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Abstract
Write-once memory (WOM) is a form of digital memory for the permanent

storage of information. WOM codes were first designed by Rivest and Shamir,
which allows reuse of such that WOM. Our work is inspired in part by applica-
tion of WOM codes to reducing read latency in memories. We focus on applying
WOM codes to a specific asymmetric multiple access channel (AMAC) noise
model called the binary symmetric AMAC (BS-AMAC). The AMAC is a kind
of the multiple access channel (MAC), which consists of two users simultane-
ously communicate over one common channel, however User 2 observes User 1
message.

At one specific rate pair, WOM codes can achieve the BS-AMAC maximum
sum-rate. Further, any achievable rate pairs for a two-write WOM code are also
an achievable rate pair for the BS-AMAC.

Numerous schemes for joint iterative decoding of two transmitted codewords at
the receiver have been proposed. Successive interference cancellation is another
well-known technique, however requires interaction between two decoders. Our
scheme applying WOM codes to the BS-AMAC, which reduces the size of the
achievable rate region, however induces effective decoding schemes: (1) symbol-
wise estimation and (2) a posteriori decoding, without using joint iterative decod-
ing or successive interference cancellation. Achievable rates of our system using
two decoding schemes are also given. These two decoding schemes are effec-
tive in cooperative wireless communications despite the fact that WOM codes are
designed for data storage.

In order to build more reliable communication system, some capacity-
approaching error correcting codes such as low-density parity check codes
(LDPC) are needed. In our work, we applied the well-known DVB-S.2 LDPC
codes to our system in order to approach the BS-AMAC capacity. A bit error rate
(BER) performance of our system using a LDPC code is shown.

We also briefly discuss how the AMAC model can be applied to the relay chan-
nel.
key words: asymmetric multiple access channel, data storage code, write-once
memory code, capacity, achievable rate region
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Chapter 1

Introduction

1.1 Introduction
A discrete memoryless multiple access channel (MAC), such as the up-link in wireless com-
munication, has multiple senders and one receiver. In this model, these users share a common
channel. The capacity region for this channel is well-known [1].

A two-user (discrete memoryless) asymmetric multiple access channel (AMAC) is similar
to a two-user MAC, however User 1’s message is known to the both users, while User 2’s
message is known only to User 2. De Bruyan, Prelov and van der Meulen gave the capacity
region, and showed that when the messages are correlated, that source-coding separation
holds [3] (in contrast to Cover et al’s result on non-separability for the MAC [4]), see also
[5].

A write-once medium is a form of digital memory for the storage of information (e.g.
flash memory, punch cards, CD-ROMs). A write-once medium has an array of bits with
two possible states, which are initially in the zero state, and which can be independently
but irreversibly transformed into the one state. Write-once memory (WOM) codes were first
designed and introduced for such data storage applications by Rivest and Shamir. A WOM
coding scheme allows reusing a write-once medium multiple times by encoding to a recorded
bit sequence and by observing the state of the medium before determining how to update the
contents of the memory with new bit sequence [6].

In our research, we focus on applying WOM codes to an AMAC. Our work is inspired in
part by the application of WOM codes to reducing read latency in memories [9].

We consider a specific AMAC channel called the binary symmetric AMAC (BS-AMAC)
with binary inputs, which pass through independent binary symmetric channels (BSC). At
one specific rate pair, WOM codes can achieve a point on the boundary of the BS-AMAC
capacity region. Further, any achievable rate pairs for a two-write WOM code are achievable
for the (two-user) BS-AMAC. Applying WOM codes to the BS-AMAC reduces the size of
the achievable rate region, however induces effective decoding techniques. One decoding
method is performed using symbol-wise estimation, resulting in a decomposition to two dis-
tinct channels. Achievable rates for this decomposed system are given. Another decoding
method is done using a posteriori probability (APP) decoding. The maximum sum-rate of
this scheme is also given.

Numerous schemes for joint iterative decoding of two transmitted codewords at the receiver
(e.g. LDPC codes for the MAC [8]) have been proposed. Successive interference cancella-
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tion is another well-known technique, however requires interaction between two decoders.
The proposed scheme aims to efficiently separate the two codewords at the receiver, without
using joint iterative decoding or successive interference cancellation. This low-complexity
approach is appealing for computationally-constrained applications. In practical communi-
cation, the channel is noisy. Thus, we apply an error correcting code, LDPC code,in order to
approach the BS-AMAC capacity. The bit error rate (BER) of our system using LDPC code
is also given.

We also briefly discuss how the AMAC model can be applied to practical communications.

1.2 Preliminary
This section describes most of the basic definition required for our research. The preliminar-
ies are defined in [1].

1.2.1 Entropy
Entropy is the uncertainty of random variables. Let X be a discrete random variable with
alphabet X and probability function p(x) = Pr{X = x}, x ∈ X.

Definition 1.2.1 The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑

x∈X
p(x) log2 p(x). (1.1)

Note that 0 log2 0 = 0, which is easily justified by continuity since x log2 x → 0 as x → 0.
Adding terms of zero probability does not change the entropy.

1.2.2 Mutual Information
Mutual information is a measure of the measure of the amount of information that one random
variable contains about another random variable. It is the reduction in the uncertainty of one
random variable due to knowledge of the other.

Definition 1.2.2 Consider two random variables X and Y with a joint probability mass func-
tion p(x, y) and marginal probability mass function p(x) and p(y). The mutual information
I(X; Y) is the relative entropy between the joint distribution and the product distribution
p(x)p(y):

I(X; Y) =
∑

x∈X

∑

y∈Y
p(x, y) log2

p(x, y)
p(x)p(y)

(1.2)

= H(X) − H(X|Y). (1.3)

1.2.3 Channel Capacity
The mathematical analog of a physical signaling system is shown in Fig.1.1. Source symbols
from some finite alphabet are mapped into some sequence of channel symbols, which then
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Fig. 1.1 Communication sytsem.

produces the output sequence of the channel. The output sequence is random, however has
a distribution that depends on the input sequence. From the output sequence, we attempt to
recover the transmitted message.

Each of the possible input sequences induces a probability distribution on the output se-
quences. Since two different input sequences may give rise to the same output sequence, the
inputs are confusable. we show that we can choose a “non-confusable” subset of input
sequences so that with high probability there is only one highly likely input that could have
caused the particular output. We can then reconstruct the input sequences at the output with a
negligible probability of error. By mapping the source into the appropriate“widely spaced”
input sequences to the channel, we can transmit a message with very low probability of error
and reconstruct the source message at the output. The maximum rate at which this can be
done is called the capacity of the channel.

Definition 1.2.3 Let a discrete channel be a system consisting of an input alphabet X and
output alphabet Y and a probability transition matrix p(y|x) which denotes the probability
of observing the output symbol y given that we sed the symbol x. The channel is said to be
memoryless if the probability distribution of the output depends only on input at that time and
is conditionally independent of previous channel inputs or outputs.

Definition 1.2.4 The (information) channel capacity of a discrete memoryless channel as:

C = max
p(x)

I(X; Y) (1.4)

where the maximum is taken over all possible input distributions p(x). Finally, the channel
capacity is defined as the highest rate in bits per channel use at which information can be sent
with arbitrarily low probability of error.

1.2.4 Data-processing Inequality
Theorem 1.2.1 [1] if X → Y → Z, then I(X; Y) ≤ I(X; Z).
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Chapter 2

Asymmetric Multiple Access
Channel

This chapter describes the asymmetric multiple access channel (AMAC) channel model used
in our research. AMAC is a kind of multiple access channel (MAC). The MAC is a commu-
nication model where there some senders and one receiver, however they communicate over
a common channel. This chapter mainly treats two-user MAC and AMAC, and shows their
capacity.

2.1 Multiple Access Channel
Definition 2.1.1 A (discrete memoryless two-user) MAC consists of three alphabetsX1,X2,
and Y, and a probability transition matrix p(y|x1, x2), where x1 ∈ X1, x2 ∈ X2 are channel
inputs from each user, and y ∈ Y is a channel output. A MAC is memoryless if

P(y1, ..., yn|x1
1, x

1
2, ..., x

1
n, x

2
1, x

2
2, ..., x

2
n)

=

n∏

k=1

p(yk |x1
k , x

2
k) (2.1)

where x1
k , x2

k and yk denote the k-th input symbols and output symbol .

