊩ x:αA. Then,M, f ⊩ x:α¬A iff
Mα, f (x) ⊩ ¬A and f (x) ∈ D(Mα). By Definition 3.3.3, we obtainM, f ⊩ x:αA.

Case where the last applied rule is of the form (R¬): We show the contraposition. Sup-
pose that there is some f : Var → W such that, M, f ⊩ A for all A ∈ Γ, and
M, f ⊩ B for all B ∈ ∆, and M, f ⊩ x:α¬A. Fix such f . It suffices to show
M, f ⊩ x:αA. Then, M, f ⊩ x:α¬A iff Mα, f (x)⊮ ¬A and f (x) ∈ D(Mα),
which is equivalent to: Mα, f (x) ⊩ A and f (x) ∈ D(Mα). By Definition 3.3.1,
M, f ⊩ x:αA. So, the contraposition has been shown.

Case where the last applied rule is of the form (L→): We show the contraposition.
Suppose that there is some f : Var → W such that, M, f ⊩ x:αA→ B and
M, f ⊩ Γ, and M, f ⊩ ∆. Fix such f . It suffices to show M, f ⊩ x:αA or
M, f ⊩ x:αB. Then, M, f ⊩ x:αA→ B iff (Mα, f (x) ⊩ ¬A and f (x) ∈ D(Mα))
or (Mα, f (x) ⊩ B and f (x) ∈ D(Mα)). By Definition 3.3.1, we obtain the goal as
desired.

Case where the last applied rule is of the form (R→): We show the contraposition.
Suppose that there is some f : Var → W such that,M, f ⊩ Γ, andM, f ⊩ ∆ and
M, f ⊩ x:αA→ B . Fix such f . It suffices to showM, f ⊩ x:αA andM, f ⊩ x:αB.
Then,M, f ⊩ x:αA→ B iff Mα, f (x)⊩ A andMα, f (x)⊮ B and f (x) ∈ D(Mα).
By Definitions 3.3.1 and 3.3.3, we obtain the goal as desired.

Case where the last applied rule is of the form (L□′a): We show the contraposition.
Suppose that there is some f : Var → W such that M, f ⊩ A for all A ∈ Γ
and M, f ⊩ xα:□aA and M, f ⊩ B for all B ∈ ∆. Fix such f . It suffices
to show M, f ⊩ xRαay or M, f ⊩ y:αA. Then, from M, f ⊩ x:α□aA, we ob-
tain (f (x), f (y)) < Rαa or Mα, f (y) ⊩ A. Suppose the former disjunct, i.e.,
(f (x), f (y)) < Rαa , which is, by Proposition 3.3.3, M, f ⊩ xRαay. Then, suppose
the latter disjunctMα, f (y) ⊩ A. By definition, this is equivalent toM, f ⊩ y :α A.
Then, the contraposition has been shown.

Case where the last applied rule is of the form (R□a): We show the contraposition.
Suppose that there is some f : Var → W such that,M, f ⊩ Γ, andM, f ⊩ ∆ and
M, f ⊩ x:α□aA . Fix such f . Then, M, f ⊩ x:α□aA iff f (x)Rαav and Mα, v⊮ A
for some v ∈ D(Mα) and f (x) ∈ D(Mα). Fix such v ∈ D(Mα). It suffices to
show that there is some f ′ : Var→ W such that,M, f ′ ⊩ xRαay andM, f ′ ⊩ x:αA
where y is not x and does not appear in Γ and ∆. Define f ′ such that f ′(x) = v
if x = y and otherwise f ′(x) = f (x). Therefore, by the definition of f ′, we
obtain f ′(x)Rαa f ′(y) and Mα, f ′(y)⊮ A and f ′(x) ∈ D(Mα) By Definitions 3.3.1
and 3.3.3, we obtain the goal as desired.

Case where the last applied rule is of the form (Lat′): We show the contraposition.
Suppose that there is some f : Var → W such that, M, f ⊩ x:α,A p, M, f ⊩ Γ,
andM, f ⊩ ∆. Fix such f . It suffices to showM, f ⊩ x:αp. Then,M, f ⊩ x:α,A p

59

implies f (x) ∈ Vα(p), which is equivalent toMα, f (x) ⊩ p. By Definition 3.3.1,
we obtain the goal as desired.

Case where the last applied rule is of the form (Rat′): Similar to the above, we show
the contraposition. Suppose there is some f : Var → W such that, M, f ⊩ A
for all A ∈ Γ, and M, f ⊩ B for all B ∈ ∆, and M, f ⊩ x:α,A p. Fix such
f . It suffices to show M, f ⊩ x:αp. By Definition 3.3.3, M, f ⊩ x:α,A p is
equivalent to Mα,A, f (x)⊩ ¬p and f (x) ∈ D(Mα,A). By f (x) ∈ D(Mα,A), we
obtain f (x) ∈ D(Mα) and Mα, f (x) ⊩ A. It follows from Mα, f (x) ⊩ A and
Mα,A, f (x)⊩ ¬p that f (x) < Vα(p). This is equivalent toM, f ⊩ x:αp. Then, the
contraposition has been shown.

Case where the last applied rule is of the form (L[.]): We show the contraposition.
Suppose that there is some f : Var→ W such that,M, f ⊩ x:α[A]B andM, f ⊩ Γ,
and M, f ⊩ ∆. Fix such f . It suffices to show M, f ⊩ x:αA or M, f ⊩ x:α,AB.
Then, M, f ⊩ x:α[A]B iff (Mα, f (x) ⊩ ¬A or Mα,A, f (x) ⊩ B) and f (x) ∈
D(Mα). By Definition 3.3.1 and 3.3.3, we obtain the goal as desired.

Case where the last applied rule is of the form (R[.]): We show the contraposition.
Suppose that there is some f : Var → W such that,M, f ⊩ Γ, andM, f ⊩ ∆ and
M, f ⊩ x:α[A]B . Fix such f . It suffices to showM, f ⊩ x:αA andM, f ⊩ x:α,AB.
Then, M, f ⊩ x:α[A]B iff Mα, f (x)⊩ A and Mα,A, f (x)⊮ B and f (x) ∈ D(Mα).
From Mα, f (x)⊩ A, we obtain f (x) ∈ D(Mα,A). Then, by Definition 3.3.1 and
3.3.3, we obtain the goal as desired.

Case where the last applied rule is of the form (Lrel1): We show the contraposition.
Suppose that there is some f : Var→ W such that,M, f ⊩ xRα,Aa y,M, f ⊩ Γ, and
M, f ⊩ ∆. Fix such f . It suffices to showM, f ⊩ x:αA. Then,M, f ⊩ xRα,Aa y is
equivalent to M, f |= xRαay andMα, f (x) ⊩ A andMα, f (y) ⊩ A. ByMα, f (x) ⊩
A and Definition 3.3.1, we obtain the goal as desired.

Case where the last applied rule is of the form (Lrel2) and (Lrel3): Similar to the above.

Case where the last applied rule is of the form (Rrel): As before, we show the con-
traposition. Suppose there is some f : Var → W such that, M, f ⊩ A for all
A ∈ Γ, andM, f ⊩ B for all B ∈ ∆, andM, f ⊩ xRα,Aa y. Fix such f . By Defini-
tion 3.3.3, xRα,Aa y is equivalent to M, f ⊩ xRαay orM, f ⊩ x:αA orM, f ⊩ y:αA.
This is what we want to show.

□

For the following corollary, we prepare the next proposition.

Proposition 3.3.4. If⇒ x:ϵA is t-valid in a modelM, then A is valid inM.

Proof. Suppose that⇒ x:ϵA is t-valid inM. So, it is not the case that there exists some
assignment f such thatM, f ⊩ x:ϵA. Equivalently, for all assignments f ,M, f ⊮ x:ϵA.
For any assignment f ,M, f ⊮ x:ϵA is equivalent toM, f (x) ⊩ A because f (x) ∈ D(M).

60

So, it follows thatM, f (x) ⊩ A for all assignments f . Then, it is immediate to see that
A is valid inM, as required.

□

Then an indirect proof of completeness of GPAL can be provided as follows:

Corollary 3.3.1. Given any formula A and label x ∈ Var, the following are equivalent.

(i) A is valid on all models.
(ii) ⊢HPAL A

(iii) ⊢GPAL+⇒ x:ϵA
(iv) ⊢GPAL⇒ x:ϵA

Proof. The direction from (i) to (ii) is established by Fact 1 and the direction from (ii)
to (iii) is shown by Theorem 3.2.1. Then, the direction from (iii) to (iv) is established
by the admissibility of (Cut) (Theorem 3.2.2). Finally, the direction from (iv) to (i) is
shown by Theorem 3.3.1 and Proposition 3.3.4. □

3.4 Completeness of GPAL for Link-cutting semantics
Let us denote by GPALw as the resulting sequent calculus of replacing (Lat′) and
(Rat′) of GPAL with the following modified version of (Lat) and (Rat) in G3PAL:

x:αA,Γ⇒ ∆
x:α,A p, Γ⇒ ∆

(Lat1)
x:αp,Γ⇒ ∆

x:α,A p,Γ⇒ ∆
(Lat2)

Γ⇒ ∆, x:αA Γ⇒ ∆, x:αp
Γ⇒ ∆, x:α,A p

(Rat)
.

We checked that all results needed to show Corollary 3.3.1 hold also for GPALw, and
so we can establish the similar result to Corollary 3.3.1 also for GPALw. While (Rat)
does preserve t-validity in a modelM by the similar argument to the proof of Theorem
3.3.1, we remark that one premise Γ ⇒ ∆, x:αA of (Rat) becomes redundant when we
prove that (Rat) preserves t-validity in a model. This is because, for any assignment
f , M, f ⊩ x:α,A p already implies that A holds at f (x) after α, i.e., M, f ⊩ x:αA. We
realize that this difference between GPALw and GPAL comes from the difference
between the standard Kripke semantics (this is also called the world-deleting semantics
in Section 2.2.1) and the link-cutting semantics8.

As we have seen in Corollary 3.3.1 GPAL is complete for a formula with respect
to the world-deleting semantics of PAL; however, it is not complete for an arbitrary
sequent.9 Namely, there is a sequent which is t-valid in the world-deleting semantics
but it is not derivable in GPAL. Let us consider sequent⇒ x:⊥p.

8As far as we know, van Benthem and Liu [82, p.166] first provide an idea of link-cutting semantics of
PAL. Their underlying idea is: cutting the links (pairs in an accessibility relation) between A-zone and ¬A-
zone. Then, they state that all valid formulas in the resulting semantics are also the same as those in the world-
deleting semantics [82, Fact 1]. Their semantics is similar but different to our semantics above. Hansen [34,
p.145] touches on the same link-cutting semantics as ours in the public announcement extension of hybrid
logic (an extended modal logic), but he does not investigate the semantics in detail there. A variant of our
link-cutting semantics is also explained for logic of belief in [83], though the notion of public announcement
there is not truthful and this is why the announcement there is called the ‘introspective announcement.’

9The argument in this paragraph is not included in [61].

61

Proposition 3.4.1. ⇒ x:⊥p is t-valid in the world-deleting semantics.

Proof. We show t-validity of the sequent. Suppose for a contradiction that there is
an assignment f : Var → W such that M, f ⊩ x:⊥p. Fix such f . Then we have
M, f ⊩ x:⊥p which is equivalent to M⊥, f (x) ⊮ p and f (x) ∈ D(M⊥). However, since
D(M⊥) = ∅, we obtain a contradiction. □

Proposition 3.4.2. ⊬GPAL⇒ x:⊥p.

Proof. It suffices to show that sequent⇒ (x:p)n, (x:⊥p)m is not derivable in GPAL for
all n,m ∈ N by induction of the height of the derivation.

Case of height= 0. Since⇒ (x:p)n, (x:⊥p)m is not an initial sequent, it is not derivable.

Case of height = k. We obtain the following possibilities:

⇒ (x:p)n, (x:⊥p)m−1

⇒ (x:p)n, (x:⊥p)m (Rw)
,

⇒ (x:p)n−1, (x:⊥p)m

⇒ (x:p)n, (x:⊥p)m (Rw)
,

⇒ (x:p)n, (x:⊥p)m+1

⇒ (x:p)n, (x:⊥p)m (Rc)
,

⇒ (x:p)n+1, (x:⊥p)m

⇒ (x:p)n, (x:⊥p)m (Rc)
,

⇒ (x:p)n+1, (x:⊥p)m−1

⇒ (x:p)n, (x:⊥p)m (Rat)
.

Applying the induction hypothesis to each of the uppersequent (height k−1) and
subsequently applying the same rule, we obtain that the sequent is not derivable
in GPAL.

□

As a result of Propositions 3.4.1 and 3.4.2, we conclude the following corollary.

Corollary 3.4.1. The following does not hold: for any sequent Γ ⇒ ∆, if Γ ⇒ ∆ is
t-valid in the world-deleting semantics, then ⊢GPAL Γ⇒ ∆.

In what follows, we introduce our version of the link-cutting semantics of PAL and
provide a direct proof of completeness of GPAL for link-cutting semantics. 10 The
specific definition of the link-cutting version of PAL’s semantics is given as follows,
where we keep the symbol ⊩ for the previous world-deleting semantics of PAL and use
the new symbol ‘|=’ for the satisfaction relation for the link-cutting semantics.

Definition 3.4.1 (Link-cutting semantics of PAL). Given a modelM, w ∈ D(M) and a
formula A,M, w |= A is defined by

M, w |= p iff w ∈ V(p),
M, w |= ¬A iff M, w ̸|= A,
M, w |= A→ B iff M, w |= A impliesM, w |= B,
M, w |= □aA iff for all v ∈ W : wRav impliesM, v |= A, and
M, w |= [A]B iff M, w |= A impliesMA!, w |= B,

10Thanks to a comment from Makoto Kanazawa in the annual meeting of MLG2014 in Japan, we noticed
that the link-cutting semantics may be suitable for our labelled sequent calculus of PAL.

62

where the restrictionMA! is defined by triple (W, (RA!
a)a∈Agt,V) with

RA!
a := Ra ∩ (⟦A⟧M × ⟦A⟧M), where ⟦A⟧M := {x ∈ W | M, x |= A}.

According to this definition, only the accessibility relation is restricted to A inMA!, and
the set of worlds and valuation stay as they were. Similar to the world-deleting seman-
tics, we can also define the notion of validity in a model. The following soundness of
HPAL for the link-cutting semantics is straightforward.

Proposition 3.4.3. If A is a theorem of HPAL, A is valid in every model M for the
link-cutting semantics.

As before, for any list α = (A1, A2, ..., An) of formulas , we define Mα! inductively
as: Mα! := M (if α = ϵ), and Mα! := (Mβ!)An! = (W, (Rβ!,An!

a)a∈Agt,V) (if α = β, An).
Now we can show that the corresponding notions to s- and t-validity become equivalent
under our link-cutting semantics.

Definition 3.4.2. LetM be a model and f : Var→ D(M) an assignment.

M, f |= x:αA iff Mα!, f (x) |= A
M, f |= xRϵay iff (f (x), f (y)) ∈ Ra
M, f |= xRα,Aa y iff M, f |= xRαay andMα!, f (x) |= A andMα!, f (y) |= A

By this definition, the next proposition immediately follows.

Proposition 3.4.4. For any modelM, assignment f , a ∈ Agt and x, y ∈ Var,

M, f |= xRαay iff (f (x), f (y)) ∈ Rα!
a

The semantics of the negated form of a labelled expression A is also defined as before.

Definition 3.4.3. LetM be a model and f : Var→ D(M) an assignment. Then,

M, f |= x:αA iff Mα!, f (x) ̸|= A,
M, f |= xRϵay iff (f (x), f (y)) < Ra,

M, f |= xRα,Aa y iff M, f ⊩ xRαay orM, f ̸|= x:αA orM, f ̸|= y:αA

Now we may confirm that, based on the semantics, t-validity and s-validity are equiv-
alent sinceM, f ̸|= B is equivalent toM, f |= B in this semantics.

Proposition 3.4.5. Under the link-cutting semantics, a sequent Γ ⇒ ∆ is s-valid in a
modelM iff it is t-valid inM.

Proof. Suppose Γ ⇒ ∆ is t-valid in M. In other words, if there is no assignment
f : Var → D(M) such that M, f |= A for all A ∈ Γ, and M, f |= B for all B ∈ ∆.
Equivalently, for all assignments f : Var→ D(M),M, f |= A for all A ∈ Γ, there exists
B ∈ ∆ such thatM, f |= B. □

63

Because the notion of survival is expelled, the definition of the satisfaction of labelled
expressions becomes wholly natural. Thus, we do not need to worry about the notion
of survival of worlds in this link-cutting semantics.

Hereafter in this section we consider possibly infinite multi-sets of labelled expres-
sions. That is, we call Γ⇒ ∆ an infinite sequent if Γ or ∆ are infinite multi-sets. We use
the notation ⊢GPAL Γ ⇒ ∆ to mean that there are finite multi-sets Γ′ and ∆′ of labelled
expressions such that ⊢GPAL Γ

′ ⇒ ∆′ in the ordinary sense and Γ′ ⊆ Γ and ∆′ ⊆ ∆.
To establish the completeness result of GPAL for the link-cutting semantics, we first
introduce the notion of saturation as follows.

Definition 3.4.4. A possibly infinite sequent Γ ⇒ ∆ is saturated if it satisfies the
following:

(unprov) Γ⇒ ∆ is not derivable in GPAL,

(→ l) if x:αA→ B ∈ Γ, then x:αA ∈ ∆ or x:αB ∈ Γ,

(→ r) if x:αA→ B ∈ ∆, then x:αA ∈ Γ and x:αB ∈ ∆,

(¬l) if x:α¬A ∈ Γ, then x:αA ∈ ∆,

(¬r) if x:α¬A ∈ ∆, then x:αA ∈ Γ,

(□al) if x:α□aA ∈ Γ, then xRαay ∈ ∆ or y:αA ∈ Γ for any label y,

(□ar) if x:α□aA ∈ ∆, then xRαay ∈ Γ and y:αA ∈ ∆ for some label y,

([.]l) if x:α[A]B ∈ Γ, then x:αA ∈ ∆ or x:α,AB ∈ Γ,

([.]r) if x:α[A]B ∈ ∆, then x:αA ∈ Γ and x:α,AB ∈ ∆,

(atl) if x:α,A p ∈ Γ, then x:αp ∈ Γ,

(atr) if x:α,A p ∈ ∆, then x:αp ∈ ∆,

(rell) if xRα,Aa y ∈ Γ, then x:αA ∈ Γ and y:αA ∈ Γ, and xRαay ∈ Γ, and

(relr) if xRα,Aa y ∈ ∆, then x:αA ∈ ∆ or y:αA ∈ ∆, or xRαay ∈ ∆.

We show the next lemma which states that any underivable sequent in GPAL can be
extended to a (possibility infinite) saturated sequent.

Lemma 3.4.1. Let Γ ⇒ ∆ be a finite sequent. If ⊬GPAL Γ ⇒ ∆, then there exists a
possibility infinite saturated sequent Γ+ ⇒ ∆+ where Γ ⊆ Γ+ and ∆ ⊆ ∆+.

Proof. Suppose that there is a finite sequent Γ ⇒ ∆ such that ⊬GPAL Γ ⇒ ∆. Let
A1,A2, . . . be an enumeration of all labelled expressions such that each labelled ex-
pression appears infinitely many times. We inductively construct an infinite sequence
(Γi ⇒ ∆i)i∈N of finite sequents such that ⊬GPAL Γi ⇒ ∆i at each i ∈ N as follows and
define Γ+ ⇒ ∆+ as the ‘limit’ of such sequence.

Let Γ0 ⇒ ∆0 be Γ⇒ ∆ as the basis of Γi ⇒ ∆i, and by the supposition ⊬GPAL Γ0 ⇒
∆0. The i + 1-th step consists of the procedures to define an underivable Γi+1 ⇒ ∆i+1
from Γi ⇒ ∆i depending on the shape of the labelled expression Ai. In the i+1-th step,
one of the following operations is executed.

64

Case where Ai is of the form x:αA→ B and Ai ∈ Γi: Because Γi ⇒ ∆i is underiv-
able, either Γi ⇒ ∆i, x:αA or x:αB,Γi ⇒ ∆i is also underivable by (L →). Then
we choose one underivable sequent as Γi+1 ⇒ ∆i+1.

Case where Ai is of the form x:αA→ B and Ai ∈ ∆i: We define Γi+1 ⇒ ∆i+1 := x:αA,Γi ⇒
∆i, x:αB. By (R→) and ⊬GPAL Γi ⇒ ∆i, the sequent Γi+1 ⇒ ∆i+1 is also underiv-
able.

Case where Ai is of the form x:α¬A and Ai ∈ Γi: We define Γi+1 ⇒ ∆i+1 := Γi ⇒
∆i, x:αA. Because of (L¬) and ⊬GPAL Γi ⇒ ∆i, the sequent Γi+1 ⇒ ∆i+1 is also
underivable.

Case where Ai is of the form x:α¬A and Ai ∈ ∆i: We define Γi+1 ⇒ ∆i+1 := x:αA, Γi ⇒
∆i. Because of (R¬) and ⊬GPAL Γi ⇒ ∆i, the sequent Γi+1 ⇒ ∆i+1 is also under-
ivable.

Case where Ai is of the form x :α [A]B and Ai ∈ Γi: We define Γi+1 ⇒ ∆i+1 as either
Γi ⇒ ∆i, x:αA or x:α,AB,Γi ⇒ ∆i. Because of (L[.]) and ⊬GPAL Γi ⇒ ∆i, the
sequent Γi+1 ⇒ ∆i+1 is also underivable.

Case where Ai is of the form x :α [A]B and Ai ∈ ∆i: We define Γi+1 ⇒ ∆i+1 := x:αA,Γi ⇒
∆i, x:α,AB. Because of (R[.]) and ⊬GPAL Γi ⇒ ∆i, the sequent Γi+1 ⇒ ∆i+1 is also
underivable.

Case where Ai is of the form x:α,A p and Ai ∈ Γi: We define Γi+1 ⇒ ∆i+1 := x:αp, Γi ⇒
∆i. Because of (Lat′) and ⊬GPAL Γi ⇒ ∆i, the sequent Γi+1 ⇒ ∆i+1 is also under-
ivable.

Case where Ai is of the form x:α,A p and Ai ∈ ∆i: We define Γi+1 ⇒ ∆i+1 := Γi ⇒
∆i, x:αp. Because of (Rat′) and ⊬GPAL Γi ⇒ ∆i, the sequent Γi+1 ⇒ ∆i+1 is also
underivable.

Case where Ai is of the form x:α□aA and Ai ∈ Γi: Let {y1, ..., yn} be the set of all la-
bels appearing in Γi ⇒ ∆i. Suppose we have constructed (Γ(k)

i ⇒ ∆
(k)
i)1≤k≤ℓ such

that (Γ(k)
i ⇒ ∆

(k)
i) is underivable, Γ(k)

i ⊆ Γ
(k+1)
i , and ∆(k)

i ⊆ ∆
(k+1)
i . Because of

(L□a) and ⊬GPAL Γ
(l)
i ⇒ ∆

(l)
i , either Γ(l)

i ⇒ ∆
(l)
i , xRαayℓ+1 or yl+1:A,Γ(l)

i ⇒ ∆
(l)
i is

underivable, and we choose one underivable sequent as Γ(l+1)
i ⇒ ∆(l+1)

i . Then we
define Γi+1 ⇒ ∆i+1 := Γ(n)

i ⇒ ∆
(n)
i , and Γi+1 ⇒ ∆i+1 is underivable by construc-

tion.

Case where Ai is of the form x:α□aA and Ai ∈ ∆i: We define Γi+1 ⇒ ∆i+1 := xRαay,Γi ⇒
∆i, y:αA, where y is a fresh variable that does not appear in Γi ⇒ ∆i. Because of
(R□a) and ⊬GPAL Γi ⇒ ∆i, the sequent Γi+1 ⇒ ∆i+1 is also underivable.

Case where Ai is of the form xRα,Aa y and Ai ∈ Γi: We define Γi+1 ⇒ ∆i+1 := x:αA, y:αA, xRαay,Γi ⇒
∆i. Because of (Lrel) and ⊬GPAL Γi ⇒ ∆i, the sequent Γi+1 ⇒ ∆i+1 is also under-
ivable.

65

Case where Ai is of the form xRα,Aa y and Ai ∈ ∆i: We define Γi+1 ⇒ ∆i+1 as either
Γi ⇒ ∆i, x:αA or Γi ⇒ ∆i, y:αA or Γi ⇒ ∆i, xRαay. Because of (Rrel) and ⊬GPAL
Γi ⇒ ∆i, the sequent Γi+1 ⇒ ∆i+1 is also underivable.

Otherwise: We define Γi+1 ⇒ ∆i+1 := Γi ⇒ ∆i.

Finally, let Γ+ ⇒ ∆+ be the union
∪

i∈N Γi ⇒
∪

i∈N ∆i. Then, it is routine to check that
Γ+ ⇒ ∆+ is saturated and Γ ⊆ Γ+ and ∆ ⊆ ∆+. □

We now prove the completeness of GPAL for the link-cutting semantics.

Theorem 3.4.1. If a sequent Γ ⇒ ∆ is s-valid in every model M for the link-cutting
semantics, then ⊢GPAL Γ⇒ ∆.

Proof. We show its contraposition, and so suppose ⊬GPAL Γ ⇒ ∆. By Lemma 3.4.1,
there exists a saturated sequent Γ+ ⇒ ∆+ such that Γ ⊆ Γ+ and ∆ ⊆ ∆+. Using
the saturated sequent, we construct the derived model M = (W, (Ra)a∈Agt,V) from the
saturated sequent Γ+ ⇒ ∆+.

• W is a set of all labels appearing in Γ+ ⇒ ∆+,

• xRϵay iff xRϵay ∈ Γ+,

• x ∈ V(p) iff x:p ∈ Γ+.

In addition to this, let f : Var→ W be an arbitrary assignment such that f (x) = x (if x
is in W). Then , we can establish the following two items:

(i) A ∈ Γ+ impliesM, f |= A,

(ii) A ∈ ∆+ impliesM, f ̸|= A.

The second item implies thatM, f (x) ̸|= A hence A is not valid in the derived model
M. The proof for these two items is conducted by simultaneous induction on the length
of A. Here we only look at the cases where A is x:α,A p or x:α□aA.

Case where A is x:ϵ p: (i) and (ii) are trivial by the definition ofM.

Case where A is x:α,A p: (i) If x:α,A p ∈ Γ+, then by saturatedness, we have x:αp ∈ Γ+.
Then by induction hypothesis, M, f |= x:αp is obtained. This is equivalent to
Mα, f (x) |= p, i.e., f (x) ∈ V(p). HenceM, f |= x:α,A p.
(ii) If x:α,A p ∈ ∆+, then by the saturatedness, we have x:αp ∈ ∆+. Then by
induction hypothesis,M, f ̸|= x:αp is obtained. This is equivalent to f (x) < V(p),
and soM, f ̸|= x:α,A p.

Case where A is x:α¬A: (i) If x:α¬A ∈ Γ+. By Definition 3.4.4, x:αA ∈ ∆+. Then
by induction hypothesis, M, f ̸|= x:αA is obtained. This is equivalent to M, f |=
x:α¬A.
(ii) If x:α¬A ∈ ∆+, then by the saturatedness, we have x:αA ∈ Γ+. Then by
induction hypothesis, M, f |= x:αA is obtained. This is equivalent to M, f ̸|=
x:α¬A.

66

Case where A is x:αA→ B: (i) If x:αA → B ∈ Γ+. By Definition 3.4.4, x:αA ∈ ∆+
or x:αB ∈ Γ+. Then by induction hypothesis, M, f ̸|= x:αA or M, f |= x:αB is
obtained. This is equivalent toM, f |= x:αA→ B.
(ii) If x:αA → B ∈ ∆+, then by the saturatedness, we have x:αA ∈ Γ+ and
x:αB ∈ ∆+. Then by induction hypothesis, M, f |= x:αA and M, f ̸|= x:αB are
obtained. This is equivalent toM, f ̸|= x:αA→ B.

Case where A is x:α□aA: (i) Suppose x:α□aA ∈ Γ+. What we show isM, f |= x:α□aA,
i.e., for all y ∈ D(M), xRα!

a y impliesMα!, y |= A. So, fix any y ∈ D(M) such that
xRα!

a y. Now it suffices to showMα!, y |= A. By Proposition 3.4.4, we haveM, f |=
xRαay. Suppose for contradiction that xRαay ∈ ∆+. By induction hypothesis,
M, f ̸|= xRαay. A contradiction. Therefore, xRαay < ∆

+. Since Γ+ ⇒ ∆+ is
saturated and x:α□aA ∈ Γ+, we have xRαay ∈ ∆+ or y:αA ∈ Γ+. It follows that
y:αA ∈ Γ+, henceMα!, y |= A by induction hypothesis. (ii) Suppose x:α□aA ∈ ∆+.
By Definition 3.4.4, xRαay ∈ Γ+ and y:αA ∈ ∆+, for some y. By induction
hypothesis, M, f |= xRαay and M, f ̸|= y:αA, for some y. By Proposition 3.4.4,
the definition of f and Definition 3.3.1, (x, f (y)) ∈ Rα!

a and Mα!, f (y) ̸|= A, for
some y. Then, we get the goal: M, f ̸|= x:α□aA.

Case where A is x:α[A]B: (i) If x:α[A]B ∈ Γ+. By Definition 3.4.4, x:αA ∈ ∆+ or
x:α,AB ∈ Γ+. Then by induction hypothesis, M, f ̸|= x:αA or M, f |= x:αB is
obtained. This is equivalent toM, f |= x:αA→ B.
(ii) If x:αA → B ∈ ∆+, then by the saturatedness, we have x:αA ∈ Γ+ and
x:αB ∈ ∆+. Then by induction hypothesis, M, f |= x:αA and M, f ̸|= x:αB are
obtained. This is equivalent toM, f ̸|= x:αA→ B.

Case where A is xRϵay: (i) and (ii) are trivial by the definition ofM.

Case where A is xRα,Aa y: (i) If xRα,Aa y ∈ Γ+. By Definition 3.4.4, x:αA ∈ Γ+ and
y:αA ∈ Γ+ and xRαay ∈ Γ+. Then by induction hypothesis, M, f |= x:αA and
M, f |= y:αA andM, f |= xRαay are obtained. This is equivalent toM, f |= xRα,Aa y.
(ii) If xRα,Aa y, then by the saturatedness, we have x:αA ∈ ∆+ or y:αA ∈ ∆+ or
xRαay ∈ ∆+. Then by induction hypothesis, M, f ̸|= x:αA or M, f ̸|= y:αA or
M, f ̸|= xRαay is obtained. This is equivalent toM, f ̸|= xRα,Aa y.

□

Since in the link-cutting semantics GPAL is complete for any sequent by Theo-
rem 3.4.1, there is a counter-model for the underivable sequent ⇒ x:⊥p in GPAL
(this sequent is t-valid but not derivable as we have seen in Propositions 3.4.1 and 3.4.2
).

Proposition 3.4.6. There is a model where sequent⇒ x:⊥p does not hold in the link-
cutting semantics.

Proof. Let Agt = a for simplicity. Consider model M = ({w},∅,V) where V(p) = ∅,
and f : Var → {w} such that f (x) = w. We show that in M, f ̸|=⇒ x:⊥p. This is, by
Definition 3.4.2, toM⊥!, w ̸|= p, and then by Definition 3.4.1, we obtain w < V(p) = ∅.
It trivially holds. □

67

Corollary 3.4.2. Given any formula A and label x ∈ Var, the following are equivalent.

(i) A is valid on all models for the world-deleting semantics.

(ii) ⊢HPAL A

(iii) ⊢GPAL+⇒ x:ϵA

(iv) ⊢GPAL⇒ x:ϵA

(v) A is valid on all models for the link-cutting semantics.

Proof. The direction from (v) to (iv) is established by Theorem 3.4.1 and the direc-
tion from (ii) to (v) is shown by Propostion 3.4.3. Then, Corollary 3.3.1 implies the
equivalence between five items. □

3.5 Extensions of PAL from K to S5
The labelled sequent calculus GPAL we have seen so far is based on K. On the other
hand, epistemic logics including PAL are based on S5 in general, so we now extend
GPAL to GPAL with other modal systems including S5. We follow the definitions for
extended Kripke semantics by frame properties in Chapter 2, but the index set Mod of
modalities is here substituted for Agt.11

Recall (Definition 2.1.4). Let Σ be a subset of FrameAxiom. Then we write FΣ to mean
the class of frames which is defined by

∧
Σ. Further, let us also define the classMΣ of

models byMΣ := {(F,V) | F ∈ FΣ and V is a valuation V on F}.

Proposition 3.5.1. Let Σ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}. For all M = (W, (Ra)a∈Agt,V) ∈
MΣ and all non-empty subsets X of D(M), MX is also a member of MΣ, where MX =

(X, (RX
a)a∈Agt,VX) with RX

a := Ra ∩ X × X,VX(p) := V(p) ∩ X (p ∈ Prop).

Note thatMWA
= MA

Proof. Fix any M = (W, (Ra)a∈Agt,V) in class MΣ and fix any non-empty X ⊆ W. By
the assumptionM ∈ MΣ i.e., (W, (Ra)a∈Agt) ∈ FΣ and V is a valuation on (W, (Ra)a∈Agt).
We show (X, (RX

a)a∈Agt) ∈ FΣ, and VX is a valuation on (X, (RX
a)a∈Agt). Since X ⊆ W, the

latter is trivial.
So in what follows, we show the former (X, (RX

a)a∈Agt) ∈ FΣ (class FΣ of frames is
defined by

∧
Σ) which is by Definition 2.1.3 equivalent to (X, (RX

a)a∈Agt) ⊩
∧
Σ. For

any A ∈ Σ, Ra has a frame property defined by A. In the following, it suffices to show
that RS

a has also the property.

Case where Ta ∈ Σ. In this case, we have (W, (Ra)a∈Agt) ⊩ Ta.So by Definition 2.1 Ra

is reflexive. Fix any world x ∈ X, and show xRX
a x. Since Ra is reflexive, and so

we get the goal RS
a is also reflexive by (x, x) ∈ X × X.

11The argument in this section is not included in [61].

68

Case where 5a ∈ Σ. In this case, we have (W, (Ra)a∈Agt) ⊩ 5a.So by Definition 2.1 Ra

is Euclidean. Fix any x, y, z ∈ X. Suppose xRX
a y and xRX

a z, and show yRX
a z. We

have xRay and xRaz and y, z ∈ X, by the assumption xRX
a y and xRX

a z. Since Ra is
Euclidean i.e., xRay and xRaz jointly imply yRaz, we get yRaz and the goal yRX

a z.

Other cases regarding Ba and 4a can be shown similarly. □

Note that Proposition 3.5.1 does not hold, if Da is included, since consider model
M = (W,Ra,V) = ({w, v}, {(w, v), (v, v)},V) ∈ M{Da} where V(p) = {w} and the restricted
modelMp by announcement of p.?>=<89:;w a //

⊩p

?>=<89:;v a
ww

⊮p

[p] ///o/o/o ?>=<89:;w
⊩p

Mp

The restricted modelMp does not satisfy seriarity i.e.,Mp < M{Da}.
As the case of extensions of HK, when we add one or more formulas in {Ta,Ba, 4a, 5a |

a ∈ Agt} as additional axiom schemes to the set of axiom scheme of HPAL, we obtain
Hilbert-systems other than HPAL as follows.

Definition 3.5.1 (Extensions of HPAL). Let Σ be a subset of {Ta,Ba, 4a, 5a | a ∈ Agt}.
When all elements of Σ is added to HPAL as an axiom scheme by replacing p with
an arbitrary formula A, the extension of HPAL by Σ is the resulting Hilbert-system
denoted by HPALΣ.

We give names to Hilbert-systems with some particular combinations of axiom schemes.

HPALT := HPAL{Ta | a ∈ Agt}, HPALS4 := HPAL{Ta, 4a | a ∈ Agt},
HPALB := HPAL{Ta,Ba | a ∈ Agt}, HPALS5 := HPAL{Ta, 5a | a ∈ Agt}.

For any Σ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}, public announcement logic PALΣ is the set
of all derivable formulas in HPALΣ. We name some PALΣ.

PALT := PAL{Ta | a ∈ Agt}, PALS4 := PAL{Ta, 4a | a ∈ Agt},
PALB := PAL{Ta,Ba | a ∈ Agt}, PALS5 := PAL{Ta, 5a | a ∈ Agt}.

Corollary 3.5.1. Let X be an element of {Ta,Ba, 4a, 5a}. PALX is decidable, i.e., there
is an effective method for deciding whether or not any formula is a theorem of PAL.

