
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

An Investigation of Machine Learning and a

Consideration on its Application to Theorem

Proving [Project Paper]

Author(s) Ho, Dung Tuan

Citation

Issue Date 2016-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13641

Rights

Description Supervisor:Kazuhiro Ogata, 情報科学研究科, 修士

Master’s Research Project Report

An Investigation of Machine Learning and

a consideration on its application to
Theorem Proving

1310065 Ho, Dung Tuan

Supervisor : Professor Kazuhiro Ogata
Main Examiner : Professor Kazuhiro Ogata

Examiners : Professor Kunihiko Hiraishi
Associate Professor Toshiaki Aoki

School of Information Science
Japan Advanced Instituted of Science and Technology

February, 2016

Contents

1 Introduction 3
1.1 Outline of the Report . 4
1.2 Bibliographical Note . 5
1.3 Acknowledgement . 6

2 Preliminaries 7
2.1 Systems Verification . 7

2.1.1 Formal Verification . 7
2.1.2 Interactive Theorem Proving . 7

2.2 Algebraic Formal Methods with CafeOBJ 8
2.2.1 Overview . 8
2.2.2 Specification and Verification of TAS - A mutual exclusion Protocol 9

2.2.2.1 Observational Transition Systems 9
2.2.2.2 Specification . 11
2.2.2.3 Verification . 12

2.3 Inductive Logic Programming (ILP) . 17
2.3.1 The ILP learning task . 17
2.3.2 Mode-Directed Inverse Entailment and Progol 18

3 The Framework of Tools used 20
3.1 Data Collection . 20
3.2 Data Tranformation . 23
3.3 Learning . 25
3.4 Framework of Assessment . 26

4 Application 28
4.1 Specification and Verification of Communication Protocols 28

4.1.1 Simple Communication Protocol . 29
4.1.2 Alternating Bit Protocol . 32

4.2 Experiments on ILP . 36
4.2.1 Characterizing MSCP . 36

4.2.1.1 Background knowledge B 36
4.2.1.2 Positive Examples E+ . 38
4.2.1.3 Mode Declarations and Settings 38
4.2.1.4 Experiments . 40
4.2.1.5 Evaluation . 44

4.2.2 Characterizing MABP . 46
4.2.2.1 Background knowledge B 46
4.2.2.2 Positive Examples E+ . 47
4.2.2.3 Mode Declarations and Settings 47
4.2.2.4 Experiments . 49

1

4.2.2.5 Evaluation . 55

5 Conclusion 57
5.1 Summary . 57
5.2 Related Work . 58
5.3 Future Work . 60

References 63

Contributions 65

Appendices 66

2

1 Introduction

Systems Verification logically checks if systems satisfy desired properties to make them
reliable. The techniques used are largely classified into Model Checking and (Interactive)
Theorem Proving. This project focuses on Interactive Theorem Proving (ITP) that of-
ten requires eureka steps. One typical eureka step is to discover a non-trivial lemma,
called Lemma Conjecturing. Some techniques have been proposed such that lemmas can
be systematically or automatically discovered, and successfully applied to some specific
applications [4, 5, 6, 7, 8]. None of those techniques, however, can discover all lemmas
for all possible proof problems (not only mathematical but also engineering ones, i.e.,
systems verification. In general, it is necessary to understand proof targets profoundly
to some extent to discovery non-trivial lemmas. Proof targets are systems and/or sys-
tem behaviours in Systems Verification. Human users often rely on some information
to conjecture such lemmas. This information characterises some important aspects of
reachable states of systems. But, it is time-consuming to extract the information from
a large amount of reachable states. We predict that Machine Learning [2] can help to
do so since the technique can be applied to big data. In ITP, Machine Learning may
extract some patterns from a large number of reachable states. The patterns expresses
some characteristics of the reachable states such that they can help human users to get
better understanding of not only the reachable states but also the system’s state ma-
chine. Then, the understanding can hopefully leads the human users to conjecture some
non-trivial lemmas for some specific proof problems. The aim of the project is to learn
some advanced techniques of machine learning, confirming that the technique can be used
to extract useful information from reachable states of systems such that the information
helps human users to conjecture non-trivial lemmas.