A (2nR1 , 2nR2 , n, Pn) code for the (discrete memoryless) MAC is a pair of message sets and
encoding functions for User 1:

f1 : {1, 2, .., 2nR1 }→ (X1)n,

and for User 2:
f2 : {1, 2, .., 2nR2 }→ (X2)n,

and for a MAC channel output, a decoding function g:

g : Yn → (X1)n × (X2)n.

There are two senders and one receiver for this channel. In this channel, these two users
are sharing the common channel pictured in Fig. 2.1. User 1 chooses an index U1 uniformly
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Fig. 2.1 Discrete memoryless two-user Multiple Access Channel

from the set u1 ∈ {1, 2, ..., 2nR1 } and sends the corresponding codeword over the channel. User
2 does likewise [1].

The probability of error P(n)
error of this code is defined as:

P(n)
error = P

{
g(Yn) ! (U1,U2)

}
, (2.2)

A pair of rates (R1,R2) is said to be an achievable rate, if there exists a sequence
(2nR1 , 2nR2 , n, P(n)

error) codes with P(n)
error → 0 as n→ ∞.

2.2 Capacity Region of MAC
The definition of the capacity region of the MAC is defined in [1] and satisfies the following
theorem,

Theorem 2.2.1 The capacity region of the MAC (X1 × X2, p(y|x1, x2),Y) is the closure of
the convex hull of the set of all achievable rates (R1,R2) satisfying:

R1 ≤ I
(
X1; Y |X2

)
,

R2 ≤ I
(
X2; Y |X1

)
,

R1 + R2 ≤ I
(
X1, X2; Y

)
,

(2.3)

(2.4)

(2.5)

for the joint input distribution p(x1)p(x2) on X1 × X2.

The capacity region of the MAC is illustrated in Fig. 2.2. An investigation of the pentagon
region in Fig. 2.2 is given by [1] as follows:

The point A corresponds to the maximum rate achievable from User 1 to the receiver while
User 2 is not sending any information, thus

max R1 = max
p(x1)p(x2)

I(X1; Y |X2). (2.6)
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For any distribution p(x1)p(x2)

I(X1; Y |X2) =
∑

x2

p(x2)I(X1; Y |X2 = x2),

≤ max
x2

I(X1; Y |X2 = x2), (2.7)

Therefore, the max R1 in (2.6) is attained when we set X2 = x2, which maximizes the condi-
tional mutual information between X1 and Y . The distribution of X1 is chosen to maximize
this mutual information. Thus, X2 must facilitate the transmission of X1 by setting X2 = x2.

The point B (R1 = I(X1; Y |X2),R2 = I(X2; Y)) corresponds to the maximum rate of User
2 while User 1 sends at its maximum rate. This rate is obtained if X1 is considered as noise
for the channel from X1 to Y . In this case, X2 can send at a rate I(X2; Y) if over a single-user
channel. Since, the receiver knows which X2 codeword was used, it can decode the codewords
from User 2 with small error probability, and “subtract” its effect from the channel. We
can consider the channel to be an indexed series of single-user channels, where the index is
the X2 symbol used. The rate of User 1 is achieved by taking the average mutual information
over these channels, and each channel occurs as many times as the corresponding X2 symbol
in the codewords. Thereby, the rate R1 is

∑

x2

p(x2)I(X1; Y |X2 = x2) = I(X1; Y |X2). (2.8)

The points C and D correspond to B and A, respectively, however the roles of User 1 and
User 2 are reversed. The non-corner points on the boundary can be achieved by time-sharing.
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2.3 Asymmetric Multiple Access Channel
This section describes the AMAC for two users, User 1 and User 2, pictured in Fig. 2.3,
which is similar to a conventional two-user MAC in Sec. 2.1, with one key difference: User 2
knows the message of the User 1. A discrete memoryless AMAC consists of three alphabets
X1,X2, and Y, and a probability transition matrix p(y|x1, x2).

A (2nR1 , 2nR2 , n, Pn) code for the (discrete memoryless) AMAC is a pair of message sets
and encoding functions for User 1:

f1 : {1, 2, .., 2nR1 }→ (X1)n,

and for User 2:
f2 : {1, 2, .., 2nR2 } × (X1)n → (X2)n,

and an AMAC channel output, and a decoding function g:

g : Yn → (X1)n × (X2)n.

There are also two senders and one receiver for this channel as the MAC. User 1 chooses
an index U1 uniformly from the set u1 ∈ {1, 2, ..., 2nR1 } and sends the corresponding codeword
over the channel. User 2 also chooses an index U2 uniformly from the set u2 ∈ {1, 2, ..., 2nR2 },
but User 2 knows the message U1, thereby sends the corresponding codeword conditioned on
knowing f1(U1) over the common channel.

2.4 Capacity Region of AMAC
Definition 2.4.1 The capacity region of the AMAC (X1 × X2, p(y|x1, x2),Y) is the closure
of the convex hull of the set of all achievable rates (R1,R2).

The restriction of the AMAC capacity has the similar property as the MAC capacity (2.3),
(2.4) and (2.5). However, User 2 can observe User 1’s message in the AMAC, thus the rate
R1 is released from the restriction for User 1 (2.3).

Theorem 2.4.1 [3] The capacity region of the AMAC is the set of (R1,R2) that satisfy:

R2 ≤ I
(
X2; Y |X1

)

R1 + R2 ≤ I
(
X1, X2; Y

)
(2.9)

(2.10)

for all p(x1, x2) = p(x1)p(x2|x1).

2.5 Binary Symmetric Channel
This section describes a common noisy communication channel binary symmetric channel
(BSC) defined in [1]. In general, communication channels do not have a simple structure,
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Fig. 2.3 Discrete memoryless two-user AMAC.

thus we cannot always identify a subset of the inputs to send information without error. How-
ever, if we consider a sequence of transmissions, all channels look like a BSC and we can
then identify a subset of the input sequences (the codewords) that can be used to transmit
information over the channel in such a way that the sets of possible output sequences associ-
ated with each of the codewords are approximately disjoint. We can then look at the output
sequence and identify the input sequence with a vanishingly low probability of error.

Definition 2.5.1 [1] The binary symmetric channel is a noisy communication channel with
binary input and binary output and probability of error Pe.

BSC output is equal to the input with probability 1 − Pe. With probability Pe, on the other
hand, a 0 is received as 1, and vice versa as shown in Fig. 2.4.

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1-Pe

PePe

PePe

1-Pe
Fig. 2.4 Binary symmetric AMAC.

2.6 Binary symmetric AMAC
The BS-AMAC is a specific two-user AMAC used in our research, and is pictured in Fig. 2.5.

Definition 2.6.1 A BS-AMAC consists of five alphabets X1,X2, Y1,Y2, Y, and a prob-
ability transition matrix p(y|x1, x2), where each input Xi passes through a BSC with error
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probability Pe, thus Y1 ∈ Y1, Y2 ∈ Y2 are BSC outputs for each input X1 and X2. Let
X1 = X2 = Y1 = Y2 = {0, 1}. The channel output Y is the integer-valued addition of the two
BSC outputs, i.e. deterministic channel y = y1 + y2, so Y = {0, 1, 2}.

In the BS-AMAC, the error probability Pe of BSCs is:

Pe = P(Yi ! Xi) f or i = 1, 2.

and conditional probability distributions p(y1|x1), p(y2|x2) over BSC are given by:

p(yi|xi) =

⎧⎪⎪⎨
⎪⎪⎩

1 − Pe for xi = yi,

Pe otherwise ,

where i = 1, 2. Hence, a probability transition matrix follows:

p(y|x1, x2) =
∑

y1,y2

p(y|y1, y2)p(y1|x1)p(y2|x2)

and is given by Table 2.1.

Table 2.1 conditional distribution p(y|x1, x2) BS-AMAC
❍❍❍❍❍x1, x2 Y = 0 Y = 1 Y = 2

0, 0 (1 − Pe)2 2Pe(1 − Pe) P2
e

0, 1 (1 − Pe)Pe (1 − Pe)2 (1 − Pe)Pe
1, 0 (1 − Pe)Pe (1 − Pe)2 (1 − Pe)Pe
1, 1 P2

e 2Pe(1 − Pe) (1 − Pe)2

2.7 Capacity Region of BS-AMAC
The capacity region of the BS-AMAC is the closure of the convex hull of the set of all achiev-
able rates (R1,R2), which satisfy (2.9) and (2.10). Note that User 2 knows User 1 message
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in the AMAC, thereby both user’s inputs X1 and X2 are jointly distributed. Accordingly, this
capacity region is described using the joint input distribution p(x1)p(x2|x1).