Proof. Fix any A ∈ LPAL. Then since by Corollary 2.1.1 modal logic X ∈ {Ta,Ba, 4a, 5a}
is decidable. Besides, Note that translation t : LPAL → LEL is inductive and so pro-
vides an effective method. t(A) ∈ LML can be decided whether it is a theorem of
PALX. □

Theorem 3.5.1 (Soundness and completeness of HPALΣ). Let Σ be a subset of
{Ta,Ba, 4a, 5a | a ∈ Agt} and A ∈ LPAL. Then the following holds:

MΣ ⊩ A iff ⊢HPALΣ A.

Proof. The proof is carried out by the same step as in 2.2.2. □

69

Extensions of GPAL Let us define the extensions of GPAL. We add to GPAL one
or more of the additional rules in Table 3.3 which correspond to the frame properties
respectively.

Table 3.3: Rules for frame properties

xRϵax, Γ⇒ ∆
Γ⇒ ∆ (refa)

Γ⇒ ∆, xRϵay Γ⇒ ∆, yRϵaz xRϵaz,Γ⇒ ∆
Γ⇒ ∆ (traa)

Γ⇒ ∆, xRϵay yR
ϵ
ax,Γ⇒ ∆

Γ⇒ ∆ (syma)
Γ⇒ ∆, xRϵay Γ⇒ ∆, xRϵaz yRϵaz,Γ⇒ ∆

Γ⇒ ∆ (euca)

Let ∗ be a function from {Ta,Ba, 4a, 5a | a ∈ Agt} to {(refa), (syma), (traa), (euca),
(sera) | a ∈ Agt}, defined by:

Ta
∗ := (refa), 4a

∗ := (traa),
Ba
∗ := (syma), 5a

∗ := (euca).

Let Σ be a subset of {Ta,Ba, 4a, 5a | a ∈ Agt} then Σ∗ is defined to be the set {X∗ | X ∈
Σ}.

Definition 3.5.2 (Extensions of GPAL). Let Σ be a subset of {Ta,Ba, 4a, 5a | a ∈ Agt}.
A labelled sequent calculus GPALΣ∗ is an extension of GPAL, when each element of
Σ∗ is added to GPAL as an inference rule.

Some particular combinations of inference rules are given names.

GPALT := GPAL{(refa) | a ∈ Agt},
GPALB := GPAL{(syma) | a ∈ Agt},
GPALS4 := GPAL{(refa), (traa) | a ∈ Agt},
GPALS5 := GPAL{(refa), (euca) | a ∈ Agt},

We denote each GPALΣ∗ with (Cut) by GPALΣ∗+.

Theorem 3.5.2. For any Σ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}, if ⊢HPALΣ A, then ⊢GPALΣ∗⇒
x:ϵA (for any x) for any formula A ∈ LPAL.

Proof. Fix any Σ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}. The proof is carried out by the height of
the derivation in HPALΣ, and it suffices to show the derivability of the additional cases
in GPALΣ∗ to the proof of Theorem 3.2.1 i.e., the cases of Ta, Ba, 4a and 5a, (where
a ∈ Agt).

Case where Ta ∈ Σ. In this case, we show ⊢GPALΣ∗⇒ x:Ta where (refa) ∈ Σ∗.
Initial Seq.

xRax⇒ x:A, xRax
⇒ x:A, xRax

(refa)
Initial Seq.
x:A⇒ x:A

x:□aA⇒ x:A
(L□a)

⇒ x:□aA→ A
(R→)

70

Case where Ba ∈ Σ. In this case, we show ⊢GPALΣ∗⇒ x:Ba where (syma) ∈ Σ∗.
Initial Seq.

xRay⇒ yRa x, xRay

Initial Seq.

xRay, yRa x⇒ yRa x
xRay⇒ yRa x

(syma)

x:A, xRay⇒ yRa x
(Lw)

Initial Seq.

x:A, xRay⇒ x:A
x:A, xRay⇒ y:♢aA

(R♢a)

x:A⇒ x:□a♢aA
(R□a)

⇒ x:A→ □a♢aA
(R→)

Case where 4a ∈ Σ. In this case, we show ⊢GPALΣ∗⇒ x:4a where (tra) ∈ Σ∗.

D =


Initial Seq.

xRay, yRaz⇒ xRaz, xRay

Initial Seq.

xRay, yRaz⇒ xRaz, yRaz

Initial Seq.

xRaz, xRay, yRaz⇒ xRaz

xRay, yRaz⇒ xRaz
(traa)

.... D
xRay, yRaz⇒ z:A, xRaz

Initial Seq.

z:A, xRay, yRaz⇒ z:A
x:□aA, xRay, yRaz⇒ z:A

(L□a)

x:□aA, xRay⇒ y:□aA
(R□a)

x:□aA⇒ x:□a□aA
(R□a)

⇒ x:□aA→ □a□aA
(R→)

Case where 5a ∈ Σ. In this case, we show ⊢GPALΣ∗⇒ x:5a where (euca) ∈ Σ∗.

D =


Initial Seq.

xRay, xRaz⇒ yRaz, xRay

Initial Seq.

xRay, xRaz⇒ yRaz, xRaz

Initial Seq.

yRaz, xRay, xRaz⇒ yRaz

xRay, xRaz⇒ yRaz
(euca)

.... D
xRay, xRaz⇒ yRaz

xRay, xRaz, z:A⇒ yRaz
(Rw)

Initial Seq.

xRay, xRaz, z:A⇒ z:A
xRay, xRaz, z:A⇒ y:♢aA

(R♢a)

x:♢aA, xRay⇒ y:♢aA
(L♢a)

x:♢aA⇒ x:□a♢aA
(R□a)

⇒ x:♢aA→ □a♢aA
(R→)

□

Theorem 3.5.3 (Soundness of GPALΣ). For any Σ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}, given
any sequent Γ⇒ ∆ in GPALΣ, if ⊢GPALΣ Γ⇒ ∆, then Γ⇒ ∆ is t-valid in every model
M ∈ MΣ.

Proof. Fix any Σ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}. We show the additional cases to the proof
of Theorem 3.3.1, and so it suffices to show that any additional rule keeps t-validity in
any corresponding model to the rule.

Case of (refa): Fix any Ra-reflexive model M. We show the contraposition. Suppose
that there is some f : Var → D(M), M, f ⊩ Γ, and M, f ⊩ ∆. Fix such f . It
suffices to show (f (x), f (x)) ∈ Ra. This is trivial by the Ra-reflexive modelM.

71

Case of (syma): Fix any Ra-symmetric model M. We show the contraposition. Sup-
pose that there is some f ′ : Var → D(M), M, f ′ ⊩ Γ, and M, f ′ ⊩ ∆. Fix such
f ′. We show that Γ ⇒ ∆, xRay is not t-valid or yRax,Γ ⇒ ∆ is not t-valid. So,
suppose Γ ⇒ ∆, xRay is t-valid i.e., for all f ′, M, f ′ ⊩ Γ implies M, f ′ ⊮ ∆
and M, f ′ ⊮ xRay. Then we show yRax,Γ ⇒ ∆ is not t-valid i.e., there exists
f ′, M, f ′ ⊩ yRax and M, f ′ ⊩ Γ and M, f ′ ⊩ ∆. Take f ′ as f . Now, it suf-
fices to show that M, f ⊩ yRax (i.e., f (y)Ra f (x)). From the suppositions, we
obtain M, f ⊮ xRay (i.e., f (x)Ra f (y)). So, we trivially obtain f (y)Ra f (x) from
the Ra-symmetric modelM.

Case of (traa): Fix any Ra-transitive modelM. We show the contraposition. Suppose
that there is some f : Var→ D(M) such that,M, f ⊩ Γ, andM, f ⊩ ∆. We show
that Γ ⇒ ∆, xRay is not t-valid or Γ ⇒ ∆, yRaz is not t-valid or xRaz, Γ ⇒ ∆ is
not t-valid. So, suppose Γ⇒ ∆, xRay and Γ⇒ ∆, yRaz are t-valid i.e., for all f ′,
M, f ′ ⊩ Γ impliesM, f ′ ⊮ ∆ andM, f ′ ⊮ xRay, and for all f ′,M, f ′ ⊩ Γ implies
M, f ′ ⊮ ∆ andM, f ′ ⊮ yRaz. Then we show Γ⇒ ∆, xRaz is not t-valid i.e., there
exists f ′,M, f ′ ⊩ xRaz andM, f ′ ⊩ Γ andM, f ′ ⊩ ∆. Take such f ′ as f . Now, it
suffices to show that M, f ⊩ xRaz (i.e., f (x)Ra f (z)). From the suppositions, we
obtainM, f ⊮ xRay (i.e., f (x)Ra f (y)) andM, f ⊮ yRaz (i.e., f (y)Ra f (z)). So, we
trivially obtain f (x)Ra f (z) from the Ra-transitive modelM.

Case of (euca): Fix any Ra-Euclidean modelM. We show the contraposition. Suppose
that there is some f : Var→ D(M) such that,M, f ⊩ Γ, andM, f ⊩ ∆. We show
that Γ ⇒ ∆, xRay is not t-valid or Γ ⇒ ∆, xRaz is not t-valid or yRaz, Γ ⇒ ∆ is
not t-valid. So, suppose Γ⇒ ∆, xRay and Γ⇒ ∆, xRaz are t-valid i.e., for all f ′,
M, f ′ ⊩ Γ impliesM, f ′ ⊮ ∆ andM, f ′ ⊮ xRay, and for all f ′,M, f ′ ⊩ Γ implies
M, f ′ ⊮ ∆ andM, f ′ ⊮ xRaz. Then we show Γ⇒ ∆, yRaz is not t-valid i.e., there
exists f ′,M, f ′ ⊩ yRaz andM, f ′ ⊩ Γ andM, f ′ ⊩ ∆. Take such f ′ as f . Now, it
suffices to show that M, f ⊩ yRaz (i.e., f (y)Ra f (z)). From the suppositions, we
obtainM, f ⊮ xRay (i.e., f (x)Ra f (y)) andM, f ⊮ xRaz (i.e., f (y)Ra f (z)). So, we
trivially obtain f (y)Ra f (z) from the Ra-Euclidean modelM.

□

Each extension enjoys the cut elimination theorem.

Theorem 3.5.4 (Cut elimination theorem of GPALΣ∗+). For any Σ ⊆ {Ta,Ba, 4a, 5a |
a ∈ Agt}, and any sequent Γ⇒ ∆, if ⊢GPALΣ∗+ Γ⇒ ∆, then ⊢GPALΣ∗ Γ⇒ ∆.

Proof. The proof goes through the same procedure as in the proof of Theorem 3.2.2
with the rule of (Ecut), and the proof is divided into four cases. In brief,

(1) at least one of the uppersequents of (Ecut) is an initial sequent;

(2) the last inference rule of either uppersequents of (Ecut) is a structural rule;

(3) the last inference rule of either uppersequents of (Ecut) is a non-structural rule12,
and the principal expression introduced by the rule is not the cut expression; and

12Inference rules for frame properties are categorized as non-structural rules.

72

(4) the last inference rules of two uppersequents of (Ecut) are both non-structural
rules, and the principal expressions introduced by the rules used on the upperse-
quents of (Ecut) are both cut expressions.

It suffices to show additional cases for (refa), (syma), (traa) and (euca) in addition to
the proof of Theorem 3.2.2. Since there is no principal expression(s) introduced by the
uppersequent(s), we do not have the case (4) where cut expression As on both sides
of uppersequents are principal expressions. The other cases where only one of the
cut expressions is introduced by the right uppersequent or the left uppersequent are
straightforward. We look at one of such cases.

Case of (3) where one of the uppersequents of (Ecut) is inference rule (refa).

.... D1

Γ⇒ ∆,An

.... D2

xRay,A
m,Γ′ ⇒ ∆′

Am,Γ′ ⇒ ∆′ (refa)

Γ,Γ′ ⇒ ∆,∆′ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An

.... D2

Am, xRay,Γ
′ ⇒ ∆′

xRay,Γ,Γ
′ ⇒ ∆,∆′ (Ecut)

Γ,Γ′ ⇒ ∆,∆′ (refa)

Every other case can be shown similarly to this.
□

Then the corollary below holds.

Corollary 3.5.2. Given a formula A, x ∈ Var, Σ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}, the
following statements are all equivalent.

(i) MΣ ⊩ A,

(ii) ⊢HPALΣ A,

(iii) ⊢GPALΣ∗+⇒ x:ϵA,

(iv) ⊢GPALΣ∗⇒ x:ϵA.

Proof. The direction from (i) to (ii) is shown by Theorem 3.5.1 and the direction from
(ii) to (iii) is established by Theorem 3.5.2. Then, the direction from (iii) to (iv) is
established by the admissibility of (Cut) (Theorem 3.5.4). Finally, the direction from
(iv) to (i) is shown by Theorem 3.5.3. □

73

Remark The extension of GPAL is done by the above argument, and we come to a
happy conclusion that GPAL can be extended to be based on modal logic S5 which is
the standard basis of epistemic logics. On the other hand, there is a different candidate
of a rule corresponding reflexivity instead of (refa) as follows:

xRαa x,Γ⇒ ∆
Γ⇒ ∆ (ref ′a)

where a relational atom on the upper sequent contains a list of formulas. However,
if we introduce the rule of (ref ′a) without any condition in a naive manner, then the
soundness theorem for the world-deleting semantics does not hold.

Proposition 3.5.2. Let Σ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt} such that Ta ∈ Σ. Then there is a
modelM ∈ MΣ such that (ref ′a) of GPALΣ∗ does not preserve t-validity inM.

Proof. Consider a model M′ = ({w}, (w, w),V) where V(p) = ∅. and consider the
particular instance of the application of (ref ′a) is as follows:

xR⊥x⇒
⇒ (ref ′a)

We show that the uppersequent is t-valid inM but the lowersequent is not t-valid inM.
Note that no world does not survive after an announcement of ⊥, so M, f ⊩ xR⊥x is
false and the uppersequent is t-valid. On the other hand, the lowersequent, the empty-
sequent, is not t-valid. □

74

Chapter 4

Labelled sequent calculus for
EAK

For the last decade, several studies of semantical developments of EAK have emerged
for the sake of capturing characteristics regarding knowledge; there are also some
proof-theoretic studies of EAK such as a tableaux calculus for EAK by Aucher et
al. [3, 4], a display calculus for it by Frittella et al. [28] and a nested calculus for it by
Dyckhoff et al. [24]. We, in this paper, construct a labelled calculus of EAK based on
the study of the previous chapter.

The outline of Chapter 4 is as follows. In Section 4.1, we give our labelled sequent
calculus for EAK (GEAK) based on the study of Chapter 3. In Section 4.2, we es-
tablish admissibility of the cut rule in GEAK. In Section 4.3, we prove the soundness
theorem and then give a proof of the completeness theorem of GEAK as a corollary.
In Section 4.5, we extend the basis of GPAL from K to S5.

Table 4.1: Hilbert-system for EAK : HEAK
Modal Axioms all instantiations of propositional tautologies

(K) □a(A→ B)→ (□aA→ □aB)
Recursion Axioms (RA1) [aM]p↔ (pre(a)→ p)

(RA2) [aM]¬A↔ (pre(a)→ ¬[aM]A)
(RA3) [aM](A→ B)↔ ([aM]A→ [aM]B)
(RA4) [aM]□aA↔ (pre(a)→ ∧a∼M

a x □a[xM]A)
(RA5) [aM][bN]A↔ [aM; bN]A

Inference Rules (MP) From A and A→ B, infer B
(Nec□a) From A, infer □aA

75

4.1 Labelled sequent calculus GEAK
We define our labelled calculus GEAK for EAK. Let Var = {x, y, z, ...} be a countable
set of action variable For any x ∈ Var and any finite list α of pointed action models, a
pair ⟨x, α⟩ is called a label, and we abuse x for an abbreviation of ⟨x, ϵ⟩, when it does
not cause any confusion.

For any formula A and label ⟨x, α⟩, we call ⟨x, α⟩:A a labelled formula. Similarly,
for any agent a ∈ Agt and any lists α, β of actions, an expression ⟨x, α⟩Ra⟨y, β⟩ is
defined to be a relational atom if

(1) αmdl = βmdl and

(2) ai∼Mi
a bi holds for any 1 ≤ i ≤ n, where α = (aM1

1 , . . . , a
Mn
n) and β = (bM1

1 , . . . , b
Mn
n).

A labelled expression A is either a labelled formula or a relational atom.
Note that every labelled expression of GPAL is expressible in a labelled expres-

sion of GEAK, i.e., GPAL is a special case of GEAK. Let us recall action model
Pub(A) in Example 2.3.1 by which PAL can be emulated by EAK, and by the ac-
tion model any labelled expression of GPAL is also can be emulated by GEAK. Let
Pub(A) = ({a}, (∼a)a∈Agt, pre) be an action model where each ∼a is the identity relation
and pre(a) = A for any formula A ∈ LEAK . Then consider labelled relation xRA

a y of
GPAL, and it is expressed by labelled relation ⟨x, aPub(A)⟩Ra⟨y, aPub(A)⟩ of GEAK.

Definition 4.1.1. The length of a labelled expression ℓ(A), a formula ℓ(A) and an action
model ℓ(M) is defined as follows:

ℓ(⟨x, α⟩:A) := ℓ(α) + ℓ(A), ℓ(⟨x, α⟩Ra⟨y, β⟩) := ℓ(α),
ℓ(p) := 1, ℓ(A→ B) := ℓ(A) + ℓ(B) + 1,
ℓ(∗A) := ℓ(A) + 1 where ∗ ∈ {¬,□a}, ℓ([aM]A) := ℓ(M) + ℓ(A) + 1,
ℓ(M) := max{ℓ(preM(x)) | x ∈ SM}, ℓ(aM1

1 , . . . , a
Mn
n) = ℓ(M1) + · · · + ℓ(Mn).

A sequent Γ⇒ ∆ is a pair of multi-sets Γ,∆ of labelled expressions. The existence
of the pointed action model aM in our syntax of EAK forces us to handle many branches
in a naturally constructed sequent calculus. For example, we may consider a set

{x:pre(x)⇒ y:pre(y) | p ∼b x and x ∼a y}

of sequents in the setting of Example 2.3.2. In order to handle such several branches
simultaneously in a sequent calculus, we introduce the notation

x:pre(x)⇒ y:pre(y) ∥ p ∼b x, x ∼a y

for representing the above set. In general, we keep a countable proper subset CVar
= {x, y, z, . . .} of Act for comprehension variables and define that a collective sequent
(simply a c-sequent) is an expression:

Γ⇒ ∆ ∥ Σ,

where Γ⇒ ∆ is a sequent, and Σ is a finite set {s1∼a1 t1, ..., sn∼an tn} of actions relations,
and si or ti from Act is assumed to be an element of CVar and all the variables from

76

CVar occurring in Γ ⇒ ∆ are bounded in Σ, i.e., they are a subset of all the variables
from CVar occurring in Σ. Throughout the paper we use Greek letter Σ for a finite set
{s1∼a1 t1, ..., sn∼an tn} of actions relations. For any c-sequent Γ ⇒ ∆ ∥ Σ, we simply
write Γ⇒ ∆, when Σ = ∅.

We now introduce the set of rules of GEAK which is presented in Table 4.2. We
call labelled expression A in the lower c-sequent at each inference rule principal if A
is not in either Γ or ∆. In this table, all rules are given for a c-sequent for the reason
of drawing smaller and simpler derivations in the following, but the inference rules can
be defined for an ordinary sequent.

Definition 4.1.2 (Derivable). A derivation of c-sequent Γ⇒ ∆ ∥ Σ in GEAK is a finite
tree of c-sequents satisfying the following conditions:

(i) The uppermost c-sequent of the tree is an initial sequent of GEAK.

(ii) Every c-sequent in the tree except the uppermost c-sequent(s) is a lower c-
sequent of an inference rule of GEAK.

(iii) The lowest c-sequent is Γ⇒ ∆ ∥ Σ.

Given a c-sequent Γ ⇒ ∆ ∥ Σ, it is derivable in GEAK and we write ⊢GEAK Γ ⇒
∆ ∥ Σ if there is a derivation of the c-sequent; and especially if there exists a derivation
of the c-sequent which is restricted to action models M1, ...,Mn which appear in the
derivation, we say, for emphasizing the fact, it is derivable in GEAK under action
models M1, ...,Mn and write M1, ...,Mn ⊢GEAK Γ⇒ ∆ ∥ Σ.1 For any c-sequent Γ⇒ ∆ ∥
Σ, when Γ⇒ ∆ ∥ Σ is derivable in GEAK, we write ⊢GEAK Γ⇒ ∆ ∥ Σ.

Hereinafter, we use the following abbreviations in a derivation for drawing simpler
derivations:

Initial Seq.
A,Γ⇒ ∆,A ∥ Σ

This abbreviation is obvious by the rules (Lw) and (Rw). Besides, the following usual
inference rules for the defined logical connectives are all derivable in GEAK:

Γ⇒ ∆, ⟨x, α⟩:A, ⟨x, α⟩:B ∥ Σ
Γ⇒ ∆, ⟨x, α⟩:A ∨ B, ∥ Σ (R∨)

⟨x, α⟩:A,Γ⇒ ∆ ∥ Σ ⟨x, α⟩:B,Γ⇒ ∆ ∥ Σ
⟨x, α⟩:A ∨ B, Γ⇒ ∆ ∥ Σ (L∨)

⟨x, α⟩:A, ⟨x, α⟩:B, Γ⇒ ∆ ∥ Σ
⟨x, α⟩:A ∧ B,Γ⇒ ∆ ∥ Σ (L∧)

Γ⇒ ∆, ⟨x, α⟩:A ∥ Σ Γ⇒ ∆, ⟨x, α⟩:B ∥ Σ
Γ⇒ ∆, ⟨x, α⟩:A ∧ B ∥ Σ (R∧)

xRav, ⟨v, α⟩:A,Γ⇒ ∆ ∥ Σ
⟨x, α⟩:♢aA,Γ⇒ ∆ ∥ Σ (L♢a)†

Γ⇒ ∆, xRay ∥ Σ Γ⇒ ∆, ⟨y, α⟩:A ∥ Σ
Γ⇒ ∆, ⟨x, α⟩:♢aA ∥ Σ (R♢a)

where † means that v does not appear in the lower c-sequent.
Let us look at specific derivations of GEAK. Let M = (S,∼a, pre) = ({a, b},S2, pre})

where pre(a) = pre(b) = p. Sequent ⇒ x:pre(x) → pre(b) ∥ a ∼a x is derivable in

1In the case that c-sequent Γ ⇒ ∆ ∥ Σ and a derivation of it do not include any action model, we
write ε ⊢GEAK Γ ⇒ ∆ ∥ Σ to emphasize the case. We remark that this should be distinguished from
⊢GEAK Γ⇒ ∆ ∥ Σ defined above.

77

Table 4.2: Labelled sequent calculus for EAK : GEAK
(Initial c-sequents)

⟨x, α⟩:A⇒ ⟨x, α⟩:A ∥ Σ ⟨x, α⟩Ra⟨y, β⟩ ⇒ ⟨x, α⟩Ra⟨y, β⟩ ∥ Σ

(Structural Rules)

Γ⇒ ∆ ∥ Σ
Γ⇒ ∆,A ∥ Σ (Rw)

Γ⇒ ∆ ∥ Σ
A, Γ⇒ ∆ ∥ Σ (Lw)

Γ⇒ ∆,A,A ∥ Σ
Γ⇒ ∆,A ∥ Σ (Rc)

A,A,Γ⇒ ∆ ∥ Σ
A,Γ⇒ ∆ ∥ Σ (Lc)

(Rules for the propositional connectives)

⟨x, α⟩:A, Γ⇒ ∆ ∥ Σ
Γ⇒ ∆, ⟨x, α⟩:¬A ∥ Σ (R¬)

Γ⇒ ∆, ⟨x, α⟩:A ∥ Σ
⟨x, α⟩:¬A, Γ⇒ ∆ ∥ Σ (L¬)

⟨x, α⟩:A, Γ⇒ ∆, ⟨x, α⟩:B ∥ Σ
Γ⇒ ∆, ⟨x, α⟩:A→ B ∥ Σ (R→)

Γ⇒ ∆, ⟨x, α⟩:A ∥ Σ ⟨x, α⟩:B,Γ⇒ ∆ ∥ Σ
⟨x, α⟩:A→ B, Γ⇒ ∆ ∥ Σ (L→)

(Rules for the knowledge operator)

⟨x, ϵ⟩Ra⟨y, ϵ⟩,Γ⇒ ∆, ⟨y, ϵ⟩:A ∥ Σ
Γ⇒ ∆, ⟨x, ϵ⟩:□aA ∥ Σ (R□a1) ∗1

Γ⇒ ∆, ⟨x, ϵ⟩Ra⟨y, ϵ⟩ ∥ Σ ⟨y, ϵ⟩:A, Γ⇒ ∆ ∥ Σ
⟨x, ϵ⟩:□aA, Γ⇒ ∆ ∥ Σ (L□a1)

⟨x, aM1
1 , ..., a

Mk
k ⟩Ra⟨v, xM1

1 , ..., x
Mk
k ⟩, Γ⇒ ∆, ⟨v, x

M1
1 , ..., x

Mk
k ⟩:A ∥ Σ, a1∼M1

a x1, ..., ak∼Mk
a xk

Γ⇒ ∆, ⟨x, aM1
1 , ..., a

Mk
k ⟩:□aA ∥ Σ

(R□a2) ∗1

Γ⇒ ∆, ⟨x, aM1
1 , ..., a

Mk
k ⟩Ra⟨y, bM1

1 , ..., b
Mk
k ⟩ ∥ Σ ⟨y, bM1

1 , ..., b
Mk
k ⟩:A, Γ⇒ ∆ ∥ Σ

⟨x, aM1
1 , ..., a

Mk
k ⟩:□aA,Γ⇒ ∆ ∥ Σ

(L□a2) ∗2

(Rules for the action operators)

Γ⇒ ∆, ⟨x, α⟩:p ∥ Σ
Γ⇒ ∆, ⟨x, α, aM⟩:p ∥ Σ

(Rat)
⟨x, α⟩:p,Γ⇒ ∆ ∥ Σ
⟨x, α, aM⟩:p,Γ⇒ ∆ ∥ Σ

(Lat)

⟨x, α⟩:preM(a), Γ⇒ ∆, ⟨x, α, aM⟩:A ∥ Σ
Γ⇒ ∆, ⟨x, α⟩:[aM]A ∥ Σ

(R[.])
Γ⇒ ∆, ⟨x, α⟩:preM(a) ∥ Σ ⟨x, α, aM⟩:A,Γ⇒ ∆ ∥ Σ

⟨x, α⟩:[aM]A,Γ⇒ ∆ ∥ Σ
(L[.])

(Rules for the relational atoms)

⟨x, α⟩Ra⟨y, β⟩, Γ⇒ ∆ ∥ Σ
⟨x, α, aM⟩Ra⟨y, β, bM⟩, Γ⇒ ∆ ∥ Σ

(Lrel1)

⟨x, α⟩:preM(a), Γ⇒ ∆ ∥ Σ
⟨x, α, aM⟩Ra⟨y, β, bM⟩, Γ⇒ ∆ ∥ Σ

(Lrel2)
⟨y, β⟩:preM(b), Γ⇒ ∆ ∥ Σ

⟨x, α, aM⟩Ra⟨y, β, bM⟩, Γ⇒ ∆ ∥ Σ
(Lrel3)

Γ⇒ ∆, ⟨x, α⟩Ra⟨y, β⟩ ∥ Σ Γ⇒ ∆, ⟨x, α⟩:preM(a) ∥ Σ Γ⇒ ∆, ⟨y, β⟩:preM(b) ∥ Σ
Γ⇒ ∆, ⟨x, α, aM⟩Ra⟨y, β, bM⟩ ∥ Σ

(Rrel)

∗1 v ∈ Var and each xi ∈ CVar do not appear in the lower c-sequent.
∗2 Each bi is an action such that (ai, bi) ∈ ∼Mi

a or ai∼Mi
a bi ∈ Σ.

78

GEAK under M:

Initial Seq.
x:pre(b)⇒ x:pre(b)

Initial Seq.
x:p⇒ x:p

x:pre(a)⇒ x:pre(b)
(Def. of M)

x:pre(x)⇒ x:pre(b) ∥ a ∼a x
(Def. of M)

⇒ x:pre(x)→ pre(b) ∥ a ∼a x
(R→)

where (Def. of M) means to use the definition of action model M i.e., M ⊢GEAK⇒
x:pre(x) → pre(b) ∥ a∼ax. Next, let us take a look a bit more complicated example.
Using the action model Read in Example 2.3.1, and we show one of the exercises
in [83, p.166].

Example 4.1.1. Let us recall action model Read in the setting of Example 2.3.2 where
Read = (S,∼a,∼b, pre) = ({p, np}, {(p, p), (np, np)},S2, pre}) with pre(p) = p and
pre(np) = ¬p. In the setting, we can show that [pRead]□b(□a p ∨ □a¬p) is derivable
under Read in GEAK as follows (intuitively, this formula means that after the agent a
reads a letter containing p, the agent b knows that a knows whether p).

Initial Seq.

z:p, w:p⇒ z:p

z:pre(y), w:pre(z), w:p⇒ z:p ∥ p∼ay, p∼az
(Def. of M)

Initial Seq.

z:¬p, w:p⇒ z:p, w:p
z:¬p, w:¬p, w:p⇒ z:p (L¬)

z:pre(y), w:pre(z), w:p⇒ z:p ∥ np∼ay, np∼az
(Def. of M)

z:pre(y), w:pre(z), w:p⇒ z:p ∥ p∼bx, x∼ay, x∼az
(Def. of M)

z:pre(y), w:pre(z), ⟨w, zRead⟩:p⇒ z:p ∥ p∼bx, x∼ay, x∼az
(Lat)

⟨y, xRead⟩Ra⟨z, yRead⟩, ⟨y, xRead⟩Ra⟨w, zRead⟩, ⟨w, zRead⟩:p⇒ z:p ∥ p∼bx, x∼ay, x∼az
(Lrel3)

⟨y, xRead⟩Ra⟨z, yRead⟩, ⟨y, xRead⟩Ra⟨w, zRead⟩ ⇒ z:p, ⟨w, zRead⟩:¬p ∥ p∼bx, x∼ay, x∼az
(R¬)

⟨y, xRead⟩Ra⟨z, yRead⟩ ⇒ z:p, ⟨y, xRead⟩:□a¬p ∥ p∼bx, x∼ay
(R□a2)

⟨y, xRead⟩Ra⟨z, yRead⟩ ⇒ ⟨z, yRead⟩:p, ⟨y, xRead⟩:□a¬p ∥ p∼bx, x∼ay
(Rat)

⇒ ⟨y, xRead⟩:□a p, ⟨y, xRead⟩:□a¬p ∥ p∼bx
(R□a)

⇒ ⟨y, xRead⟩:□a p ∨ □a¬p ∥ p∼bx
(R∨)

x:pre(p), ⟨x, pRead⟩Rb⟨y, xRead⟩ ⇒ ⟨y, xRead⟩:□a p ∨ □a¬p ∥ p∼bx
(Lw)

x:pre(p)⇒ ⟨x, pRead⟩:□b(□a p ∨ □a¬p)
(R□b)

⇒ x:[pRead]□b(□a p ∨ □a¬p)
(R[.])

The derivation above is restricted to the action model Read, and so Read ⊢GEAK⇒
x:[pRead]□b(□a p ∨ □a¬p).

4.2 Cut elimination of GEAK+

In this section, we provide a proof of the cut elimination theorem of GEAK. For
preparations for the proof of the theorem, we show the substitution lemma. The result
of substitution A[y/x] (y is substituted by x in A) is defined as follows:

Definition 4.2.1. Let u, v be any elements in Var.

79

x[v/u] := x (if u , x),
x[v/u] := v (if u = x),(⟨x, α⟩:A)[v/u] := ⟨x[v/u], α⟩:A,(⟨x, α⟩Ra⟨y, β⟩

)
[v/u] := ⟨x[v/u], α⟩Ra⟨y[v/u], β⟩.

For a multi-set Γ of labelled expressions, Γ[y/x] denotes the set {A[y/x] | A ∈ Γ}. For
a preparation of the cut-admissibility theorem, we show the following lemma.

Lemma 4.2.1 (Substitution lemma). If ⊢GEAK Γ ⇒ ∆ ∥ Σ, then ⊢GEAK Γ[v/u] ⇒
∆[v/u] ∥ Σ with the same derivation height, for any u, v ∈ Var.

Proof. This proof is done in a similar manner to the proof in Negri and von Plato [58,
p.194]. Suppose ⊢GEAK Γ ⇒ ∆ ∥ Σ. We show ⊢GEAK Γ[v/u] ⇒ ∆[v/u] ∥ Σ by
induction on the height of its derivation. Fix any u, v ∈ Var. The base case where
⊢GEAK Γ[v/u] ⇒ ∆[v/u] ∥ Σ is an initial c-sequent is trivial; and, we see one of cases
in its induction step where the last applied rule is (R□a2). In this case, we have a part
of the derivation as follows:

.... D
⟨x, aM1

1 , ..., a
Mn
n ⟩Ra⟨v, xM1

1 , ..., x
Mn
n ⟩, Γ⇒ ∆, ⟨v, xM1

1 , ..., x
Mn
n ⟩:A ∥ Σ, a1∼M1

a x1, ..., an∼Mn
a xn

Γ⇒ ∆, ⟨x, aM1
1 , ..., a

Mn
n ⟩:□aA ∥ Σ

(R□a2)

If u = v, variable v should be replaced with variable o which does not appear in
Γ ⇒ ∆, ⟨x, aM1

1 , ..., a
Mn
n ⟩:□aA ∥ Σ by Lemma 4.2.1. After that, we apply the induc-

tion hypothesis and (R□a2) to the resulting c-sequent. Observe that o[v/u] = o. Then
whate obtain what we desired at exactly the same height as that of the assumption. □

Theorem 4.2.1 (Cut elimination GEAK+). For any c-sequent Γ ⇒ ∆ ∥ Σ, if ⊢GEAK+

Γ ⇒ ∆ ∥ Σ, then ⊢GEAK Γ ⇒ ∆ ∥ Σ . In particular, if M1, ...,Mk ⊢GEAK+ Γ ⇒ ∆ ∥ Σ,
then M1, ...,Mk ⊢GEAK Γ⇒ ∆ ∥ Σ.

Proof. The proof is carried out with Ono and Komori’s method [67] of (Ecut). (Ecut)
is given as follows:

Γ⇒ ∆,Am ∥ Σ An,Γ′ ⇒ ∆′ ∥ Σ
Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

where x, y ≥ 0 and A is called a cut expression. The theorem is proven by double
induction on the height of the derivation and the length of the cut expression ℓ(A) of
(Ecut). The proof is divided into four cases:

(1) At least one of the upper c-sequents of (Ecut) is an initial c-sequent,

(2) The last inference rule of either upper c-sequent of (Ecut) is a structural rule,

(3) The last inference rule of either upper c-sequent of (Ecut) is a non-structural
rule, and the principal expression introduced by the rule is not a cut expression,
and

80

(4) The last inference rules of two upper c-sequents of (Ecut) are both non-structural
rules, and the principal expressions introduced by the rules used on the upper c-
sequents of (Ecut) are both cut expressions.

Case of (1) where one of upper c-sequents of (Ecut) is an initial c-sequent.
In this case, we obtain the following derivation:

Initial Seq.
A⇒ A ∥ Σ

.... D
An, Γ⇒ ∆ ∥ Σ

A, Γ⇒ ∆ ∥ Σ (Ecut)

This can be transformed into a derivation without (Cut) by using (Rc) multiple times
to the lower c-sequent ofD.

Case of (2) where the right upper c-sequent of (Ecut) is structural rule (Rc) which
contracts the same expression as the cut expressin. In this case, we obtain the following
derivation:

.... D1

Γ⇒ ∆,Am+1 ∥ Σ
Γ⇒ ∆,Am ∥ Σ (Rc)

.... D2

An, Γ′ ⇒ ∆′ ∥ Σ
Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

This is transformed into the following derivation.
.... D1

Γ⇒ ∆,Am+1 ∥ Σ

.... D2

An,Γ′ ⇒ ∆′ ∥ Σ
Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

Similarly to this, we can show the case where the left upper c-sequent of (Ecut) is
structural rule (Rc).

Case of (2) where the right upper c-sequent of (Ecut) is structural rule (Lc) which
contracts a different expression from the cut expressin.

.... D1

Γ⇒ ∆, (⟨x, α⟩:A)n ∥ Σ

.... D2

(⟨x, α⟩:A)m,B,B,Γ′ ⇒ ∆′ ∥ Σ
(⟨x, α⟩:A)m,B,Γ′ ⇒ ∆′ ∥ Σ (Lc)

Γ,B,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆, (⟨x, α⟩:A)n ∥ Σ

.... D2

(⟨x, α⟩:A)m,B,B,Γ′ ⇒ ∆′ ∥ Σ
Γ,B,B,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

Γ,B, Γ′ ⇒ ∆,∆′ ∥ Σ (Lc)
.

