
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Sapidを使った動的解析ツールの実装

Author(s) 篠井, 隆典

Citation

Issue Date 2000-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1356

Rights

Description Supervisor:権藤 克彦, 情報科学研究科, 修士



Dynamic Slicer Implementation with Sapid

Sasai Takanori

School of Information Science,

Japan Advanced Institute of Science and Technology

February 15, 2000

Keywords: dynamic slicing, pointer analysis, Sapid, CASE tool platform.

1 Background

Dynamic analysis is very important to develop and maintain programs. To debug dynam-
ic errors like memory leaks, we need to know dynamic information of the programs. To

mplement dynamic analyzer, we often need to reconstruct the whole execution environ-

ment including lexcal-analyzer, parser, static semantic analyzer and so on. This makes it

diÆcult to implement dynamic analyzer, although they are not essential. Therefore there
are very few implementation of practical dynamic analyzer.

Program slicing techniques, proposed by Weiser, is common solution of some problems
in software engineering for debugging, testing, reuse and so on. Slicing is a technique to

extract parts of programs by tracing control and data 
ow related some data items. There
are two kinds of slicing: static slicing and dynamic slicing. Restricting inputs, dynamic
slicing can make more precise slice of program than static slicing. Moreover algorithm of

dynamic slicing is not so complicated. Therefore many slicing algorithms have already
been proposed, but there are few practical slicing tools. It is because dynamic slicing

tool dynamically analyze the program, and implementing dynamic analyzer is diÆcult as

mentioned above.
On the other hand, �ne-grained software repository Sapid is proposed and implemented

by Nagoya Univ. Sapid o�ers the software database called SDB and APIs to access SDB.

SDB is based on software model called I-model. I-model is a ER-model consists of 12
entities and 29 relations. Each entity almost corresponds to a symbol in the grammar

of C language, and each relation corresponds to the relation between syntax. I-model
is �ne-grained enough to realize C interpreter based on the data stored in the software

repository. Therefore Sapid is expected to be powerful tool for dynamic analysis.

Copyright c
 2000 by Sasai Takanori

1



2 Purpose and Approach

The purpose of this paper is to implement dynamic slicer for C language using Sapid

experimentally, and to evaluate Sapid applyied to a dynamic analysis. And we research
factors which make dynamic slicing diÆcult.

There are three diÆcult factors to implement dynamic slicer for C language. First it

is diÆcult to implement execution environment. We use Sapid to resolve this problem.

There is API called SIP2 in the Sapid which supports dynamic analysis by abstract

executing the programs.
Second, it is diÆcult to cope with pointers, structures and type casting in C language.

C language allows very free memory access using pointers, and it causes pointers to refer

to invalid addresses. The memory layout of structures is implementation dependent. So

casting structures often cause uncertain �eld access. For this problem we use approxi-

mation methods Points-to set analysis which are well-known techniques to deal with in

pointer analysis. But this problem is too diÆcult, we made assumption that 1)there is no
type cast except for return value of malloc(), 2)there is no operation with side e�ects in
the formula.

Third problem is library functions and system calls. We have no way to know what
variables are refered to and de�ned in the function calls without source code. Therefore
we can not trace data 
ow in such cases. So, we made assumption again, 3)there is no
function calls or system calls except for malloc() and free().

3 Conclusion

Pointer analysis is very big problem for dynamic slicing. C language allows to access
invalid memory address freely, and it is very diÆcult to analyze. Since C language has
many implementation dependent features, it is diÆcult to implement portable analyzer.

But it is not preferable to use pointer which refers to invalid memory address, or to code
implementation dependent programs. And there is no need to code such a dirty program,
unless which is system programming.

We use Sapid in this research. We con�rm Sapid is e�ective to reduce process of

coding dynamic analyzer. C language interpreter sint, which use Sapid, has 104 lines in

its source code. There is also C language interpreter CINT, which does not use Sapid,

has 85,041 lines in its main source code. CINT supports more features than sint, it is not
fair comparison, but size of two souce code is too di�er.

2