We characterize this joint input distribution using three variables p1, p2,α as shown in
Table 2.2. Here, p1 and p2 are defined by p(X1 = 1) = p1 and p(X2 = 1) = p2, respectively.

This parameterized joint input distribution for the BS-AMAC p(x1)p(x2|x1) depends on
the parameter α, which is bounded as:

max(0,
p1 + p2 − 1

p2
) ≤ α ≤ min(1,

p1

p2
).

If α = p1, then X1 and X2 are independent.

Table 2.2 Joint input distribution p(x1, x2) on X1 × X2

X2

p(x1, x2) x2 = 0 x2 = 1 p(x1)
x1 = 0 1 − p1 − (1 − α)p2 (1 − α)p2 1 − p1X1
x1 = 1 p1 − αp2 αp2 p1

p(x2) 1 − p2 p2

We here find the BS-AMAC capacity region and maximum sum-rate max I(X1, X2; Y) with
errors Pe ≥ 0, pictured in Fig. 2.6 and in Table 2.6. The size of the region and maximum
sum-rate decrease with increasing BSC error probability Pe.

Table 2.3 Maximum sum-rate max I(X1, X2; Y) with errors Pe ≥ 0
❍❍❍❍❍

Pe 0 0.01 0.02 0.03 0.04

max I(X1, X2; Y) 1.585 1.437 1.330 1.240 1.159

0.05 0.06 0.07 0.08 0.09 0.10
1.087 1.021 0.961 0.905 0.853 0.804
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Chapter 3

Write-Once Memory Code

Write-once memory (WOM) codes were first designed and introduced for write-once medium
by Rivest and Shamir. This chapter describes a coding scheme WOM codes and an example
(3,2) WOM codes.

3.1 Write-Once Memory
Data storage mediums have n cells used to store data bits. Every cell has two levels: 0 and 1.
Cells can change only 0 → 1, however not vice versa. These mediums are called write-once
memory (WOM), e.g. keypunch cards, paper tape, photographic film, and flash memory.

A sequence of t messages M1,M2, ...,Mt will be written on to the WOM cells, and when
Mi is written, we do not need to remember the value of the previous messages (let ki denote
the number of bits in the message Mi and let Mi ∈ {0, 1}ki . Here, Ri = ki/n is called the rate
of the i-th write. The cells are all at level 0 before the first write [7].

3.2 Write-Once Memory Codes
This section describes binary write-once memory (WOM) codes. Note that we only deal
binary two-write (t = 2) WOM codes in our work. WOM codes allow reusing of a WOM
medium by introducing redundancy into the recorded bit sequence and, in subsequent write
operations, observing the state of the memory with a new bit sequence.

Definition 3.2.1 A (2nR1 , 2nR2 , n) two-write binary WOM code consists of two message sets
m1 ∈ {1, 2, ..., 2nR1 }, m2 ∈ {1, 2, ..., 2nR2 }, and two codebooks C1,C2, and an alphabet X, where
(X1

1 , X
1
2 , .., X

1
n) ∈ C1, (X2

1 , X
2
2 , .., X

2
n) ∈ C2 are the WOM codebooks, and (X)n is a stored

codeword in the write-once medium at each write.
The messages for the first write: M1 and the second write: M2 are chosen from the sets m1

and m2, respectively, then encoded into corresponding codewords by each encoding function.
The encoding function f1 for the first write is:

f1 : {1, 2, .., 2nR1 }→ C1.

The second write observes the first write codeword, giving encoding function f2:

f2 : {1, 2, .., 2nR2 } × C1 → C2.
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The i-th write codeword is written onto the write-once medium. When the reading of Mi
happens, the decoding function gi recovers the message Mi by:

gi : (Xi)n → {1, 2, .., 2nRi },

for i = 1, 2.
Rsum =

∑2
i=1 Ri is the sum-rate of the code.

3.3 WOM codes capacity
This section describes the capacity of binary two-write WOM codes, which was given by
Heegard [12].

Definition 3.3.1 The rate for t = 2 write (R1 = k1/n, R2 = k2/n) is achievable if we can
store a sequence of messages at these rates for some n.

Theorem 3.3.1 The capacity of two-write binary WOM codes is the closure of the convex
hull of the set of all achievable rates (R1, R2) satisfying:

R1 ≤ h(p1),
R2 ≤ (1 − p1)h(p2),

(3.1)
(3.2)

for 0 ≤ p1, p2 ≤ 1
2 . Here, h(·) denotes the binary entropy function.

This WOM input distribution is of interest in this paper. Here, p1 corresponds to the input
distribution p(x1 = 1) = p1 for the first write, and for the second write define p2 as:

p(x2 = 1|x1) =

⎧⎪⎪⎨
⎪⎪⎩

p2 for x1 = 0,
1 for x1 = 1.

(3.3)

Moreover, p(x2 = 0|x1 = 1) = 0 (see Table 3.1). It is well-known that the maximum of
sum-rate R1 + R2 is log2 3. To achieve this, choose p1 = 1/3 and p2 = 1/2.

Table 3.1 WOM input distribution

p(x2 |x1) X2

x2 = 0 x2 = 1
x1 = 0 1 − p2 p2X1
x1 = 1 0 1

3.4 (3,2) WOM Codes
This section shows an example, the well-known (n = 3, k = 2) WOM code that encodes two
data bits (k = 2) to codewords of three bits (n = 3 cells are needed to store codewords). The
(3,2) WOM code codebooks is shown in Table 3.2. Also, Fig. 3.1 shows as Boolean 3-cube,
which illustrates how 3-bit codewords are each assigned 2-bit values to represent.
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Table 3.2 (3,2) WOM Code code book

Message Mi First Write C1 Second Write C2 (if data changes M1 ! M2)
X1

1 X1
2 X1

3 X2
1 X2

2 X2
3

00 000 111
01 001 110
10 010 101
11 100 011

0 0111

0 0110 0 00110 0101

0 0100 0 000100
00

010

000

00

00

01

11

10

10 01

11

1st
generation

2nd
generation

Fig. 3.1 (3,2) WOM code on the Boolean 3-cube.

It is easy to verify that after the first 2-bit data is encoded into a 3-bit codeword, if the
second 2-bit data is different from the first, the 3-bit codeword into which it is encoded into
does not change any code bit 1 into a code bit 0, ensuring it can be recorded in the WOM.
The rate of each write R1 = R2 = 2/3.

Let us show a concrete example of data write using (3,2) WOM codes (see Fig.3.2). A pair
of messages is written onto WOM at each write. At the first data write, a message M1 = [10]
is encoded into X1

1 X1
2 X1

3 = [010] by the first codebook C1, then written onto WOM. At the
second write, a message M2 = [01] is encoded into X2

1 X2
2 X2

3 = [110] by the second codebook
C2, because the second write observed the state of the WOM and M1 ! M2 in this example.
This codeword [110] is overwritten onto a stored codeword [010] in the WOM cells. Note
that WOM cells cannot change 1 → 0, i.e. WOM cells store a codeword [110] after the
second write. When the reading of message Mi happens, the decoder recovers the message
Mi as follows:

Lemma 3.4.1 [6] WOM codes decoding (an example in the (3,2) WOM codes case) is done:
The memory word abc represents 2-bit value (b ⊕ c), (a ⊕ c), no matter whether the WOM
has been written once or twice.

For example, when the reading of message M1 happens after the first write, a codeword [010]
is stored in the WOM. Decoder outputs the recovered message M̂1 = [1 ⊕ 0, 0 ⊕ 0] = [10],
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which is the same as the message at the first write M1 = [10].