81

Similarly to this, we can show the case where the left upper c-sequent of (Ecut) is
structural rule (Lc).

Case of (2) where one of upper c-sequents of (Ecut) is structural rule (Rw) which
reduces the same formula as the cut formula.

.... D1

Γ⇒ ∆, (⟨x, α⟩:A)n−1 ∥ Σ
Γ⇒ ∆, (⟨x, α⟩:A)n ∥ Σ (Rw)

.... D2

(⟨x, α⟩:A)m,Γ′ ⇒ ∆′ ∥ Σ
Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆, (⟨x, α⟩:A)n−1 ∥ Σ

.... D2

(⟨x, α⟩:A)m, Γ′ ⇒ ∆′ ∥ Σ
Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

.

Note that (Ecut) is applicable, even if n − 1 = 0. Similarly to this, we can show the
case where the right upper c-sequent of (Ecut) is structural rule (Rw).

Case of (3) where one of upper c-sequents of (Ecut) is inference rule (L¬).
.... D1

Γ⇒ ∆, ⟨x, α⟩:A,An ∥ Σ
⟨x, α⟩:¬A,Γ⇒ ∆,An ∥ Σ (L¬)

.... D2

Am,Γ′ ⇒ ∆′ ∥ Σ
⟨x, α⟩:¬A,Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆, ⟨x, α⟩:A,An ∥ Σ

.... D2

Am,Γ′ ⇒ ∆′ ∥ Σ
Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:A ∥ Σ (Ecut)

⟨x, α⟩:¬A,Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (L¬)

Similarly to this, we can show the case where the left upper c-sequent of (Ecut) is
structural rule (L¬).

Case of (3) where one of upper c-sequents of (Ecut) is inference rule (R→).

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

⟨x, α⟩:A,Am, Γ′ ⇒ ∆′, ⟨x, α⟩:B ∥ Σ
Am,Γ′ ⇒ ∆′, ⟨x, α⟩:A→ B ∥ Σ (R→)

Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:A→ B ∥ Σ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am, ⟨x, α⟩:A,Γ′ ⇒ ∆′, ⟨x, α⟩:B ∥ Σ
⟨x, α⟩:A,Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:B ∥ Σ (Ecut)

Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:A→ B ∥ Σ (R→)

82

Similarly to this, we can show the case where the left upper c-sequent of (Ecut) is
structural rule (R→).

Case of (3) where one of upper c-sequents of (Ecut) is inference rule (L→).

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am,Γ′ ⇒ ∆′, ⟨x, α⟩:A ∥ Σ

.... D3

⟨x, α⟩:B,Am,Γ′ ⇒ ∆′ ∥ Σ
Am, ⟨x, α⟩:A→ B,Γ′ ⇒ ∆′ ∥ Σ (L→)

⟨x, α⟩:A→ B,Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am,Γ′ ⇒ ∆′, ⟨x, α⟩:A ∥ Σ
Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:A ∥ Σ (Ecut)

.... D1

Γ⇒ ∆,An ∥ Σ

.... D3

Am, ⟨x, α⟩:B,Γ′ ⇒ ∆′ ∥ Σ
⟨x, α⟩:B,Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

⟨x, α⟩:A→ B,Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (L→)

Similarly to this, we can show the case where the left upper c-sequent of (Ecut) is
structural rule (L→).

Case of (3) where the last inference rule of left upper c-sequents of (Ecut) is (R□a2)
which is not the cut expression. Let Σ′ = {a1∼M1

a x1, ..., ak∼Mk
a xk}. In this case, we obtain

the following derivation:
.... D1

⟨x, aM1
1 , ..., a

Mk
k ⟩Ra⟨y, x

M1
1 , ..., x

Mk
k ⟩, Γ⇒ ∆, ⟨y, x

M1
1 , ..., x

Mk
k ⟩:A,A

m ∥ Σ ∪ Σ′

Γ⇒ ∆, ⟨x, aM1
1 , ..., a

Mk
k ⟩:□aA,Am ∥ Σ

(R□a2)

.... D2

An, Γ′ ⇒ ∆′ ∥ Σ
Γ, Γ′ ⇒ ∆,∆′ ∥ Σ

(Ecut)

Since each xi ∈ CVar does not appear in the lower c-sequents, it does not also appear
in A,Γ′ and ∆′. Therefore, even if Σ′ are added to Σ, its provability does not obviously
change with the same height of the derivation, and we obtain ⊢GEAK A

n,Γ′ ⇒ ∆′

∥ Σ ∪ Σ′. Then we may transform the derivation into the following:
.... D1

⟨x, aM1
1 , ..., a

Mk
k ⟩Ra⟨y, x

M1
1 , ..., x

Mk
k ⟩, Γ⇒ ∆, ⟨y, x

M1
1 , ..., x

Mk
k ⟩:A,A

m ∥ Σ ∪ Σ′

.... D
′
2

An, Γ′ ⇒ ∆′ ∥ Σ ∪ Σ′

⟨x, aM1
1 , ..., a

Mk
k ⟩Ra⟨y, x

M1
1 , ..., x

Mk
k ⟩, Γ,Γ

′ ⇒ ∆,∆′, ⟨y, xM1
1 , ..., x

Mk
k ⟩:A ∥ Σ ∪ Σ

′
(Ecut)

Γ,Γ′ ⇒ ∆,∆′ ∥ Σ
(R□a2)

Case of (3) where one of upper c-sequents of (Ecut) is inference rule (L□a2).

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am,Γ′ ⇒ ∆′, ⟨x, aM1
1 , ..., a

Mk
k ⟩Ra⟨y, bM1

1 , ..., b
Mk
k ⟩ ∥ Σ

.... D3

⟨y, bM1
1 , ..., b

Mk
k ⟩:A,A

m,Γ′ ⇒ ∆′ ∥ Σ

Am, ⟨x, aM1
1 , ..., a

Mk
k ⟩:□aA,Γ′ ⇒ ∆′ ∥ Σ

(L□a2)

⟨x, aM1
1 , ..., a

Mk
k ⟩:□aA,Γ,Γ′ ⇒ ∆,∆′ ∥ Σ

(Ecut)

83

This is transformed into the derivation:

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am, Γ′ ⇒ ∆′, ⟨x, aM1
1 , ..., a

Mk
k ⟩Ra⟨y, b

M1
1 , ..., b

Mk
k ⟩ ∥ Σ

Γ,Γ′ ⇒ ∆,∆′, ⟨x, aM1
1 , ..., a

Mk
k ⟩Ra⟨y, b

M1
1 , ..., b

Mk
k ⟩ ∥ Σ

(Ecut)

.... D1

Γ⇒ ∆,An ∥ Σ

.... D3

Am, ⟨y, bM1
1 , ..., b

Mk
k ⟩:A, Γ

′ ⇒ ∆′ ∥ Σ

⟨y, bM1
1 , ..., b

Mk
k ⟩:A,Γ, Γ

′ ⇒ ∆,∆′ ∥ Σ
(Ecut)

⟨x, aM1
1 , ..., a

Mk
k ⟩:□aA, Γ,Γ′ ⇒ ∆,∆′ ∥ Σ

(L□a2)

Similarly to this, we can show the case where the left upper c-sequent of (Ecut) is
structural rule (L□a2).

Case of (3) where one of upper c-sequents of (Ecut) is inference rule (Rat).

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am,Γ′ ⇒ ∆′, ⟨x, α⟩:p ∥ Σ
Am,Γ′ ⇒ ∆′, ⟨x, α, aM⟩:p ∥ Σ

(Rat)

Γ,Γ′ ⇒ ∆,∆′, ⟨x, α, aM⟩:p ∥ Σ
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am,Γ′ ⇒ ∆′, ⟨x, α⟩:p ∥ Σ
Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:p ∥ Σ (Ecut)

Γ,Γ′ ⇒ ∆,∆′, ⟨x, α, aM⟩:p ∥ Σ
(Rat)

Similarly to this, we can show the case where the left upper c-sequent of (Ecut) is
structural rule (Rat), and the case of (Lat) is also similar to this.

Case of (3) where one of upper c-sequents of (Ecut) is inference rule (R[.]).

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

⟨x, α⟩:preM(a),Am,Γ′ ⇒ ∆′, ⟨x, α, aM⟩:B ∥ Σ
Am,Γ′ ⇒ ∆′, ⟨x, α⟩:[aM]B ∥ Σ

(R[.])

Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:[aM]B ∥ Σ
(Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am, ⟨x, α⟩:preM(a),Γ′ ⇒ ∆′, ⟨x, α, aM⟩:B ∥ Σ
⟨x, α⟩:preM(a),Γ,Γ′ ⇒ ∆,∆′, ⟨x, α, aM⟩:B ∥ Σ

(Ecut)

Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:[aM]B ∥ Σ
(R[.])

Similarly to this, we can show the case where the left upper c-sequent of (Ecut) is
structural rule (R[.]). The case of (R[.]) is also similar to this.

84

Case of (3) where one of upper c-sequents of (Ecut) is inference rule (Lrela1).

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

⟨x, α⟩:preM(a),Am,Γ′ ⇒ ∆′ ∥ Σ
Am, ⟨x, α, aM⟩Ra⟨y, β, bM⟩,Γ′ ⇒ ∆′ ∥ Σ

(Lrela1)

⟨x, α, aM⟩Ra⟨y, β, bM⟩,Γ,Γ′ ⇒ ∆,∆′ ∥ Σ
(Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am, ⟨x, α⟩:preM(a),Γ′ ⇒ ∆′ ∥ Σ
⟨x, α⟩:preM(a),Γ,Γ′ ⇒ ∆,∆′ ∥ Σ

(Ecut)

⟨x, α, aM⟩Ra⟨y, β, bM⟩,Γ,Γ′ ⇒ ∆,∆′ ∥ Σ
(Lrela1)

Similarly to this, we can show the case where the left upper c-sequent of (Ecut) is
structural rule (Lrela1). Moreover, the case of (Lrela2) and (Lrela3) can also be shown
similarly.

Case of (4) where both sides of A is ⟨x, α⟩:¬A and principal, when we obtain the
following derivation:

.... D1

⟨x, α⟩:preM(a),Γ⇒ ∆, (⟨x, α⟩:¬A)n−1 ∥ Σ
Γ⇒ ∆, (⟨x, α⟩:¬A)n ∥ Σ (R¬)

.... D2

(⟨x, α⟩:¬A)m−1,Γ′ ⇒ ∆′, ⟨x, α⟩:A ∥ Σ
(⟨x, α⟩:¬A)m,Γ′ ⇒ ∆′ ∥ Σ (L¬)

Γ,Γ′ ⇒ ∆,∆′ ∥ Σ
(Ecut)

This is transformed into the derivation:
.... D

+
1

Γ⇒ ∆, (⟨x, α⟩:¬A)n ∥ Σ

.... D2

(⟨x, α⟩:¬A)m−1,Γ′ ⇒ ∆′, ⟨x, α⟩:A ∥ Σ
Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:A ∥ Σ

(Ecut)

.... D1

⟨x, α⟩:preM(a), Γ⇒ ∆, (⟨x, α⟩:¬A)n−1 ∥ Σ

.... D
+
2

(⟨x, α⟩:¬A)m,Γ′ ⇒ ∆′ ∥ Σ
⟨x, α⟩:A, Γ, Γ′ ⇒ ∆,∆′ ∥ Σ

(Ecut)

Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′ ∥ Σ
(Ecut)

Γ,Γ′ ⇒ ∆,∆′ ∥ Σ
(Lc)/(Rc)

Case of (4) where both sides of A in (Ecut) are ⟨x, aM1
1 , ..., a

Mk
k ⟩:□aA and principal

expressions. Let us consider the case where k = 1 for simplicity, and A = ⟨x, aM⟩:□aA.
In this case, we obtain the following derivation.

.... D1

⟨x, aM⟩Ra⟨v, xM⟩, Γ⇒ ∆, ⟨v, xM⟩:A,Am−1 ∥ Σ, a∼M
a x

Γ⇒ ∆,Am ∥ Σ
(R□a2)

.... D2

An−1, Γ′ ⇒ ∆′, ⟨x, aM⟩Ra⟨y, bM⟩ ∥ Σ

.... D3

⟨y, bM⟩:A,An−1,Γ′ ⇒ ∆′ ∥ Σ
An, Γ′ ⇒ ∆′ ∥ Σ

(L□a2)

Γ, Γ′ ⇒ ∆,∆′ ∥ Σ
(Ecut)

First, replace vwith y in the left upper c-sequent by Lemma 4.2.1. Next, since we know
that a ∼M

a b by ⟨x, aM⟩Ra⟨y, bM⟩ in the middle upper c-sequent and the condition of an
action relation, we have the following.

⊢GEAK ⟨x, aM⟩Ra⟨y, bM⟩,Γ⇒ ∆, ⟨y, bM⟩:A,Am−1 ∥ Σ

85

Then the derivation above can be transformed into the following:

A =


.... D

+
1

Γ⇒ ∆,Ay ∥ Σ

.... D2

pAn−1, Γ′ ⇒ ∆′, ⟨x, aM⟩Ra⟨y, bM⟩ ∥ Σ
Γ, Γ′ ⇒ ∆,∆′, ⟨x, aM⟩Ra⟨y, bM⟩ ∥ Σ

(Ecut)2

.... D1 and Lemma 4.2.1

⟨x, aM⟩Ra⟨y, bM⟩,Γ⇒ ∆, ⟨y, bM⟩:A,Am−1 ∥ Σ

.... D
+
23

An,Γ′ ⇒ ∆′ ∥ Σ
⟨x, aM⟩Ra⟨y, bM⟩, Γ′, Γ⇒ ∆,∆′, ⟨y, bM⟩:A ∥ Σ

(Ecut)1

Γ, Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′, ⟨y, bM⟩:A ∥ Σ
(Ecut)4

.... A
Γ, Γ, Γ′, Γ′ ⇒ ∆,∆,∆′,∆′, ⟨y, bM⟩:A ∥ Σ

.... D
+
1

Γ⇒ ∆,Ay ∥ Σ

.... D3

⟨y, bM⟩:A,An−1, Γ′ ⇒ ∆′ ∥ Σ
⟨y, bM⟩:A,Γ, Γ′ ⇒ ∆,∆′ ∥ Σ

(Ecut)3

Γ, Γ,Γ,Γ′, Γ′, Γ′ ⇒ ∆,∆,∆,∆′,∆′,∆′ ∥ Σ (Ecut)5

Γ, Γ′ ⇒ ∆,∆′ ∥ Σ (Lc)/(Rc)

where (Ecut)1,2,3 are applicable by induction hypothesis, since the derivation height of
(Ecut) is reduced by comparison with the original derivation. Besides, the application
of (Ecut)4,5 is also allowed by induction hypothesis, where ℓ(A) is reduced as follows:
ℓ
(⟨x, aM⟩:□aA

)
> ℓ
(⟨x, bM⟩:A) and ℓ

(⟨x, aM⟩:□aA
)
> ℓ
(⟨x, aM⟩Ra⟨x, bM⟩).

Case of (4) where both sides of A in (Ecut) are ⟨x, α⟩:[aM]A and principal expressions.
Let A be ⟨x, α⟩:[aM]A.

.... D1

⟨x, α⟩:preM(a),Γ⇒ ∆, ⟨x, α, aM⟩:A,An−1 ∥ Σ
Γ⇒ ∆,An ∥ Σ (R[.])

.... D2

Am−1,Γ′ ⇒ ∆′, ⟨x, α⟩:preM(a) ∥ Σ

.... D3

⟨x, α, aM⟩:A,Am−1,Γ′ ⇒ ∆′ ∥ Σ
Am,Γ′ ⇒ ∆′ ∥ Σ (L[.])

Γ,Γ′ ⇒ ∆,∆′ ∥ Σ
(Ecut)

This is transformed into the derivation:

A =


.... D

+
1

Γ⇒ ∆,An ∥ Σ

.... D2

Am−1,Γ′ ⇒ ∆′, ⟨x, α⟩:preM(a) ∥ Σ
Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:preM(a) ∥ Σ

(Ecut)

.... D1

⟨x, α⟩:preM(a), Γ⇒ ∆, ⟨x, α, aM⟩:A,An−1 ∥ Σ

.... D
+
2,3

An−1, Γ′ ⇒ ∆′ ∥ Σ
⟨x, α⟩:preM(a),Γ, Γ′ ⇒ ∆,∆′, ⟨x, α, aM⟩:A ∥ Σ

(Ecut)

Γ, Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′, ⟨x, α, aM⟩:A ∥ Σ
(Ecut)

.... A
Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′, ⟨x, α, aM⟩:A ∥ Σ

.... D
+
1

Γ⇒ ∆,An ∥ Σ

.... D3

⟨x, α, aM⟩:A,Am−1,Γ′ ⇒ ∆′ ∥ Σ
⟨x, α, aM⟩:A, , Γ,Γ′ ⇒ ∆,∆′ ∥ Σ

(Ecut)

Γ,Γ, Γ,Γ′,Γ′,Γ′ ⇒ ∆,∆,∆,∆′,∆′,∆′ ∥ Σ
(Ecut)

Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Lc)/(Rc)

Case of (4) where both sides of A are ⟨x, α, aM⟩Ra⟨y, β, bM⟩ and principal. When we
obtain the following derivation:

A =


.... D1

Γ⇒ ∆,An-1, ⟨x, α⟩:preM(a) ∥ Σ

.... D2

Γ⇒ ∆,An-1, ⟨y, β⟩:preM(b) ∥ Σ

.... D3

Γ⇒ ∆,An-1, ⟨x, α⟩Ra⟨y, β⟩ ∥ Σ
Γ⇒ ∆,An ∥ Σ (Rrela)

86

.... A
Γ⇒ ∆,An ∥ Σ

.... D4

⟨x, α⟩:preM(a),Am-1,Γ′ ⇒ ∆′ ∥ Σ
Am,Γ′ ⇒ ∆′ ∥ Σ (Lrela3)

Γ,Γ′ ⇒ ∆,∆′ ∥ Σ
(Ecut)

.

It is transformed into the following derivation:

A =


.... D1

Γ⇒ ∆,An-1, ⟨x, α⟩:preM(a) ∥ Σ

.... D
+
4

Am,Γ′ ⇒ ∆′ ∥ Σ
Γ,Γ′ ⇒ ∆,∆′, ⟨x, α⟩:preM(a) ∥ Σ

(Ecut)

.... A
Γ, Γ′ ⇒ ∆,∆′, ⟨x, α⟩:preM(a) ∥ Σ

.... D
+
123

Γ⇒ ∆,An ∥ Σ

.... D4

⟨x, α⟩:preM(a),Am-1, Γ′ ⇒ ∆′ ∥ Σ
⟨x, α⟩:preM(a),Γ,Γ′ ⇒ ∆,∆′ ∥ Σ

(Ecut)

Γ,Γ,Γ′, Γ′ ⇒ ∆,∆,∆′,∆′ ∥ Σ (Ecut)

Γ, Γ′ ⇒ ∆,∆′ ∥ Σ (Rc)/(Lc)
,

where (Ecut) to the two upper c-sequents is applicable by induction hypothesis, since
the derivation height of (Ecut) is reduced by comparison with the original deriva-
tion. Additionally, the application of (Ecut) to the lower c-sequents is also allowed
by induction hypothesis, since the length of the cut expression is reduced, namely
ℓ(⟨x, α⟩:preM(a)) < ℓ(⟨x, α, aM⟩Ra⟨y, β, bM⟩). □

4.3 All derivable formulas in HEAK are derivable in
GEAK+

Our task in this sections is to establish that the derivability of our sequent system
GEAK is equal to that of HEAK. In other words, we show the theorem that every
derivable formula in HEAK is also derivable in GEAK. To show this requires the
following trivial derivable rules in GEAK (for the case of (RA4)) and one lemma (for
(RA5)).

Γ⇒ ∆, ⟨x, α⟩:A(v) ∥ Σ, a∼M
a v

Γ⇒ ∆, ⟨x, α⟩:∧a∼M
a x A ∥ Σ (R∧∧)† ⟨x, α⟩:A(b),Γ⇒ ∆ ∥ Σ

⟨x, α⟩:∧a∼M
a x A,Γ⇒ ∆ ∥ Σ (L∧∧)‡

† v ∈ CVar does not appear in the lower c-sequent.

‡ b is in {x | a∼M
a x}.

where A(b) (or A(y)) means that b (or y) possibly appears in formula A. These are only
generalizations of (L∧) and (R∧).

Lemma 4.3.1. For any finite lists α, β of actions, any formula A, any finite set Σ of
relational atoms, the following hold:

87

(i) ⊢GEAK ⟨x, α, (a, a′)M;N, β⟩Ra⟨y, α′, (b, b′)M;N, β′⟩ ⇒ ⟨x, α, aM, a′N, β⟩Ra⟨y, α′, bM, b′N, β⟩ ∥ Σ
(ii) ⊢GEAK ⟨x, α, aM, a′N, β⟩Ra⟨y, α′, bM, b′N, β⟩ ⇒ ⟨x, α, (a, a′)M;N, β⟩Ra⟨y, α′, (b, b′)M;N, β′⟩ ∥ Σ
(iii) ⊢GEAK ⟨x, α, (a, a′)M;N, β⟩:A⇒ ⟨x, α, aM, a′N, β⟩:A ∥ Σ
(iv) ⊢GEAK ⟨x, α, aM, a′N, β⟩:A⇒ ⟨x, α, (a, a′)M;N, β⟩:A ∥ Σ

Proof. The proofs of (i), (ii), (iii) and (iv) are simultaneously conducted by double
induction on ℓ(A) and the length of β (= β′). We only look at the proof of (i) (other
cases can be shown similarly).

Base case: (i) where β = ϵ.
We show the following, and it is straightforward to construct a derivation with (Rrel)/(Lrel)
and (R∧)/(L∧). Note that (a, a′)M;N is included in PAct by Definition 2.3.2.

⊢GEAK ⟨x, α, (a, a′)M;N⟩Ra⟨y, α′, (b, b′)M;N⟩ ⇒ ⟨x, α, aM, a′N)Ra⟨y, α′, bM, b′N⟩ ∥ Σ

Induction step of (i) where β = (γ, cO) and β′ = (γ′, c′O)

Induction hypothesis of (i)

⟨x, α, (a, a′)M;N, γ⟩Ra⟨y, α′, (b, b′)M;N, γ′⟩ ⇒ ⟨x, α, aM, a′N, γ⟩Ra⟨y, α′, uM, b′N, γ′⟩ ∥ Σ
⟨x, α, (a, a′)M;N, γ, cO⟩Ra⟨y, α′, (b, b′)M;N, γ′, c′O⟩ ⇒ ⟨x, α, aM, a′N, γ⟩Ra⟨y, α′, bM, b′N, γ′⟩ ∥ Σ

(Lrel1)
.... D1

.... D2

⟨x, α, (a, a′)M;N, γ, cO⟩Ra⟨y, α′, (b, b′)M;N, γ′, c′O⟩ ⇒ ⟨x, α, aM, a′N, γ, cO⟩Ra⟨y, α′, bM, b′N, γ′, c′O⟩ ∥ Σ
(Rrel)

D1 (and similarlyD2) is immediately given by (Lrel2) and the induction hypothesis of
(iii) as follows:

D1 =


Induction hypothesis of (iii)

⟨x, α, (a, a′)M;N, γ⟩:preO(c)⇒ ⟨x, α, aM, a′N, γ⟩:preO(c) ∥ Σ
⟨x, α, (a, a′)M;N, γ, cO⟩Ra⟨y, α′, (b, b′)M;N, γ′, c′O⟩ ⇒ ⟨x, α, aM, a′N, γ⟩:preO(c) ∥ Σ

(Lrel2)

where note that ℓ(⟨x, α, (a, a′)M;N, γ, cO⟩Ra⟨y, α′, (b, b′)M;N, γ′, c′O⟩) > ℓ(⟨x, α, (a, a′)M;N, γ⟩:preO(c)
).
□

Theorem 4.3.1. For any formula A, if ⊢HEAK A, then ⊢GEAK+⇒ ⟨x, ϵ⟩:A for any x ∈
Var.

Proof. Suppose ⊢HEAK A, and fix any x ∈ Var. The proof is conducted by induction
on the height of derivation of HEAK. We pick up some significant base cases (the
derivation height of HEAK is equal to 0).

(RA1)

Initial Seq.

x:preM(a)⇒ x:p, x:preM(a)

Initial Seq.

x:p, x:preM(a)⇒ x:p

x:preM(a), ⟨x, aM⟩:p⇒ x:p
(Lat)

x:preM(a), x:[aM]p⇒ x:p
(L[.])

x:[aM]p⇒ x:preM(a)→ p
(R→)

⇒ x:[aM]p→ (preM(a)→ p)
(R→)

Initial Seq.

x:preM(a)⇒ x:p, x:preM(a)

Initial Seq.

x:p, x:preM(a)⇒ x:p

x:preM(a), x:preM(a)→ p⇒ x:p
(L→)

x:preM(a), x:preM(a)→ p⇒ ⟨x, aM⟩:p
(Rat)

x:preM(a)→ p⇒ x:[aM]p
(R[.])

⇒ x:(preM(a)→ p)→ [aM]p
(R→)

⇒ x:[aM]p↔ (preM(a)→ p)
(R∧)

(RA2: Left to Right)

88

Initial Seq.

x:pre(a)⇒ x:¬[aM]A, x:pre(a)

Initial Seq.

x:pre(a), ⟨x, aM⟩:¬A⇒ x:pre(a)

Initial Seq.

x:pre(a), ⟨x, aM⟩:A⇒ ⟨x, aM⟩:A
x:pre(a), ⟨x, aM⟩:A, ⟨x, aM⟩:¬A⇒

(L¬)

x:pre(a), x:[(M, s)]A, ⟨x, aM⟩:¬A⇒
(L[.])

x:pre(a), ⟨x, aM⟩:¬A⇒ x:¬[aM]A
(R¬)

x:pre(a), [aM]¬A⇒ x:¬[aM]A
(L[.])

x:[aM]¬A⇒ x:pre(a)→ ¬[aM]A
(R→)

⇒ x:[aM]¬A→ (pre(a)→ ¬[aM]A)
(R→)

(RA2: Right to Left)

Initial Seq.

x:preM(a)⇒ ⟨x, aM⟩:¬A, x:preM(a)

Initial Seq.

x:preM(a), ⟨x, aM⟩:A⇒ ⟨x, aM⟩:A
⟨x, aM⟩:A⇒ x:[aM]A,

(R[.])

x:¬[aM]A⇒ ⟨x, aM⟩:¬A
(L¬)/(R¬)

x:¬[aM]A, x:preM(a)⇒ ⟨x, aM⟩:¬A
(Lw)

x:preM(a)→ ¬[aM]A, x:preM(a)⇒ ⟨x, aM⟩:¬A
(L→)

x:preM(a)→ ¬[aM]A⇒ x:[aM]¬A
(R[.])

⇒ x:(preM(a)→ ¬[aM]A)→ [aM]¬A
(R→)

(RA3: Left to Right)

Initial Seq.

x:preM(a), x:preM(a), ⟨x, aM⟩:A⇒ ⟨x, aM⟩:B, ⟨x, aM⟩:A

x:preM(a), ⟨x, aM⟩:A⇒ ⟨x, aM⟩:B, x:[aM]A

Initial Seq.

x:preM(a)⇒ ⟨x, aM⟩:B, x:preM(a)

Initial Seq.

⟨x, aM⟩:B, x:preM(a)⇒ ⟨x, aM⟩:B
x:[aM]B, x:preM(a)⇒ ⟨x, aM⟩:B

(L[.])

x:[aM]B, x:preM(a), ⟨x, aM⟩:A⇒ ⟨x, aM⟩:B
(Lw)

x:[aM]A→ [aM]B, x:preM(a), ⟨x, aM⟩:A⇒ ⟨x, aM⟩:B
(L→)

x:[aM]A→ [aM]B, x:preM(a)⇒ ⟨x, aM⟩:A→ B
(R→)

x:[aM]A→ [aM]B⇒ x:[aM](A→ B)
(R[.])

⇒ x:([aM]A→ [aM]B)→ [aM](A→ B)
(R→)

(RA4: Left to Right)

Initial Seq.

x:pre(a)⇒ x:
∧

a∼M
a x □a[xM]A, x:pre(a)

.... D
Initial Seq.

⟨y, yM⟩:A,Γ⇒ ⟨y, yM⟩:A ∥ a∼M
a y

⟨x, aM⟩:□aA, Γ⇒ ⟨y, yM⟩:A ∥ a∼M
a y

(L□a2)

x:pre(a), ⟨x, aM⟩:□aA, xRay⇒ y:[yM]A ∥ a∼M
a y

(R[.])

x:pre(a), ⟨x, aM⟩:□aA⇒ x:□a[yM]A ∥ a∼M
a y

(R□a1)

x:pre(a), ⟨x, aM⟩:□aA⇒ x:
∧

a∼M
a x □a[xM]A

(R∧∧)

x:pre(a), x:[aM]□aA⇒ x:
∧

a∼M
a x □a[xM]A

(L[.])

x:[aM]□aA⇒ x:pre(a)→ ∧a∼M
a x □a[xM]A

(R→)

⇒ x:[aM]□aA→ (pre(a)→ ∧a∼M
a x □a[xM]A)

(R→)

89

where Γ = {x:preM(a), y:preM(y), xRay} andD is the following derivation:

D =


Initial Seq.

Γ⇒ xRay ∥ a∼M
a y

Initial Seq.

Γ⇒ x:pre(a) ∥ a∼M
a y

Initial Seq.

Γ⇒ y:pre(y) ∥ a∼M
a y

Γ⇒ ⟨x, a⟩Ra⟨y, y⟩ ∥ a∼M
a y

(Rrel)

Γ⇒ ⟨y, yM⟩:A, ⟨x, a⟩Ra⟨y, y⟩ ∥ a∼M
a y

(Rw)
.

(RA4: Right to Left)

Initial Seq.

x:preM(a)⇒ ⟨x, aM⟩:□aA, x:preM(a)

Initial Seq.

y:preM(y), xRay⇒ ⟨y, yM⟩:A, xRay ∥ a∼M
a y

.... D

y:preM(y), xRay, x:□a[yM]A⇒ ⟨y, yM⟩:A ∥ a∼M
a y

(L□a1)

x:□a[yM]A, ⟨x, aM⟩Ra⟨y, yM⟩ ⇒ ⟨y, yM⟩:A ∥ a∼M
a y

(Lc)/(Lrel1)/(Lrel3)

x:
∧

a∼M
a x □a[xM]A, ⟨x, aM⟩Ra⟨y, yM⟩ ⇒ ⟨y, yM⟩:A ∥ a∼M

a y
(L∧∧)

x:
∧

a∼M
a x □a[xM]A⇒ ⟨x, aM⟩:□aA

(R□a2)

x:preM(a), x:
∧

a∼M
a x □a[xM]A⇒ ⟨x, aM⟩:□aA

(Lw)

x:preM(a), x:preM(a)→ ∧a∼M
a x □a[xM]A⇒ ⟨x, aM⟩:□aA

(L→)

x:preM(a)→ ∧a∼M
a x □a[xM]A⇒ x:[aM]□aA

(R[.])

⇒ x:(preM(a)→ ∧a∼M
a x □a[xM]A)→ [aM]□aA

(R→)

whereD is the following derivation:

D =


Initial Seq.

y:preM(y)⇒ ⟨y, yM⟩:A, y:preM(y) ∥ a∼M
a y

Initial Seq.

y:preM(y), ⟨y, yM⟩:A⇒ ⟨y, yM⟩:A ∥ a∼M
a y

y:preM(y), y:[yM]A⇒ ⟨y, yM⟩:A ∥ a∼M
a y

(L[.])

y:preM(y), xRay, y:[yM]A⇒ ⟨y, yM⟩:A ∥ a∼M
a y

(Lw)
.

(RA5: Left to Right)

Initial Seq.

:preM(a), x:[aM]preN(b)⇒ x:preM(a)

x:preM;N((a, b))⇒ x:preM(a)
(L∧)

x:preM;N((a, b))⇒ ⟨x, (a, b)M;N⟩:A, x:preM(a)
(Lw)

.... D
⟨x, aM⟩:[bN]A, x:preM;N((a, b))⇒ ⟨x, (a, b)M;N⟩:A

x:preM;N((a, b)), x:[aM][bN]A⇒ ⟨x, (a, b)M;N⟩:A
(L[.])

x:[aM][bN]A⇒ x:[aM; bN]A
(R[.])

⇒ x:[aM][bN]A→ [aM; bN]A
(R→)

A derivationD is given as follows.

Initial Seq.

x:preM(a)⇒ ⟨x, aM⟩:preN(b), x:preM(a)

Initial Seq.

⟨x, aM⟩:preN(b), x:preM(a)⇒ ⟨x, aM⟩:preN(b)

x:preM(a), x:[aM]preN(b)⇒ ⟨x, aM⟩:preN(b)
(L→)

x:preM;N((a, b))⇒ ⟨x, aM⟩:preN(b)
(L∧)

x:preM;N((a, b))⇒ ⟨x, (a, b)M;N⟩:A, ⟨x, aM⟩:preN(b)
(Lw)

Lemma 4.3.1
⟨x, aM, bN⟩:A⇒ ⟨x, (a, b)M;N⟩:A

⟨x, aM, bN⟩:A, x:preM;N((a, b))⇒ ⟨x, (a, b)M;N⟩:A
(Lw)

⟨x, aM⟩:[bN]A, x:preM;N((a, b))⇒ ⟨x, (a, b)M;N⟩:A
(L[.])

90

(RA5: Right to Left)

Initial Seq.

A, x:preM(a)⇒ x:preM(a)

Initial Seq.

A, x:preM(a), x:preM(a)⇒ A
A, x:preM(a)⇒ x:[aM]preN(b)

(R[.])

A, x:preM(a)⇒ x:preM;N((a, b))
(R∧)

A, x:preM(a)⇒ ⟨x, aM, bN⟩:A, x:preM;N((a, a′))
(Lw)

Lemma 4.3.1
⟨x, (a, b)M;N⟩:A⇒ ⟨x, aM, bN⟩:A

⟨x, (a, b)M;N⟩:A,A, x:preM(a)⇒ ⟨x, aM, bN⟩:A
(Lw)

A, x:preM(a), x:[aM; bN]A⇒ ⟨x, aM, bN⟩:A
(L[.])

x:preM(a), x:[aM; bN]A⇒ ⟨x, aM⟩:[bN]A
(R[.])

x:[aM; bN]A⇒ x:[aM][bN]A
(R[.])

⇒ x:[aM; bN]A→ [aM][bN]A
(R→)

where A = ⟨x, aM⟩:preN(b).
In induction step, we show the admissibility of the inference rules HEAK, such as

(MP) and (Nec□a), and their proofs are similar to proofs in Theorem 3.2.1 (as we have
seen in it, to show the admissibility of (MP) requires (Cut)). □

4.4 Soundness of GEAK
Let us move on to a proof of the soundness theorem of GEAK. For the soundness
theorem, we expand the definition of the satisfaction relation to the labelled expression
and the c-sequent. Hereinafter we denote (w, (a1, a2, ..., an)) for (· · · ((w, a1), a2), ..., an).

Definition 4.4.1. LetM be a model and f be an assignment function f : Var→ D(M),
α be any finite list of actions. M, f ⊩ A is defined as follows:

M, f ⊩ ⟨x, α⟩:A iff M⊗αmdl , (f (x), αevt) ⊩ A,
and (f (x), αevt) ∈ D(M⊗αmdl),

M, f ⊩ ⟨x, ϵ⟩Ra⟨y, ϵ⟩ iff (f (x), f (y)) ∈ Ra,
M, f ⊩ ⟨x, α, aM⟩Ra⟨y, β, bM⟩ iff M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩

and M⊗αmdl , (f (x), αevt) ⊩ preM(a)
and M⊗βmdl , (f (y), α′evt) ⊩ preM(b).