Our ultimate goal is to systematically assist the human users through one of most intel-
lectual activities in ITP, Conjecturing Lemmas. There are many researchers in Systems
Verification who has conducted or proposed many approaches or methods to archive the
goal in some specific problems. The same goal but our approach is mainly related to
Machine leaning such that applying a machine learning technique into ITP in which it
can extract the information from a large amount of reachable states, hopefully it is useful
to lemma conjecture. In Machine Learning aspect, the approach is considered to a learn-
ing task in which it consists of problem instances and extracted patterns. The problem
instances are reachable states of a state machine of an under verification system and ex-
tracted patterns are the reachable states’ characteristics. Therefore, first and foremost,
the objects needs to be formally represented. In other words, we must to formally repre-
sent our database consists of the reachable states (input) and the characteristics (output)
which we want to obtain. Unfortunately, most machine-learning techniques/systems rep-
resent input in form of propositional logic or attribute-value representations such that the
database is represented in tabular form [3]. In other words, the database is expressed
on tables in which each row corresponds to an example, and each column corresponds
to an attribute. Furthermore, the examples have exactly one value specified for each of
the attributes. Unfortunately, most ITP systems use some variant of first-order logic as

3

its representation in which there are some kinds of structured data recursively defined,
e.g. list, queue. It is impossible to transform the definitions of such structured data to
propositional ones [19].

Fortunately, there is a research area called Inductive Logic Programming (ILP) [9]
stayed in the intersection of Machine learning and Logic Programming [20] such that ILP
inherits the goal of Machine learning: synthesis logic programs, acquire knowledge from
data and ILP also inherits the way of data representations using clausal logic [21], a sub-
set of first order logic. In general, our learning task is to characterize reachable states
of a state machine of a under verification system such that the extracted characteristic
are useful to construct some lemmas which can be used to discharge some non-trivial
verification cases. The learning task has two main ingredients related to different research
areas: ILP and ITP in which ITP provides databases consisting of not only examples but
also background knowledge and ILP extracts knowledge also in form of first order logic
with respected to the database based on theory which is combination of logic theory and
machine learning.

To demonstrate our approach, we have conducted several experiments on two commu-
nication protocols: Alternating Bit Protocol (ABP) and Simple Communication Protocol
(SCP). We had successfully conducted the verifications for such protocols, with respected
to Reliable Communication Property, including conjecture lemmas. To conjecture such
lemmas, we relied on a source, called State Pattern, obtained by manually observing
sequences of reachable states. The comparisons between the State Patterns and the
knowledge acquired from an ILP system are shown in the report to illiterate that the
knowledge express the characteristics of the reachable states. Moreover, we also show
a consideration that is possible to get better understanding the system or to conjecture
some lemmas from the knowledge.

1.1 Outline of the Report

In Chapter 2, we first give a overview of Systems Verification, then Algebraic Formal
Method with CafeOBJ. A state machine M consists of a set S of states that includes
the initial states I and a binary relation T over states. (s, s′) ∈ T is called a transition.
Reachable states RM of M are inductively1 defined as follows: I ⊆ RM , and if s ∈ RM and
(s, s′) ∈ T , then s′ ∈ RM . A distributed system DS can be formalized as M and many
desired properties of DS can be expressed as invariants of M . An invariant of M is a
state predicate p of M such that p holds for all s ∈ RM . To prove that p is an invariant of
M , it suffices to find an inductive invariant q of M such that q(s)⇒ p(s) for each s ∈ S.
An inductive invariant q of M is a state predicate of M such that (∀s0 ∈ I) q(s0) and
(∀(s, s′) ∈ T) (q(s)⇒ q(s′)). Note that an inductive invariant of M is an invariant of M
but not vice versa. Finding an inductive invariant q (or conjecturing a lemma q) is one of
the most intellectual activities in ITP2. This activity requires human users to profoundly

1Note that “induction” is used to refer to two different meanings: one from machine learning and the
other from mathematical induction.

2q may be in the form q1 ∧ . . . ∧ qn. Each qi may be called a lemma and is an invariant of M if q is
an inductive invariant of M , although qi may not be an inductive invariant of M .