1.Data

2.Encode

3.WOM

4.Decode

1 0

0 1 0

0  1  0

1 0

0 1

1 1 0

1  1  0

0 1 

First write Second write

Fig. 3.2 Data write onto WOM using (3,2) WOM code.
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Chapter 4

Applying WOM codes to BS-AMAC

This chapter shows how to apply coding scheme: WOM codes to the channel: BS-AMAC and
their achievable rates. We also shows that WOM codes can achieve the BS-AMAC maximum
sum-rate. Moreover, WOM codes specific input distribution is helpful for a BS-AMAC, is
shown.

4.1 BS-AMAC using WOM Codes
This section describes how WOM codes are used for the BS-AMAC. A key property of
two-write WOM codes is that the second write observes the first write codeword. For the
BS-AMAC, this corresponds to User 2 knowing the codeword produced by User 1 pictured
in Fig.4.1. Thus, the BS-AMAC channel is highly appropriate for the application of WOM
codes.

X1

2

User 1

User 2

U2

U 1  Encoder 1
f
1

X

X1

2

1st write

2nd write

U2

U 1

X

WOM cells

 Encoder 2
f
2

 Encoder 1
f
1

 Encoder 2
f
2

Fig. 4.1 (a) BS-AMAC (b) Data writing using WOM codes.

We assume the BS-AMAC using two-write WOM codes, implying with input distribu-
tion that follows the WOM input distribution defined at (3.3) (i.e. the input combination
(X1, X2) = (1, 0) is disallowed). Hence, we call this BS-AMAC with an input distribution
(3.3) as the WOM for AMAC.

The rate defined for a two-write WOM code is the same as the rate for the BS-AMAC,
where n represents the number of code bits as well as the number of channel uses (per user).
The rates are also the same, in the BS-AMAC case, user i can transmit one of 2nRi messages,
which is identical to the WOM code definition of rate.
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4.2 Encoding in WOM for AMAC
This section details the system diagram, WOM for AMAC and a decoder pictured in 4.2. In
the WOM for AMAC, User 1 and User 2 choose indices U1 and U2 uniformly from the set
u1 ∈ {1, 2, ..., 2nR1 } and u2 ∈ {1, 2, ..., 2nR2 }. The encoding function for U1 uses the WOM
codebook of the first write C1 and outputs f1(U1) to achieve a rate R1:

f1 : {1, 2, .., 2nR1 }→ (X1)n,

and the encoder for U2 observes the message U1, then uses the WOM codebook of the second
write C2 if U1 ! U2 (and if U1 = U2, Encoder for U2 outputs the same codeword as U1) and
outputs f2(U1,U2) to achieve rate R2.

f2 : {1, 2, .., 2nR2 } × (X1)n → (X2)n.

A BS-AMAC channel output Yn is the integer-valued addition of both codewords, (X1)n

and (X2)n with no errors Pe = 0, or (Y1)n and (Y2)n with errors Pe ! 0. The decoder translates
Yn into appropriate codewords (X̂1, X̂2), respectively:

g : Yn → (X1)n × (X2)n.

In our research, we consider two types of decoding functions, which are described in Chap.
5.

Let us show a concrete example of WOM for AMAC using (3,2) WOM codes for error-free
case Pe = 0. A pair of messages is transmitted over the BS-AMAC with the error probability
Pe = 0. Suppose that User 1 and User 2 simultaneously send a message U1 = [10] and
U2 = [01], respectively. The message U1 is encoded into X1

1 X1
2 X1

3 = [010] by the first
codebook C1. Also, the message U2 is encoded into X2

1 X2
2 X2

3 = [110] by the second codebook
C2, because U1 ! U2 (see Table 3.2). The decoder receives a sequence Y1Y2Y3 = [120]
which is the integer-valued addition of both codewords, X1

1 X1
2 X1

3 and X2
1 X2

2 X2
3 for error-free

case Pe = 0 , then outputs appropriate codewords by implementing decoding.

X1

2

1
User 1

User 2 2

^

^

U2

U 1 Encoder 1 
f1

Encoder 2 
f2

BSC
PePe

BSC
PePe

g (Y )
1

g (Y )
2

Decoder 
Y1

Y 2

Y

1 2

0    0    0
0    1    1
1    0    1
1    1    2

X

X

X

X X Y

Integer-valued 
addition

Fig. 4.2 WOM for AMAC —- system diagram.
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4.3 Achievable Rates
This section compares the BS-AMAC capacity region and WOM for AMAC achievable rate
region.

Definition 4.3.1 The achievable rate region is some subset of the closure of the convex hull
of the set of all achievable rates, subject to various restrictions.

In the WOM for AMAC, the size of achievable rate region is reduced by WOM input distri-
bution (3.3).

The next theorem shows that from a two-write binary WOM code of rate (R1,R2), it is
possible to construct a code for a WOM for AMAC for error-free case, when Pe = 0.

Theorem 4.3.1 If (R1,R2) is an achievable rate pair for a two-write WOM code, then
(R1,R2) is an achievable rate pair for the BS-AMAC channel for error-free case Pe = 0.

Proof: Assume we have a two-write WOM code with the capacity given by the inequalities
(3.1) and (3.2). The inequalities (2.9) and (2.10) are:

R2 ≤ H(X2|X1) − H(X2|X1,Y), (4.1)

R1 + R2 ≤ H(X1, X2) − H(X1, X2|Y). (4.2)

With the restriction to the input distribution in (3.3) and with Pe = 0, it is clear that
H(X2|X1,Y) = H(X1, X2|Y) = 0.

R2 ≤ H(X2|X1)

= −
∑

x1,x2

p(x1, x2) log2 p(x2|x1)

= (1 − p1)h(p2),

R1 + R2 ≤ H(X1) + H(X2|X1)

= −
∑

x1

p(x1) log2 p(x1)

−
∑

x1,x2

p(x1, x2) log2 p(x2|x1)

= h(p1) + (1 − p1)h(p2)

(4.3)

(4.4)

where the joint input distribution p(x1)p(x2|x1) is used to obtain (4.3) and (4.4), which is
given by Table 4.1 for convenience.

These inequalities (4.3) and (4.4) are identical to (2.9) and (2.10), thereby an achievable
rate for the two write WOM code is also an achievable rate of the BS-AMAC for error-free
case. If we release the restriction on conditional input distribution p(x2|x1) to the WOM for
AMAC, then this rate region could be bigger, i.e. the converse does not hold. !

In the study of WOM codes, the sum-rate R1 + R2 is of importance. The maximum of
R1 + R2 is clearly a line which forms part of the boundary of the capacity region. The next
section shows that the WOM input distribution achieves one point on the boundary of the
capacity region of the BS-AMAC.
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Table 4.1 Joint input distribution p(x1)p(x2|x1) on X1 ×X2

X2

p(x1)p(x2|x1) x2 = 0 x2 = 1 p(x1)
x1 = 0 (1 − p1)(1 − p2) (1 − p1)p2 1 − p1X1
x1 = 1 0 p1 p1

p(x2) (1 − p1)(1 − p2) (1 − p1)p2 + p1

4.4 WOM Input Distribution Achieves BS-AMAC Capacity
Theorem 4.4.1 For the BS-AMAC model with Pe ≥ 0, there exists a rate pair (R′1,R

′
2)

on the boundary of the BS-AMAC capacity region, which is achieved by the WOM input
distribution.

Proof: The overview of the proof is given first. The first part of the proof shows the existence
of a WOM code input distribution that achieves the maximum of the sum rate R′1 + R′2. This
is done by assuming the existence of one input distribution which achieves the maximum of
the sum rate, and this is used to show that a set of input distributions achieves the maximum.
One member of this set is the WOM input distribution (3.3).

The second part of the proof simply shows how to find the pair (R′1,R
′
2), and that it must

be on the boundary of the BS-AMAC capacity region.
Proof: For shorthand, let X1X2 = 0, 1, 2, 3 correspond to (X1, X2) = (00), (01), (10), (11),

respectively. Let pi = Pr(X1X2 = i), for i = 0, 1, 2, 3. The input distribution is [p0, p1, p2, p3],
and can be written alternatively as:

[p0, λp, λp, p3], (4.5)

where 0 ≤ λ ≤ 1, p = p1 + p2 and λ = 1 − λ.
The maximum of the sum-rate is:

R′1 + R′2 = max
p0,...,p3

I(X1X2,Y). (4.6)

Let p∗0, p
∗
1, p
∗
2, p
∗
3 be a maximizing input distribution, which clearly exists, but is not unique.