In Section 3.3 of the previous chapter, we gave light on the notion of survival of a world
in the definition of satisfaction of the labelled expressions in PAL. The notion should be
also considered in EAK, otherwise the soundness does not hold like in the case of PAL
shown in Section 3.3. Specifically, note that at the satisfaction of the labelled formula
⟨x, α⟩:A, not only the labelled formula is true by the valuation, but also a corresponding
world (f (x), αevt) must exist or survive in the updated domain D(M⊗αmdl). Otherwise
M⊗αmdl , (f (x), αevt) ⊩ A is ill-defined. Following the idea of Section 3.3, it is sufficient to
pay attention to the negated form of the labelled expression A taking into the condition
of survival of a world which must also survive in the updated domain. With the notion
of survival,M, f ⊩ A is defined as follows:

Definition 4.4.2. Let f be an assignment function f : Var → D(M) (for anyM), α be

91

any finite list of actions. M, f ⊩ A is defined as follows:

M, f ⊩ ⟨x, α⟩:A iff M⊗αmdl , (f (x), αevt) ⊮ A
and (f (x), αevt) ∈ D(M⊗αmdl),

M, f ⊩ ⟨x, ϵ⟩Ra⟨y, ϵ⟩ iff (f (x), f (y)) < Ra,

M, f ⊩ ⟨x, α, aM⟩Ra⟨y, β, bM⟩ iff M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩
or M⊗αmdl , (f (x), αevt) ⊮ preM(a)
or M⊗βmdl , (f (y), βevt) ⊮ preM(b).

Additionally, it should be clarified that these semantic definitions for relational atoms
are connected with an accessibility relation.

Proposition 4.4.1. The following equivalent relations hold.
(1) M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩ iff ((f (x), αact), (f (y), βact)) ∈ R⊗αmdl

a

(2) M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩ iff ((f (x), αact), (f (y), βact)) < R⊗αmdl
a

Proof. Both can be straightforwardly shown by induction on the length of α (= β). We
show the contraposition of (2) i.e.,M, f ⊮ ⟨x, α⟩Ra⟨y, β⟩ iff ((f (x), αact), (f (y), βact)) ∈
R⊗αmdl

a . The base where α = β = ϵ is trivial by Definition 4.4.1. Next, we look at
the case where α = (α′, aM) and β = (β′, bM). M, f ⊮ ⟨x, α′, aM⟩Ra⟨y, β′, bM⟩. By
Definition 4.4.1, that is equivalent toM, f ⊮ ⟨x, α′⟩Ra⟨y, β′⟩ andM, f ⊩ ⟨x, α′⟩:preM(a)
and M, f ⊩ ⟨y, β′⟩:preM(b). By the induction hypothesis and the semantic reasoning,
this is also equivalent to ((f (x), α′act, a), (f (y), β′act, b)) ∈ R

⊗α′mdl⊗M
a . □

Following the definition of the validity for a sequent (Definition 3.3.3) in Chapter 3,
the validity of c-sequents is defined as follows.

Definition 4.4.3 (Validity of a c-sequent). We say that sequent Γ ⇒ ∆ is t-valid in
M if there is no assignment f : Var → D(M) such that M, f ⊩ A for all A ∈ Γ, and
M, f ⊩ B for all B ∈ ∆. Furthermore, c-sequent Γ ⇒ ∆ ∥ Σ is t-valid if every sequent
in {Γ⇒ ∆ | Σ} is valid.

Proposition 4.4.2. For any modelM, assignment f , a ∈ Agt and x, y ∈ Var,

(i) M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩ iff ((f (x), αevt), (f (y), βevt)) ∈ R⊗αmdl
a ,

(ii) M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩ iff ((f (x), αevt), (f (y), βevt)) < R⊗αmdl
a .

Proof. Both are easily shown by induction on the number of α (= β). Let us consider
the case of α = (α′, aM) (and β = (β′, bM)) in the proof of (ii).

We showM, f ⊮ ⟨x, α′, aM⟩Ra⟨y, β′, bM⟩ iff ((f (x), αevt, a), (f (y), β′evt, b)) ∈ Rαmdl⊗M
a .

M, f ⊮ ⟨x, α′, aM⟩Ra⟨y, β′, bM⟩ is, by Definition 4.4.3 and the induction hypothesis,
equivalent to ((f (x), α′evt), (f (y), β′evt)) ∈ R

α′mdl
a and M⊗αmdl , (f (x), α′evt) ⊩ preM(a) and

M⊗α
′
mdl , (f (y), β′evt) ⊩ preM(b). That is also equivalent to ((f (x), αevt, a), (f (y), β′evt, b)) ∈

Rαmdl⊗M
a . □

Hereinafter, we use the next notation. Let Γ is a finite set of labelled expressions.
Then in what follows, we writeM, f ⊩ Γ to meanM, f ⊩ A for all A ∈ Γ, andM, f ⊩ Γ
to meanM, f ⊩ A for all A ∈ Γ.

92

Theorem 4.4.1 (Soundness of GEAK). For any c-sequent Γ ⇒ ∆ ∥ Σ, if ⊢GEAK Γ ⇒
∆ ∥ Σ, then Γ⇒ ∆ ∥ Σ is t-valid in every modelM.

Proof. We show each inference rule preserve t-validity.

Base case: Fix any sequent in c-sequent Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show that
M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩ ⇒ M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩ is t-valid. Suppose for contradic-
tion that M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩ and M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩. By Proposition 4.4.2,
this is impossible.

The case where the last applied rule is of the form (L¬): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that there
is some f : Var → W such that, M, f ⊩ ⟨x, α⟩:¬A and M, f ⊩ Γ, andM, f ⊩ ∆.
Fix such f . It suffices to show M, f ⊩ ⟨x, α⟩:A. Then, M, f ⊩ ⟨x, α⟩:¬A iff
M⊗αmdl , f (x) ⊩ ¬A and (f (x), αevt) ∈ D(M⊗αmdl). By Definition 4.4.3, we obtain
M, f ⊩ ⟨x, α⟩:A.

The case where the last applied rule is of the form (R¬): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that
there is some f : Var → W such that, M, f ⊩ Γ, and M, f ⊩ ∆, and M, f ⊩
⟨x, α⟩:¬A. Fix such f . It suffices to show M, f ⊩ ⟨x, α⟩:A. Then, M, f ⊩
⟨x, α⟩:¬A iff M⊗αmdl , f (x)⊮ ¬A and (f (x), αevt) ∈ D(M⊗αmdl), which is equiv-
alent to: M⊗αmdl , f (x) ⊩ A and (f (x), αevt) ∈ D(M⊗αmdl). By Definition 4.4.1,
M, f ⊩ ⟨x, α⟩:A. So, the contraposition has been shown.

The case where the last applied rule is of the form (L→): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that there is
some f : Var→ W such that,M, f ⊩ ⟨x, α⟩:A→ B andM, f ⊩ Γ, andM, f ⊩ ∆.
Fix such f . It suffices to show M, f ⊩ ⟨x, α⟩:A or M, f ⊩ ⟨x, α⟩:B. Then,
M, f ⊩ ⟨x, α⟩:A→ B iff M⊗αmdl , f (x) ⊩ ¬A and (f (x), αevt) ∈ D(M⊗αmdl)) or
(M⊗αmdl , f (x) ⊩ B and (f (x), αevt) ∈ D(M⊗αmdl)). By Definition 4.4.1, we obtain
the goal as desired.

The case where the last applied rule is of the form (R→): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that there is
some f : Var → W such that,M, f ⊩ Γ, andM, f ⊩ ∆ andM, f ⊩ ⟨x, α⟩:A→ B
. Fix such f . It suffices to show M, f ⊩ ⟨x, α⟩:A and M, f ⊩ ⟨x, α⟩:B. Then,
M, f ⊩ ⟨x, α⟩:A→ B iff M⊗αmdl , f (x)⊩ A andM⊗αmdl , f (x)⊮ B and (f (x), αevt) ∈
D(M⊗αmdl). By Definitions 4.4.1 and 4.4.2, we obtain the goal as desired.

The case where the last applied rule is of the form (L□a1): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that there is
some f : Var → W such thatM, f ⊩ A For all A ∈ Γ andM, f ⊩ ⟨x, ϵ⟩:□aA and
M, f ⊩ B for all B ∈ ∆. Fix such f . It suffices to showM, f ⊩ ⟨x, ϵ⟩Ra⟨y, ϵ⟩ or
M, f ⊩ ⟨y, ϵ⟩:A. Then, from M, f ⊩ ⟨x, ϵ⟩:□aA, we obtain ((f (x), ϵ), (f (y), ϵ)) <
Ra or M, f (y) ⊩ A. Suppose the former disjunct which is, by Proposition 4.4.2,
M, f ⊩ ⟨x, ϵ⟩Ra⟨y, ϵ⟩. Then, suppose the latter disjunct M, f (y) ⊩ A. By defi-
nition, this is equivalent to M, f ⊩ ⟨y, ϵ⟩:A. Then, the contraposition has been
shown.

93

The case where the last applied rule is of the form (R□a1): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that there is
some f : Var → W such that, M, f ⊩ Γ, and M, f ⊩ ∆ and M, f ⊩ ⟨x, ϵ⟩:□aA .
Fix such f . Then,M, f ⊩ ⟨x, ϵ⟩:□aA iff (f (x), ϵ)Ra(v, ϵ) andM, v ⊮ A for some
v ∈ D(M) and f (x) ∈ D(M). Fix such v ∈ D(M). It suffices to show that there
is some f ′ : Var → W such that, M, f ′ ⊩ ⟨x, ϵ⟩Ra⟨y, ϵ⟩ and M, f ′ ⊩ ⟨y, ϵ⟩:A
where y is not x and does not appear in Γ and ∆. Define f ′ such that f ′(x) = v if
x = y and otherwise f ′(x) = f (x). Therefore, by the definition of f ′, we obtain
(f ′(x), ϵ)Ra(f ′(y), ϵ) and M, f ′(y)⊮ A and f ′(x) ∈ D(M). By Definitions 4.4.1
and 4.4.2, we obtain the goal as desired.

Case where the last rule is (L□a2). We show the contraposition such that if the lower
sequent of the rule (L□a2) is not t-valid, then some upper sequents of it are not
t-valid. Suppose that the lower sequent of (L□a2) is not t-valid, and by Def-
inition 4.4.3, there is some f : Var → W such that M, f ⊩ Γ′ and M, f ⊩
⟨x, aM1

1 , ..., a
Mn
n ⟩:□aA andM, f ⊩ ∆′. Fix such f . Then it suffices to showM, f ⊩

⟨x, aM1
1 , ..., a

Mn
n ⟩Ra⟨y, bM1

1 , ..., b
Mn
n ⟩ or M, f ⊩ ⟨y, bM1

1 , ..., b
Mn
n ⟩:A for some y ∈ Var

and some b1, ..., bn such that a1∼M1
a b1, ..., an∼Mn

a bn. From the supposition, i.e.,
M⊗M1⊗···⊗Mn , (f (x), a1, ..., an) ⊩ □aA and (f (x), a1, ..., an) ∈ D(M⊗M1⊗···⊗Mn), we
obtain for all v ∈ D(M⊗M1⊗···⊗Mn), ((f (x), a1, ..., an), v) < R⊗M1⊗···⊗Mn

a orM⊗M1⊗···⊗Mn , v ⊩
A. Take v as (f (y), b1, ..., bn) where each bi satisfies ai∼abi. Then by Proposi-
tion 4.4.1-(2) and Definition 4.4.1, we obtain what we desired.

Case where the last rule is (R□a2). We show the contraposition such that if the lower
sequent of the rule (R□a2) is not t-valid, then some upper sequents of it are not
t-valid. Suppose that the lower sequent of (R□a2) is not t-valid, and by Def-
inition 4.4.3, there is some f : Var → W such that M, f ⊩ Γ′ and M, f ⊩

⟨x, aM1
1 , ..., a

Mn
n ⟩:□aA and M, f ⊩ ∆′. Fix such f . It suffices to show for some

x1, ..., xn such that a1∼M1
a x1, ..., an∼Mn

a xn there exists f ′ such thatM, f ′ ⊩ ⟨x, aM1
1 , ..., a

Mn
n ⟩Ra⟨v, xM1

1 , ..., x
Mn
n ⟩

andM, f ′ ⊩ ⟨v, xM1
1 , ..., x

Mn
n ⟩:A where v does not appear in Γ′∪∆′. From the suppo-

sition, i.e.,M⊗M1⊗···⊗Mn , (f (x), a1, ..., an) ⊮ □aA and (f (x), a1, ..., an) ∈ D(M⊗M1⊗···⊗Mn),
we obtain for some (w, y1, ..., yn) ∈ D(M⊗M1⊗···⊗Mn) such that ((f (x), a1, ..., an), (w, y1, ..., yn)) ∈
R⊗M1⊗···⊗Mn

a and M⊗M1⊗···⊗Mn , (w, y1, ..., yn) ⊮ A. Fix such (w, y1, ..., yn). Define
f ′ such that f ′(x) = w if x = v and otherwise f ′(x) = f (x). By the def-
inition of f ′, we obtain ((f ′(x), a1, ..., an), (f ′(v), y1, ..., yn)) ∈ R⊗M1⊗···⊗Mn

a and
M⊗M1⊗···⊗Mn , (f ′(v), y1, ..., yn) ⊮ A. Then by Proposition 4.4.1-(1) and Defini-
tion 4.4.2, we obtain what we desired.

The case where the last applied rule is of the form (Lat): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that there is
some f : Var → W such that,M, f ⊩ ⟨x, α, aM⟩:p,M, f ⊩ Γ, andM, f ⊩ ∆. Fix
such f . It suffices to show M, f ⊩ ⟨x, α⟩:p. Then, M, f ⊩ ⟨x, α, aM⟩:p implies
(f (x), αevt, a) ∈ V⊗αmdl⊗M(p), which is equivalent to M⊗αmdl , (f (x), αevt) ⊩ p. By
Definition 4.4.1, we obtain the goal as desired.

The case where the last applied rule is of the form (Rat): Fix any sequent in c-sequent

94

Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose there
is some f : Var → W such that, M, f ⊩ Γ, and M, f ⊩ ∆, and M, f ⊩
⟨x, α, aM⟩:p. Fix such f . It suffices to show M, f ⊩ ⟨x, α⟩:p. By Defini-
tion 4.4.2, M, f ⊩ ⟨x, α, aM⟩:p is equivalent to M⊗αmdl⊗M, (f (x), αevt, a) ⊮ p and
(f (x), αevt, a) ∈ D(M⊗αmdl⊗M). From them, we obtain (f (x), αevt) ∈ D(M⊗αmdl)
andM⊗αmdl , (f (x), αevt) ⊮ p.

This is equivalent toM, f ⊩ ⟨x, α⟩:p by Proposition 4.4.2. Then, the contraposi-
tion has been shown.

The case where the last applied rule is of the form (L[.]): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that
there is some f : Var → W such that, M, f ⊩ ⟨x, α⟩:[aM]B and M, f ⊩ Γ, and
M, f ⊩ ∆. Fix such f . It suffices to show M, f ⊩ ⟨x, α⟩:preM(a) or M, f ⊩
⟨x, α, aM⟩:B. Then, M, f ⊩ ⟨x, α⟩:[aM]B iff (Mα,A, (f (x), αevt) ⊮ preM(a) or
M⊗αmdl⊗M, (f (x), αevt, a) ⊩ B) and (f (x), αevt) ∈ D(M⊗αmdl). By Definitions 4.4.1
and 4.4.2, we obtain the goal as desired.

The case where the last applied rule is of the form (R[.]): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that
there is some f : Var → W such that, M, f ⊩ Γ, and M, f ⊩ ∆ and M, f ⊩
⟨x, α⟩:[aM]B . Fix such f . It suffices to show M, f ⊩ ⟨x, α⟩:preM(a) and M, f ⊩
⟨x, α, aM⟩:B. Then, M, f ⊩ ⟨x, α⟩:[aM]B iff M⊗αmdl , (f (x), αevt)⊩ preM(a) and
M⊗αmdl⊗M, (f (x), αevt, a)⊮ B and (f (x), αevt) ∈ D(M⊗αmdl). FromM⊗αmdl , (f (x), αevt)⊩ preM(a),
we obtain (f (x), αevt, a) ∈ D(M⊗αmdl⊗M). Then, by Definitions 4.4.1 and 4.4.2, we
obtain the goal as desired.

The case where the last applied rule is of the form (Lrel1): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). We show the contraposition. Suppose that
there is some f : Var → W such that, M, f ⊩ ⟨x, α, aM⟩Ra⟨y, β, bM⟩, M, f ⊩
Γ, and M, f ⊩ ∆. Fix such f . It suffices to show M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩.
Then, M, f ⊩ ⟨x, α, aM⟩Ra⟨y, β, bM⟩ is equivalent to M, f ⊩ ⟨x, α⟩Ra⟨y, β⟩
and M⊗αmdl , (f (y), αevt) ⊩ preM(a) andM⊗αmdl , (f (y), βevt) ⊩ preM(b). By M, f ⊩
⟨x, α⟩Ra⟨y, β⟩ and Definition 4.4.1, we obtain the goal as desired.

The case where the last applied rule is of the form (Lrel2) and (Lrel3): Similar to the
above.

The case where the last applied rule is of the form (Rrel): Fix any sequent in c-sequent
Γ ⇒ ∆ ∥ Σ (= {Γ ⇒ ∆ | Σ}). As before, we show the contraposition. Suppose
there is some f : Var → W such that, M, f ⊩ Γ, and M, f ⊩ ∆, and M, f ⊩
⟨x, α, aM⟩Ra⟨y, β, bM⟩. Fix such f . By Definition 4.4.2, ⟨x, α, aM⟩Ra⟨y, β, bM⟩ is
equivalent toM, f ⊩ ⟨x, α⟩Ra⟨y, β⟩ orM, f ⊩ (x, α):preM(a) orM, f ⊩ (y, β):preM(a).
This is what we want to show.

□

As an additional remark, we here do not empty the following natural and usual
definition of the validity which we call s-validity for a (c-)sequent.

95

Definition 4.4.4 (s-validity). Γ ⇒ ∆ is s−valid in M if for all assignment f : Var →
D(M) such that M, f ⊩ A for all A ∈ Γ impliesM, f ⊩ B for some B ∈ ∆.

The reason for emptying t-validity instead of s-validity is that a similar argument re-
garding the failure of s-validity to the argument in Proposition 3.3.2 of GPAL also
holds in GDEL.

Proposition 4.4.3. There is a model M such that (R¬) of GEAK does not preserve
s-validity inM.

Proof. We follow the updated model in Example 2.3.1. Let Agt = {a}, MPub(¬p) =

({a}, {(a, a)}, pre) where pre(a) = ¬p.

?>=<89:;w a //

⊩p

a
))

M ?>=<89:;v a
ww

oo

⊮p

?>=<89:;aa
((
Pub(¬p)

pre(a)=¬p

update ///o/o/o ONMLHIJK(v, a)

⊮p

a
99
M⊗Pub(¬p)

A particular instance of the application of (R¬) is as follows:

⟨x, aPub(¬p)⟩:p⇒ ∥ ∅
⇒ ⟨x, aPub(¬p)⟩:¬p ∥ ∅

(R→)

We show that the upper c-sequent is s-valid inM⊗Pub(¬p) but the lower c-sequent is not.
First, we show that ⟨x, aPub(¬p)⟩:p ⇒ is s-valid inMPub(¬p), i.e., M, f ⊮ ⟨x, aPub(¬p)⟩:p
for any assignment f : Var → D(M) where D(M) = {w, v}. So, fix any f . We divide
our argument into: f (x) = w or f (x) = v. If f (x) = w, (f (x), a) does not survive after the
updated model M⊗Pub(¬p) (i.e., (w, a) < D(M⊗Pub(¬p))), and so MPub(¬p), (f (x), a) ⊮ p.
If f (x) = v, world (v, a) survives after Pub(¬p) combined, but (v, a) < V⊗Pub(¬p)(p),
which also implies M⊗Pub(¬p), (f (x), a) ⊮ p. Thus M, f ⊮ ⟨ f (x), aPub(¬p)⟩:p and the
upper c-sequent is s-valid.

Second, we show that⇒ ⟨ f (x), aPub(¬p)⟩:¬p is not s-valid inM, i.e.,M, f ⊮ ⟨ f (x), aPub(¬p)⟩:¬p
for some assignment f : Var → D(M). Fix f such that f (x) = w. Since (w, a) <
D(MPub(¬p)), we conclude M, f ⊮ (f (x), aPub(¬p)):¬p and the upper c-sequent is s-
valid. □

Combining Theorem 4.3.1 (the equality of the derivability between HEAK and
GEAK+), Theorem 4.2.1 (cut elimination of GEAK), and 4.4.1 (soundness of GEAK)
with Theorem 2.3.2 (completeness of HEAK), we have the following.

Corollary 4.4.1 (Completeness of GEAK). Given any formula A, the following are
equivalent:

(i) A is valid on all models,

(ii) ⊢HEAK A,

(iii) ⊢GEAK+⇒ ⟨x, ϵ⟩:A,

(iv) ⊢GEAK⇒ ⟨x, ϵ⟩:A.

96

4.5 Extensions of EAK from K to S5
As in the case of extensions of PAL in Section 3.5, we expand the basis of GEAK from
K to other modal logics including S5 which is the standard basis of epistemic logics.

Proposition 4.5.1. Let Θ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}. For all M = (W, (Ra)a∈Agt,V) ∈
MΘ and all action models of M = (S, (∼a)a∈Agt, pre),M⊗M is also a member ofMΘ

Proof. Fix any M = (W, (Ra)a∈Agt,V) in class MΘ and fix an action model M. By the
assumptionM ∈ MΘ i.e., (W, (Ra)a∈Agt) ∈ FΘ. We show (W⊗M, (R⊗M

a)a∈Agt) ∈ FΘ, and so
so in what follows, we show for any A ∈ Θ, Ra has a frame property defined by A. It
suffices to show that R⊗M

a has also the property.

Case where Ta ∈ Θ. Fix any world (x, s) ∈ W⊗M, and show (x, s)R⊗M
a (x, s). Since Ra

is reflexive, and obtain xRax, and since action model M is an S5 model, we obtain
s ∼a s as well. By the definition, we obtain the goal R⊗M

a .

Case where 5a ∈ Θ. Fix any (x, s), (y, t), (z, u) ∈ W⊗M. Suppose (x, s)R⊗M
a (y, t) and

(x, s)R⊗M
a (z, u), and show (y, t)R⊗M

a (z, u). Since Ra is Euclidean i.e., xRay and
xRaz jointly imply yRaz. By the assumption, we have yRaz, and since action
model M is an S5 model, we obtain s∼at and s∼au jointly imply t∼au as well. By
the suppositions, we obtain (x, s)R⊗M

a (y, t) (i.e., xRay and s∼at) and (x, s)R⊗M
a (z, u)

(i.e., xRaz and s∼au), we obtain yRaz and t∼au. Therefore, we get the goal
(y, t)R⊗M

a (z, u) as desired.

Other cases regarding Ba and 4a can be shown similarly. □

Note that Proposition 4.5.1 does not also hold as in the case of the extensions of EAK
like the case in PAL (Section 3.5), if Da is included, since consider Kripke model
M = (W,Ra,V) = ({w, v}, {(w, v), (v, v)},V) ∈ M{Da} where V(p) = {w} and action model
M = ({a}, {(a, a)}, pre) where pre(a) = p.

?>=<89:;w a //

⊩p

?>=<89:;v a
ww

⊮p

?>=<89:;a a
vv

pre(a)=p

update ///o/o/o ONMLHIJK(w, a)

⊩p

M⊗M

The updated modelM⊗M does not satisfy seriarity i.e.,M⊗M < M{Da}.
As the case of extensions of HK, when we add one or more formulas in {Ta,Ba, 4a, 5a |

a ∈ Agt} as additional axiom schemes to the set of axiom scheme of HEAK, we obtain
Hilbert-systems other than HEAK as follows.

Definition 4.5.1 (Extensions of HEAK). LetΘ be a subset of {Ta,Ba, 4a, 5a | a ∈ Agt}.
When each element ofΘ is added to HEAK as an axiom scheme by replacing p with an
arbitrary formula A, the extension of HEAK is the resulting Hilbert-system HEAKΘ.

We give names to Hilbert-systems with some particular combinations of axiom schemes.

HEAKT := HEAK{Ta | a ∈ Agt}, HEAKS4 := HEAK{Ta, 4a | a ∈ Agt},
HEAKB := HEAK{Ta,Ba | a ∈ Agt}, HEAKS5 := HEAK{Ta, 5a | a ∈ Agt}.

97

For any Θ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}, Logic of Epistemic Actions and Knowledge
EAKΘ is the set of all derivable formulas in HEAKΘ. We name some EAKΘ.

EAKT := EAK{Ta | a ∈ Agt}, EAKS4 := EAK{Ta, 4a | a ∈ Agt},
EAKB := EAK{Ta,Ba | a ∈ Agt}, EAKS5 := EAK{Ta, 5a | a ∈ Agt}.

Theorem 4.5.1 (Soundness and completeness of HEAKΘ). Let Θ be a subset of
{Ta,Ba, 4a, 5a | a ∈ Agt} and A ∈ LEAK . Then the following holds:

MΘ ⊩ A iff ⊢HEAKΘ A.

Proof. The proof is carried out by the same step as in Theorem 2.3.2. □

Corollary 4.5.1. EAKX is decidable, where X be an element of {T,B,S4, S5,D}.

Proof. We show that there is an effective method for deciding of any formula A ∈ LEAK

whether or not it is a theorem of EAKX. Fix any A ∈ LEAK . Note that translation
t : LEAK → LEL is inductively defined and so it provides an effective method which is
a composition of the two effective methods. Then since modal logic X is decidable by
Corollary 2.1.1, t(A) ∈ LML can be decided whether it is a theorem of X. □

Extensions of GEAK Let us define the extensions of GEAK. We add to GEAK one
or more of the additional rules which correspond to the frame properties.

Table 4.3: Rules for frame properties

⟨x, ϵ⟩Ra⟨x, ϵ⟩,Γ⇒ ∆ ∥ Σ
Γ⇒ ∆ ∥ Σ (refa)

Γ⇒ ∆, ⟨x, ϵ⟩Ra⟨y, ϵ⟩ ∥ Σ ⟨y, ϵ⟩Ra⟨x, ϵ⟩,Γ⇒ ∆ ∥ Σ
Γ⇒ ∆ ∥ Σ (syma)

Γ⇒ ∆, ⟨x, ϵ⟩Ra⟨y, ϵ⟩ ∥ Σ Γ⇒ ∆, ⟨y, ϵ⟩Ra⟨z, ϵ⟩ ∥ Σ ⟨x, ϵ⟩Ra⟨z, ϵ⟩,Γ⇒ ∆ ∥ Σ
Γ⇒ ∆ ∥ Σ (traa)

Γ⇒ ∆, ⟨x, ϵ⟩Ra⟨y, ϵ⟩ ∥ Σ Γ⇒ ∆, ⟨x, ϵ⟩Ra⟨z, ϵ⟩ ∥ Σ ⟨y, ϵ⟩Ra⟨z, ϵ⟩,Γ⇒ ∆ ∥ Σ
Γ⇒ ∆ ∥ Σ (euca)

Let ∗ be a function from {Ta,Ba, 4a, 5a | a ∈ Agt} to {(refa), (syma), (traa), (euca)
| a ∈ Agt} defined as follows:

Ta
∗ := (refa), 4a

∗ := (traa), Ba
∗ := (syma), 5a

∗ := (euca).

Let Θ be a subset of {Ta,Ba, 4a, 5a | a ∈ Agt}. Then Θ∗ is defined to be the set
{X∗ | X ∈ Θ}.

Definition 4.5.2 (Extensions of GEAK). LetΘ be a subset of {Ta,Ba, 4a, 5a | a ∈ Agt}.
A labelled sequent calculus GEAKΘ∗ is an extension of GEAK, when each element
of Θ∗ is added to GEAK as inference rules.

98

Some particular combinations of inference rules are given names.

GEAKT := GEAK{(refa) | a ∈ Agt},
GEAKB := GEAK{(syma) | a ∈ Agt},
GEAKS4 := GEAK{(refa), (traa) | a ∈ Agt},
GEAKS5 := GEAK{(refa), (euca) | a ∈ Agt},

We call each GEAKΘ∗ with (Cut) GEAKΘ∗+.

Theorem 4.5.2. For any Θ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}, if ⊢HEAKΘ A then ⊢GEAKΘ∗⇒
x:ϵA (for any x), for any formula A ∈ LEAK .

Proof. Proof is almost the same as Theorem 3.5.2. We look at the following additional
cases.

Case of Ba with (syma). In this case, we show ⊢GDELΘ∗⇒ x:Ba where (syma) ∈ Θ∗.

Initial Seq.

x:A, xRay⇒ y:♢aA, xRay

Initial Seq.

yRa x, x:A⇒ yRa x

Initial Seq.

yRa x, x:A⇒ x:A
yRa x, x:A⇒ y:♢aA

(R♢a)

yRa x, x:A, xRay⇒ y:♢aA
(Lw)

x:A, xRay⇒ y:♢aA
(syma)

x:A⇒ x:□a♢aA
(R□a)

⇒ x:A→ □a♢aA
(R→)

Case of Ta with (refa). In this case, we show ⊢GDELΘ∗⇒ x:Ta where (refa) ∈ Θ∗.

Initial Seq.

xRa x⇒ x:A, xRa x

Initial Seq.

xRa x, x:A⇒ x:A
xRa x, x:□aA⇒ x:A

(R□a)

x:□aA⇒ x:A
(re fa)

⇒ x:□aA→ A
(R→)

Case of 5a with (euca). In this case, we show ⊢GDELΘ∗⇒ x:5a where (euca) ∈ Θ∗.

Initial Seq.

xRay, xRaz, z:A⇒ y:♢A, xRay

Initial Seq.

xRay, xRaz, z:A⇒ y:♢A, xRaz

Initial Seq.

yRaz, z:A⇒ yRaz

Initial Seq.

yRaz, z:A⇒ z:A

yRaz, z:A⇒ y:♢A (R♢a)

yRaz, xRay, xRaz, z:A⇒ y:♢A (Lw)

xRay, xRaz, z:A⇒ y:♢A (euca)

x:♢aA, xRay⇒ y:♢aA
(L♢a)

x:♢aA⇒ x:□a♢aA
(R□a)

⇒ x:♢aA→ □a♢aA
(R→)

□

Theorem 4.5.3 (Soundness of GEAKΘ). For any Θ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}, given
any c-sequent Γ⇒ ∆ ∥ Σ in GEAKΘ, if ⊢GEAKΘ Γ⇒ ∆ ∥ Σ, then Γ⇒ ∆ ∥ Σ is t-valid
in every modelM ∈ MΘ.

99

Proof. Fix any Θ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}, and suppose ⊢GEAKΘ Γ ⇒ ∆ ∥ Σ. Fix
any modelM ∈ MΘ. Then we show Γ ⇒ ∆ ∥ Σ is t-valid. Fix any sequent Γ′ ⇒ ∆′ in
the c-sequent. We show the additional cases to the proof of Theorem 3.3.1, and so it
suffices to show that any additional rule keeps t-validity in any corresponding model to
the rule.

Case of (refa): Fix any Ra-reflexive model M. We show the contraposition. Suppose
that there is some f : Var → D(M), M, f ⊩ Γ′, and M, f ⊩ ∆′. Fix such f .
It suffices to show (f (x), f (x)) ∈ Ra which is equivalent to ⟨ f (x), ϵ⟩Ra⟨ f (x), ϵ⟩.
This is trivially obtained from the Ra-reflexive modelM.

Other cases can be shown by almost the same way as Proposition 3.5.3. Since Γ′ ⇒ ∆′
is sound and is an arbitrary sequent in Γ⇒ ∆ ∥ Σ, this c-sequent is sound as well. □

Theorem 4.5.4 (Cut elimination theorem of GEAKΘ∗+). For any Θ ⊆ {Ta,Ba, 4a, 5a |
a ∈ Agt}, and any c-sequent Γ ⇒ ∆ ∥ Σ, if ⊢GEAKΘ∗+ Γ ⇒ ∆ ∥ Σ, then ⊢GEAKΘ∗ Γ ⇒
∆ ∥ Σ.

Proof. It suffices to show additional cases for (refa), (syma), (traa) and (euca) in addi-
tion to Theorem 4.2. Since there is no principal expression(s) introduced by the upper
c-sequent(s), we do not have the case where cut expression As on both sides of upper
c-sequents are principal expressions. The other cases like only one of cut expressions is
introduced by the right upper c-sequent or the left upper c-sequent are straightforward.

The proof goes through the same procedure as in the proof of Theorem 3.2.2 with
the rule of (Ecut), and the proof is divided into four cases. In brief,

(1) at least one of upper c-sequents of (Ecut) is an initial c-sequent;

(2) the last inference rule of either upper c-sequents of (Ecut) is a structural rule;

(3) the last inference rule of either upper c-sequents of (Ecut) is a non-structural rule,
and the principal expression introduced by the rule is not the cut expression; and

(4) the last inference rules of two upper c-sequents of (Ecut) are both non-structural
rules, and the principal expressions introduced by the rules used on the upper
c-sequents of (Ecut) are both cut expressions.

It suffices to show additional cases for (refa), (syma), (traa) and (euca) in addition to
the proof of Theorem 3.2.2. Since there is no principal expression(s) introduced by
the upper c-sequent(s), we do not have the case (4) where cut expression As on both
sides of upper c-sequents are principal expressions. The other cases like only one of
cut expressions is introduced by the right upper c-sequent or the left upper c-sequent
are straightforward. We look at one of such cases.

Case of (3) where one of upper c-sequents of (Ecut) is inference rule (syma).

.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

xRay,A
m,Γ′ ⇒ ∆′ ∥ Σ

.... D3

yRax,Am,Γ′ ⇒ ∆′ ∥ Σ
Am, Γ′ ⇒ ∆′ ∥ Σ (syma)

Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

100

This is transformed into the derivation:
.... D1

Γ⇒ ∆,An ∥ Σ

.... D2

Am, xRay, Γ
′ ⇒ ∆′ ∥ Σ

xRay, Γ, Γ
′ ⇒ ∆,∆′ ∥ Σ (Ecut)

.... D1

Γ⇒ ∆,An ∥ Σ

.... D3

Am, yRax,Γ′ ⇒ ∆′ ∥ Σ
yRax,Γ,Γ′ ⇒ ∆,∆′ ∥ Σ (Ecut)

Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′ ∥ Σ (syma)

Γ, Γ′ ⇒ ∆,∆′ ∥ Σ (Lc)/(Rc)

Every other case can be shown similar to this. □

Then the corollary below holds.

Corollary 4.5.2. Given a formula A, x ∈ Var, Θ ⊆ {Ta,Ba, 4a, 5a | a ∈ Agt}, the
following statements are all equivalent.

(i) MΘ ⊩ A,

(ii) ⊢HEAKΘ A,

(iii) ⊢GEAKΘ∗+⇒ x:ϵA,

(iv) ⊢GEAKΘ∗⇒ x:ϵA.

Proof. The direction from (i) to (ii) is shown by Theorem 4.5.1 and the direction from
(ii) to (iii) is established by Theorem 4.5.2. Then, the direction from (iii) to (iv) is
established by the admissibility of (Cut) (Theorem 4.5.4). Finally, the direction from
(iv) to (i) is shown by Theorem 4.5.3. □

101

Chapter 5

Intuitionistic Public
Announcement Logic (IntPAL)

Epistemic logics including two major DELs such as PAL and EAK usually employ
classical modal logic as their underlying logic; however, we may easily imagine that
they can be constructed on a different foundation, intuitionistic modal logic. Intuition-
istic PAL (IntPAL), which is a combination of the most basic DEL i.e., PAL and an
intuitionistic modal logic, can become the touchstone of intuitionistic DELs.

In the context of epistemic logic, knowledge defined in an intuitionistic system
can be regarded as knowledge with verification or evidence (cf. [2, 87]).1 The area
of intuitionistic modal logics, since Fitch [26] proposed, has been developed histori-
cally by efforts of several logicians (e.g., [15, 25, 64, 70, 78]). On the foundation of
the past studies, Ma et al. [49] recently gave a Hilbert-system of IntPAL (we called
it HIntPAL), which is based on intuitionistic modal logic IK (or IntK) by Fischer
Servi [25] and Simpson [78], is shown to be semantically complete for algebraic se-
mantics. It is our expectation that a sequent calculus brings abundant benefits espe-
cially for constructive knowledge requiring verification, since a sequent calculus is
usually feasible in computation, compared with Hilbert-system; the calculus can easily
be translated into an algorithmic procedure. Thus it can supply a proof for any valid
formula i.e., verification for any knowledge that is based on intuitionistic system.

The outline of Chapter 5 is as follows. Section 5.1 provides the birelational Kripke
semantics and the Hilbert-system HIntPAL for IntPAL. Section 5.3 introduces our
calculus GIntPAL (with the rule of cut) and shows that all theorems of HIntPAL are
derivable in GIntPAL+ (Theorem 5.5.1). Section 5.6 establishes the cut elimination
theorem of GIntPAL+ (Theorem 5.6.1) and, as a corollary of the theorem, shows that
GIntPAL+ is consistent. Section 5.7 tackles the soundness theorem of GIntPAL+
(Theorem 5.7.1), and it should be noted that its soundness is not straightforward at all
by the following two reasons. First, it depends on a non-trivial choice of the notions of
validity of a sequent as suggested in [61]. Second, there is another difficulty, pointed

1Regarding recent trends in knowledge-representation with intuitionistic logic, several constructive de-
scription logics [13, 21, 53] are proposed to investigate possibly incomplete knowledge.