4

understand the system under verification or M formalizing the system to some extent.
The users must rely on some reliable sources that let them get better understandings
of the system and/or M to conduct the non-trivial task, namely lemma conjecture. For
this end, our experiences on ITP tell us that it is useful to get better understandings of
RM . Some characteristics of RM can be used to systematically construct a state predicate
qi that is a part of q. s ∈ S is characterized by some values that are called observable
values. Based on our experiences on ITP, the characteristics of RM are correlations among
observable values of the elements of RM . Generally, the number of the elements of RM is
unbounded and then a huge number of reachable states are generated from M . The task
of extracting correlations among a huge number of data (reachable states in our case) is
the role of Machine Learning (ML). Because of the representation problem, we introduce
ILP in the second part of Chapter 2. Moreover, we give an overview of an implemented
approach in Progol, an state-of-art ILP system, which we use to conduct the experiments
on two the Communication Protocols.

After Chapter 2, the rest of the text can be structured in two parts. Each is a chapter.
Chapter 3 - Framework, we describe our contribution, a framework which is a combination
of Machine learning and Interactive Theorem Proving such that ITP provides a system
specifications suited for a verification on an ITP system, i.e. CafeOBJ [1], as an input to
our framework. By using other tools and methods to extract and generate the components
of a ILP learning task, which are suitable to our purpose, then we can get the hypothesised
clauses.

At the last part, chapter 4 - Application, we shows the applications of our framework to
two Communication Protocols [16], Alternating Bit Protocol and Simple Communication
Protocol. Each application consists of several experiment with differences of database
used. But first, we show their verification on CafeOBJ such that we need to conjecture
some lemmas to complete the verification. Conjecturing lemma is one of most intellectual
activity in ITP, we must to understand the under consideration system and the proof in
some extent. Usually, we rely on some reliable source to get better understanding. For the
case of two the Protocols , we rely on the series of pictures showing reachable states. But
the number of these pictures is finite such that any reachable state can be classified into
one of the pictures. We call the pictures are State Patterns. Each hypothesised clause we
get from the experiments will be compared with these State Patterns.

And finally, the last chapter, we summary the contents and show some related work.

1.2 Bibliographical Note

Some of the basic theory of this work has been published before. Following list contains
the key articles:

• CafeOBJ

– CafeOBJ Report: The Language, Proof Techniques, and Methodologies for
Object-Oriented Algebraic Specification, Volume 6 of AMAST Series in Com-
puting, World Scientific, 1998 by Razen Diaconescu and Kokichi Futatsugi

5

– Proof Scores in the OTS/CafeOBJ Method, Formal Methods for Open Object-
Based Distributed Systems, Volume 2884 of the series Lecture Notes in Com-
puter Science, pages 170-184 by Kazuhiro Ogata and Kokichi Futatsugi

– Some Tips on Writing Proof Scores in the OTS/CafeOBJ Method, Essays
Dedicated to Joseph A. Goguen, 2006, Pages 596-615 by Kazuhiro Ogata and
Kokichi Futatsugi

• Inductive Logic Programming

– Inductive Logic Programming: Theory and methods, The Journal of Logic
Programming, Volumes 19-20, 1994, Pages 629-679 by Stephen Muggleton and
Luc de Raedt

• Communication protocols

– Distributed Algorithms, Morgan Kaufmann Publishers Inc. San Francisco, CA,
USA by Nancy A. Lynch

1.3 Acknowledgement

This work would not have been possible without of many people. I thank my friend
Nguyen, Thang Ngoc and Professor. Zhang Min. Nguyen, Thang Ngoc gave me the
importance of data representation in Machine Learning. And Professor. Zhang Min
insisted the current representation of reachable states, in form of logic terms. Without
the key information, I cannot find Inductive Logic Programming, which leads to many
potential goals for may research.

I thank my supervisor Professor. Kazuhiro Ogata. He provided me with many ideas
and with hints on the Master Project. The discussions with Prof. Ogata provided me
with a better understanding of the area of Interactive Theorem Proving. Moreover, he
gives me the motivation and support to continue to research on this area.