This can be written alternatively written as:

[p∗0, λ
∗p∗, λ

∗
p∗, p∗3], (4.7)

with p∗ = p∗1 + p∗2 and λ∗ = p∗1
p∗1+p∗2

. Now, consider a relaxed input distribution:

[p∗0, λp∗, λp∗, p∗3] (4.8)

with arbitrary 0 ≤ λ ≤ 1.
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It is shown that the mutual information I(X1X2; Y) = H(Y) − H(Y |X1X2) is independent of
λ, under the relaxed input distribution (4.8). Write H(Y |X1X2) as:

p0H(Y |X1X2 = 0) + p1H(Y |X1X2 = 1)

+ p2H(Y |X1X2 = 2) + p3H(Y |X1X2 = 3).

It is straightforward to show that H(Y |X1X2 = 1) = H(Y |X1X2 = 2) by direct evaluation, for
example:

H(Y |X1X2 = 1) = Pe(1 − Pe) log2 Pe(1 − Pe)

+
(
(1 − Pe)2 + P2

e
)

log
(
(1 − Pe)2 + P2

e
)

+ Pe(1 − Pe) log Pe(1 − Pe).

Then, H(Y |X1X2) can be written as:

p0H(Y |X1X2 = 0) +
(
λp∗ + λp∗)H(Y |X1X2 = 1)

+ p3H(Y |X1X2 = 3),

which does not depend on λ. Similarly, it can be shown by direct evaluation that H(Y) is also
independent of λ, but this is tedious and is omitted.

By assumption, I(X1X2; Y) maximized by (4.7). But because I(X1X2; Y) is independent of
λ, any value of λ with 0 ≤ λ ≤ 1 will achieve the maximum. If we choose λ = 1, then one
such maximizing input distribution is:

[p∗0, p
∗
1 + p∗2, 0, p

∗
3], (4.9)

which corresponds to a WOM code distribution (3.3). Thus, the WOM code input distribution
achieves the maximum of the sum-rate R′1 + R′2 for the BS-AMAC channel.

For the second part of the proof, recall the rate region

R1 + R2 ≤ I(X1X2; Y)

R2 ≤ I(X2; Y |X1),

(4.10)

(4.11)

and consider the evaluation of the two mutual information terms using the relaxed input
distribution (4.8). Varying λ will sweep points along the straight edge of the boundary, as in
Fig. 4.3. This is because I(X1X2; Y) is independent of λ, but I(X2; Y |X1) depends on λ.

Now, fix λ = 1 and define R′1 and R′2 as the corresponding rates:

R′2 = I(X2; Y |X1)

R′1 = I(X1X2; Y) − R∗2,

(4.12)

(4.13)

that is both mutual information terms are evaluated with input distribution (4.9). The WOM
code input distribution achieves the maximum of the sum rates, corresponding to the straight
line boundary of the capacity region. But, the WOM code input distribution achieves one rate
pair on the boundary, which is given by (R′1,R

′
2), as shown above. !
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1
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2

 

 

WOM for AMAC
BS−AMAC
WOM for AMAC achieves
BS−AMAC

(3,2) WOM code

Pe = 0.05

Pe = 0

Fig. 4.3 Capacity region of the BS-AMAC and achievable rate region of the WOM for AMAC.

The capacity regions for the BS-AMAC (without restrictions) and achievable rates of
the WOM for AMAC (with the WOM code restriction) for Pe = 0 and 0.05 are plotted
in Fig.4.3, where the regions touch at one point ((R1,R2) = (h(1/3), 2/3) and (R1,R2) ≈
(0.6923, 0.3928), respectively) achieving maximum sum-rate.

Here, an achievable rate of the WOM for AMAC system is a rate pair such that the proba-
bility of decoding error goes to 0 (as in Sec.2.1), subject to the restriction (3.3).

4.4.1 Input Distribution Search
This section shows that a non-uniform input distribution is helpful for a BS-AMAC. Linear
binary codes are often used in cooperative wireless communications, however linear binary
codes have uniform input distribution. On the BS-AMAC, the two users interfere with each
other, thereby we have to find a suitable joint input distribution p(x1)p(x2|x1) to achieve the
BS-AMAC capacity.

The capacity region of the BS-AMAC was found by an exhaustive search over p1, p2
and α (See Table 2.2) to find the convex hull. The WOM codes capacity region was done
likewise with WOM input distribution (3.3), since an achievable rate pair for the two-write
binary WOM codes is an achievable rate pair for the WOM for AMAC, for the error-free
case (See proof of Theorem 4.1). If we fix p1 = p2 = 1/2 and vary α, a region is found,
which corresponds to the linear binary codes achievable rates on the BS-AMAC. These three
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regions are shown in Fig. 4.4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60
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R
2

 

 

Region (a)
Linear codes
WOM codes
BS−AMAC

(23,12) Golay code

Fig. 4.4 Input distribution search.

In Fig. 4.4, Region (a) represent rate pairs that are not achievable using linear binary codes,
but are achievable using WOM codes. The two-write WOM code based on n = 23 Golay code
given by Yaakobi et al. [11] has rate pair (R1,R2) = (0.9415, 0.5217), which is also shown.
This illustrates that non-uniform input distributions, such as WOM codes described in this
paper, are helpful for achieving capacity.
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Chapter 5

Decoding scheme

Applying WOM codes to the BS-AMAC provides efficienct separation of the two codewords
at the receiver, without using joint iterative decoding or successive interference cancellation.
In our scheme, we have two types of low-complexity decoding: (1) Hard decision decod-
ing: decomposed system using symbol-wise estimation and (2) Soft decision decoding: a
posteriori probability (APP) decoder.

5.1 Decomposed System
This section describes the decomposed system pictured in Fig. 5.1.

(0,1)
X 1

1
n
1

1
22
n

(0,1)

1
(0,1)

11
n

User 1

User 2

,...,

,...,

,...,

1
(0,1)

22
n,...,

^ ^

^ ^

Equivalent
Channel
for User 1

Equivalent
Channel
for User 2

X

X X

X X

X X

Fig. 5.1 Decomposed system.

The decomposed system consists of four alphabets X1,X2, and X̂1, X̂2 where X1 ∈ X1 and
X2 ∈ X2 are input symbols, and X̂ ∈ X̂1 and X̂2 ∈ X̂2 are estimated symbols respectively. The
decomposed system consists of two parts, BS-AMAC (X1, X2) → Y with the WOM input
distribution (3.3), and two estimation functions Y → g1(Y) and g2(Y)→ X̂1 and X̂2.

We describe the idea of a hard decision decoding: symbol-wise estimation for channel out-
put Y in the decomposed system. The estimation is performed symbol-by-symbol to decom-
pose the received sequence Y1,Y2, ..., Yn into two data streams X̂1

1 , X̂
1
2 , ..., X̂

1
n and X̂2

1 , X̂
2
2 , ..., X̂

2
n

using decoding functions gi:
g1 : Y → X̂1, and
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g2 : Y → X̂2,

for User 1 and User 2 respectively. For the WOM for AMAC, each decoding function outputs:

g1(Y) =

⎧⎪⎪⎨
⎪⎪⎩

0 i f y = 0, 1,
1 i f y = 2,

(5.1)

g2(Y) =

⎧⎪⎪⎨
⎪⎪⎩

0 i f y = 0,
1 i f y = 1, 2.

(5.2)

for User 1 and User 2 respectively, so that X̂1 = g1(Y) and X̂2 = g2(Y). Estimation is pictured
in Fig. 5.2. In the error-free Pe = 0 case, symbol-wise estimation introduces no errors, shown
as follows. When Y = 0 or Y = 2, the decoder estimate should clearly be (X̂1, X̂2) = (0, 0)
and (X̂1, X̂2) = (1, 1), respectively. When Y = 1, there is also no ambiguity, and the decoder
outputs (X̂1, X̂2) = (0, 1) because the combination (X1, X2) = (1, 0) is disallowed in the WOM
input distribution. In the decomposed system, the WOM for AMAC system (i.e. two user’s
codewords are correlated) is equivalent to two separated, or two decomposed channels, while
maintaining the correlation.

1

2

^

^

0

0

1

10

1

2
Y

Decoder X

X

Fig. 5.2 Symbol-wise estimation for decomposed system.