102

out in [78], which is peculiar to intuitionist modal logic. Then the semantic complete-
ness of GIntPAL (Corollary 5.7.1) is shown through the proven theorems. The last
section concludes the paper.

5.1 Language LIntPAL and birelational Kripke Seman-
tics

First of all, we address the syntax of IntPAL. Let Prop = {p, q, r, . . .} be a countably
infinite set of propositional atoms and Agt = {a, b, c, . . .} a nonempty finite set of agents.
Then the set LIntPAL = {A, B,C, . . .} of formulas of IntPAL is inductively defined as
follows:

A ::= p | ⊥ | (A ∧ A) | (A ∨ A) | (A→ A) | □aA | ♢aA | [A]A | ⟨A⟩A,

where p ∈ Prop, a ∈ Agt. We define ¬A := A→ ⊥. Also, ⊤ and A↔ B are defined as
usual. Similar to PAL, □aA reads ‘agent a knows that A’, and [A]B reads ‘after public
announcement of A, it holds that B’.

Example 5.1.1. Let us consider a propositional atom p to read ‘it will rain tomorrow’.
Then a formula ¬(□a p ∨ □a¬p) means that a does not know whether it will rain to-
morrow or not, and [¬p]□a¬p means that after a public announcement (e.g., a weather
report) of ¬p, a knows that it will not rain tomorrow.

Let us go on to the semantics of IntPAL. We mainly follow the birelational Kripke
semantics introduced in Ma et al. [49], which is based on intuitionistic version of modal
logic K. We call F = (W,⩽, (Ra)a∈Agt) an IntK-frame if (W,⩽) is a nonempty poset (W is
also denoted byD(M)), (Ra)a∈Agt is a Agt-indexed family of binary relations on W such
that the following two conditions (F1) and (F2) in Simpson [78, p.50] are satisfied:

(F1) : (⩾ ◦Ra) ⊆ (Ra◦ ⩾),
(F2) : (Ra◦ ⩽) ⊆ (⩽ ◦Ra).

We note that (F1) and (F2) are essential features to express a combination of the two
different relations such as ⩽ and Ra.

Moreover, a pairM = (F,V) is an IntK-model if F is an IntK-frame and V:Prop→
P↑(W) is a valuation function where

P↑(W) := {X ∈ P(W) | x ∈ X and x ⩽ y jointly imply y ∈ X for all x, y ∈ W},

that is, P↑(W) is the set of all upward closed sets. Next, let us define the satisfaction
relation M, w ⊩ A. Given an IntK-model M, a world w ∈ D(M), and a formula A ∈
LIntPAL, we defineM, w ⊩ A as follows:

103

M, w ⊩ p iff w ∈ V(p),
M, w ⊩ ⊥ Never,
M, w ⊩ A ∧ B iff M, w ⊩ A andM, w ⊩ B,
M, w ⊩ A ∨ B iff M, w ⊩ A orM, w ⊩ B,
M, w ⊩ A→ B iff for all v ∈ W : w ⩽ v andM, v ⊩ A jointly imply M, v ⊩ B,
M, w ⊩ □aA iff for all v ∈ W : w(⩽ ◦Ra)v impliesM, v ⊩ A,
M, w ⊩ ♢aA iff for some v ∈ W : wRav andM, v ⊩ A,
M, w ⊩ [A]B iff for all v ∈ W : w ⩽ v andM, v ⊩ A jointly imply MA, v ⊩ B,
M, w ⊩ ⟨A⟩B iff M, w ⊩ A andMA, w ⊩ B,

where the restriction MA, in the definition of the announcement operators, is the re-
stricted IntK-model to the truth set of A, defined as MA = ([[A]]M,⩽A, (RA

a)a∈Agt,VA)
with

[[A]]M := {w ∈ W | M, w ⊩ A}
⩽A := ⩽ ∩([[A]]M × [[A]]M)
RA

a := Ra ∩ ([[A]]M × [[A]]M)
VA(p) := V(p) ∩ [[A]]M (p ∈ Prop).

We note that the conditions (F1) and (F2) are still satisfied inMA. Added to these, the
restriction of the composition (⩽ ◦Ra)A is defined by (⩽ ◦Ra) ∩ ([[A]]M × [[A]]M).

Definition 5.1.1. A formula A is valid in an IntK-model M if M, w ⊩ A for all w ∈
D(M).

By the above semantics, the important semantic feature, heredity, is preserved as
follows.2

Proposition 5.1.1 (Hereditary). For all IntK-modelsM, for all w, v ∈ D(M), ifM, w ⊩
A and w ⩽ v, thenM, v ⊩ A, for any formula A.

Besides, the following proposition is also significant.

Proposition 5.1.2. (⩽ ◦Ra)A = (⩽A ◦RA
a)

Proof. We briefly look at the direction of ⊆. Fix any v, u ∈ D(M) such that v(⩽ ◦Ra)Au.
We show x(⩽A ◦RA

a)u. By the above definition, we have v(⩽ ◦Ra)u and (v, u) ∈ [[A]]M ×
[[A]]M, and then there exists some t, such that v ⩽ t and tRau. Take such t, and by
Proposition 5.1.1, we get t ∈ [[A]]M. Therefore, we conclude x(⩽A ◦RA

a)u. □

We denote finite lists (A1, ..., An) of formulas by α, β, etc., and do the empty list by ϵ.
As an abbreviation, for any list α = (A1, A2, ..., An) of formulas, we naturally defineMα

inductively as: Mα := M (if α = ϵ), and Mα := (Mβ)An = (Wβ,An , (Rβ,An
a)a∈Agt,Vβ,An)

(if α = β, An). We may also denote (Mβ)An by Mβ,An for simplicity. From Proposi-
tion 5.1.2, the next corollary may be easily shown by induction on the number of α.

Corollary 5.1.1. (⩽ ◦Ra)α = (⩽α ◦Rαa)

2Two conditions, (F1) and (F2), are required to show heredity (and validity of axioms) in IntK on which
GIntPAL is based. In fact, one more condition is added to the two in [49] for some specific purpose in their
paper. That is Ra = (⩽ ◦Ra) ∩ (Ra◦ ⩾).

104

5.2 Examples of knowledge-change in IntPAL
Let us give the following examples to help for understanding the heart of IntPAL.

Example 5.2.1. Let us trace Example 5.1.1 of PAL where Agt = {a}; and bidirec-
tional Kripke modelM = (W,⩽,Ra,V) = ({w1, w2}, idW ,W2,V) where idW is the iden-
tity relation and V(p) = {w1}, 3 and, M¬p = ({w2}, {(w2, w2)}, {(w2, w2)},V¬p) where
V¬p(p) = ∅. These models are shown in graphic forms as follows.

M GFED@ABCw1a,⩽
,, a //

⊩p

GFED@ABCw2 a,⩽
rr

oo

⊮p

[¬p] ///o/o/o GFED@ABCw2 a,⩽
rr

⊮p

M¬p

InM, agent a does not know whether p or ¬p (i.e., ¬(□a p ∨ □a¬p) is valid inM). But
after announcement of ¬p, agent a comes to know ¬p in the restricted modelM to ¬p.

Example 5.2.2. Let us consider another example which is peculiar to IntPAL. Let Agt
be {a} and the following two modelsM := (W,⩽,Ra,V) where W := {w1, w2, w3, w4},⩽:=
idW ∪ {(w1, w2), (w2, w3), (w2, w4)},Ra := idW ∪ {w3, w4}2 and V(p) = {w4}, and,M¬p =

(W¬p,⩽,R¬p
a ,V¬p) where W := {w1, w2, w3},⩽:= idW ∪ {(w1, w2), (w2, w3)},Ra := idW

and V¬p(p) = ∅. These models are shown in graphic forms as follows.

M M¬p

GFED@ABCw3 ``
oo //⊮p GFED@ABCw4>>

⊩p GFED@ABCw3 aa

GFED@ABCw2
OO

⊮p
[¬p] ///o/o/o/o GFED@ABCw2

OO

GFED@ABCw1⊮p GFED@ABCw1

InM, agent a does not know whether p or ¬p (i.e., ¬(□a p ∨ □a¬p) is valid inM). But
after announcement of ¬p, agent a comes to know ¬p in the restricted modelM to ¬p.

5.3 Hilbert-system HIntPAL of IntHPAL
We first introduce a Hilbert-system for IntPAL (HIntPAL). It is defined in Table 5.1 ,
where the axiom (from (RA1) to (RA14)), called recursion axioms, and one inference
rule (Nec[.]) are added to the Hilbert-system of IntK. Through the axioms and rules,
each theorem of HIntPAL may be reduced into a theorem of the Hilbert-system of
IntK. And the previous work [49] has shown the completeness theorem of HIntPAL.

3Note that the above IntK frame satisfies the conditions since (Ra◦ ⩽) = (⩽ ◦Ra) = (⩾ ◦Ra) = (Ra◦ ⩽) =
{w1, w1}2.

105

Theorem 5.3.1 (Completeness of HIntPAL). For any formula A, A is valid in all IntK-
models iff A is a theorem of HIntPAL.

Table 5.1: Hilbert-system for IntPAL : HIntPAL
Modal Axioms (Taut) all instantiations of theorems of

intuitionistic propositional logic
(IK1) □a(p→ q)→ (□a p→ □aq)
(IK2) ♢a(p ∨ q)→ (♢a p ∨ ♢aq))
(IK3) ¬♢a⊥
(FS 1) ♢a(p→ q)→ (□a p→ ♢aq)
(FS 2) (♢a p→ □aq)→ □a(p→ q)

Recursion Axioms (RA1) [A]⊥ ↔ ¬A
(RA2) ⟨A⟩⊥ ↔ ⊥
(RA3) [A]p↔ (A→ p)
(RA4) ⟨A⟩p↔ (A ∧ p)
(RA5) [A](B ∨C)↔ A→ ⟨A⟩B ∨ ⟨A⟩C
(RA6) ⟨A⟩(B ∨C)↔ (⟨A⟩B ∨ ⟨A⟩C)
(RA7) [A](B ∧C)↔ [A]B ∧ [A]C
(RA8) ⟨A⟩(B ∧C)↔ ⟨A⟩B ∧ ⟨A⟩C
(RA9) [A](B→ C)↔ ⟨A⟩B→ ⟨A⟩C
(RA10) ⟨A⟩(B→ C)↔ A ∧ (⟨A⟩B→ ⟨A⟩C)
(RA11) [A]□aB↔ (A→ □a[A]B)
(RA12) ⟨A⟩□aB↔ (A ∧ □a[A]B)
(RA13) [A]♢aB↔ (A→ ♢a[A]B)
(RA14) ⟨A⟩♢aB↔ (A ∧ ♢a⟨A⟩B)

Inference Rules (MP) From A and A→ B, infer B
(Nec□a) From A, infer □aA
(Nec[.]) From A, infer [B]A, for any B

It is well-known, since Gentzen [30], that the sequent calculus LJ for intuitionistic
logic is obtained from the sequent calculus LK of classical logic, by restricting the
right-hand side of a sequent to at most one formula. It is quite natural to ask if we can
obtain an intuitionistic version of GPAL by using the same restriction. Therefore, our
target of this paper is to construct a labelled sequent calculus (we call it GIntPAL and
GIntPAL+ if it has the cut rule) for HIntPAL.

5.4 Labelled sequent calculus GIntPAL
Let Var = {x, y, z, ...} be a countably infinite set of variables. Then, given any x, y ∈ Var,
any list α of formulas and any formula A, we say x:αA is a labelled formula, and that,
for any agent a ∈ Agt, xRαay is a relational atom. Intuitively, the labelled formula x:αA
corresponds to ‘Mα, x ⊩ A’ and is to read ‘after a sequence α of public announcements,
x still exists (survives) in the restricted domain and A holds at x’, and the relational
atom xRαay is to read ‘after a sequence α of public announcements both x and y exist

106

(survive) and there is a accessibility relation of a from x to y’. We also use the term,
labelled expressions to indicate that they are either labelled formulas or relational atoms
and we denote by A,B, etc. labelled expressions. A sequent Γ ⇒ ∆ is a pair of finite
multi-sets of labelled expressions, where at most one labelled expression can appear
in ∆. The set of inference rules of GIntPAL is shown in Table 5.2. Additionally, for
any sequent Γ ⇒ ∆, if Γ ⇒ ∆ is derivable in GIntPAL, we write ⊢GIntPAL Γ ⇒ ∆.
Hereinafter, we use the following abbreviations in a derivation for drawing simpler
derivations:

Initial Seq.
A,Γ⇒ A

Initial Seq.
x:α⊥,Γ⇒ ∆

both of which are obvious by the rule (Lw). Besides, we also use the following deriv-
able rules:

x:αA, x:αB,Γ⇒ ∆
x:αA ∧ B,Γ⇒ ∆ (L∧) Γ⇒ x:αA Γ⇒ x:αB

Γ⇒ x:αA ∧ B
(R∧)

x:αA, x:α,AB,Γ⇒ ∆
x:α⟨A⟩B,Γ⇒ ∆ (L⟨.⟩)

Moreover, GIntPAL+ is GIntPAL with the following rule (Cut):

Γ⇒ A A,Γ′ ⇒ ∆
Γ,Γ′ ⇒ ∆ (Cut),

where A in (Cut) is called a cut expression. And, we use the term principal expression
of an inference rule of GIntPAL+ if a labelled expression is newly introduced on the
left uppersequent or the right uppersequent by the rule of GIntPAL+.

5.5 All theorems of HIntPAL are derivable in GIntPAL+

In this section, we show the set of derivable formulas in HIntPAL is equal to the set
derivable formulas in GIntPAL+. Let us define the length of a labelled expression A
in advance.

Definition 5.5.1. For any formula A, ℓ(A) is defined to be the number of the proposi-
tional atoms and the logical connectives in A.

ℓ(α) =

0 if α = ϵ
ℓ(β) + ℓ(A) if α = β, A

ℓ(A) =

ℓ(α) + ℓ(A) if A = x:αA
ℓ(α) + 1 if A = xRαay

The following lemma is helpful to make our presentation of derivations shorter.

Lemma 5.5.1. For any labelled expression A and any finite multi-set of labelled ex-
pressions Γ, ⊢GIntPAL A,Γ⇒ A.

Next, we define the notion of substitution of variables in labelled expressions.

107

Table 5.2: Labelled sequent calculus for IntPAL : GIntPAL
In what follows in this table, ∆ contains at most one labelled expression.

(Initial sequents)
x:αA⇒ x:αA xRαav⇒ xRαav

x:α⊥ ⇒
(Structural Rules)

Γ⇒ ∆
A,Γ⇒ ∆ (Lw) Γ⇒

Γ⇒ A (Rw)
A,A,Γ⇒ ∆
A,Γ⇒ ∆ (Lc)

(Rules for propositional connectives)

Γ⇒ x:αA x:αB,Γ⇒ ∆
x:αA→ B,Γ⇒ ∆ (L→)

x:αA, Γ⇒ x:αB
Γ⇒ x:αA→ B

(R→)

x:αA,Γ⇒ ∆
x:αA ∧ B,Γ⇒ ∆ (L∧1)

x:αB, Γ⇒ ∆
x:αA ∧ B, Γ⇒ ∆ (L∧2) Γ⇒ x:αA Γ⇒ x:αB

Γ⇒ x:αA ∧ B
(R∧)

x:αA,Γ⇒ ∆ x:αB,Γ⇒ ∆
x:αA ∨ B,Γ⇒ ∆ (L∨) Γ⇒ x:αA

Γ⇒ x:αA ∨ B
(R∨1) Γ⇒ x:αB

Γ⇒ x:αA ∨ B
(R∨2)

(Rules for knowledge operators)

Γ⇒ xRαay y:
αA,Γ⇒ ∆

x:α□aA, Γ⇒ ∆ (L□a)
xRαay,Γ⇒ y:αA
Γ⇒ x:α□aA

(R□a)†

xRαay, y:
αA,Γ⇒ ∆

x:α♢aA,Γ⇒ ∆ (L♢a)†
Γ⇒ xRαay Γ⇒ y:αA

Γ⇒ x:α♢aA
(R♢a)

† y does not appear in the lowersequent.

(Rules for IntPAL)

x:αp,Γ⇒ ∆
x:α,A p,Γ⇒ ∆

(Lat)
Γ⇒ x:αp
Γ⇒ x:α,A p

(Rat)

Γ⇒ x:αA x:α,AB,Γ⇒ ∆
x:α[A]B,Γ⇒ ∆ (L[.])

x:αA, Γ⇒ x:α,AB
Γ⇒ x:α[A]B

(R[.])

x:αA,Γ⇒ ∆
x:α⟨A⟩B,Γ⇒ ∆ (L⟨.⟩1)

x:α,AB,Γ⇒ ∆
x:α⟨A⟩B,Γ⇒ ∆ (L⟨.⟩2) Γ⇒ x:αA Γ⇒ x:α,AB

Γ⇒ x:α⟨A⟩B (R⟨.⟩)

x:αA,Γ⇒ ∆
xRα,Aa y,Γ⇒ ∆

(Lrela1)
y:αA,Γ⇒ ∆

xRα,Aa y, Γ⇒ ∆
(Lrela2)

xRαay,Γ⇒ ∆
xRα,Aa y,Γ⇒ ∆

(Lrela3)

Γ⇒ x:αA Γ⇒ y:αA Γ⇒ xRαay

Γ⇒ xRα,Aa y
(Rrela)

108

Definition 5.5.2. Let A be any labelled expression. Then the substitution of x for y in
A, denoted by A[x/y], is defined by

z[x/y] := z (if y , z)
z[x/y] := x (if y = z)
(z:αA)[x/y] := (z[x/y]):αA
(zRαaw)[x/y] := (z[x/y])Rαa (w[x/y])

Substitution [x/y] to a multi-set Γ of labelled expressions is defined as

Γ[x/y] := {A[x/y] | A ∈ Γ}.

For a preparation of Theorem 5.5.1, we show the next lemma.

Lemma 5.5.2.

(i) ⊢GIntPAL Γ⇒ ∆ implies ⊢GIntPAL Γ[x/y]⇒ ∆[x/y] for any x, y ∈ Var.

(ii) ⊢GIntPAL+ Γ⇒ ∆ implies ⊢GIntPAL+ Γ[x/y]⇒ ∆[x/y] for any x, y ∈ Var.

Proof. By induction on the height of the derivation. We go through almost the same
procedure in the proof as in Negri et al. [58, p.194]. □

Theorem 5.5.1. For any formula A, if ⊢HIntPAL A, then ⊢GIntPAL+⇒ x:ϵA (for any
x ∈ Var).

Proof. The proof is carried out by the height of the derivation in HIntPAL. Let us
base cases (the derivation height of HIntPAL is equal to 0) except the cases of (RA3)
and (RA11) whose derivations are similar to derivations in the proof of Theorem 3.2.1.

The case of (IK1)

Initial Seq.

xRϵay, x:ϵ□a p⇒ xRϵay

Initial Seq.

xRϵay⇒ xRϵay

Initial Seq.

y:ϵ p, xRϵay⇒ y:ϵ p
xRϵay, x:ϵ□a p⇒ y:ϵ p (L→)

Initial Seq.

y:ϵq, xRϵay, x:ϵ□a p⇒ y:ϵq
xRϵay, y:

ϵ p→ q, x:ϵ□a p⇒ y:ϵq (L→)

xRϵay, x:ϵ□a(p→ q), x:ϵ□a p⇒ y:ϵq (L□)

x:ϵ□a(p→ q), x:ϵ□a p⇒ x:ϵ□aq
(R□)

x:ϵ□a(p→ q)⇒ x:ϵ□a p→ □aq
(R→)

⇒ x:ϵ□a(p→ q)→ (□a p→ □aq)
(R→)

The case of (IK2)

Initial Seq.

y:ϵ p, xRϵay⇒ xRϵay

Initial Seq.

y:ϵ p, xRϵay⇒ y:ϵ p
y:ϵ p, xRϵay⇒ x:ϵ♢a p

(R♢a)

y:ϵ p, xRϵay⇒ x:ϵ♢a p ∨ ♢aq
(R∨1)

Initial Seq.

y:ϵq, xRϵay⇒ xRϵay

Initial Seq.

y:ϵq, xRϵay⇒ y:ϵq
y:ϵq, xRϵay⇒ x:ϵ♢aq

(R♢a)

y:ϵq, xRϵay⇒ x:ϵ♢a p ∨ ♢aq
(R∨2)

y:ϵ (p ∨ q), xRϵay⇒ x:ϵ♢a p ∨ ♢aq
(L∨)

x:ϵ♢a(p ∨ q)⇒ x:ϵ♢a p ∨ ♢aq
(L♢)

⇒ x:ϵ♢a(p ∨ q)→ (♢a p ∨ ♢aq)
(R→)

109

The case of (IK3)
Initial Seq.

y:ϵ⊥, xRϵay⇒ x:ϵ⊥
x:ϵ♢a⊥ ⇒ x:ϵ⊥ (L♢)

⇒ x:ϵ¬♢a⊥
(R→)

The case of (FS 1)

Initial Seq.

xRϵay, y:
ϵ p→ q, x:ϵ□a p⇒ xRϵay

Initial Seq.

xRϵay⇒ xRϵay

Initial Seq.

y:ϵ p, xRϵay⇒ y:ϵ p
xRϵay, x:ϵ□a p⇒ y:ϵ p

Initial Seq.

y:ϵq, xRϵay, x:ϵ□a p⇒ y:ϵq
xRϵay, y:

ϵ p→ q, x:ϵ□a p⇒ y:ϵq
xRϵa1, y:ϵ p→ q, x:ϵ□a p⇒ x:ϵ♢aq

(R♢)

x:ϵ♢a(p→ q), x:ϵ□a p⇒ x:ϵ♢aq
(L♢)

x:ϵ♢a(p→ q)⇒ x:ϵ□a p→ ♢aq
(R→)

⇒ x:ϵ♢a(p→ q)→ (□a p→ ♢aq)
(R→)

The case of (FS 2)

Initial Seq.

y:ϵ p, xRϵay⇒ xRϵay

Initial Seq.

y:ϵ p, xRϵay⇒ y:ϵ p
y:ϵ p, xRϵay⇒ x:ϵ♢a p

(R♢a)

Initial Seq.
xRϵay⇒ xRϵay

Initial Seq.

y:ϵq, xRϵay⇒ y:ϵq
x:ϵ□aq, xRϵay⇒ y:ϵq

(L□a)

x:ϵ□aq, y:ϵ p, xRϵay⇒ y:ϵq
(Lw)

x:ϵ♢a p→ □aq, y:ϵ p, xRϵay⇒ y:ϵq
(L→)

x:ϵ♢a p→ □aq, xRϵay⇒ y:ϵ p→ q
(R→)

x:ϵ♢a p→ □aq⇒ x:ϵ□a(p→ q)
(R□a)

⇒ x:ϵ (♢a p→ □aq)→ □a(p→ q)
(R→)

The case of (RA1)

Initial Seq.

x:ϵA⇒ x:ϵA

Initial Seq.

x:ϵA, x:A⊥ ⇒ x:ϵ⊥
x:ϵA, x:ϵ [A]⊥ ⇒ x:ϵ⊥ (L[.])

x:ϵ [A]⊥ ⇒ x:ϵ¬A
(R→)

⇒ x:ϵ [A]⊥ → ¬A
(R→)

Initial Seq.

x:ϵA⇒ x:ϵA

Initial Seq.

x:ϵA, x:ϵ⊥ ⇒ x:A⊥
x:ϵA, x:ϵ¬A⇒ x:A⊥

(L→)

x:ϵ¬A⇒ x:ϵ [A]⊥ (R[.])

⇒ x:ϵ¬A→ [A]⊥ (R→)

⇒ x:ϵ [A]⊥ ↔ ¬A
(R∧)

The case of (RA2)
Initial Seq.

x:A⊥ ⇒ x:ϵ⊥
x:ϵ ⟨A⟩⊥ ⇒ x:ϵ⊥ (R⟨.⟩2)

⇒ x:ϵ ⟨A⟩⊥ → ⊥
(R→)

Initial Seq.

x:ϵ⊥ ⇒ x:ϵ ⟨A⟩⊥
⇒ x:ϵ⊥ → ⟨A⟩⊥

(R→)

⇒ x:ϵ ⟨A⟩⊥ ↔ ⊥
(R∧)

The case of (RA4)

Initial Seq.

x:ϵA, x:Aq⇒ x:ϵA

Initial Seq.

x:ϵq, x:ϵA⇒ x:ϵq

x:ϵA, x:Aq⇒ x:ϵq
(Lat)

x:ϵA, x:Aq⇒ x:ϵ (A ∧ q)
(R∧)

x:ϵ ⟨A⟩q⇒ x:ϵ (A ∧ q)
(R⟨.⟩)

Initial Seq.

x:ϵq, x:ϵA⇒ x:ϵA

Initial Seq.

x:ϵq, x:ϵA⇒ x:ϵq

x:ϵq, x:ϵA⇒ x:Aq
(Rat)

x:ϵq, x:ϵA⇒ x:ϵ ⟨A⟩q (L⟨.⟩)

x:ϵ (A ∧ q)⇒ x:ϵ ⟨A⟩q
(L∧)

⇒ x:ϵ (A ∧ q)→ ⟨A⟩q
(R→)

⇒ x:ϵ ⟨A⟩q↔ (A ∧ q)
(R∧)

110

The case of (RA5): left to right

Initial Seq.

x:ϵA⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB⇒ x:AB

x:ϵA, x:AB⇒ x:ϵ ⟨A⟩B
(L⟨.⟩)

x:ϵA, x:AB⇒ x:ϵ (⟨A⟩B ∨ ⟨A⟩C)
(R∨)

Initial Seq.

x:ϵA, x:AC ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AC ⇒ x:AC

x:ϵA, x:AC ⇒ x:ϵ ⟨A⟩C
(L⟨.⟩)

x:ϵA, x:AC ⇒ x:ϵ (⟨A⟩B ∨ ⟨A⟩C)
(R∨)

x:ϵA, x:A(B ∨C)⇒ x:ϵ (⟨A⟩B ∨ ⟨A⟩C)
(L∨)

x:ϵA, x:ϵ [A](B ∨C)⇒ x:ϵ (⟨A⟩B ∨ ⟨A⟩C)
(L[.])

x:ϵ [A](B ∨C)⇒ x:ϵA→ (⟨A⟩B ∨ ⟨A⟩C)
(R→)

⇒ x:ϵ [A](B ∨C)→ (A→ (⟨A⟩B ∨ ⟨A⟩C))
(R→)

The case of (RA5): right to left

Initial Seq.

x:ϵA⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB⇒ x:AB

x:ϵA, x:AB⇒ x:A(B ∨C)
(R∨)

x:ϵA, x:ϵ ⟨A⟩B⇒ x:A(B ∨C)
(R⟨.⟩)

Initial Seq.

x:ϵA, x:AC ⇒ x:AC

x:ϵA, x:AC ⇒ x:A(B ∨C)
(R∨)

x:ϵA, x:ϵ ⟨A⟩C ⇒ x:A(B ∨C)
(R⟨.⟩)

x:ϵA, x:ϵ (⟨A⟩B ∨ ⟨A⟩C)⇒ x:A(B ∨C)
(L∨)

x:ϵA, x:ϵA→ (⟨A⟩B ∨ ⟨A⟩C)⇒ x:A(B ∨C)
(L→)

x:ϵA→ (⟨A⟩B ∨ ⟨A⟩C)⇒ x:ϵ [A](B ∨C)
(R[.])

⇒ x:ϵ (A→ (⟨A⟩B ∨ ⟨A⟩C))→ [A](B ∨C)
(R→)

The case of (RA6): left to right

Initial Seq.

x:ϵA, x:AB⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB⇒ x:AB

x:ϵA, x:AB⇒ x:ϵ ⟨A⟩B
(L⟨.⟩)

x:ϵA, x:AB⇒ x:ϵ (⟨A⟩B ∨ ⟨A⟩C)
(R∨)

Initial Seq.

x:ϵA, x:AC ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AC ⇒ x:AC

x:ϵA, x:AC ⇒ x:ϵ ⟨A⟩C
(L⟨.⟩)

x:ϵA, x:AC ⇒ x:ϵ (⟨A⟩B ∨ ⟨A⟩C)
(R∨)

x:ϵA, x:A(B ∨C)⇒ x:ϵ (⟨A⟩B ∨ ⟨A⟩C)
(L∨)

x:ϵ ⟨A⟩(B ∨C)⇒ x:ϵ (⟨A⟩B ∨ ⟨A⟩C)
(R⟨.⟩)

⇒ x:ϵ ⟨A⟩(B ∨C)→ (⟨A⟩B ∨ ⟨A⟩C)
(R→)

The case of (RA6): right to left

Initial Seq.

x:ϵA, x:AB⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB⇒ x:AB

x:ϵA, x:AB⇒ x:A(B ∨C)
(R∨)

x:ϵA, x:AB⇒ x:ϵ ⟨A⟩(B ∨C)
(L⟨.⟩)

x:ϵ ⟨A⟩B⇒ x:ϵ ⟨A⟩(B ∨C)
(R⟨.⟩)

Initial Seq.

x:ϵA, x:AC ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AC ⇒ x:AC

x:ϵA, x:AC ⇒ x:A(B ∨C)
(R∨)

x:ϵA, x:AC ⇒ x:ϵ ⟨A⟩(B ∨C)
(L⟨.⟩)

x:ϵ ⟨A⟩C ⇒ x:ϵ ⟨A⟩(B ∨C)
(R⟨.⟩)

x:ϵ (⟨A⟩B ∨ ⟨A⟩C)⇒ x:ϵ ⟨A⟩(B ∨C)
(L∨)

⇒ x:ϵ (⟨A⟩B ∨ ⟨A⟩C)→ ⟨A⟩(B ∨C)
(R→)

The case of (RA7): left to right

Initial Seq.

x:ϵA⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AB

x:ϵA, x:A(B ∧C)⇒ x:AB
(L∧)

x:ϵA, x:ϵ [A](B ∧C)⇒ x:AB
(L[.])

x:ϵ [A](B ∧C)⇒ x:ϵ [A]B
(R[.])

Initial Seq.

x:ϵA⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AC

x:ϵA, x:A(B ∧C)⇒ x:AC
(L∧)

x:ϵA, x:ϵ [A](B ∧C)⇒ x:AC
(L[.])

x:ϵ [A](B ∧C)⇒ x:ϵ [A]C
(R[.])

x:ϵ [A](B ∧C)⇒ x:ϵ ([A]B ∧ [A]C)
(R∧)

⇒ x:ϵ [A](B ∧C)→ ([A]B ∧ [A]C)
(R→)

111

The case of (RA7): right to left

Initial Seq.

x:ϵA, x:ϵ [A]B⇒ x:ϵA

Initial Seq.

x:ϵA, x:AC ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AB

x:ϵA, x:ϵ [A]B, x:AC ⇒ x:AB
(L[.])

x:ϵA, x:ϵ [A]B, x:ϵ [A]C ⇒ x:AB
(L[.])

Initial Seq.

x:ϵA, x:ϵ [A]B⇒ x:ϵA

Initial Seq.

x:ϵA, x:ϵ [A]B, x:AC ⇒ x:AC

x:ϵA, x:ϵ [A]B, x:ϵ [A]C ⇒ x:AC
(L[.])

x:ϵA, x:ϵ [A]B, x:ϵ [A]C ⇒ x:A(B ∧C)
(R∧)

x:ϵ [A]B, x:ϵ [A]C ⇒ x:ϵ [A](B ∧C)
(R[.])

x:ϵ ([A]B ∧ [A]C)⇒ x:ϵ [A](B ∧C)
(L∧)

⇒ x:ϵ ([A]B ∧ [A]C)→ [A](B ∧C)
(R→)

The case of (RA8): left to right
Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AB

x:ϵA, x:AB, x:AC ⇒ x:ϵ ⟨A⟩B
(L⟨.⟩)

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AC

x:ϵA, x:AB, x:AC ⇒ x:ϵ ⟨A⟩C
(L⟨.⟩)

x:ϵA, x:AB, x:AC ⇒ x:ϵ (⟨A⟩B ∧ ⟨A⟩C)
(R∧)

x:ϵA, x:A(B ∧C)⇒ x:ϵ (⟨A⟩B ∧ ⟨A⟩C)
(L∧)

x:ϵ ⟨A⟩(B ∧C)⇒ x:ϵ (⟨A⟩B ∧ ⟨A⟩C)
(R⟨.⟩)

⇒ x:ϵ ⟨A⟩(B ∧C)→ (⟨A⟩B ∧ ⟨A⟩C)
(R→)

The case of (RA8): right to left

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AB

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AC

x:ϵA, x:AB, x:AC ⇒ x:A(B ∧C)
(R∧)

x:ϵA, x:AB, x:AC ⇒ x:ϵ ⟨A⟩(B ∧C)
(L⟨.⟩)

x:ϵA, x:ϵ ⟨A⟩C, x:AB⇒ x:ϵ ⟨A⟩(B ∧C)
(R⟨.⟩)

x:ϵ ⟨A⟩B, x:ϵ ⟨A⟩C ⇒ x:ϵ ⟨A⟩(B ∧C)
(R⟨.⟩)

x:ϵ (⟨A⟩B ∧ ⟨A⟩C)⇒ x:ϵ ⟨A⟩(B ∧C)
(L∧)

⇒ x:ϵ (⟨A⟩B ∧ ⟨A⟩C)→ ⟨A⟩(B ∧C)
(R→)

The case of (RA10): left to right

Initial Seq.

x:ϵA, x:AB→ C ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB, x:AB→ C ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB⇒ x:AB

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AC

x:ϵA, x:AB, x:AB→ C ⇒ x:AC
(L→)

x:ϵA, x:AB, x:AB→ C ⇒ x:ϵ ⟨A⟩C
(L⟨.⟩)

x:ϵA, x:ϵ ⟨A⟩B, x:AB→ C ⇒ x:ϵ ⟨A⟩C
(R⟨.⟩)

x:ϵA, x:AB→ C ⇒ x:ϵ ⟨A⟩B→ ⟨A⟩C
(R→)

x:ϵA, x:AB→ C ⇒ x:ϵ (A ∧ (⟨A⟩B→ ⟨A⟩C))
(R∧)

x:ϵ ⟨A⟩(B→ C)⇒ x:ϵ (A ∧ (⟨A⟩B→ ⟨A⟩C))
(R⟨.⟩)

⇒ x:ϵ ⟨A⟩(B→ C)→ (A ∧ (⟨A⟩B→ ⟨A⟩C))
(R→)

The case of (RA10): right to left

Initial Seq.

x:ϵA, x:ϵ ⟨A⟩B→ ⟨A⟩C ⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB⇒ x:ϵA

Initial Seq.

x:ϵA, x:AB⇒ x:AB

x:ϵA, x:AB⇒ x:ϵ ⟨A⟩B
(L⟨.⟩)

Initial Seq.

x:ϵA, x:AB, x:AC ⇒ x:AC

x:ϵA, x:ϵ ⟨A⟩C, x:AB⇒ x:AC
(R⟨.⟩)

x:ϵA, x:ϵ ⟨A⟩B→ ⟨A⟩C, x:AB⇒ x:AC
(L→)

x:ϵA, x:ϵ ⟨A⟩B→ ⟨A⟩C ⇒ x:AB→ C
(R→)

x:ϵA, x:ϵ ⟨A⟩B→ ⟨A⟩C ⇒ x:ϵ ⟨A⟩(B→ C)
(L⟨.⟩)

x:ϵ (A ∧ (⟨A⟩B→ ⟨A⟩C))⇒ x:ϵ ⟨A⟩(B→ C)
(L∧)

⇒ x:ϵ (A ∧ (⟨A⟩B→ ⟨A⟩C))→ ⟨A⟩(B→ C)
(R→)

112

The case of (RA11): left to right

Initial Seq.

x:ϵA⇒ x:ϵA

Initial Seq.

x:ϵA, y:ϵA, xRϵay⇒ x:ϵA

Initial Seq.

x:ϵA, y:ϵA, xRϵay⇒ y:ϵA
Initial Seq.

x:ϵA, y:ϵA, xRϵay⇒ xRϵay

x:ϵA, y:ϵA, xRϵay⇒ xRA
a y

(Rrel)
Initial Seq.

x:ϵA, y:ϵA, y:AB, xRϵay⇒ 1:AB

x:ϵA, y:ϵA, x:A□a B, xRϵay⇒ y:AB
(L□)

x:ϵA, x:A□aB, xRϵay⇒ y:ϵ [A]B
(R[.])

x:ϵA, x:A□aB⇒ x:ϵ□a[A]B
(R□)

x:ϵA, x:ϵ [A]□aB⇒ x:ϵ□a[A]B
(L[.])

x:ϵ [A]□aB⇒ x:ϵA→ □a[A]B
(R→)

⇒ x:ϵ [A]□aB→ (A→ □a[A]B)
(R→)

The case of (RA11): right to left

Initial Seq.

x:ϵA, xRA
a y⇒ x:ϵA

Initial Seq.

x:ϵA, xRϵay⇒ xRϵay

x:ϵA, xRA
a y⇒ xRϵay

(Lrel3)

Initial Seq.

x:ϵA, xRA
a y⇒ y:ϵA

Initial Seq.

x:ϵA, y:AB, xRA
a y⇒ y:AB

x:ϵA, y:ϵ [A]B, xRA
a y⇒ y:AB

(L[.])

x:ϵA, x:ϵ□a[A]B, xRA
a y⇒ y:AB

(L□)

x:ϵA, x:ϵA→ □a[A]B, xRA
a y⇒ y:AB

(L→)

x:ϵA, x:ϵA→ □a[A]B⇒ x:A□aB
(R□)

x:ϵA→ □a[A]B⇒ x:ϵ [A]□aB
(R[.])

