
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
保守性の高いファームウェア開発を支援するプログラ

ミング環境の構築 [課題研究報告書]

Author(s) 栗林, 大樹

Citation

Issue Date 2016-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13609

Rights

Description Supervisor: 田中 清史, 情報科学研究科, 修士



Construction of Programming Environment to Assist
in Developing Highly Maintainable Firmware

Hiroki Kuribayashi (1210904)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 6, 2016

Keywords: Static code analyzer, maintainability, readability, C
language, preprocessor, firmware.

1 Introduction

In developing embedded systems, multi-functionality and short-term de-
velopment are required to provide competitive products. Therefore, the
embedded software is getting more sophisticated and is becoming enlarged.
To shorten the development period, existing firmware is reused with a slight
modification or additional functions. In the modification, macros including
conditional branches/switches which can cope with differences in versions
of the products are used. This degrades the maintainability and readability
of the source codes. Therefore, some analyzing tools of source codes, es-
pecially ones with macros before preprocessing, are desired to detect code
fragments which are against coding rules.
In this research, I proposes a method of analyzing source codes before

preprocessing and builds a static code analyzer implementing the method.
Then, the tool is applied to actual device drivers for embedded systems
and the results are shown and discussed.

Copyright c⃝ 2016 by Hiroki Kuribayashi

1



2 Related Work

This chapter first describes several standards of C-language (C89, C90,
C99, C11, and ANSI), and then shows several coding rules (ISO/IEC
25010, JIS X 012901, MISRA-C:{1998, 2004, 2012}, SEI CERT C Cod-
ing Standard, Recommended C Style and Coding Standards, and GNU
coding standards) which are widely accepted in embedded systems de-
velopment. Next, several existing software analysis tools are introduced
(QA·C, Coverity, CODESONAR, etc.) Then, well-known lexical analysis
tools and parsing tools are shown (lex/yacc, flex/bison, ML-yacc/ML-lex,
Happy, JavaCC, and Parsec). These are used in implementing static code
analysis tools.

3 Design of Static Code Analyzer

In this research, I implement a checking tool for source codes written in
C language. This chapter illustrates the design of the tool. The tool
consists of four functions: lexical analyzer, processor for preprocessor di-
rectives, parser, and checker．The functions are explained individually in
each section. In the section for lexical analyzer, rules for tokens including
preprocessor directives are given. The section for preprocessor directives
describes how to extract preprocessor directives from a series of tokens and
then add preprocessor information to the remaining tokens. The section
for the syntax parser deals with means of parsing C-language codes with
an LL-parser and restrictions about macro statements which the parser
can treat. In the section for carrying out tests, the ways of testing token,
syntax, and types is described.

4 Test Items

This chapter describes test items of the static code analyzing tool designed
in this research. The analyzer mainly targets warnings for three types of
primary factors, that is, token, syntax, and types. Test items correspond-
ing to these three types are explained in detail. The first factor, token,
is categorized into eight items: unstandardized escape sequence, carriage

2



return in a literal, goto/continue statements, octal constant number, #line
macro, #undef macro, relative path name for a file in #include macro,
and absolute path name for a file in #include macro. As for the factor,
syntax, twenty-two items are considered: declaration or definition of names
starting by an underscore, omission of parentheses for conditional expres-
sion, mixed binary operators, use of comma operators, etc. Finally, for
the factor, types, nine items are defined: inconsistency of types of results
in conditional expression, inconsistency of types between a loop counter
and a compared variable, application of unary minus operator to unsigned
integers, inconsistency of types between left and right expressions of binary
operators, etc. All these items are shown with concrete examples.

5 Evaluation

This chapter reports the results of the analysis for source codes by the
static code analyzer developed in this research. The target source codes
of the analysis are from the drivers in Linux kernel I2C. These drivers
are used in the embedded Linux. As the results of the analysis for 128
source files consisting of totally 67,960 steps, 1,383 warnings are reported.
Among them, warnings about usage of basic types and ones about not-
parenthesized bodies of if, for or while structure are most frequent. The
details about the macros that cannot be analyzed by conventional tools and
the detected warnings are shown with the corresponding code fragments
in this chapter.

6 Conclusion

In this research, for static code analysis of C-language codes, a method
of analyzing source codes before preprocessing is proposed. The proposed
method is implemented as a static code analyzer which supports program-
mers in describing source codes with high maintainability and readability.
The analyzer is applied to device drivers which are actually used in em-
bedded systems. As the results, it is confirmed that the code fragments
impeding maintainability and readability can be detected.

3



To enhance the analyzer, it is necessary to implement additional test
items. In addition, there is room for improving the analysis method, for
example, checking the functions’ or variables’ values in compile time by
expanding macros which do not include branches. Furthermore, although
the current tool analyzes source codes per file, it would be useful to check
the consistency between files based on the obtained information from each
file.

4