5.2 Achievable Rates for Decomposed System
Next, we study the decomposed system achievable rates when Pe ≥ 0. The decomposed
system uses the WOM input distribution (3.3), which reduces the achievable rate region,
however the restriction induces a property useful for decoding.

The next corollary shows inequalities for an achievable rate of the decomposed system.

Corollary 5.2.1 Any rate pair (R1,R2) satisfying:

R2 ≤ I(X2; X̂2|X1)

R1 + R2 ≤ I(X1, X2; X̂1, X̂2)

(5.3)

(5.4)
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is an achievable rate pair for the decomposed system subject to the restrictions the WOM
input distribution (3.3) and the symbol-wise estimation.
Proof: The proof assumes a WOM input distribution (3.3) and the decomposed system is us-
ing symbol-wise estimation g1 and g2 given by (5.1) and (5.2). Observe that (X1, X2)→ Y →
(X̂1, X̂2) forms a Markov chain, and this is applied to the restriction of the AMAC capacity
region (2.9) and (2.10). Since X̂1 = g1(Y) and X̂2 = g2(Y), by the data processing inequal-
ity in Sec.1.2.4, I(X2; X̂2|X1) ≤ I(X2; Y |X1) and I(X1, X2; X̂1, X̂2) ≤ I(X1, X2; Y). Thus, the
decomposed system achievable rates inequalities (5.3) and (5.4) are obtained. !

The decomposed system achievable rate region is the closure of the convex hull of the set
of all achievable rates (R1,R2) satisfying (5.3) and (5.4).

The decomposed system achievable rate region (5.3) and (5.4), are compared to the WOM
for AMAC achievable rates (2.9) and (2.10), which are pictured in Fig. 5.3. Both regions are
the same for the error-free case, however the decomposed system achievable rate region is
never larger than the WOM for AMAC region when Pe > 0, nonetheless, the achievable rate
region is large and have some practical significance. Accordingly, we study the gaps between
achievable rates of the WOM for AMAC and the decomposed system.
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Decomposed sytem

WOM for AMAC

Pe = 0.05

Pe = 0
(3,2) WOM code

Fig. 5.3 Achievable rates of the WOM for AMAC and decomposed system.

We compute two types of gaps. 1) The gap in maximum sum-rate, maximum sum-
rate for the WOM for AMAC is max I(X1, X2; Y), and for the decomposed system is
max I(X1, X2; X̂1, X̂2). 2) The gap of achievable rates R1 + R2 when R1 = R2. This second
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case is of practical interest, for example in block-Markov relaying. Both gaps are pictured in
Fig. 5.4, which shows that the achievable rates of decomposed system is always smaller or
equal to the WOM for AMAC.
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Fig. 5.4 Gap of two achievable rates for WOM for AMAC and Decomposed system.

5.3 APP Decoder
This section shows a soft decision decoding: APP decoding, of WOM codes for the BS-
AMAC. For APP decoding, mutual information is evaluated, and gives the highest infor-
mation rate that a capacity-approaching code could achieve. Note that we use codeword
sequences denoted by X = (X1, X2, ..., Xn) in this section.

Definition 5.3.1 APP is the probability of U = u given the observation Y, that is:

p(Ui|Y = y) =
p(Y|Ui = u)P(Ui)

p(Y)
=

p(Ui,Y)
p(Y)

. (5.5)

Begin by writing the joint distribution p(Y|Ui)P(Ui) as:

p(Ui,Y) =
∑

X1X2∈C1,C2

p(Ui,Y,X1,X2)

=
∑

X1X2

p(Ui|X1X2)p(Y|X1X2)p(X2|X1)p(X1) (5.6)
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Encoder 1 chooses a codeword X1 from codebook C1 with uniform probability distribution,
so p(X1) = 1

2nR1 . We call attention to a particular special case. In WOM codes, if u1 = u2,
then the state of the memory does not need to be changed.

That is C1 ⊂ C2 and X2 ∈ C1 is possible. While codewords for X1 are uniformly distributed
on C1, codewords for X2 are not uniformly distributed on C2.

The channel is characterized by p(Y|X1X2) which depends on Pe. p(X2|X1) is obtained
from the WOM-code distribution between first and second write codewords, and can be ob-
tained from f2. And, p(U1 = u1|X1 = x1) = 1 if f1(u1) = x1, otherwise it is zero. And
p(U2 = u2|X1X2 = x1x2) = 1 if f2(u2, x1) = x2, otherwise it is zero.

The two outputs of the APP decoder are p(U1 = u|Y) and p(U2 = u|Y) computed as above.

5.3.1 Mutual Information I(Ui; Wi)
Define new symbols W1 and W2 as the output of the decoder which is a vector of probabilities
indexed by u,

Wi = p(Ui = u|Y = y) (5.7)

which could represent the message passed to an LDPC decoder. Here we deal with word
probabilities in the probability domain; if bit probabilities w are computed, these can be
converted to the log-likelihood ratio domain using g(w) = log w

1−w .
The APP decoder can also be used to decompose the received sequence Y into two streams

W1 and W2, one for each user. In this case, a short WOM code is assumed, and achievable
rates for a decomposed system are characterized using mutual information, 1

n I(U1; W1) and
1
n I(U2; W2). For example, an LDPC code that can communicate reliably at rate R1 can also be
used for reliable communications on this WOM-coded AMAC channel, if R1 ≤ 1

n I(U1; W).
For this discrete system, the set values Yn is finite, and the set of decoder outputsWi is

similarly finite. We have 2nRi + 1 ≤ |Wi| ≤ |Yn| distinct values of W for user i.
The setWi is known, so the probability distribution p(Wi) is readily obtained. By numer-

ical evaluation we obtain the probability p(Wi|Ui). Then it is straightforward to obtain the
mutual information between the user information Ui and the symbol Wi given by:

I(Ui; Wi) =
∑

Wi

∑

Ui

p(Wi,Ui) log2
p(Wi|Ui)

p(Wi)
. (5.8)

5.3.2 Numerical Results for APP decoding
The effectiveness of our system is established through numerical evaluation of mutual infor-
mation I(Ui,Wi) for the (3,2) WOM code, which has (R1,R2) = ( 2

3 ,
2
3 ), for various values of

Pe, shown in Fig. 5.5. We consider the mutual information for each user separately to obtain
I(U1; W1) and I(U2; W2).

The (3,2) WOM code has sum rate 4
3 . By using this code, we obtained the same sum rate

for Pe = 0. The gap between the maximum sum rate of the AMAC (assuming inifinite-
length codes) and the APP decoder sum rate I(U1; W1) + I(U2; W2) (assuming the (3,2)
WOM code) is shown using a dashed line in Fig. 5.5. For the error-free case, the gap is
log2 3 − 4

3 = 0.2516. Thus, even in the presence of errors, this gap is decreasing as Pe
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Fig. 5.5 Max sum rate of AMAC using solid-triangle line. I(U1,U2; Y) and I(X1,X2; Y)
using solid line and at the same space, achievable sum rate R1 + R2 using circles. Sum of
individual mutual information I(U1; Y) + I(U2; Y) and I(U1; W1) + I(U2; W2) using solid
lines. I(U1; Y) for user 1 using solid-square line and I(U2; Y) for user 2 using solid-cross
line. Gap between the max sum rate of AMAC and APP sum rate I(U1; W1) + I(U2; W2)
in dash line. All of them using using (3,2) WOM codes excluding max sum rate of the
AMAC.

increases, meaning that WOM codes are effective and can be used in the presence of noise in
the channel.

The sum of mutual information for the APP decoder, I(U1; W1) + I(U2; W2) is upper
bounded by the sum I(U1; Y) + I(U2; Y), which is shown for reference. The restricted BS-
AMAC sum rate I(U1,Y) + I(U2,Y) is compared with the the joint rate I(X1,X2; Y) and is
also pictured in Fig. 5.5, given by:

1
3

I(U1; Y) +
1
3

I(U2; Y) ≤ 1
3

I(X1,X2; Y), and (5.9)

1
3

I(X1,X2; Y) ≤ R1 + R2 (5.10)

where the achievable sum rate R1 + R2 is obtained by (4.4).
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Chapter 6

System Performance

Applying WOM codes to the BS-AMAC leads to low-complexity decoding. In order to
build a reliable communication system, the BS-AMAC capacity-approaching error correcting
codes such as low-density parity check (LDPC) codes are needed. In this chapter, we show a
numerical result applying LDPC codes to the our system.