⇒ x:ϵ (A→ □a[A]B)→ [A]□aB
(R→)

The case of (RA12): left to right

Initial Seq.
x:ϵA⇒ x:ϵA

x:ϵ⟨A⟩♢aB⇒ x:ϵA
(L⟨.⟩1)

Initial Seq.

y:AB, y:ϵA, xRϵay⇒ xRϵay

Initial Seq.

y:AB, y:ϵA⇒ y:ϵA
Initial Seq.

y:AB, y:ϵA⇒ y:AB

y:AB, y:ϵA⇒ y:ϵ⟨A⟩B
(L⟨.⟩)

y:AB, y:ϵA, xRϵay⇒ y:ϵ⟨A⟩B
(Lw)

y:AB, y:ϵA, xRϵay⇒ x:ϵ♢a⟨A⟩B
(R♢a)

y:AB, xRA
a y, xRA

a y⇒ x:ϵ♢a⟨A⟩B
(Lrela)

x:A♢aB⇒ x:ϵ♢a⟨A⟩B
(L♢a)

x:ϵ⟨A⟩♢aB⇒ x:ϵ♢a⟨A⟩B
(L⟨.⟩2)

x:ϵ⟨A⟩♢aB⇒ x:ϵA ∧ ♢a⟨A⟩B
(R∧)

⇒ x:ϵ⟨A⟩♢aB→ A ∧ ♢a⟨A⟩B
(R→)

The case of (RA12): right to left

Initial Seq.

x:ϵA, x:A♢aB⇒ x:ϵA

Initial Seq.

y:ϵA, y:AB, xRϵay⇒ xRϵay

Initial Seq.

y:ϵA, y:AB⇒ y:ϵA
Initial Seq.

y:ϵA, y:AB⇒ y:AB

y:ϵA, y:AB⇒ y:ϵ⟨A⟩B
(L⟨.⟩)

y:ϵA, y:AB, xRϵay⇒ y:ϵ⟨A⟩B
(Lw)

y:ϵA, y:AB, xRϵay⇒ x:ϵ♢a⟨A⟩B
(R♢a)

y:AB, xRA
a y⇒ x:ϵ♢a⟨A⟩B

(Lrel)

x:A♢aB⇒ x:ϵ♢a⟨A⟩B
(L♢a)

x:ϵA, x:A♢aB⇒ x:ϵ♢a⟨A⟩B
(Lw)

x:ϵA, x:A♢aB⇒ x:ϵA ∧ ♢a⟨A⟩B
(R∧)

x:ϵ⟨A⟩♢aB⇒ x:ϵA ∧ ♢a⟨A⟩B
(R⟨.⟩)

⇒ x:ϵ⟨A⟩♢aB→ A ∧ ♢a⟨A⟩B
(R→)

113

The case of (RA13): right to left

Initial Seq.

x:ϵA⇒ x:ϵA

Initial Seq.

x:ϵA, y:ϵA, y:AB, xRϵay⇒ xRϵay

Initial Seq.

y:ϵA, y:AB⇒ y:ϵA

Initial Seq.

y:ϵA, y:AB⇒ y:AB

y:ϵA, y:AB⇒ y:ϵ ⟨A⟩B
(L⟨.⟩)

x:ϵA, y:ϵA, y:AB, xRϵay⇒ y:ϵ ⟨A⟩B
(Lw)

x:ϵA, y:ϵA, y:AB, xRϵay⇒ x:ϵ♢a⟨A⟩B
(R♢)

x:ϵA, y:AB, xRA
a y⇒ x:ϵ♢a⟨A⟩B

(Lrel)

x:ϵA, x:A♢aB⇒ x:ϵ♢a⟨A⟩B
(L♢)

x:ϵA, x:ϵ [A]♢aB⇒ x:ϵ♢a⟨A⟩B
(L[.])

x:ϵ [A]♢aB⇒ x:ϵA→ ♢a⟨A⟩B
(R→)

⇒ x:ϵ [A]♢aB→ (A→ ♢a⟨A⟩B)
(R→)

The case of (RA13): right to left2

Initial Seq.

x:ϵA⇒ x:ϵA

Initial Seq.

xRϵay, y:
ϵA, x:ϵA⇒ x:ϵA

Initial Seq.

xRϵay, y:
ϵA, x:ϵA⇒ y:ϵA

Initial Seq.

xRϵay, y:
ϵA, x:ϵA⇒ xRϵay

xRϵay, y:
ϵA, x:ϵA⇒ xRA

a y

xRϵay, y:
ϵ ⟨A⟩B, x:ϵA⇒ xRA

a y
(L⟨.⟩1)

Initial Seq.

xRϵay, y:
AB, x:ϵA⇒ y:AB

xRϵay, y:
ϵ ⟨A⟩B, x:ϵA⇒ y:AB

(L⟨.⟩2)

xRϵay, y:
ϵ ⟨A⟩B, x:ϵA⇒ x:A♢a B

(R♢)

x:ϵ♢a⟨A⟩B, x:ϵA⇒ x:A♢aB
(L♢)

x:ϵA, x:ϵA→ ♢a⟨A⟩B⇒ x:A♢aB
(L→)

x:ϵA→ ♢a⟨A⟩B⇒ x:ϵ [A]♢aB
(R[.])

⇒ x:ϵ (A→ ♢a⟨A⟩B)→ [A]♢aB
(R→)

The case of (RA14): right to left

Initial Seq.

x:ϵA, x:A♢a B⇒ x:ϵA

Initial Seq.

x:ϵA, y:ϵA, y:AB, xRϵay⇒ xRϵay

Initial Seq.

x:ϵA, y:ϵA, y:AB⇒ y:ϵA

Initial Seq.

x:ϵA, y:ϵA, y:AB⇒ y:AB

x:ϵA, y:ϵA, y:AB⇒ y:ϵ ⟨A⟩B
(L⟨.⟩)

x:ϵA, y:ϵA, y:AB, xRϵay⇒ y:ϵ ⟨A⟩B
(Lw)

x:ϵA, y:ϵA, y:AB, xRϵay⇒ x:ϵ♢a⟨A⟩B
(R♢)

x:ϵA, y:AB, xRA
a y⇒ x:ϵ♢a⟨A⟩B

(Lrel)

x:ϵA, x:A♢aB⇒ x:ϵ♢a⟨A⟩B
(L♢)

x:ϵA, x:A♢aB⇒ x:ϵ (A ∧ ♢a⟨A⟩B)
(R∧)

x:ϵ ⟨A⟩♢aB⇒ x:ϵ (A ∧ ♢a⟨A⟩B)
(R⟨.⟩)

⇒ x:ϵ ⟨A⟩♢a B→ (A ∧ ♢a⟨A⟩B)
(R→)

The case of (RA14): right to left2

Initial Seq.

x:ϵA, x:ϵ♢a⟨A⟩B⇒ x:ϵA

Initial Seq.

x:ϵA, 1:ϵA, xRϵa1⇒ x:ϵA

Initial Seq.

x:ϵA, 1:ϵA, xRϵa1⇒ 1:ϵA

Initial Seq.

x:ϵA, 1:ϵA, xRϵa1⇒ xRϵa1

x:ϵA, 1:ϵA, xRϵa1⇒ xRA
a 1

(Rrel)

x:ϵA, 1:ϵA, 1:AB, xRϵa1⇒ xRA
a 1

(Lw)
Initial Seq.

x:ϵA, 1:ϵA, xRϵa1⇒ 1:AB

x:ϵA, 1:ϵA, 1:AB, xRϵa1⇒ x:A♢aB
(R♢)

x:ϵA, 1:ϵ ⟨A⟩B, xRϵa1⇒ x:A♢a B
(L⟨.⟩)

x:ϵA, x:ϵ♢a⟨A⟩B⇒ x:A♢aB
(L♢)

x:ϵA, x:ϵ♢a⟨A⟩B⇒ x:ϵ ⟨A⟩♢aB
(L⟨.⟩)

x:ϵ (A ∧ ♢a⟨A⟩B)⇒ x:ϵ ⟨A⟩♢aB
(L∧)

⇒ x:ϵ (A ∧ ♢a⟨A⟩B)→ ⟨A⟩♢a B
(R→)

114

In the inductive step, we show the admissibility of HIntPAL’s inference rules,
(MP), (Nec□a) and (Nec[.]), by GIntPAL+. In induction step, we show the admis-
sibility of the inference rules HIntPAL, such as (MP), (Nec□a) and (Nec[.]). Proofs
of the first two cases are similar to proofs in Theorem 3.2.1. Therefore, we show the
inference rule of the last rule.

The case of (Nec[.]): In the case, we show the admissibility of the following rule:

⇒ x:ϵA
⇒ x:ϵ[B]A

(Nec[.])
.

Suppose ⊢GIntPAL⇒ x:ϵA. It is obvious that ⊢GIntPAL⇒ x:ϵA implies ⊢GIntPAL⇒ x:BA
since if there is a derivation of⇒ x:ϵA, there can also be a derivation of⇒ x:BA where
B is added to the most left side of restricting formulas of each labelled expression ap-
peared in the derivation. Therefore, we obtain ⊢GIntPAL⇒ x:BA, and by the application
of (Lw) and (R[.]), we conclude ⊢GIntPAL ⇒ x:ϵ[B]A. □

5.6 Cut Elimination of GIntPAL+

Now, we show the rule (Cut) of GIntPAL+ is admissible. For a preparation of the cut
elimination theorem, we show the following lemma.

Lemma 5.6.1. If a sequent Γ⇒ x:α⊥ can be derivable without using (Cut), then Γ⇒
can also be derivable without using (Cut).

Proof. By induction on the height of the derivation. And every case in the inductive
step, in which the last applied rule is either (Rw) or one of left rules, can be shown
straightforwardly with inductive hypothesis and the same rule as the last rule applied.
We only look at the base case.

In the base case, since Γ ⇒ x:α⊥ is the initial sequent, Γ should be the singleton
{x:α⊥}. Then x:α⊥ ⇒ is also the initial sequent and so derivable. □

Here we prove one of contributions of the paper, the syntactic cut elimination the-
orem of GIntPAL+.

Theorem 5.6.1 (Cut elimination of GIntPAL+). For any sequent Γ ⇒ ∆, if ⊢GIntPAL+

Γ⇒ ∆, then ⊢GIntPAL Γ⇒ ∆.

Proof. The proof is carried out in Ono and Komori’s method [67] introduced in the
reference [41] by Kashima where we employ the following rule (Ecut). We denote the
n-copies of the same labelled expression A by An, and (Ecut) is defined as follows:

Γ⇒ An Am,Γ′ ⇒ ∆
Γ, Γ′ ⇒ ∆ (Ecut)

where n ≤ 1 and m ≥ 0. The theorem is shown by double induction on the height of
the derivation and the length of the cut expression A of (Ecut). The proof is divided
into four cases:

115

(1) at least one of uppersequents of (Ecut) is an initial sequent;

(2) the last inference rule of either uppersequents of (Ecut) is a structural rule;

(3) the last inference rule of either uppersequents of (Ecut) is a non-structural rule,
and the principal expression introduced by the rule is not a cut expression;

(4) the last inference rules of two uppersequents of (Ecut) are both non-structural
rules, and the principal expressions introduced by the rules used on the upperse-
quents of (Ecut) are both cut expressions.

We look at one of base cases and one of significant subcases of (4) in which principal
expressions introduced by non-structural rules are both cut expressions. We illustrate
some cases in the following.

Case of (1) where the right uppersequent is an initial sequent x:α⊥ ⇒ : In this case,
the form of the derivation is like following:

....
Γ⇒ x:α⊥

Initial Seq.
x:α⊥ ⇒

Γ⇒ (Ecut)

From the left uppersequent Γ ⇒ x:α⊥, we get, without (Ecut), the lowersequent Γ ⇒
by Lemma 5.6.1.

Case of (1) where the left uppersequent is an initial sequent x:α⊥ ⇒ : In this case,
the form of the derivation is like following:

Initial Seq.
x:α⊥ ⇒

....
An,Γ⇒ ∆

x:α⊥,Γ⇒ ∆ (Ecut)

We obtain the lowersequent from the left uppersequent x:α⊥ ⇒with applying (Lw) and
(Rw) possibliy multiple times.

Case of (2) where the right uppersequent of (Ecut) is structural rule (Lc) which con-
tracts the same expression as the cut expressin.

.... D1

Γ⇒ (x:αA)n

.... D2

(x:αA)m+1,Γ′ ⇒ ∆′
(x:αA)m,Γ′ ⇒ ∆′ (Lc)

Γ,Γ′ ⇒ ∆′ (Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ (x:αA)n

.... D2

(x:αA)m+1,Γ′ ⇒ ∆′
Γ,Γ′ ⇒ ∆′ (Ecut)

.

116

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Lc).

Case of (2) where the right uppersequent of (Ecut) is structural rule (Lc) which con-
tracts a different expression from the cut expressin.

.... D1

Γ⇒ (x:αA)n

.... D2

(x:αA)m,B,B,Γ′ ⇒ ∆′
(x:αA)m,B,Γ′ ⇒ ∆′ (Lc)

Γ,B,Γ′ ⇒ ∆′ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ (x:αA)n

.... D2

(x:αA)m,B,B,Γ′ ⇒ ∆′
Γ,B,B,Γ′ ⇒ ∆′ (Ecut)

Γ,B,Γ′ ⇒ ∆′ (Lc)
.

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Lc).

Case of (2) where one of uppersequents of (Ecut) is structural rule (Rw).
.... D1

Γ⇒
Γ⇒ x:αA

(Rw)
.... D2

(x:αA)m,Γ′ ⇒ ∆′
Γ,Γ′ ⇒ ∆′ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒

.... D2

(x:αA)m,Γ′ ⇒ ∆′
Γ,Γ′ ⇒ ∆′ (Ecut)

.

Case of (3) where one of uppersequents of (Ecut) is inference rule (R¬).

.... D1

Γ⇒ An

.... D2

x:αA,Am,Γ′ ⇒
Am,Γ′ ⇒ x:α¬A

(R¬)

Γ, Γ′ ⇒ x:α¬A
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ An

.... D2

Am, x:αA,Γ′ ⇒
x:αA,Γ,Γ′ ⇒ (Ecut)

Γ, Γ′ ⇒ x:α¬A
(R¬)

117

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (R¬).

Case of (3) where one of uppersequents of (Ecut) is inference rule (L¬).

.... D1

Γ⇒ An

.... D2

Am,Γ′ ⇒ x:αA
Am, x:α¬A,Γ′ ⇒ (L¬)

x:α¬A,Γ,Γ′ ⇒ (Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ An

.... D2

Am,Γ′ ⇒ x:αA
Γ,Γ′ ⇒ x:αA

(Ecut)

x:α¬A,Γ,Γ′ ⇒ (L¬)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (L¬).

Case of (3) where one of uppersequents of (Ecut) is inference rule (R→).

.... D1

Γ⇒ An

.... D2

x:αA,Am,Γ′ ⇒ x:αB
Am, Γ′ ⇒ x:αA→ B

(R→)

Γ, Γ′ ⇒ x:αA→ B
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ An

.... D2

Am, x:αA,Γ′ ⇒ x:αB
x:αA,Γ,Γ′ ⇒ x:αB

(Ecut)

Γ, Γ′ ⇒ x:αA→ B
(R→)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (R→).

Case of (3) where one of uppersequents of (Ecut) is inference rule (L→).

.... D1

Γ⇒ An

.... D2

Am,Γ′ ⇒ x:αA

.... D3

x:αB,Am,Γ′ ⇒ ∆′
Am, x:αA→ B,Γ′ ⇒ ∆′ (L→)

x:αA→ B,Γ,Γ′ ⇒ ∆′ (Ecut)

This is transformed into the derivation:

118

.... D1

Γ⇒ An

.... D2

Am,Γ′ ⇒ x:αA
Γ, Γ′ ⇒ x:αA

(Ecut)

.... D1

Γ⇒ An

.... D3

Am, x:αB, Γ′ ⇒ ∆′
x:αB,Γ,Γ′ ⇒ ∆′ (Ecut)

x:αA→ B,Γ, Γ′ ⇒ ∆′ (L→)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (L→).

Case of (3) where one of uppersequents of (Ecut) is inference rule (L♢a).

.... D1

Γ⇒ An

.... D2

Am, xRαay, y:
αA,Γ′ ⇒ ∆′

Am, x:α♢aA,Γ′ ⇒ ∆′ (L♢a)

x:α♢aA,Γ,Γ′ ⇒ ∆′ (Ecut)

If y does not appear in Γ⇒ An, it does not matter and leave y as it is. We consider the
case where y appears in the sequent. In this case, label y is, by Lemma 3.2.2, replaced
with z which does not appear in both Γ⇒ An and Am, xRαay, y:

αA,Γ′ ⇒ ∆′, and let the
derivation of Am, xRαa z,Γ′ ⇒ ∆′, z:αA be D′2. Then the derivation is transformed into
the following:

.... D1

Γ⇒ An

.... D
′
2

Am, xRαa z, z:αA,Γ′ ⇒ ∆′
xRαa z, z:αA,Γ′ ⇒ ∆′ (Ecut)

x:α♢aA,Γ,Γ′ ⇒ ∆′ (L♢a)

Case of (3) where one of uppersequents of (Ecut) is inference rule (R□a).

.... D1

Γ⇒ An

.... D2

Am, xRαay,Γ
′ ⇒ y:αA

Am,Γ′ ⇒ x:α□aA
(R□a)

Γ,Γ′ ⇒ x:α□aA
(Ecut)

If y does not appear in Γ ⇒ An, it does not matter and leave y as it is. We consider
the case where y appears in the sequent. In this case, label y is, by Lemma 5.5.2,
replaced with z which does not appear in both Γ ⇒ An and Am,Γ′ ⇒ x:α□aA, and let
the derivation of Am, xRαa z,Γ′ ⇒ z:αA be D′2. Then the derivation is transformed into
the following:

.... D1

Γ⇒ An

.... D
′
2

Am, xRαa z,Γ′ ⇒ z:αA
xRαa z,Γ,Γ′ ⇒ z:αA

(Ecut)

Γ,Γ′ ⇒ x:α□aA
(R□a)

119

Case of (3) where one of uppersequents of (Ecut) is inference rule (L□a).

.... D1

Γ⇒ An

.... D2

Am,Γ′ ⇒ xRay

.... D3

y:αA,Am, Γ′ ⇒ ∆′
Am, x:α□aA,Γ′ ⇒ ∆′ (L□a)

x:α□aA, Γ, Γ′ ⇒ ∆′ (Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ An

.... D2

Am,Γ′ ⇒ xRay

Γ,Γ′ ⇒ xRay
(Ecut)

.... D1

Γ⇒ An

.... D3

Am, y:αA,Γ′ ⇒ ∆′
y:αA,Γ,Γ′ ⇒ ∆′ (Ecut)

x:α□aA,Γ,Γ′ ⇒ ∆′ (L□a)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (L□a).

Case of (3) where one of uppersequents of (Ecut) is inference rule (Lat).

.... D1

Γ⇒ An

.... D2

x:αp,Am,Γ′ ⇒ ∆′

x:α,A p,Am,Γ′ ⇒ ∆′
(Lat)

x:α,A p,Γ,Γ′ ⇒ ∆′
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ An

.... D2

x:αp,Am,Γ′ ⇒ ∆′
x:αp,Γ,Γ′ ⇒ ∆′ (Ecut)

x:α,A p,Γ,Γ′ ⇒ ∆′
(Lat)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Lat).

Case of (3) where one of uppersequents of (Ecut) is inference rule (L[.]).

.... D1

Γ⇒ An

.... D2

Am,Γ′ ⇒ x:αA

.... D3

x:α,AB,Am,Γ′ ⇒ ∆′
Am, x:α[A]B,Γ′ ⇒ ∆′ (L[.])

x:α[A]B,Γ,Γ′ ⇒ ∆′ (Ecut)

This is transformed into the derivation:

.... D1

Γ⇒ An

.... D2

Am,Γ′ ⇒ x:αA
Γ,Γ′ ⇒ x:αA

(Ecut)

.... D1

Γ⇒ An

.... D3

Am, x:α,AB,Γ′ ⇒ ∆′
x:α,AB,Γ,Γ′ ⇒ ∆′

(Ecut)

x:α[A]B,Γ,Γ′ ⇒ ∆′ (L[.])

120

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (L[.]).

Case of (3) where one of uppersequents of (Ecut) is inference rule (Rrela).

.... D1

Γ⇒ An

.... D2

Am,Γ′ ⇒ y:αA

.... D3

Am,Γ′ ⇒ x:αA

.... D4

Am,Γ′ ⇒ xRαay

Am, Γ′ ⇒ xRα,Aa y
(Rrela)

Γ,Γ′ ⇒ xRα,Aa y
(Ecut)

This is transformed into the derivation:
.... D1

Γ⇒ An

.... D2

Am, Γ′ ⇒ x:αA
Γ, Γ′ ⇒ x:αA

(Ecut)

.... D1

Γ⇒ An

.... D3

Am, Γ′ ⇒ y:αA
Γ, Γ′ ⇒ y:αA (Ecut)

.... D1

Γ⇒ An

.... D4

Am, Γ′ ⇒ xRαay
Γ, Γ′ ⇒ xRαay

(Ecut)

Γ, Γ′ ⇒ xRα,Aa y
(Rrela)

Similarly to this, we can show the case where the left uppersequent of (Ecut) is struc-
tural rule (Rrela).

Case of (4) where both sides of A are x:αA → B and principal, when we obtain the
following derivation:

.... D1

x:αA,Γ⇒ x:αB
Γ⇒ x:αA→ B

(R→)

.... D2

(x:αA→ B)m−1,Γ′ ⇒ x:αA

.... D3

x:αB, (x:αA→ B)m−1,Γ′ ⇒ ∆′

(x:αA→ B)m,Γ′ ⇒ ∆′ (L→)

Γ,Γ′ ⇒ ∆′
(Ecut)

This is transformed into the derivation:

A =


.... D

+
1

Γ⇒ x:αA→ B

.... D2

(x:αA→ B)m−1,Γ′ ⇒ x:αA
Γ,Γ′ ⇒ x:αA

(Ecut)

A′ =


.... D

+
1

Γ⇒ x:αA→ B

.... D3

(x:αA→ B)m−1, x:αB,Γ′ ⇒ ∆′

x:αB,Γ, Γ′ ⇒ ∆′
(Ecut)

.... A
Γ,Γ′ ⇒ ∆′, x:αA

.... D1

x:αA,Γ⇒ x:αB

.... A
′

x:αB,Γ,Γ′ ⇒ ∆′
x:αA,Γ,Γ,Γ′ ⇒ ∆′

(Ecut)

Γ,Γ, Γ,Γ′,Γ′ ⇒ ∆′
(Ecut)

Γ,Γ′ ⇒ ∆′
(Lc)

121

Case of (4): principal expressions are xRα,Aa y: Let us consider the case where both
sides of A are xRα,Aa y and principal expressions. When we obtain the derivation:

.... D1

Γ⇒ x:αA

.... D2

Γ⇒ y:αA

.... D3

Γ⇒ xRαay

Γ⇒ xRα,Aa y
(Lrela)

.... D4

x:αA, (xRα,Aa y)m-1,Γ′ ⇒ ∆
(xRα,Aa y)m,Γ′ ⇒ ∆

(Lrela1)

Γ,Γ′ ⇒ ∆ (Ecut)
,

it is transformed into the following derivation:

.... D1

Γ⇒ x:αA

.... D
′
123

Γ⇒ xRα,Aa y

.... D4

x:αA, (xRα,Aa y)m-1,Γ′ ⇒ ∆
x:αA,Γ,Γ′ ⇒ ∆ (Ecut)

Γ,Γ,Γ′ ⇒ ∆ (Ecut)

Γ,Γ′ ⇒ ∆ (Lc)

where the upper application of (Ecut) is possible by the induction hypothesis, since
the derivation height of (Ecut) is reduced by comparison with the original derivation.
Besides, the lower application of (Ecut) is also allowed by induction hypothesis, since
the length of the cut expression is reduced, namely ℓ(x:αA) < ℓ(xRα,Aa y).

Case of (4): principal expressions are x:α♢aA:

.... D1

Γ⇒ xRαay

.... D2

Γ⇒ y:αA
Γ⇒ x:α♢aA

(R♢a)

.... D3

xRαa z, z:αA, (x:α♢aA)n−1,Γ′ ⇒ ∆′
(x:α♢aA)n,Γ′ ⇒ ∆′ (L♢a)

Γ,Γ′ ⇒ ∆′

Applying Lemma 5.5.2 to the bottom sequent ofD3, and we obtain ⊢GIntPAL xRαay, y:
αA, (x:α♢aA)n,Γ′ ⇒

∆′. Let the derivation beD′3. Then we obtain the following derivation.

.... D2

Γ⇒ y:αA

.... D1

Γ⇒ xRαay

.... D12

Γ⇒ x:α♢aA

.... D
′
3

y:αA, xRαay, (x:α♢aA)n−1,Γ′ ⇒ ∆′
y:αA, xRαay,Γ,Γ

′ ⇒ ∆′ (Ecut)

y:αA,Γ,Γ,Γ′ ⇒ ∆′ (Ecut)

Γ,Γ,Γ,Γ′ ⇒ ∆′ (Ecut)

Γ,Γ′ ⇒ ∆′ (Lc)

where the upper application of (Ecut) is possible by the induction hypothesis, since the
derivation height of (Ecut) is reduced. Besides, the lower two applications of (Ecut)
are also possible by induction hypothesis, since the length of the cut expression is
reduced. □

As a corollary of Theorem 5.6.1, the consistency of GIntPAL+ is shown.

122

Corollary 5.6.1. The empty sequent ⇒ cannot be derived in GIntPAL+.

Proof. Suppose for contradiction that GIntPAL+ ⊢ ⇒ . By Theorem 5.6.1, GIntPAL ⊢ ⇒
is obtained. However, there is no inference rule in GIntPAL which can derive the
empty sequent. A contradiction. □

5.7 Soundness of GIntPAL
Now, we switch the subject to the soundness theorem of GIntPAL. At first, we define
the notion of the satisfaction relation for the labelled expressions, i.e., lift the satisfac-
tion relation for the non-labelled formulas to that of the labelled expressions. Let us
say that f : Var → D(M) is an assignment, where we recall that Var is the set of all
labels.

Definition 5.7.1. LetM be an IntK-model and f : Var→ D(M) an assignment.

M, f ⊩ x:αA iff Mα, f (x) ⊩ A and f (x) ∈ D(Mα)
M, f ⊩ xRϵay iff (f (x), f (y)) ∈ Ra

M, f ⊩ xRα,Aa y iff (f (x), f (y)) ∈ Rαa andMα, f (x) ⊩ A andMα, f (y) ⊩ A

In this definition, we have to be careful of the notion of survival as suggested in [61].
In brief, f (x) and f (y) above must be defined in D(Mα) which may be smaller than
D(M). In the clause M, f ⊩ x:αA, for example, f (x) should survive in the restricted
IntK-modelMα. Taking into account of the fact, it is essential that we pay attention to
the negation ofM, f ⊩ x:αA.

Proposition 5.7.1. M, f ⊮ x:αA iff f (x) < D(Mα) or (f (x) ∈ D(Mα) and Mα, f (x) ⊮
A).

We introduce the first notion of validity for sequents which is defined in a natural and
usual way, called s-validity, but similar to the cases of GPAL and GEAK (Proposi-
tion 3.3.2 and Proposition 4.4.3) the definition will soon turn out to be inappropriate
for showing the soundness theorem.

Definition 5.7.2 (s-validity). Γ ⇒ ∆ is s-valid in M if for all assignments f : Var →
D(M) such thatM, f ⊩ A for all A ∈ Γ, there exists B ∈ ∆ such thatM, f ⊩ B.

If we follow s-validity, then we come to a deadlock on the way to prove the sound-
ness theorem, as we can see the following proposition.

Proposition 5.7.2. There is an IntK-model M such that (R→) of GIntPAL does not
preserve s-validity inM.

Proof. We use the same models as in Example 5.2.1:

M GFED@ABCw1a,⩽
,, a //

⊩p

GFED@ABCw1 a,⩽
rr

oo

⊮p

[¬p] ///o/o/o GFED@ABCw2 a,⩽
rr

⊮p

M¬p,

123

where we note that V¬p(p) = ∅. Then we consider a particular instance of (R→):4

x:¬p p⇒ x:¬p⊥
⇒ x:¬p¬p

(R→)

We show that the uppersequent is s-valid in M but the lowersequent is not s-valid in
M, and so (R→) does not preserve s-validity in this case. Note that w0 does not survive
after ¬p, i.e., w0 < D(M¬p) = {w2}. We also note that the semantic clause for → at a
state w becomes classical when w is a single reflexive point.

First, we show that x:¬p p ⇒ is s-valid inM, i.e.,M, f ⊮ x:¬p p for any assignment
f : Var→ D(M). So, we fix any f : Var→ D(M). We divide our argument into: f (x)
= w1 or f (x) = w2. If f (x) = w1, f (x) does not survive after ¬p, and soM, f ⊮ x:¬p p by
Proposition 5.7.1. If f (x) = w2, f (x) survives after ¬p but f (x) < V¬p(p)(= ∅), which
implies M¬p, f (x) ⊮ p hence M, f ⊮ x:¬p p by Proposition 5.7.1. Therefore, in either
case, the uppersequent is valid.

Second, we show that⇒ x:¬p¬p is not s-valid inM, i.e., M, f ⊮ x:¬p¬p for some
assignment f : Var → W. We fix some f such that f (x) = w1. Since f (x) < D(M¬p)
(f (x) does not survive after ¬p),M, f ⊮ x:p¬p by Proposition 5.7.1, as desired. □

Proposition 5.7.2 is a counter-example of the soundness theorem with s-validity, and so
it forces us to change the definition of validity, A key idea of finding another candidate
here is that we read Γ ⇒ ∆ as ‘it is impossible that all of Γ hold and all of ∆ fail.’ We
define the notion of failure for the labelled expressions explicitly by requiring survival
of states as follows (we read ‘M, f ⊩ A’ by ‘labelled expression A fails under M and
f ’).

Definition 5.7.3. LetM be an IntK-model and f : Var→ D(M) an assignment.

M, f ⊩ x:αA iff Mα, f (x) ⊮ A and f (x) ∈ D(Mα),
M, f ⊩ xRϵay iff (f (x), f (y)) < Ra,

M, f ⊩ xRα,Aa y iff M, f ⊩ xRαay orM, f ⊩ x:αA orM, f ⊩ y:αA.

Note that the first item means that f (x) survives at the domain of the restricted
modelMα and A is false at the survived world f (x) inMα.

Definition 5.7.4 (t-validity). Γ⇒ ∆ is t-valid inM if there is no assignment f : Var→
D(M) such thatM, f ⊩ A for all A ∈ Γ, andM, f ⊩ B for all B ∈ ∆.

Let us denote by Var(Γ ⇒ ∆) the set of all labels occurring in Γ ⇒ ∆. Then, we
note that the domain Var of an assignment f in Definition 5.7.4 can be restricted to
Var(Γ ⇒ ∆). The following proposition shows that the clauses for relational atoms
and negated form of them characterize what they intend to capture.

Proposition 5.7.3. For any IntK-modelM, assignment f , agent a ∈ Agt and x, y ∈ Var,

(i) : M, f ⊩ xRαay iff (f (x), f (y)) ∈ Rαa , (ii) : M, f ⊩ xRαay iff (f (x), f (y)) < Rαa .

4Note that ¬p is an abbreviation of p→ ⊥.

124

Proof. Both are easily shown by induction of α. Let us consider the case of α = (α′, A)
in the proof of (ii). We show M, f ⊮ xRα,Aa y iff (f (x), f (y))∈Rα,Aa . M, f ⊮ xRαay is,
by Definition 5.7.3 and the induction hypothesis, equivalent to (f (x), f (y)) ∈ Rαa and
Mα, f (x) ⊩ A andMα, f (y) ⊩ A. That is also equivalent to (f (x), f (y)) ∈ Rα,Aa . □

For preparations of the soundness theorem, we show the following propositions.

Proposition 5.7.4. LetM = (W, (Ra)a∈Agt,V) andMα = (Wα, (Rαa)a∈Agt,Vα) be arbitrary
Kripke models. If wRαav and uRat and w ⩽ u and v ⩽ t, then uRαa t holds.

Proof. By induction on α, and the base case where α = ϵ is trivial. Therefore, we
show the case where α = α′, A. Suppose wRα

′,A
a v and uRat and w ⩽ u and v ⩽ t. By

the supposition, we obtain wRα
′

a v andM, w ⊩ A andM, v ⊩ A. By induction hypothesis,
uRα

′
a t; and by Proposition 5.1.1, we obtain M, u ⊩ A and M, t ⊩ A. Combining with

uRα
′

a t, we conclude uRα
′,A

a t. □

Proposition 5.7.5. For any Kripke modelM, assignment f , a ∈ Agt and x, y ∈ Var,

(i) M, f ⊩ xRαay iff (f (x), f (y)) ∈ Rαa ,
(ii) M, f ⊩ xRαay iff (f (x), f (y)) < Rαa .

Proof. Both are easily shown by induction of α. Let us consider the case of α = α′, A

in the proof of (ii). We show M, f ⊮ xRα,Aa y iff (f (x), f (y))∈Rα,Aa . M, f ⊮ xRα,Aa y is,
by Definition 3.3.3 and the induction hypothesis, equivalent to (f (x), f (y)) ∈ Rαa and
Mα, f (x) ⊩ A andMα, f (y) ⊩ A. That is also equivalent to (f (x), f (y)) ∈ Rα,Aa .

□

In order to establish the soundness of GIntPAL for birelational Kripke semantics, we
basically employ Simpson’s argument [78, p.153-5] for the soundness of a natural de-
duction system for IntK with some modifications for the notion of public announce-
ment5. Given any sequent Γ⇒ ∆, we may extract a directed graph with the help of the
relational atoms in Γ as follows.

Definition 5.7.5. The derived graph Gr(Γ ⇒ ∆) from a sequent Γ ⇒ ∆ is a (labelled)
directed graph (L, (Ea)a∈Agt) where L is the set Var(Γ ⇒ ∆) of all labels in Γ ⇒ ∆ and
Ea ⊆ V × V is defined as follows: xEay iff xRαay ∈ Γ for some list α (a ∈ Agt).

Next we recall the notion of tree for a finite directed graph.

Definition 5.7.6 (Tree). Give any finite directed graph (L, (Ea)a∈Agt), we say that (L, (Ea)a∈Agt)
is a tree if the graph is generated with the root x0 and, for every node x, there is a unique
sequence (x1, . . . , xm) from L such that, for all 0 ≤ k < m, there exists an agent ak ∈ Agt
such that xkEak xx+1 and x = xm.

In order to prove the soundness of the rules (R□a) and (R[.]), our attention must be
restricted to the sequents whose derived graphs are trees. And, the following lemma
(cf. [78, Lemma 8.1.3]) plays a key role in establishing the soundness of the above
two rules, where we also note that the restrictions (F1) and (F2) in birelational Kripke
semantics are necessary to prove the lemma.

5The author is grateful to the suggestion by Katsuhiko Sano. Because of that, he noticed the application
of Simpson’s lifting lemma to a coherent proof of the soundness theorem of GIntPAL.

125

Lemma 5.7.1 (Lifting lemma). Let Γ⇒ ∆ be a sequent such that Gr(Γ⇒ ∆) is a tree,
M = (W,⩽, (Ra)a∈Agt,V) an IntK-model, and f an assignment from Var(Γ ⇒ ∆) to W
such thatM, f ⊩ A for all A ∈ Γ. Then, for all labels x ∈ Var(Γ⇒ ∆) and w ∈ W with
f (x) ⩽ w, there exists an assignment f ′ from Var(Γ ⇒ ∆) to W such that f ′(x) = w,
f (z) ⩽ f ′(z) for all labels z ∈ Var(Γ⇒ ∆) andM, f ′ ⊩ A for all A ∈ Γ.

Proof. We sketch the idea of its proof by an example. Consider a sequent Γ ⇒ ∆
where Γ = {x0Rαa x1, x1Rβbx2, x0Rγc x3} and ∆ = ∅. Then, Gr(Γ⇒ ∆) = (L, Ea, Eb, Ec) =
({x0, x1, x2, x3}, {(x0, x1)}, {(x1, x2)}, {(x0, x3)}) is a tree. Let M = (W,Ra,Rb,Rc,V) be
an IntK-model, and f :{x0, x1, x2, x3} → W an assignment such that M, f ⊩ x0Rαa x1

and M, f ⊩ x1Rβbx2 and M, f ⊩ x0Rγc x3 (they are, by Proposition 5.7.5, equivalent to
f (x0)Rαa f (x1) and f (x1)Rβb f (x2) and f (x0)Rγc f (x3) respectively).

Fix any w1 ∈ W such that f (x1) ⩽ w. By assumptions f (x0)Rαa f (x1) and f (x1) ⩽ w1,
we obtain f (x0)(Ra◦ ⩽)w1. Then by (FS 2), we obtain f (x0) ⩽ w0 and w0Raw1 for some
w0 ∈ W. Fix such w0. By Proposition 5.7.4, w0Rαaw1. Next, since we have f (x1)Rβb f (x2)
and f (x1) ⩽ w1, we also have w1Rbw2 and w2 ⩾ f (x2) for some w2 ∈ W by (FS 1) . Fix
such w2 ∈ W. By Proposition 5.7.4, w1Rβbw2. Lastly, since we have f (x0)Rγc f (x3) and
f (x0) ⩽ w0, we also have w0Rbw3 and w3 ⩾ f (x3)for some w3 ∈ W by (FS 1) . Fix such
w3 ∈ W. By Proposition 5.7.4, w0Rγcw3.

We define f ′ : {x0, x1, x2, x3} → W by f ′(xi) = wi (i ∈ {0, 1, 2, 3}). Function f ′

defined in this way satisfies the following requirements:

• f ′(x1) = w1,
• f (z) ⩽ f ′(z) for all z ∈ {x0, x1, x2, x3},
• M, f ′ ⊩ x0Rαa x1 andM, f ′ ⊩ x1Rβbx2 andM, f ′ ⊩ x0Rγc x3 from w0Rαaw1, w1Rβbw2

and w0Rγcw3.

□

Now, we are ready to prove a stronger form of the soundness theorem of GIntPAL
with the notion of tree for derived graphs from sequents.

Theorem 5.7.1 (Soundness of GIntPAL). Given any sequent Γ⇒ ∆ such that Gr(Γ⇒
∆) is a finite tree, if ⊢GIntPAL Γ⇒ ∆, then Γ⇒ ∆ is t-valid in every IntK-modelM.

Proof. Suppose ⊢GIntPAL Γ ⇒ ∆ such that Gr(Γ ⇒ ∆) is a finite tree. Then the proof
is carried out by induction of the height of the derivation of Γ ⇒ ∆ in GIntPAL. We
confirm the following cases alone.

Base case: we show that xRαav ⇒ xRαav is t-valid. Suppose for contradiction that
M, f ⊩ xRαav andM, f ⊩ xRαav. By Proposition 5.7.3, this is impossible.

The case where the last applied rule is (L□a): In this case, we have a derivation of
Γ ⇒ ∆, xRαay and y:αA,Γ ⇒ ∆ in GIntPAL. Both Gr(Γ ⇒ ∆, xRαay) and
Gr(y:αA,Γ⇒ ∆) trivially keep the same structure of tree; therefore, the induction
hypothesis may be applied to both derivations. And now we have Γ ⇒ ∆, xRαay
and y:αA,Γ ⇒ ∆ are t-valid in any IntK-Kripke model M. Suppose for a con-
tradiction that there is some f :L → D(M) such that M, f ⊩ A for all A ∈ Γ and

126

M, f ⊩ x:α□aA andM, f ⊩ B for all B ∈ ∆. Fix such f . Now it suffices to show
M, f ⊩ xRαay or M, f ⊩ y:αA. From our supposition M, f ⊩ x:α□aA, we obtain
(f (x), f (y)) < (⩽ ◦Ra)α or Mα, f (y) ⊩ A. Suppose the former disjunct, which is
equivalent to f (x) ̸⩽ v or (v, f (y)) < Ra for any v ∈ W. Fix v as f (x). Then we
obtain (f (x), f (y)) < Ra, and by Proposition 5.7.3, M, f ⊩ xRαay. It contradicts
Γ ⇒ ∆, xRαay is t-valid. Next, suppose the latter disjunctMα, f (y) ⊩ A which is
equivalent to M, f ⊩ y:αA. It contradicts y:αA,Γ ⇒ ∆ is t-valid. Therefore, we
obtain contradictions in either case.

The case where the last applied rule is (Rat): We show the contraposition. Suppose
there is some f : Var → W such that, M, f ⊩ A for all A ∈ Γ, and M, f ⊩ B
for all B ∈ ∆, and M, f ⊩ x:α,A p. Fix such f . We suffice to show M, f ⊩ x:αp.
By Definition 5.7.3, M, f ⊩ x:α,A p is equivalent to Mα,A, f (x)⊮ p and f (x) ∈
D(Mα,A). By f (x) ∈ D(Mα,A), we obtain f (x) ∈ D(Mα) and Mα, f (x) ⊩ A.
It follows from Mα, f (x) ⊩ A and Mα,A, f (x)⊮ p that f (x) < Vα(p), This is
equivalent toM, f ⊩ x:αp. Then, the contraposition has been shown.

The case where the last applied rule is (Lrela3): In this case, we have a derivation
of xRαay,Γ ⇒ ∆ in GIntPAL. Since Gr(xRα,Aa y,Γ ⇒ ∆) is a tree and any
formula restricting relational atom does not affect the structure of the graph
Gr(xRαay,Γ ⇒ ∆), it is also a tree. Then the induction hypothesis is applicable
to the uppersequent of the derivation, and therefore, we obtain that xRαay, Γ⇒ ∆
is t-valid for anyM. We must show xRα,Aa y,Γ⇒ ∆ is t-valid for anyM Suppose
there is some f :L → D(Mα) such that, M, f ⊩ A for all A ∈ Γ, M, f ⊩ xRα,Aa y
andM, f ⊩ B for all B ∈ ∆. Fix such f . From xRα,Aa y, we obtainM, f ⊩ xRαay.
This is what we want to show.

The case where the last applied rule is (R→): In this case, we have a derivation of
x:αA,Γ ⇒ ∆, x:αB in GIntPAL, and since Gr(x:αA,Γ ⇒ ∆, x:αB) = Gr(Γ ⇒
∆, x:αA → B), it is trivially a tree. Let the graph be (L, (Ea)a∈Agt). By the ap-
plication of the induction hypothesis, we obtain there is no f :L → D(M) such
that M, f ⊩ x:αA and M, f ⊩ A for all A ∈ Γ and M, f ⊩ x:αB. Then it suf-
fices to show that if there is f :L → D(M) such that M, f ⊩ A for all A ∈ Γ
and M, f ⊩ x:αA→ B, then there is f :L → D(M) such that M, f ⊩ x:αA and
M, f ⊩ A for all A ∈ Γ and M, f ⊩ x:αB (∗). Suppose the antecedent of (∗),
and consider such f :L → D(M). Then we obtain M, f ⊩ A for all A ∈ Γ
and M, f ⊩ x:αA→ B which is equivalent to f (y) ≤α v and Mα, f (y) ⊩ A
and Mα, f (y) ⊮ B for some v ∈ D(Mα), and f (y) ∈ D(Mα). Meanwhile,
by Lemma 5.7.1, we obtain a function f ′:L → D(Mα) such that f ′ ≥ f and
M, f ′ ⊩ A for all A ∈ Γ. Now, f ′ can be extend to f ′′:L → D(Mα) such that
f ′′(x) = v and all others are the same as f ′. Then we obtain the succedent of (∗)
that is what we desired.

The case where the last applied rule is (R[.]): In this case, we have a derivation of
x:αA,Γ ⇒ x:α,AB in GIntPAL, and since Gr(x:αA,Γ ⇒ x:α,AB) = Gr(Γ ⇒
x:α[A]B), it is trivially a finite tree. Let us denote the graph by (L, (Ea)a∈Agt).
Suppose for contradiction that there is an assignment f :L → D(M) such that

127

M, f ⊩ A for all A ∈ Γ and M, f ⊩ x:α[A]B. Fix such f :L → D(M). Then, it
suffices to show that there is an assignment f ′:L→ D(M) such thatM, f ′ ⊩ x:αA
andM, f ′ ⊩ A for allA ∈ Γ andM, f ′ ⊩ x:α,AB, since this gives us a contradiction
with our induction hypothesis to x:αA, Γ ⇒ x:α,AB. By the supposition, M, f ⊩
x:α[A]B, which is equivalent to: f (x) ∈ D(Mα) and there is some v ∈ D(Mα)
such that f (x) ⩽α v and Mα, v ⊩ A and Mα,A, v ⊮ B. By Lemma 5.7.1 and the
supposition thatM, f ⊩ A for all A ∈ Γ, we obtain an assignment f ′:L → D(M)
such that f ′(x) = v and f (z) ⩽ f ′(z) for all z ∈ L andM, f ′ ⊩ A for all A ∈ Γ. It
also follows thatM, f ′ ⊩ x:αA andM, f ′ ⊩ x:α,AB, as desired.

The case where the last applied rule is (R□a): In this case, we have a derivation of
xRαay, Γ⇒ y:αA in GIntPAL. Let us denote a tree Gr(Γ⇒ x:α□aA) by (L, (Eb)b∈Agt).
Since y is a fresh variable, Gr(xRαay,Γ⇒ y:αA) = (L∪{y}, Ea∪{(x, y)}, (Eb)b∈Agt\{a})
is still a finite tree. Suppose for contradiction that there is an assignment f :L →
D(M) such thatM, f ⊩ A for all A ∈ Γ andM, f ⊩ x:α□aA. Fix such assignment
f :L → D(M). It suffices to show that there is an assignment g:L ∪ {y} → D(M)
such that M, g ⊩ A for all A ∈ Γ and M, g ⊩ xRαay and M, g ⊩ y:αA, since this
gives us a contradiction with our induction hypothesis to xRαay,Γ⇒ y:αA. Then,
by the supposition ofM, f ⊩ x:α□aA, we have f (x) ∈ D(Mα) and there are some
v, u ∈ D(Mα) such that f (x)⩽αu, uRαav and Mα, v ⊮ A. By the supposition that
M, f ⊩ A for all A ∈ Γ, we apply Lemma 5.7.1 to the sequent Γ ⇒ x:α□aA
to find an assignment f ′:L → D(Mα) such that f ′(x) = u, f (z) ⩽ f ′(z) for all
z ∈ L and M, f ′ ⊩ A for all A ∈ Γ. Now, f ′ can be extend to a new assignment
g:L∪{y} → D(M) such that g is the same as f ′ except g(y) = v. Then, we obtain
M, g ⊩ A for all A ∈ Γ,M, g ⊩ xRαay andM, g ⊩ y:αA, as desired.

□

We have done to prove all theorems which are declared to be shown in the intro-
duction. But the following last piece should be significant for an indirect proof of the
completeness of GIntPAL.

Proposition 5.7.6. If⇒ x:ϵA is t-valid in an IntK-modelM, then A is valid inM.

Proof. Suppose that ⇒ x:ϵA is t-valid. So, it is not the case that there exists some
assignment f such thatM, f ⊩ x:ϵA. Equivalently, for all assignments f ,M, f ⊮ x:ϵA.
For any assignment f ,M, f ⊮ x:ϵA is equivalent toM, f (x) ⊩ A because f (x) ∈ D(M).
So, it follows thatM, f (x) ⊩ A for all assignments f . Then, it is immediate to see that
A is valid inM, as required. □

Finally, we may establish the completeness theorem as follows.

Corollary 5.7.1 (Completeness of GIntPAL). Given any formula A and label x ∈ Var,
the following are equivalent:

(i) A is valid on all IntK-models;

(ii) ⊢HIntPAL A;

(iii) ⊢GIntPAL+⇒ x:ϵA;

128

(iv) ⊢GIntPAL⇒ x:ϵA.

Proof. The direction from (i) to (ii) is established by Fact 5.3.1 and the direction from
(ii) to (iii) is shown by Theorem 5.5.1. Then, the direction from (iii) to (iv) is estab-
lished by the admissibility of cut, i.e., Theorem 5.6.1. Finally, the direction from (iv)
to (i) is shown by Theorem 5.7.1 and Proposition 5.7.6, since Gr(⇒ x:ϵA) is a tree (a
single point-tree) and therefore Theorem 5.7.1 is applicable, and then Proposition 5.7.6
may be applied to its conclusion. □

129

Chapter 6

Conclusion

6.1 Summary of contributions
In Chapter 2, we introduced multi-modal logics and labelled sequent calculus which
are main bases of this thesis. In Chapter 3, we found that inference rules for accessi-
bility relations were missing in the existing labelled sequent calculus of G3PAL, and
that (RA4) ([A]□aB ↔ A → □a[A]B), one of the recursion axioms in HPAL, was
not provable by the system, although it should be if it is complete for Kripke seman-
tics. Therefore, we revised G3PAL by reformulating and adding some rules to it and
named the first labelled system in this thesis GPAL. Additionally, we showed the cut-
elimination theorem of GPAL (Theorem 3.2.2). During this revision, we also make the
notion of survival explicit. According to this revision, we could show that GPAL is
sound for Kripke semantics (Theorem 3.3.1). Moreover, by carefully considering the
notion of survival, we found the link-cutting version of PAL’s semantics is more suit-
able to our labelled sequent calculus than the standard semantics i.e., the world-deleting
semantics, and then we showed GPAL is complete for the link-cutting semantics (The-
orem 3.4.1). Then, the basis of GPAL was extended to be based on other basic modal
logics including S5 which is the usual basis of epistemic logics.

In Chapter 4, we introduced the second labelled sequent calculus GEAK, and
showed its cut-admissibility (Theorem 4.2.1) and the soundness theorem (Theorem 4.4.1).
After that, we obtained as a corollary the semantic completeness (Corollary 4.4.1)
through the completeness theorem of an existing Hilbert-system HEAK. Moreover,
we also showed our system is sound for the standard Kripke semantics. In the proof
of the soundness theorem, we also took into account the notion of survival of worlds
in the restricted domain. Therefore, we demonstrated that it is critical especially in the
case of labelled systems to carefully consider deleted (or restricted) world(s) in a mod-
ified Kripke model. EAK is not only a complicated logic but also the core of the field
of DEL (we mentioned in the introduction EAK is called Dynamic Epistemic Logic
in a narrower range of the meaning). Therefore, our labelled system is handled much
easier than Hilbert-system HEAK and is beneficial for the study of DEL since it is
often troublesome to construct a derivation of a theorem of it (formulas concerning a

130

knowledge-state tend to be long and complicated, in fact). Then, the basis of GEAK
was extended to be based on other basic modal logics including S5 which is the usual
basis of epistemic logics.

In Chapter 5, we provided the third labelled sequent calculus GIntPAL for PAL
within an intuitionistic framework, and as with previous labelled systems, we showed
the cut-elimination theorem (Theorem 5.6.1), the soundness theorem (Theorem 5.7.1)
and the completeness theorem as a corollary (Corollary 5.7.1) of the completeness of
Hilbert-system HEAK and Theorem 5.7.1. A sequent calculus that is easy to handle
may be particularly significant for intuitionistic epistemic logics that regard verification
or evidence as important.

6.2 Future directions
We may consider some other tasks from our three labelled calculi. Firstly, although
we employ Gentzen’s traditional approach, there is another approach for an labelled
system such as the G3-system introduced by Troelstra and Schwichtenberg [80] and
Negri and von Plato [58, p.192] and for the case of intuitionistic logic Dyckhoff and
Negri [23]. As we mentioned in Section 2.1.3, the G3-system is a sequent calculus in
which all structural rules including contraction rules are height-preserving admissible.
Since a G3-system has such outstanding features, the possibility of employing it is
worth being considered in the future. Secondly, we have not given direct proofs of
the completeness theorems of GIntPAL and GEAK; however, the idea of the link-
cutting semantics in PAL can be applicable to also IntPAL and EAK to show the direct
proofs, and we need to consider these possibilities. Thirdly, Although the extension of
GIntPAL from K to other modal logics was not conducted in this thesis, the extension
like the cases of GPAL,GEAK is desirable and should be done in the future. Fourthly,
the cut-free labelled sequent calculi we have argued so far can become a stepping-stone
to consider other logical problems such as the decision problem and the computational
complexity. Especially. these two problems can be significant to the field of DEL
which is related with Artificial Intelligence (i.e., implementing formalized knowledge
on a computer), it is a good opportunity to put the proof-theoretic research of DEL
forward based on the cut-free systems. Lastly, extensions of calculi do not end at an
extension of them from K to S5, but we may consider adding finite subset B of Agt
which is known as ‘common knowledge’ in languages of DELs. If we can successfully
do this, our calculi will be more valuable for the study of DELs. These will be left to
our future works.

131

Appendix A

Implementations for Dynamic
Epistemic Logics

We have seen, based on Multi-modal Logic (ML), three Dynamic Epistemic Logics
such as Public Announcement Logic (PAL), Logic of Epistemic Actions and Knowl-
edge (EAK) and Intuitionistic PAL (IntPAL). In this chapter, we give a brief introduc-
tion of implementations of those semantics and labelled systems. Specifically, we im-
plement the satisfaction relation of Kripke semantics with some examples (e.g., muddy
children puzzle) for each DEL1 and automated theorem provers based on our cut-free
sequent calculi GPAL. Every implementation is written in the programming language
Haskell. Our environment for the implementations are as follows.

• OS : Ubuntu 14.04 (64bit)

• ghc (Haskell compiler) : version 7.6.3

• graphviz : version 2.36

Let us warn the reader that, as a notice, since we cannot introduce the whole code of
implementations (it is too long to put here), we introduce some core definitions and
functions.

A.1 Semantic tools for DELs

A.1.1 Implementation for PAL
Language The language implemented is, of course, the same as the language of PAL
LPAL but all defined connectives are included in the language to avoid uselessly com-
plicated computations. The code is as follows:

1As relational works, there exist automated semantic tools of EAK such as DEMO [84] and Aximo [73].

132

-- Language

type Label = Int

type History =[Label]

type Agent = String

data Formula = Atom String -- p

| AnyF String -- A

| Top -- T

| Bottom -- _|_

| Neg Formula -- ~A

| Box Agent History Formula -- #a A

| Dia Agent History Formula -- $a A 　
| Conj Formula Formula -- A & B

| Disj Formula Formula -- A v B

| Impl Formula Formula -- A -> B

| Equi Formula Formula -- A <-> B

| Announce Formula Formula -- [A]B

| Announce2 Formula Formula -- <A>B

deriving (Eq,Show,Ord)

where #a A and $a A mean □aA and ♢aA respectively and other connectives are the
same as you can imagine, and History in the definitions of #a A and $a A is utilized
in an automated theorem prover for PAL to keep a history of labels.

A.1.2 Kripke semantics
We now give definitions of the Kripke model and the satisfaction relation. They are
almost the same as definitions in Section 2.2.1, except the definition of accessibility
relation R is a ternary relation R ⊆ Agt × W × W where Agt where Agt is a finite set
of agents and W is the domain of a Kripke model (in the code below, we write type
Relation = [(Agent,World,World)]) .

-- Kripke model and satisfaction relation

type World = String

type Agent = String

type Relation = [(Agent,World,World)]

type Valuation = [(String,[World])]

data Frame = Frame [World] Relation

deriving (Eq,Show,Read)

data Model = Model Frame Valuation

deriving (Eq,Show,Read)

frame1 (Frame w r) = w

frame2 (Frame w r) = r

valueF :: Frame -> Valuation -> World -> Formula -> Bool

valueF f v w Top = True

valueF f v w Bottom = False

valueF f v w (Atom p) = w ‘elem‘ rejectJust (lookup p v)

133

valueF f v w (Neg p) = not $ valueF f v w p

valueF f v w (Conj p q) = (valueF f v w p) && (valueF f v w q)

valueF f v w (Disj p q) = (valueF f v w p) || (valueF f v w q)

valueF f v w (Impl p q) = not (valueF f v w p) || (valueF f v w q)

valueF f v w (Equiv p q) = (valueF f v w p) == (valueF f v w q)

valueF f v w (Box ag p) = forall [z|(ag,u,z) <- (frame2 f),u == w]

(\z -> (valueF f v z p))

valueF f v w (Dia ag p) = exists [z|(ag,u,z) <- (frame2 f),u == w]

(\z -> (valueF f v z p))

valueF f v w (Announce p q) = not (valueF f v w p)

|| (valueF (Frame lmtdW lmtdR) v w q)

where lmtdW = [w|w <- (trueWorld f v p)]

lmtdR = [(ag,x,y)|(ag,x,y)<-(trueRelation f v p)]

--- functions to construct a truth/false set.

trueWorld :: Frame -> Valuation -> Formula -> [World]

trueWorld f v p = [x | x <- (frame1 f),(valueF f v x p) == True]

--- restricted relation

trueRelation :: Frame -> Valuation -> Formula -> Relation

trueRelation f v p = frame2 f ‘difference‘

(union [(ag,u,w)|(ag,u,w) <- (frame2 f), (w ‘elem‘ (trueWorld f v (Neg p)))]

[(ag,w,u)|(ag,w,u) <- (frame2 f), (w ‘elem‘ (trueWorld f v (Neg p)))])

These definitions, we make note of the functions trueWorld,trueRelation.
trueWorld :: Frame -> Valuation -> Formula -> [World] and
trueRelation :: Frame -> Valuation -> Formula -> Relation.

The former is a function to construct a restricted domain WA such that {w | M, w ⊩ A}
from given Kripke model M and formula A, and the latter is a function to restrict a
given relation as Ra ∩ (WA ×WA).

Muddy children puzzle Below is the definition of a Kripke model (muddyWorld,
muddyRelation,muddyValues) which represents the Muddy children puzzle 2.2.3 in
Chapter2.

-- Frame and valuation of muddy children

muddyAgent = ["a","b","c"]

muddyWorld = [x ++ y ++ z | x<-["1","0"],y<-["1","0"],z<-["1","0"]]

muddyRelation =

[("a",x++y++z,x’++y++z)|x<-["1","0"],x’<-["1","0"],y<-["1","0"],z<-["1","0"]]++

[("b",x++y++z,x++y’++z)|x<-["1","0"],y<-["1","0"],y’<-["1","0"],z<-["1","0"]]++

[("c",x++y++z,x++y++z’)|x<-["1","0"],y<-["1","0"],z<-["1","0"],z’<-["1","0"]]

valueP :: Formula -> [World]

valueP (Atom "0a") = ["011","001","000","010"]

valueP (Atom "1a") = ["111","101","100","110"]

valueP (Atom "0b") = ["000","001","100","101"]

valueP (Atom "1b") = ["010","011","110","111"]

valueP (Atom "0c") = ["000","100","010","110"]

134

valueP (Atom "1c") = ["001","011","101","111"]

muddyFrame = Frame muddyWorld muddyRelation

muddyValues = [

("0a" ,["011","001","000","010"]),

("1a" ,["111","101","100","110"]),

("0b" ,["000","001","100","101"]),

("1b" ,["010","011","110","111"]),

("0c" ,["000","100","010","110"]),

("1c" ,["001","011","101","111"])

]

Then we define the first to third public announcements as follows.

-- Public announcements for muddy children

announceMuddy1 =

(Atom "0a") ‘Disj‘ (Atom "0b") ‘Disj‘ (Atom "0c")

announceMuddy2 =

((Neg (Box "a" (Atom "0a"))) ‘Conj‘ (Neg (Box "a" (Neg (Atom "0a"))))) ‘Conj‘

((Neg (Box "b" (Atom "0b"))) ‘Conj‘ (Neg (Box "b" (Neg (Atom "0b"))))) ‘Conj‘

((Neg (Box "c" (Atom "0c"))) ‘Conj‘ (Neg (Box "c" (Neg (Atom "0c")))))

announceMuddy3 =

((Box "b" (Atom "0b")) ‘Disj‘ (Box "b" (Neg (Atom "0b")))) ‘Conj‘

((Box "a" (Atom "0a")) ‘Disj‘ (Box "a" (Neg (Atom "0a"))))

For modifying Kripke models by an announcement (M may be modified by an an-
nouncement A, and the modification yieldsMA) we use the following function.

-- Function for modifying frames

modifyFrame :: Frame -> Formula -> Frame

modifyFrame f p =

Frame (trueWorld f muddyValues p) (trueRelation f muddyValues p)

By these settings, we can solve the puzzle as follows. Here are the results of the Muddy

children puzzle

*Main> modifyFrame muddyFrame announceMuddy1

Frame ["110","101","100","011","010","001","000"] [("a","110","110"),

("a","101","101"),("a","100","100"),("a","110","010"),("a","101","001"),

("a","100","000"),("a","010","110"),("a","001","101"),("a","000","100"),

("a","011","011"),("a","010","010"),("a","001","001"),("a","000","000"),

135

("b","110","110"),("b","110","100"),("b","100","110"),("b","101","101"),

("b","100","100"),("b","011","011"),("b","010","010"),("b","011","001"),

("b","010","000"),("b","001","011"),("b","000","010"),("b","001","001"),

("b","000","000"),("c","110","110"),("c","101","101"),("c","101","100"),

("c","100","101"),("c","100","100"),("c","011","011"),("c","011","010"),

("c","010","011"),("c","010","010"),("c","001","001"),("c","001","000"),

("c","000","001"),("c","000","000")]

*Main> modifyFrame it announceMuddy2

Frame ["100","010","001","000"] [("a","100","100"),("a","100","000"),

("a","000","100"),("a","010","010"),("a","001","001"),("a","000","000"),

("b","100","100"),("b","010","010"),("b","010","000"),("b","000","010"),

("b","001","001"),("b","000","000"),("c","100","100"),("c","010","010"),

("c","001","001"),("c","001","000"),("c","000","001"),("c","000","000")]

*Main> modifyFrame it announceMuddy3

Frame ["001"] [("a","001","001"),("b","001","001"),("c","001","001")]

As you can see above, after the third announcement, we obtain only one world 001
which is the answer.

A.1.3 Implementation for EAK
Similar to the previous section, we implement the language of EAK at first and its
definition is given in the same manner as Definition 2.3.1 in Chapter 2.3, but all defined
logical connectives (e.g., ∧,∨ etc.) are added to the definition.

-- Language of EAK

type Agent = String

type Name = String

type State = String

type RelAM = [(Agent,State,State)]

type Pre = State -> Formula --[(State,Formula)]

data Action = PointAM (AM,State)

| Cup Action Action

data AM = AM Name [State] RelAM Pre

data Formula =

Top

| Bottom

| Atom String -- A

| Neg Formula -- ~A

| Conj Formula Formula -- A & B

| Disj Formula Formula -- A v B

| Impl Formula Formula -- A -> B

| Equiv Formula Formula -- A <-> B

| Box Agent Formula -- #aA

| Diamond Agent Formula -- $aA

136

| AfterAction Action Formula -- [α]A
| HutAfterAction Action Formula -- 〈α〉A

Subsequently, we define the Kripke semantics and the satisfaction relation of EAK
(which are also implementations of Section 2.3.1) as follows.

-- Semantics of EAK

type World = String

type Valuation = Formula -> [World]

type RelKM = [(Agent,World,World)]

data KM = KM Name [World] RelKM Valuation

data PointKM = PointKM (KM,World)

modelKM (PointKM (mo,wo)) = mo

modelKM2 (PointKM (mo,wo)) = wo

modelAM (PointAM (mo,wo)) = mo

modelAM2 (PointAM (mo,wo)) = wo

km0 (KM name _ _ _) = name

km1 (KM _ world _ _) = world

km2 (KM _ _ relat _) = relat

km3 (KM _ _ _ valua) = valua

am0 (AM name _ _ _) = name

am1 (AM _ state _ _) = state

am2 (AM _ _ relat _) = relat

am3 (AM _ _ _ preco) = preco

valueF :: PointKM -> Formula -> Bool

valueF (PointKM (m,w)) Top

= True

valueF (PointKM (m,w)) Bottom

= False

valueF (PointKM (m,w)) (Atom p)

= if ’<’ ‘notElem‘ w

then w ‘elem‘ ((km3 m) (Atom p))

else (takeW w) ‘elem‘ ((km3 m) (Atom p))

valueF (PointKM (m,w)) (Neg p)

= not $ valueF (PointKM (m,w)) p

valueF (PointKM (m,w)) (Conj p q)

= (valueF (PointKM (m,w)) p) && (valueF (PointKM (m,w)) q)

valueF (PointKM (m,w)) (Disj p q)

= (valueF (PointKM (m,w)) p) || (valueF (PointKM (m,w)) q)

valueF (PointKM (m,w)) (Impl p q)

= (valueF (PointKM (m,w)) p) ==> (valueF (PointKM (m,w)) q)

valueF (PointKM (m,w)) (Equiv p q)

= (valueF (PointKM (m,w)) p) == (valueF (PointKM (m,w)) q)

valueF (PointKM (m,w)) (Box ag p)

= forall [z | (ag’,w’,z) <- (km2 m),w’==w, ag==ag’] (\v -> (valueF (PointKM (m,v)) p))

valueF (PointKM (m,w)) (Diamond ag p)

= exists [z | (ag’,u,z) <- (km2 m),u==w,ag==ag’] (\v -> (valueF (PointKM (m,v)) p))

137

valueF (PointKM (m,w)) (AfterAction a p)

= case a of

Cup b b’ -> (valueF (PointKM (m,w)) (AfterAction b p))

&& (valueF (PointKM (m,w)) (AfterAction b’ p))

PointAM (e,s) -> (valueF (PointKM (m,w)) ((am3 e) s))

==> valueF (PointKM (m,w) *** PointAM (e,s)) p

valueF (PointKM (m,w)) (HutAfterAction a p)

= valueF (PointKM (m,w)) (Neg (AfterAction a (Neg p)))

Functions takeW, *** (the function for updating a model by an actionM⊗M′) and +++
(the function for composing action models M; M′) for the definition of the satisfaction
relation of action operators are defined as follows.

-- Functions for action models

makeW :: String-> String -> String -- construct <1,p> from "1" and "a"

makeW w s = "<"++w ++","++ s++ ">"

takeW :: String -> String -- extract 1 from <<1,q>,p>

takeW = takeW2.words.takeW1

takeW1 x = takeW1’ x []

where takeW1’ [] ls = reverse ls

takeW1’ (x:xs) ls = case x of ’<’ -> takeW1’ xs (" < "++ls)

’>’ -> takeW1’ xs (" > "++ls)

’,’ -> takeW1’ xs (" , "++ls)

x -> takeW1’ xs ([x]++ls)

takeW2 (x:xs) = case x of "<" -> takeW2 xs

"," -> takeW2 xs

x -> x

(***) :: PointKM -> Action -> PointKM -- def of M*E

(PointKM (m, w)) *** (PointAM (e,s))

= PointKM ((KM name ws’ rel1’ v’), (makeW w s))

where

name = "("++(km0 m)++"*"++(am0 e)++")"

ws’ = nub ["<"++ w++ ","++ s++ ">"

|w <-(km1 m),s <- (am1 e) , valueF (PointKM (m,w)) ((am3 e) s)]

rel1’ = nub [(ag, "<"++w1++ ","++ s1++ ">", "<"++w2++","++s2++ ">")

| (ag, w1, w2)<-(km2 m),(ag’, s1, s2)<-(am2 e),

valueF (PointKM (m,w1)) ((am3 e) s1),

valueF (PointKM (m,w2)) ((am3 e) s2) ,ag==ag’]

v’ = km3 m

(+++) :: Action -> Action -> Action -- def of Action composition

(PointAM (e1,s1)) +++ (PointAM (e2,s2))

= (PointAM ((AM name state rel pre), (makeW s1 s2)))

where

name = "("++(am0 e1)++";"++(am0 e2)++")"

138

state = nub ["<"++ s ++ ","++ s’ ++ ">"

| s<-(am1 e1), s’<-(am1 e2)]

rel = nub [(ag, "<"++s1++ ","++ t1++ ">", "<"++s2++","++t2++ ">")

| (ag,s1,s2)<-(am2 e1),(ag2,t1,t2)<-(am2 e2),ag==ag2{--}]

pre x = makePre (parseState x) [] ((am3 e1) (fst(sepState x)))

where makePre [] stack fo = fo

makePre (">":xs) (y1:y2:ys) fo

= makePre xs ys (fo ‘Conj‘

AfterAction (PointAM (e1,(fst(sepState x))))

((am3 e2) (snd(sepState x))))

makePre (x:xs) stack fo = makePre xs (x:stack) fo

Then we define functions for outputting Kripke models by Graphviz as follows.

-- Functions for graphviz

draw :: [Formula]-> PointKM -> IO ()

draw st (PointKM (m,w)) =

do writeFile "model.dot"

("graph model {\n graph [size = \"1.2, 2.3\", label = "++ "\""++(km0 m)

++ "\""++"];\n graph[rankdir =LR];\n" ++"\""++ w ++ "\""++ "

[peripheries = 2];\n"++ (drawRel (km2 m)) ++ (drawVar st m)++ "}")

writeFile "model.txt"

("graph model {\n graph [size = \"1.2, 2.3\",

label = "++ "\""++(km0 m) ++ "\""++"];\n graph[rankdir =LR];

\n" ++"\""++ w ++ "\""++ " [peripheries = 2];\n"++ (drawRel (km2 m))

++ (drawVar st m)++ "}")

graphviz :: (Show a) => IO a -> IO ProcessHandle

graphviz x = do x

runCommand $ "dot -Tpdf model.dot"

++ " -o model.pdf;"

++ " gnome-open model.pdf"

where gnome-open is a terminal command of Unbuntu 14.04 to open a pdf-file.

Example 1 (Muddy children puzzle) Let us trace here the Muddy children puzzle
by these settings of EAK. First, we define publicAnnouncement which is an action
to simulate a public announcement of PAL as we already have seen in Example 2.3.2.

-- Kripke model of Muddy children puzzle

publicAnnouncement :: [Agent] ->String -> Formula -> Action ((AM name pubS pubR pubPre),y)

where

name = "pubAnn(" ++ y ++ ")"

139

pubS = [y]

pubR = (refl ags [y])

pubPre y = x

Subsequently, we define the Kripke model for the puzzle as follows.
[l]Kripke model of Muddy children puzzle

muddyProp =

[Atom (x ++ y) | x <- ["a","b","c"], y <- ["x","o"]]

muddyAgent = ["a","b","c"]

muddy :: PointKM

muddy = PointKM ((KM name muddyS muddyR muddyV),"100")

where

name = "muddy"

muddyS = [(x ++ y ++z) | x <- ["x","o"],

y <- ["x","o"], z <- ["x","o"]]

muddyR = (refl ["a","b","c"] muddyS)

++ (symm "a" ["000","100"]) ++ (symm "a" ["010","110"])

++ (symm "a" ["001","101"]) ++ (symm "a" ["011","111"])

++ (symm "b" ["000","010"]) ++ (symm "b" ["100","110"])

++ (symm "b" ["001","011"]) ++ (symm "b" ["101","111"])

++ (symm "c" ["000","001"]) ++ (symm "c" ["010","011"])

++ (symm "c" ["100","101"]) ++ (symm "c" ["110","111"])

muddyV (Atom x) = case x of

"a1" -> ["111","101","100","110"]

"a0" -> ["011","001","000","010"]

"bo" -> ["010","111","110","011"]

"b0" -> ["000","101","100","001"]

"c1" -> ["001","011","101","111"]

"c0" -> ["000","100","010","110"]

Then we define the three public announcements (defined by the action) such as muddyAnn1,
muddyAnn2, and muddyAnn3 as follows. Of course, each corresponds to the formula
in Example 2.2.3.