6.1 LDPC codes
This section describes an error correcting code used in our work “LDPC codes”. For more
details on LDPC codes, refer to Gallager et al [15], [16].

6.1.1 Introduction to LDPC codes
LDPC codes were first proposed by Robert Gallager in 1960 [15], which is a class of linear
codes whose parity-check matrix H is sparse, i.e. the matrix contains only a small number of
1s per row or column. He also proposed an efficient iterative decoding scheme called iterative
message passing decoding for the case of the parity-check matrix H is sparse.

Definition 6.1.1 A linear code of length n and dimension k is a linear subspace C with the
vector space Fn

q, where Fn
q denotes the finite field with q elements.

In our work, we mainly use a binary (n, k) LDPC codes, which is a binary (q = 2) linear
block code with a parity-check matrix H that has a low density 1s. A parity-check matrix H
is a m × n matrix, where m = n − k.

We show a parity-check matrix H of the (10, 5) LDPC code as an example:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.1)

Encoding of LDPC codes is done by the generator matrix G, a k × n matrix, which maps
an information vector u∈ Fk

2 into codewords x∈ Fn
2 as follows:

x = uG.
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For any generator matrix G and parity-check matrix H the following holds:

HGT = 0.

6.1.2 LDPC Codes Based on Sparse Graphs
LDPC codes are defined in terms of a sparse bipartite graph, called Tanner graph. This
graph has two types of nodes, the bit nodes and check nodes. Every bit node (or check node)
corresponds to a column (or row) of the parity-check matrix H. In addition, 1s in the parity-
check matrix H corresponds to the edges between two nodes. Two nodes connected by an
edge are called neighboring nodes.

For simplicity, we denote the i-th bit node by bi, i ∈ I = {1, ..., n}, and the j-th check
nodes by c j, j ∈ J = {1, ...,m}, where indices J and I corresponding each row and column
of the parity-check matrix H, respectively. In addition, we also represent the index set of
neighboring bit nodes of check node j ∈ J by N j = {i ∈ I : Hi j = 1}, and the index set of
neighboring check nodes of bit node i ∈ I by Ni = { j ∈ J : Hi j = 1} [17].

The Tanner graph of the (10,5) LDPC code parity-check matrix H described in (6.1), which
is pictured in Fig.6.1. In this Tanner graph, bit node bi, i ∈ {1, ..., 10} is connected to check
node c j, j ∈ {1, ..., 5} via an edge when Hi j = 1. For example, the check node c1 is connected
the bit nodes v1, v2, v3, v4, i.e. it has four neighboring bit nodes and N j = {1, 2, 3, 4}.

o o o o o o o o o o

C1 C2 C3 C4 C5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
Fig. 6.1 A Tanner graph of the (10, 5) LDPC code.

6.1.3 Decoding Scheme for LDPC codes
Let us consider the decoding scheme of LDPC codes called iterative message-passing (MP)
decoding. The key property of iterative MP decoding is that the decoder gets the log-
likelihood ratios (LLRs) of all received codeword symbols, then all nodes update these mes-
sages based on the messages received from the neighboring nodes in the Tanner graph.
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Definition 6.1.2 The LLR in the l-th channel output symbol Ll, is defined as:

Ll = log
p(yl|xl = 0)
p(yl|xl = 1)

, (6.2)

where xl and yl denote the l-th encoded bit and received bit, respectively.

The iterative MP decoder consists two phases, bit node to check node B → C phase,
where bit nodes send messages to check nodes along their connected edges, and check node
to bit node C → B phase, where check nodes send messages to the connected bit nodes.
The decoding process as follows: (1) At the first step of the decoding, bit node bi sends a
message about an LLR: Ll information to the all neighboring check nodes in Ni. (2) In the
C → B message update step in the t-th iteration, check node c j generates an updated C → B
message: Lt[c j → bi] using incoming messages from all connected bit nodes, then sends
this information to the bit node bi in N j. (3) In the B → C message update step in the t-
th iteration, bit node bi receives this updated LLR information from the neighboring check
nodes. For each bit node, it generates an updated B → C message: Lt[bi → c j], and sends
this to each connected check node c j.

After an arbitrary number of iterations with processes (2) and (3), bit node bi takes sum of
all of the incoming LLR messages to estimate appropriate code bit i [17].

6.1.4 Sum-Product Algoritm
This section introduces an example of the iterative MP decoding algorithm, called the sum-
product algorithm. Decoding using sum-product algorithm is also implemented as described
in Sec.6.1.3.

The update rule of each step is defined as follows:

Definition 6.1.3 [16] The update rule of bit node to check node B→ C is given by:

Lt[bi → c j] = Ll +
∑

j′∈Ni\ j

Lt−1[c j′ → bi]. (6.3)

Note that Lt=1[bi → c j] at the first iteration is equal to Ll.

Definition 6.1.4 [16] The update rule of check node to bit node C → B is given by:

Lt[c j → bi] =
[ ∏

i′∈N j\i
sign(Lt−1[bi′ → c j])

]
· min

i′∈N j\i
|Lt−1[bi′ → c j]|. (6.4)

6.2 System Model using LDPC codes
The system model using LDPC codes is pictured in Fig.6.2. There are two encoding steps:
LDPC codes and WOM code, and two decoder: APP decoder and LDPC decoder. The reason
why we apply the APP decoder is described below.

The system flow is straightforward as follows: (1) Both user messages U1 and U2 are first
encoded into corresponding LDPC codewords, then applied WOM codes encoding described
in Chap 4.4.1 and sent, respectively. In the above chapters, both user’s codewords X1 and
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Fig. 6.2 System diagram using LDPC codes.

X2 pass through a BSC with a common error probability Pe. However, in this section, each
user’s codewords passes through a BSC with error probability defined under the assumption,

Pe,i = p(Yi ! Xi) f or i = 1, 2.

This is because, we hope that both user have the same bit error rate (BER) performance
described in the next section. However, X2 includes the information of X1 and helps the
communication for User 1 in the BS-AMAC, i.e. BER performance of User 2 is worse than
User 1’s performance with the same BSC error probability Pe. Hence, we set unique BSC
error probability Pe,1 and Pe,2, respectively. (2) The APP decoder receives a sequence Yn

which is the integer-valued addition of outputs from the BSCs with error probabilities Pe,1
and Pe,2. (3) The APP decoder outputs each user’s LLR Li in order to perform the LDPC
decoding described in Sec.6.1.3.

Definition 6.2.1 The LLR of i-th user: Li in our work, is given by:

Li = log
P(ui = 0|Y = y)
P(ui = 1|Y = y)

, f or i = 1, 2, (6.5)

where a probability transition matrix p(ui|Y = y) is given by (5.5).
(4) Each LDPC decoder estimates appropriate user’s message Û1 and Û2 using LLR L1

and L2, respectively.

6.3 Numerical Results for Bit Error Rate
This section shows BER in our system using LDPC codes.

Definition 6.3.1 A BER is the rate at which errors occur in a transmission system:

BER =
Number of errors : U ! Û
Total number of bits sent

.

In this numerical result, we apply (3,2) WOM codes and the well-known digital video
broadcasting-satellite-second generation (DVB-S.2) LDPC codes (see Sec.3.4 and [18]).
Both users communicate with rates R1 = R2 = 1/3, because of applying (3,2) WOM codes
and rate 1/2 LDPC codes ( i.e. Rtotal = RWOM × RLDPC = 2/3 × 1/2 = 1/3). Table 6.1 shows
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a parameter of the DVB-S.2 LDPC code used in our work. This LDPC code adopts the
iterative MP decoding with sum-product algorithm at decoding part.

Table 6.1 Parameter of DVB-S.2 LDPC code used in our research

Date length:k 32, 400
Block length:n 64, 800

Transmitted frames 100
Rate 1/2

Decoding Algorithm sum-product algorithm
Iterations t 50 times

A BER performance of the our system using LDPC is pictured in Fig.6.3, where the hori-
zontal axes are error rate for User 1 as bottom and User 2 as top. Also, a parameter of a DVS-
S.2 LDPC code used in our work is given in Table.6.1. Both users achieve BER below 10−6,
regarding reliable in wireless communications, when (P = e, 1, Pe,2) = (0.1320, 0.0120). The
numerical value of BSC error probability for User 1: Pe,1 was higher than Pe,2 when they
achieve BER below 10−6, because User 2 codeword X2 includes User 1 information.