-- Public announcements by EAK

muddyAnn1 :: Action

muddyAnn1 =

publicAnnouncement muddyAgent "ann1"

((Atom "a0") ‘Disj‘ (Atom "b0") ‘Disj‘ (Atom "c0"))

muddyAnn2 :: Action

muddyAnn2 =

publicAnnouncement muddyAgent "ann2"

(((Neg (Box "a" (Atom "a0"))) ‘Conj‘ (Neg (Box "a" (Neg (Atom "a0"))))) ‘Conj‘

((Neg (Box "b" (Atom "b0"))) ‘Conj‘ (Neg (Box "b" (Neg (Atom "b0"))))) ‘Conj‘

((Neg (Box "c" (Atom "c0"))) ‘Conj‘ (Neg (Box "c" (Neg (Atom "c0"))))))

muddyAnn3 :: Action

muddyAnn3 =

140

publicAnnouncement muddyAgent "ann3"

(((Neg (Box "a" (Atom "a0"))) ‘Conj‘ (Neg (Box "a" (Neg (Atom "a0"))))) ‘Conj‘

((Box "b" (Atom "b0")) ‘Disj‘ (Box "b" (Neg (Atom "b0")))) ‘Conj‘

((Box "c" (Atom "c0")) ‘Disj‘ (Box "c" (Neg (Atom "c0")))))

Then we define the next three functions (drawMuddy0 to 3) and obtain the following
graphs yielded by graphviz which correspond to the Muddy children puzzle of PAL.

-- Muddy children puzzle by EAK

drawMuddy0 = graphviz $ draw2 muddyProp muddy

drawMuddy1 = graphviz $ draw2 muddyProp $ muddy***muddyAnn1

drawMuddy2 = graphviz $ draw2 muddyProp $ (muddy***muddyAnn1)***muddyAnn2

drawMuddy3 = graphviz $ draw2 muddyProp $ ((muddy***muddyAnn1)***muddyAnn2)***muddyAnn3

Result of drawMuddy0 (Initial Kripke model)� �

muddy

100 101c

110
b

000

a

001c

010
b

011

b

a

c

a

111

a

b

c

V(a0) = {011 001 000 010}
 V(a1) = {111 101 100 110}
 V(b0) = {000 101 100 001}
 V(b1) = {010 111 110 011}
 V(c0) = {000 100 010 110}
 V(c1) = {001 011 101 111}

� �

141

Result of drawMuddy0 (Kripke model after 1st announcement)� �

(muddy*pubAnn(ann1))

<100,ann1>

<101,ann1>

c

<110,ann1>b

<000,ann1>

a

<001,ann1>

c

<010,ann1>b

<011,ann1>b

ac

a

V(a0) = {011 001 000 010}
 V(a1) = {111 101 100 110}
 V(b0) = {000 101 100 001}
 V(b1) = {010 111 110 011}
 V(c0) = {000 100 010 110}
 V(c1) = {001 011 101 111}

� �
Result of drawMuddy0 (Kripke model after 2nd announcement)� �

((muddy*pubAnn(ann1))*pubAnn(ann2))

<<100,ann1>,ann2>

<<000,ann1>,ann2>

a

<<001,ann1>,ann2>c

<<010,ann1>,ann2>

b

V(a0) = {011 001 000 010}
 V(a1) = {111 101 100 110}
 V(b0) = {000 101 100 001}
 V(b1) = {010 111 110 011}
 V(c0) = {000 100 010 110}
 V(c1) = {001 011 101 111}

� �
142

Result of drawMuddy0 (Kripke model after 3rd announcement)� �

(((muddy*pubAnn(ann1))*pubAnn(ann2))*pubAnn(ann3))

<<<100,ann1>,ann2>,ann3>

V(a0) = {011 001 000 010}
 V(a1) = {111 101 100 110}
 V(b0) = {000 101 100 001}
 V(b1) = {010 111 110 011}
 V(c0) = {000 100 010 110}
 V(c1) = {001 011 101 111}

� �
As you can see the last figure, world <<<100,ann1>,ann2>,ann3> remains, which
means after the three actions (public announcements), only world 100 remains, and this
is exactly the answer.

143

Next, let us implement Example 2.3.2 in which EAK is utilized to express a private
announcement (reading a letter). So, we define the Kripke model letter (this is the
same as Kripke modelM in Example 2.3.2) and action model Read.

-- Kripke model letter

letter :: PointKM

letter = PointKM ((KM name letterS letterR letterV),"1")

where

name = "letter"

letterS = ["0","1"]

letterR = (refl ["a","b"] letterS) ++ (symm "a" letterS) ++ (symm "b" letterS)

letterV (Atom "p") = ["1"]

Graphic form of letter� �

letter

10 ab

V(p) = {1}

� �

144

-- Action model Read

reada :: Action

reada = PointAM((AM name readaS readaR readaPre),"pa")

where

name = "reada"

readaS = ["npa","pa"]

readaR = (refl ["a","b"] readaS) ++ [("b","npa","pa"),("b","pa","npa")]

readaPre x = case x of "pa" -> Atom "p"

"npa" -> Neg (Atom "p")

145

So, we trace Example 2.3.2 as follows.

A.2 Automated theorem prover for DELs : Kripkenstein
Let us now move onto the section for implementations of labelled sequent calculi that
have been introduced so far. Each labelled system is implemented as an automated
theorem prover, and we name the group of provers Kripkenstein.2 We introduce one
prover which is for GPAL. We notice that we referred to an existing theorem prover
called PESCA [71],3 as the basis of the prover.

A.2.1 GPAL of Kripkenstein
Let us define the language of GPAL for the prover, where we add all logical con-
nectives in the language of PAL as follows, and of course each added connective is
semantically equivalent to a formula of the original language.

A ::= ⊥ | ⊤ | p | ¬A | (A ∧ A) | (A ∨ A) | (A→ A) | (A↔ A) | □aA | ♢aA.

An inference rule corresponding to each added connective is also included. Further,
for automatizing the construction of a derivation, we revise the initial sequents and
inference rules of PAL given in Table 3.2. For example, we add a list β of labels as a
history of instantiated labels, and a label is added to the history by the application of
inference rules (L□a) and (R♢a) to avoid instantiating the same label as before. Let us
look at the following example.

x:ϵ□yaB⇒ yϵ :C

In this case, we cannot apply (L□a) with instanating y since □aB has already been
instantiated with y which is recorded in the history. This restriction of rules for the
knowledge operators prevents to infinitally instantiate the same label.

The revised initial sequents and inference rules are shown in Table A.1. Here is the
code of definitions for labelled expression, sequent, inference rule and proof (deriva-
tion).

2Kripkenstein is a fictional nickname that a philosopher coined to combine Saul Kripke and Ludwig
Wittgenstein. Kripke [45] interpreted Wittgenstein’s Philosophische Untersuchungen (Philosophical Inves-
tigations) [88] in a unique and peculiar way, but since his reading was considered far from Wittgenstein’s
original thought and controversial, the reading Kripke interpreted is sometimes called such a nickname. In
[45], Kripke reads Wittgenstein as a skeptic with a well-known argument of the distinction between ‘plus’
and ‘quus’ which is a paradox regarding private language. In brief, how we can choose ‘plus’ (a mathe-
matical function defined in a usual way) or ‘quus’ (another function defined in an unusual and odd way).
Kripke’s response to the paradox is called a skeptical solution inspired by David Hume. According to that,
we cannot justify, by any objective fact, the link between a person’s private use of ‘plus’ rather than ‘quus’ in
a particular case and the putative rule itself; however, the use of ‘plus’ is justified by the fact that ‘plus’ has
been used in a community and everyone there behaves, without any doubt, as it is correct (see more details
in [16]). We put the meaning of ‘everyone there behaves, without any doubt, as it is correct’ into the name of
Kripkenstein since computers seem to behave so in fact, and that is why we can usually believe the result
yielded by them.

3PESCA is also introduced in Negri et al. [57]

146

Table A.1: Labelled sequent calculus for Kripkenstein : GPAL′

(Initial sequents)

x:αA,Γ⇒ ∆, x:αA
(init)

xRαav, Γ⇒ ∆, xRαav
(init)

x:α⊥,Γ⇒ ∆ (initBot)
Γ⇒ ∆, x:α⊤ (initTop)

(Rules for propositional connectives)

Γ⇒ ∆, x:αA x:αB,Γ⇒ ∆
x:αA→ B,Γ⇒ ∆ (L→)

x:αA, Γ⇒ ∆, x:αB
Γ⇒ ∆, x:αA→ B

(R→)

x:αA, x:αB,Γ⇒ ∆
x:αA ∧ B,Γ⇒ ∆ (L∧)

Γ⇒ ∆, x:αA Γ⇒ ∆, x:αB
Γ⇒ ∆, x:αA ∧ B

(R∧)

x:αA→ B, x:αB→ A,Γ⇒ ∆
x:αA↔ B,Γ⇒ ∆ (L↔)

Γ⇒ ∆, x:αA→ B Γ⇒ ∆, x:αB→ A
Γ⇒ ∆, x:αA↔ B

(R↔)

x:αA,Γ⇒ ∆ x:αB,Γ⇒ ∆
x:αA ∨ B,Γ⇒ ∆ (L∨)

Γ⇒ ∆, x:αA, x:αB
Γ⇒ ∆, x:αA ∨ B

(R∨)

(Rules for knowledge operators)

Γx:α□β,ya A,⇒ xRαay y:
αA,□β,ya A,Γ⇒ ∆

x:α□βaA,Γ⇒ ∆
(L□a‡)

xRαay,Γ⇒ ∆, y:αA

Γ⇒ ∆, x:α□βaA
(R□a)†

xRαay, y:
αA,Γ⇒ ∆

x:α♢βaA,Γ⇒ ∆
(L♢a)†

Γ⇒ ∆, ♢β,ya A, xRαay Γ⇒ ∆, ♢
β,y
a A, y:αA

Γ⇒ ∆, x:α♢βaA
(R♢a‡)

† y does not appear in the lowersequent.
‡ y does not appear in β.

(Rules for IntPAL)

x:αp,Γ⇒ ∆
x:α,A p,Γ⇒ ∆

(Lat)
Γ⇒ ∆, x:αp
Γ⇒ ∆, x:α,A p

(Rat)

Γ⇒ ∆, x:αA x:α,AB,Γ⇒ ∆
x:α[A]B,Γ⇒ ∆ (L[.])

x:αA, Γ⇒ ∆, x:α,AB
Γ⇒ ∆, x:α[A]B

(R[.])

x:αA, x:α,AB,Γ⇒ ∆
x:α⟨A⟩B,Γ⇒ ∆ (L⟨.⟩) Γ⇒ ∆, x:αA Γ⇒ ∆, x:α,AB

Γ⇒ ∆, x:α⟨A⟩B (R⟨.⟩)

x:αA, y:αA, xRαay,Γ⇒ ∆
xRα,Aa y, Γ⇒ ∆

(Lrela)
Γ⇒ ∆, x:αA Γ⇒ ∆, y:αA Γ⇒ ∆, xRαay

Γ⇒ ∆, xRα,Aa y
(Rrela)

147

-- Basic definitions for the prover

type Label = Int

type History =[Label]

data LabelExp = LabelForm ([Formula],Label,Formula)

| RelAtom (Agent,[Formula],Label,Label)

deriving (Eq,Show,Ord)

type Sequent = ([LabelExp],[LabelExp])

data Proof = Proof String Sequent [Proof]

deriving (Eq,Show,Ord)

data Rule = Rule (Int, String, Sequent -> Maybe [Sequent])

We now introduce inference rules of Kripkenstein for PAL.

-- Initial sequents

axiomRule :: String->[Rule]

axiomRule mname =[

Rule (initN, "init", \ (left,right) -> if exists left (\x-> exists right (\y-> x==y))

then Just []

else Nothing),

Rule (initN, "initTop", \ (left,right) ->

if (Top) ‘elem‘ [f | LabelForm (labs,lab,f) <-right]

then Just []

else Nothing),

Rule (initN, "initBot", \ (left,right) ->

if (Bottom) ‘elem‘ [f | LabelForm (labs,lab,f) <-left]

then Just []

else Nothing),

Rule (initN, "end", \ (left,right) ->

if noApplicableRules mname (left,right) && notInit (left,right)

then Just []

else Nothing)]

noApplicableRules mname (left,right)

= let e1 = [(left,c)|c<-rotate right]

e2 = [(b,right)|b<-rotate left]

in and [(rule3 x) y == Nothing | x <-psys mname, y<-e1++e2]

notInit (left,right) = and[x/=y|x<-left,y<-right]

Here we have the rule (end) defined as

Γ⇒ ∆ (end)†

† There is no inference rule which can be applicable to the sequent Γ ⇒ ∆. Actually
(end) is not a rule but the sign of a dead-end of the construction of a derivation.
Subsequently, we give inference rules for classical Boolean connectives.

148

-- Rules for classical connectives

ruleClassic :: [Rule]

ruleClassic =[

Rule (negLN, "L~", \ (left,right) -> case left of

LabelForm (annf, la, Neg p):rest -> Just [{-1-}(rest,(LabelForm (annf, la, p)):right)]

otherwise -> Nothing),

Rule (negRN, "R~", \ (left,right) -> case right of

LabelForm(annf, la, Neg p):rest -> Just [{-1-}(LabelForm(annf, la, p):left,rest)]

otherwise -> Nothing),

Rule (conjLN, "L&", \ (left,right) -> case left of

LabelForm (annf, la, (Conj p q)):rest -> Just [({-1-} LabelForm (annf, la, p)

:LabelForm (annf, la, q):rest,right)]

otherwise -> Nothing),

Rule (conjRN, "R&", \ (left,right) -> case right of

LabelForm(annf, la, (Conj p q)):rest -> Just [{-1-}(left,LabelForm(annf, la, p):rest),

{-2-}(left,LabelForm(annf, la, q):rest)]

otherwise -> Nothing),

Rule (disjLN, "Lv", \ (left,right) -> case left of

LabelForm (annf, la, (Disj p q)):rest -> Just [{-1-}(LabelForm(annf, la, p):rest,right),

{-2-}(LabelForm(annf, la, q):rest,right)]

otherwise -> Nothing),

Rule (disjRN, "Rv", \ (left,right) -> case right of

LabelForm(annf, la, (Disj p q)):rest -> Just [{-1-} (left, LabelForm(annf, la, p)

:LabelForm(annf, la, q):rest)]

otherwise -> Nothing),

Rule (implLN, "L->", \ (left,right) -> case left of

LabelForm(annf, la, (Impl p q)):rest -> Just [{-1-}(rest,LabelForm(annf, la, p):right),

{-2-}(LabelForm(annf, la, q):rest,right)]

otherwise -> Nothing),

Rule (implRN, "R->", \ (left,right) -> case right of

LabelForm(annf, la, (Impl p q)):rest

-> Just [{-1-}(LabelForm(annf, la, p):left, LabelForm(annf, la, q):rest)]

otherwise -> Nothing),

Rule (equiLN, "L<->", \ (left,right) -> case left of

LabelForm(annf, la, (Equi p q)):rest

-> Just [{-1-}(LabelForm(annf, la, Conj (Impl p q) (Impl q p)):rest,right)]

otherwise -> Nothing),

Rule (equiRN, "R<->", \ (left,right) -> case right of

LabelForm(annf, la, (Equi p q)):rest

-> Just [{-1-}(left,LabelForm(annf, la, Conj (Impl p q) (Impl q p)):rest)]

otherwise -> Nothing)]

Next, we give inference rules for announcement operators.

-- Rules for announcement operators

ruleGPAL :: [Rule]

ruleGPAL =[

149

Rule (atLN, "Lat", \ (left,right) -> case left of

LabelForm (k:restw, la, Atom p):restl

-> Just [{-1-}(LabelForm (restw,la, Atom p):restl, right)]

otherwise -> Nothing) ,

Rule (atRN, "Rat", \ (left,right) -> case right of

LabelForm(k:restw, la, Atom p):restr

-> Just [{-1-}(left, (LabelForm (restw,la, Atom p)):restr)]

otherwise -> Nothing),

Rule (annLN, "L[.]", \ (left,right) -> case left of

LabelForm(annf, la, (Announce p q)):rest

-> Just [{-1-}(rest,LabelForm(annf, la, p):right),

{-2-} (LabelForm(annf++[p], la, q):rest,right)]

otherwise -> Nothing),

Rule (annRN, "R[.]", \ (left,right) -> case right of

LabelForm(annf, la, (Announce p q)):rest

-> Just [{-1-}(LabelForm(annf, la, p):left,

LabelForm(annf++[p], la, q):rest)]

otherwise -> Nothing),

Rule (ann2LN, "L<.>", \ (left,right) -> case left of

LabelForm(annf, la, (Announce2 p q)):restl

-> Just [{-1-}(LabelForm(annf, la, p)

:LabelForm(annf++[p], la, q):restl, right)]

otherwise -> Nothing),

Rule (ann2RN, "R<.>", \ (left,right) -> case right of

LabelForm(annf, la, (Announce2 p q)):restr

-> Just [{-1-}(left,LabelForm(annf, la, p):restr),

{-2-} (left,LabelForm(annf++[p], la, q):restr)]

otherwise -> Nothing),

Rule (relLN, "Lrel", \ (left,right) -> case left of

RelAtom (ag,{-hist,-}(x:annf), w1, w2):restl

-> Just [{-1-}((rel’ (LabelForm (annf,w1, x)) restl [])

:(rel’ (LabelForm (annf,w2, x)) restl [])

:(RelAtom (ag,{-hist,-} annf, w1, w2)):restl, right)]

otherwise -> Nothing),

Rule (relRN, "Rrel", \ (left,right) -> case right of

RelAtom (ag, (x:annf), w1, w2):restr

-> if w1 /= w2 then Just [{-1-}(left, (LabelForm (annf,w1, x)):restr),

{-2-}(left, (LabelForm (annf,w2, x)):restr),

{-3-}(left, RelAtom (ag, annf, w1, w2):restr)]

else Just [{-1-}(left, (LabelForm (annf,w1, x)):restr),

{-2-}(left, RelAtom (ag, annf, w1, w2):restr)]

otherwise -> Nothing),

Rule (cmpLN, "Lcmp", \ (left,right) -> case left of

LabelForm(p ‘Conj‘ (Announce p’ q):annf, w,r):restl| p==p’

-> Just [(LabelForm((annf++[p]++[q]), w,r):restl,right)]

otherwise -> Nothing),

Rule (cmpRN, "Rcmp", \ (left,right) -> case right of

LabelForm((p ‘Conj‘ (Announce p’ q)):annf,w,r):restr| p==p’

-> Just [(left,LabelForm(annf++[p]++[q],w,r):restr)]

otherwise -> Nothing)]

Then, inference rules for knowledge operators are given as follows.

150

-- Rules for announcement operators

ruleK :: [InferenceRule]

ruleK =[

Rule (boxRN, "R#", \ (left,right) ->

let label1 = freshLabel (left,right)

in case right of

LabelForm (annf,la, Box ag hist p):restr

-> Just [({-1-}RelAtom (ag,annf,la, label1):left,

LabelForm (annf, label1, p):restr)]

otherwise -> Nothing),

Rule (boxLN, "L#", \ (left,right) -> case left of

LabelForm (annf, la, Box ag hist p):restl ->

let labels = difference (wholeLabel (left,right)) hist

selectedlabels =

[a |a <-labels,

or[((rule3 initr) (left,RelAtom (ag,annf, la, a):right))==Just []

| initr<-axiomRule "K"]

|| or[((rule3 initr) (LabelForm (annf, a, p):restl, right))==Just []

| initr<-axiomRule "K"]]

label2 = head $reverse labels

in case labels of

[] -> Nothing

otherwise

-> Just [{-1-} (LabelForm (annf, la, Box ag (snub (label2:hist)) p):restl,

RelAtom (ag,annf, la, label2):right),

{-2-} (LabelForm (annf, la, Box ag (snub (label2:hist)) p):

LabelForm (annf, label2, p):restl,right)]

otherwise -> Nothing),

Rule (diaRN, "R$", \ (left,right) -> case right of

LabelForm (annf, la, Dia ag hist p):restr

-> Just [{-1-}(left,LabelForm (annf, la, Neg (Box ag hist (Neg p))):restr)]

otherwise -> Nothing),

Rule (diaLN, "L$", \ (left,right) -> case left of

LabelForm (annf, la, Dia ag hist p):restl

-> Just [{-1-}(LabelForm (annf, la, Neg (Box ag hist (Neg p))):restl, right)]

otherwise -> Nothing)]

-- freshLabel :: Sequent->Label

freshLabel sq = head[x | x<-[1..],x ‘notElem‘ (wholeLabel sq)]

-- wholeLabel :: Sequent->[Int]

wholeLabel sq = (nub [w | LabelForm (_,w,_) <-(fst sq)++(snd sq)]

++ [w | RelAtom (_,_,w,v) <-(fst sq)++(snd sq)]

++ [v | RelAtom (_,_,w,v) <-(fst sq)++(snd sq)])

wholeAgent (left,right) = nub $ concat[agentL x [] | x <-left++right]

agentF x li = case x of

151

Box ag hist p -> agentF p (ag:li)

Dia ag hist p -> agentF p (ag:li)

Neg p -> (agentF p li)

Conj p q -> (agentF p li) ++ (agentF q li)

Disj p q -> (agentF p li) ++ (agentF q li)

Impl p q -> (agentF p li) ++ (agentF q li)

Impl2 p q -> (agentF p li) ++ (agentF q li)

Equi p q -> (agentF p li) ++ (agentF q li)

Announce p q -> (agentF p li) ++ (agentF q li)

Announce2 p q -> (agentF p li) ++ (agentF q li)

otherwise -> li

agentL x li = case x of

LabelForm (annf,la, y) -> agentF y li

RelAtom (ag,annf, w1, w2) -> (ag:li)

A.2.2 Core functions for automated theorem proving
We have define GPAL by Haskell so far, but this this not enough to construct a deriva-
tion of a theorem of PAL. What we need here is to define functions for automatically
applying inference rule(s) to a sequent, and judge whether this is a derivable or not.
The following is the central part of such automation.

-- automation for a derivation

sortRule []= []

sortRule (x:xs) =

let smallerOrEqual = [a | a <- xs , fst (fst a) <= fst (fst x)]

larger = [a | a <- xs , fst (fst a) > fst (fst x)]

in sortRule smallerOrEqual ++ [x] ++ sortRule larger

applicableRules mname sequ=

let sys = psys mname ++ axiomRule mname

in [((n, nm),map sortSeq(justList ru sequ))

| Rule (n, nm,ru) <- sys, justTrue ru sequ]

sortSeq (l,r) = (snub l,snub r)

applyRule :: String->Sequent -> [Proof]

applyRule mname (l1,r1) =

let e1 = [applicableRules mname (l2, r1)|l2<-rotate l1]

e2 = [applicableRules mname (l1, r2)|r2<-rotate r1]

e = sortRule$concat(e1 ++e2)

((_,rule),seqs) = head e

prfs = head$ combinations $map (applyRule mname) seqs

in [Proof rule (sortSeq (l1,r1)) prfs]

It is quite simple to understand what the functions work. At first, if we input a sequent
to function applicableRules, it outputs a list of inference rules which can be appli-
cable to the sequent. For example, sequent A ∧ B,¬C ⇒,C → B is inputted to the

152

function, it outputs ((L∧), (L¬), (R →)). After that, function applyRule choose a rule
which has higher priority than others (an order of rules is defined but omitted here).
Let us say rule (L→) is applied. Then, sequent A∧B,¬C,C ⇒, B is yielded by the ap-
plication of the rule. The process is repeated by the sequent which is an initial sequent
or the sequent in which there is no applicable rule. The prover judges a given sequent
as derivable (provable) if every branch of a sequent reaches to initial sequents, and as
unprovable if there are some branches which are not initial sequents and in which there
is no applicable rule. The below screen-shot is an example of deriving a theorem (one
direction of (RA4)) of PAL.

Example of Kripkenstein� �

� �
The prover can be found at the following URL.

https://github.com/NomuraS/GPAL

153

Bibliography

[1] P. Aczel and N. Mendler. A final coalgebra theorem. Category Theory and Com-
puter Science. LNCS, 389:357–365, 1989.

[2] S. Artemov and T. Protopopescu. Intuitionistic epistemic logic. Computer Science
Technical Reports, Paper401, 2014.

[3] G. Aucher, B. Maubert, and F. Schwarzentruber. Generalized DEL-sequents. In
Logics in Artificial Intelligence - 13th European Conference, JELIA-2012, Lec-
ture Notes in Computer Science, pages 54–66. Springer, 2012.

[4] G. Aucher and F. Schwarzentruber. On the complexity of dynamic epistemic
logic. In Burkhard C. Schipper, editor, Proceedings of TARK, pages 19–28, 2013.

[5] A. Avron. Hypersequents, logical consequence and intermediate logics for con-
currency. Annals of Mathematics and Artificial Intelligence, 4:225–248, 1991.

[6] P. Balbiani, V. Demange, and D. Galmiche. A sequent calculus with labels for
PAL. Presented in Advances in Modal Logic, 2014.

[7] P. Balbiani, H. van Ditmarsch, A. Herzig, and T. de Lima. Tableaux for public
announcement logic. Journal of Logic and Computation, 20:55–76, 2010.

[8] A. Baltag, L. Moss, and S. Solecki. The logic of public announcements, common
knowledge and private suspicions. In Proceedings of TARK, pages 43–56. Morgan
Kaufmann Publishers, 1989.

[9] K. Bednarska and A. Indrzejczak. Hypersequent calculi for S5: The methods of
cut elimination. Logic and logical philosophy, 24(4), 2015.

[10] N. D. Belnap. Display logic. Journal of Philosophical Logic, 11(4):375–417,
1982.

[11] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, New York, NY, USA, 2001.

[12] P. Blackburn, J. van Benthem, and F. Wolter. Handbook of Modal Logic, Volume
3 (Studies in Logic and Practical Reasoning). Elsevier Science Inc., New York,
NY, USA, 2006.

154

[13] L. Bozzato, F. Ferrari, C. Fiorentini, and G. Fiorino. A decidable constructive
description logic. Lecture Notes in Computer Science Volume, 6341:51–63, 2010.

[14] K. Brünnler. Deep sequent systems for modal logic. Archive for Mathematical
Logic, 48(6):551–577, 2009.

[15] R. A. Bull. A modal extension of intuitionistic logic. Notre Dame Journal of
Formal Logic, VI:142–146, 1965.

[16] S. Candlish and G. Wrisley. Private language. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Fall 2014 edition, 2014.

[17] B.F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.

[18] C. Cîrstea and M. Sadrzadeh. Coalgebraic epistemic update without change of
model. The proceedings of 2nd Conference on Algebra and Coalgebra in Com-
puter Science (CALCO), 4624:158–172, 2007.

[19] B. J. Copeland. The church-turing thesis. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Summer 2015 edition, 2015.

[20] H. Curry. Foundation of Mathematical Logic. McGraw-Hill, New York, 1963.

[21] V. de Paiva, E. H. Haeusler, and A. Rademaker. Constructive description log-
ics hybrid-style. Electronic Notes in Theoretical Computer Science, 273:21–31,
2011.

[22] A. Dragalin. Mathematical Intuitionism: Intoduction to Proof Theory. American
Mathematical Society, Rhode Island, 1988. Russian original, 1979.

[23] R. Dyckhoff and S. Negri. Proof analysis in intermediate logics. Archive for
Mathematical Logic, 51:71–92, 2012.

[24] R. Dyckhoff and M. Sadrzadeh. A cut-free sequent calculus for algebraic dynamic
epistemic logic. Technical Report RR-10-11, OUCL, June 2010.

[25] G. Fischer Servi. The finite model property for MIPQ and some consequences.
Notre Dame Journal of Formal Logic, XIX:687–692, 1978.

[26] F. B. Fitch. Intuitionistic modal logic with quantifiers. Portugaliae Mathematicae,
7:113–118, 1948.

[27] M. Fitting, L. Thalmann, and A. Voronkov. Term-modal logic. Studia Logic,
69(1):133–169, 2001.

[28] S. Frittella, G. Greco, A. Kurz, A. Palmigiano, and V. Sikimić. Multi-type dis-
play calculus for dynamic epistemic logic. Journal of Logic and Computation,
(doi:10.1093/logcom/exu068), First published online: December 5, 2014.

[29] P. Gärdenfors and D. Makinson. Revisions of knowledge systems using epistemic
entrenchment. Second Conference on Theoretical Aspects of Reasoning about
Knowledge, pages 83–95, 1988.

155

[30] G. Gentzen. Untersuchungen Über das logische Schließen. I. Mathematische
Zeitschrift, 39, 1934.

[31] J. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal
of Logic, Language and Information, 6(2):147–169, 1997.

[32] R. Goldblatt. Mathematical modal logic: A view of its evolution. In D. M. Gabbay
and J. Woods, editors, Handbook of the History of Logic, volume 7, pages 1–98.
Elsevier, 2006.

[33] G. Greco, A. Kurz, and A. Palmigiano. Dynamic epistemic logic displayed. Pro-
ceedings of the 4th International Workshop on Logic, Rationality and Interaction
(LORI-4), 8196:135–148, 2013.

[34] J. U. Hansen. A logic toolbox for modeling knowledge and information in multi-
agent systems and social epistemology. PhD thesis, ROSKILDE UNIVERSITY,
2011.

[35] J. Hintikka. Modalities and quantification. Theoria, 27:119–28, 1961.

[36] J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Cornell University Press, Cornell, 1962.

[37] B. Jónsson and A. Tarski. Boolean algebras with operators part I. American
Journal of Mathematics, 73:891–939, 1951.

[38] B. Jónsson and A. Tarski. Boolean algebras with operators part II. American
Journal of Mathematics, 74:127–162, 1952.

[39] S. Kanger. Provability in logic. Stockholm studies in philosophy 1. Almqvist &
Wiksell, 1957.

[40] R. Kashima. Cut-free sequent calculi for some tense logics. Studia Logica,
53:119–135, 1994.

[41] R. Kashima. Sūri ronri gaku (trans. Mathematical Logic). Asakura Publishing
Co., Ltd., 2009 (in Japanese).

[42] O. Ketonen. Untersuchungen zum Prädikatenkalkül. Annales Academiae scien-
tiarum fennicae (Ser. A.I. 23), Helsinki, 1944.

[43] S. Knuuttila. The emergence of deontic logic in the fourteenth century. In
R. Hilpinen, editor, New Studies in Deontic Logic, pages 225–248. D. Reidel
Publishing Company, Turku, 1981.

[44] B. Kooi. Dynamic term-modal logic. A Meeting of the Minds. Proceedings of the
Workshop on Logic, Rationality and Interaction, pages 173–185, 2007.

[45] A. Kripke, S. Wittgenstein on rules and private language : an elementary expo-
sition. Blackwell Oxford, 1982.

156

[46] S. A. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic,
24:1–14, 1959.

[47] S. A. Kripke. Semantical analysis of modal logic part I. normal modal proposi-
tional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathe-
matik, 9:67–96, 1963.

[48] I. Levi. Subjunctives, dispositions and chances. Synthese, 423-455(34), 1977.

[49] M. Ma, A. Palmigiano, and M. Sadrzadeh. Algebraic semantics and model com-
pleteness for intuitionistic public announcement logic. Annals of Pure and Ap-
plied Logic, 165:963–995, 2014.

[50] M. Ma, K. Sano, F. Schwarzentruber, and F. Velázquez-Quesada. Tableaux
for non-normal public announcement logic. In Mohua Banerjee and Shankara-
Narayanan Krishna, editors, Logic and Its Applications, volume 8923 of Lecture
Notes in Computer Science, pages 132–145. Springer Berlin Heidelberg, 2015.

[51] P. Maffezioli and S. Negri. A Gentzen-style analysis of public announcement
logic. Proceedings of the International Workshop on Logic and Philosophy of
Knowledge, Communication and Action., pages 293–313, 2010.

[52] J. McCarthy. Circumscription—a form of non–monotonic reasoning. Artifical
Intelligence, 13:27–29., 1980.

[53] M. Mendler and S. Scheele. Towards constructive DL for abstraction and refine-
ment. Journal of Automated Reasoning, 44(3):207–243, 2010.

[54] G. Mints. Cut-free calculi for the S5 type. Studies in Constructive Mathmatics
and Mathematical Logic. Part II. Seminars in Mathmatics, 8(2):166–174, 1970
(in Russian).

[55] R. Montague. Logical necessity, physical necessity, ethics, and quantifiers. In-
quiry, 3:259–269, 1960.

[56] S. Negri. Proof analysis in modal logic. Journal of Philosophical Logic, 34:507–
544, 2005.

[57] S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press,
2001.

[58] S. Negri and J. von Plato. Proof Analysis. Cambridge University Press, 2011.

[59] S. Nomura, H. Ono, and K. Sano. A cut-free labelled sequent calculus for dy-
namic epistemic logic. The Proceedings of Logical Foundations in Computer
Science 2016 (LFCS-2016), pages 283–298, 2016.

[60] S. Nomura, K. Sano, and S. Tojo. A labelled sequent calculus for intuitionis-
tic public announcement logic. The Proceedings of 20th International Confer-
ences on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-
20), pages 187–202, 2015.

157

[61] S. Nomura, K. Sano, and S. Tojo. Revising a sequent calculus for public an-
nouncement logic. Structural Analysis of Non-classical Logics: The Proceedings
of the Second Taiwan Philosophical Logic Colloquium (TPLC-2014), pages 131–
157, 2015.

[62] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi. Osaka Mathe-
matical Journal, 9:113–130, 1957.

[63] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi II. Osaka
Mathematical Journal, 11:115–120, 1959.

[64] H. Ono. On some intuitionistic modal logics. Publications of RIMS, Kyoto Uni-
versity, 13:687–722, 1977.

[65] H. Ono. Jōhō kagaku ni okeru ronri (trans. Logic in Information Science).
Nippon-Hyoron-Sha Co., 1994 (in Japanese).

[66] H. Ono. Proof-theoretic methods in nonclassical logic. Theories of Types and
Proofs, Mathematical Society of Japan Memoirs, 2:207–254, 1998.

[67] H. Ono and Y. Komori. Logics without contraction Rule. The Journal of Symbolic
Logic, 50(1):169–201, 1985.

[68] J. Plaza. Logic of public communications. Proceedings of the 4th International
Symposium on Methodologies for Intellingent Systems: Poster Session Program,
pages 201–216, 1989.

[69] G. Pottinger. Uniform cut-free formulations of t, s4 and s5. Journal of Symbolic
Logic,, 48(3), 1983.

[70] A. N. Prior. Time and Modality. Clarendon Press, Oxford, 1957.

[71] A. Ranta. PESCA ― a proof editor for sequent calculus, 2000 (Online).
http://www.cse.chalmers.se/ aarne/old/pesca/.

[72] R. Reiter. A logic for default reasoning. volume 13, pages :81–132, 1980.

[73] S. Richards and M. Sadrzadeh. Aximo: automated axiomatic reasoning for infor-
mation update. Electronic Notes in Theoretical Computer Science, 231:211–225,
2009.

[74] B Roberta. Modern origins of modal logic. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Winter 2014 edition, 2014.

[75] M. Sato. A study of Kripke-type models for some modal logics by Gentzen’s
sequential method. Publications of the Research Institute for Mathematical Sci-
ences, 45(13):381–468, 1977.

[76] M. Sato. A cut-free Gectzen-type system for the modal logic S5. The Journal of
Symbolic Logic, 45:67–84, 1980.

158

[77] G. Shvarts. Gentzen style systems for K45 and K45D. Lecture Notes in Computer
Science, 363:245–256, 1989.

[78] A. Simpson. The proof theory and semantics of intuitionistic modal logic. PhD
Thesis of University of Edinburgh, 1994.

[79] P. Stouppa. A deep inference system for the modal logic s5. Studia Logica,
85(2):199–214, 2007.

[80] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Univer-
sity Press, 2 edition, 2000.

[81] J. van Benthem. Dynamic logic for belief revision. Journal of Applied Non-
Classical Logics, 14(2):129–155, 2004.

[82] J. van Benthem and F. Liu. Dynamic logic of preference upgrade. Journal of
Applied Non-Classical Logics, 17:157–182, 2007.

[83] H. van Ditmarsch, W. Hoek, and B. Kooi. Dynamic Epistemic Logic. Springer
Verlag Gmbh, 2008.

[84] J. van Eijck. DEMO – a demo of epistemic modelling. Interactive Logic – Pro-
ceedings of the 7th Augustus de Morgan Workshop, pages 305–363, 2007.

[85] J. von Plato. From Hilbert’s programme to Gentzen’s programme. In Eckart
Menzler-Trott, editor, Logic’s Lost Genius—The life of Gerhard Gentzen. Amer-
ican Mathematical Society, 2007.

[86] H. von Wright, G. An Essay on Modal Logic. North-Holland Publishing Com-
pany, Amsterdam, 1951.

[87] T. Williamson. On intuitionistic modal epistemic logic. Journal of Philosophical
Logic, 21(1):63–89, 1992.

[88] L. Wittgenstein. Philosophische Untersuchungen. Suhrkamp Verlag, Frankfurt
am Main, 1953.

159