0.1 0.2 0.3 0.4 0.5
10-6

10-5

10-4

10-3

10-2

10-1

100
0 0.02 0.04 0.06 0.08 0.1

P
e,2

B
E
R

User 1

User 2

0.1940 P
e,1

0.0254

GAP

Fig. 6.3 BER of our system using LDPC codes.
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There is a small gap in error probabilities (Pe,1, Pe,2) between an our numerical result
(Pe,1, Pe,2) = (0.1320, 0.012) and the theoretical value (Pe,1, Pe,2) = (0.1940, 0.0254) given as
follows:

Fig.6.4 shows the pairs of (Pe,1, Pe,2) such that I(U1; Y) = I(U2; Y). Also, shown is
I(U1; Y) = I(U2; Y) = 1/3. We want to find the channel values for which the code rate is
close to the capacity. When (Pe,1, Pe,2) = (0.1940, 0.0254) at a point E in Fig.6.4, the mutual
informations I(Ui; Y) = 1/3, corresponding to both user’s rates R1 = R2 = 1/3. Thus, both
user can simultaneously achieve BER below 10−6 at (Pe,1, Pe,2) = (0.1940, 0.0254).

As a result, the gap in Fig.6.3 means that the error correcting code used in our research
cannot approach the BS-AMAC capacity.

0 0.1 0.2 0.3 0.4
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0.08

0.1

P e
,2

I(U ;Y)

E.

0.0254

0.1940

I(U ;Y)=I(U ;Y)

=1/3

1 2

i

Fig. 6.4 Pairs of (Pe,1, Pe,2) such that I(U1; Y) = I(U2; Y).
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Chapter 7

Relay Channel

The relay channel defined [1] is a channel in which there is one sender and one receiver with
a number of intermediate nodes that act as relays to help the communication from the sender
to the receiver. This chapter shows an application of our work to practical communications.

7.1 Relay Channel
The relay channel is a kind of channel where there is one source and one destination, however
one or more intermediate sender-receiver pairs that act as relays to facilitate the communi-
cation between the source and the destination. We mainly treat three-terminal relay channel,
which has three-nodes, denoted source (S), relay (R), and destination (D), which is illus-
trated in Fig.7.1. The relay channel combines a broadcast channel ((S) to (R) and (D)) and a
multiple-access channel ((S) and (R) to (D)).

S D

R

Fig. 7.1 Relay channel.

7.2 Relay channel using WOM codes
This section describes block Markov coding for the relay channel [13], using WOM for
AMAC as pictured in Fig. 7.2. The purpose of this section is to demonstrate the usefulness
of the AMAC model for the relay channel. In this three-nodes model, the source transmits a
message to the destination with the assistance of the relay.

In block Markov coding, there are b transmission blocks, each consisting of n channel uses.
A sequence of (b − 1) messages Mj, j ∈ [1 : b − 1] are encoded and sent in these b blocks.
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The source’s message is broadcast to both the relay and the destination. The relay and the
source transmit to the destination using a multiple access channel.

A practical transmission scheme using the relay channel with WOM codes, is described
as follows: At the first block transmission, the message M1 in block 1 is encoded into
X1

1 , X
1
2 , .., X

1
n from codebook C1, and broadcasted to both the relay and the destination. And

the relay is silent. Then, for blocks j = 2, .., b − 1, the following steps are performed recur-
sively:

1. At the end of block j − 1, the relay finds the message Mj−1.
2. The source is aware of the previous message Mj−1, and encodes Mj in block j to
{X2

1 , X
2
2 , .., X

2
n} from codebook C2, then transmits to the relay and the destination.

3. Simultaneously, the relay having already recovered message Mj−1, encodes it to
X1

1 , X
1
2 , ..X

1
n using C1, and retransmits it to the destination.

4. The destination receives two codewords X1
1 X1

2 ...X
1
n (from block j − 1) and X2

1 X2
2 ...X

2
n

(from block j) through a multiple access channel, and decodes as on the AMAC chan-
nel.

Here, the source corresponds to User 2, and the relay corresponds to User 1 in the AMAC
because the source knows both message Mj−1 and Mj (i.e. User 2 knows User 1’s message);
therefore, the proposed WOM codes for the AMAC can be applied to the relay channel with
block Markov coding.

S D

R

Relay
Channel

User 2

User 1

AMAC channel 
part

Broadcast
part

X1
1 X1

n,..,

X2
1 X2

n,..,

X2
1 X2

n,..,

Fig. 7.2 Relay channel using WOM codes. The source (s) plays the role of User 1 in the
AMAC, since it knows the relay’s message in block Markov scheme.
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Chapter 8

Conclusion

8.1 Conclusion
We showed that WOM codes can be applied to the BS-AMAC despite the fact that WOM
codes are not designed for wireless communications. Our proposed scheme efficiently sepa-
rates the two codewords, and avoids the complexities of successive interference cancellation
[1] or joint iterative decoding of two codes [8]. Our two low-complexity decoding schemes in
cooperative wireless communications are surprisingly effective even in the case with errors.
WOM codes change the input distribution from uniform to one suitable for the BS-AMAC
channel. Not all rates are achievable by uniform input distributions. However, long WOM
codes may not be practical.

We applied a DVB-S.2 LDPC code to our scheme in order to approach the BS-AMAC
capacity. Both user’s BER performance is below 10−6 at (Pe,1, Pe,2) = (0.1320, 0.0120).
Increasing of error probability Pe,1 is more acceptable in our scheme. This is because of the
property of the BS-AMAC in which User 1 message is known to User 2. However, there was
the gap in BSC error probabilities (Pe,1, Pe,2) in Fig.6.3, meaning that a LDPC code used in
our work is incomplete for our system. Thus, we need to apply other capacity approaching
codes, such as polar codes introduced by Arikan [19].

8.2 Future Work
This section describes future works of our research as follows:

1. The bonus region refers to achieving rates greater than 1, which is the region (b) pic-
tured in Fig.8.1. Applying WOM codes to the BS-AMAC cannot achieve this region
for binary inputs X1 and X2. Thus, we propose two encoding schemes for achieving
the BS-AMAC rates in the bonus region.

The first idea is a technique of non-linear mapping of symbols for User 1 with an
extended alphabets u1 = {0, 1, 2}. Mapping symbols 0, 1 ∈ U1 to 0 ∈ X1 and 2 ∈ U1

to 1 ∈ X1 in codewords.
The second idea is to divide User 1 message into two parts, then encode each part

by each user’s encoder. Moreover, User 2 sends at a low rate, perhaps 0. Let us show
an example pictured in Fig. 8.2, User 1 chooses an index U1 uniformly from the set
{0, 1, ..., 15}. The length of User 1 message k = 4. Since, this message is known to
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both encoders in the AMAC, the first two bits of User 1 message are encoded into X1

by Encoder 1, and the second two bits are encoded into X2 by Encoder 2. Note that
User 2 does not send any information in this encoding scheme. In this case, User 1
message with length k = 4 is encoded into two codewords with length n = 3, i.e. this
coding scheme achieves a rate pair (R1,R2) = (4/3, 0) in the bonus region.

X1

2

    User 1 
message set

   User 2
no message

U 1

 Encoder 1
f
1

X Encoder 2
f
2

={0,1,...,15}

  0   00  00

  1   00  01

15   11  11

...

...

U 2 , is empty

Fig. 8.2 An encoding example achieving a BS-AMAC rate in the bonus region
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2. The DVB-S.2 LDPC code used in our work could not approach the BS-AMAC capac-
ity. One possibility to approach the BS-AMAC capacity is by applying polar codes,
which were first introduced by Arikan [19]. There are some past works, which are ap-
plying polar codes to the asymmetric memoryless channel [20] and combining WOM
codes with polar codes called Polar WOM codes [21]. We expect that combinations of
these schemes will be very effective for our problem.

3. In our research, we assumed a two-user AMAC. However, there may be multiple
senders and receivers in practical MAC model. Hence, we need to extend our idea
to a multiple user model.
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