6

2 Preliminaries

2.1 Systems Verification

2.1.1 Formal Verification

Nowadays, computers become more popular and important in our lives. Many computer
softwares and hardware systems have been developed for countless tasks on a wide-ranged
applications, some of them critical. They are the programs that run modern economies
and mistakes in hardware and software design can have serious economic and commercial
repercussions. Flaws in such systems have caused many serious consequences such as
loss of human life and money. The more critical the system, the more stringent and
rigorous the design and implementation process should be. However, computer systems
have become so complex and more complex in the future that the way of exhaustive
manual testing cannot be suitable for cover the system behaviours on extreme situation.

Because of the increasing of complexity of systems, it requires that the step of designing
in software development must be considered in advance such that a designer of the system
must to verify about the design, in the sense that the design and implementation of the
system satisfies its specification, i.e. the system does what it is supposed to do and
nothing undesirable happens. This relates to a brad area of research is known as Formal
Verification in computer science and effectively how it works today. There are many
researches and activities which have been conducting tools which are used to check the
systems. The mathematical underpinnings of the tools ensure (in theory at least) that
the truth of individual assertions can be combined into an assertion for the whole system.
In other words, they ensure compositionality.

The verification problem is unsolvable [22]. Even if the problem were in theory solvable
for a given system, there are two common reasons that make a solution impractical: (1)
the behaviour of the system or parts of the system may not be easy to control to a
mathematical treatment, (2) the system may simply be too complex for verification to
be feasible. This still leaves a large class of systems for which a verification attempt can
be successful. Such systems include computer programs as well as electronic circuits and
network protocols.

The systems one is attempting to verify exist in the physical world. A physical confir-
mation of mathematical properties is of course impossible. Formal verification techniques
instead work with mathematical descriptions (or models) of the system. This is made
possible by the uniquely logical nature of computer- based systems even at low levels of
abstraction. This ensures that the assumptions justifying a mathematical abstraction of
the physical process are never so unrealistic that the verification is not useful.

2.1.2 Interactive Theorem Proving

Theorem proving is one of popular techniques which dominates proof-based approaches
to Formal Verification. Here the system under consideration is modelled as a set of
mathematical definitions in some formal mathematical logic. The desired properties of

7

the system are then derived as theorems that follow from these definitions. The method of
derivation or proof borrows heavily from standard results in mathematical logic. However,
techniques have been developed to automate much of this process by using computers
to handle obvious or tedious steps in the proof. Unfortunately, the proof system of a
theorem prover for a system of practical size can be extremely large [24]. Furthermore,
the generated proofs can be large and difficult to understand.

The undecidability of validity in first order logic implies that automated theorem prov-
ing using a first order theory cannot fully automated [23]. Moreover, because theorem
provers are often used to reason inductively, the theorems to be proved need to be formu-
lated as formulas involving mathematical induction. In practice, the theoretical results
require that a human must to interact with the theorem prover in advance to derive
non-trivial theorem. The term Interactive Theorem Proving is used to denote a theorem
proving system that requires human intervention.

The user interacts with the theorem prover in a variety ways. In general, there are
two most important interactions requiring the user. (1) First and foremost, the user is
responsible for representing and encoding the problem domain of the system so that useful
results can be derived by the proof system. (2) The user also plays an important role to
guide the theorem prover in its search for a proof. The guidance takes the form of setting
immediate lemmas that should be proved on the way to the final proof [11], as well as
selecting heuristic and strategies at various steps of the proofs. Related to our experience
with Interactive Theorem Proving on CafeOBJ, we usually consider to the possibility to
generate counterexample such that some lemmas need to be conjectured or just continually
applied Case Splitting. Lemma Conjecturing is one of the most intellectual activities
which require the user have an understanding of not only the current proof but also the
under consideration system in some extent to result the final proof. The user needs to
decide what needs to prove and how to prove it. An interactive theorem proving system is a
parallel process between human mathematical reasoning and computer support reasoning.

2.2 Algebraic Formal Methods with CafeOBJ

2.2.1 Overview

Algebraic Formal Methods is one of the major formal methods such that Algebraic Spec-
ification seeks to systematically develop more sufficient a model of a system by formally
defining type of data and mathematical operations on those data types. And, the model
abstracts the system behaviors, formalized on the data types, allowing for automation
restricting operations to this limited set of behaviors and data types. An algebraic speci-
fication achieves these goals by defining one or more data types, and specifying a collection
of functions that operate on those data types. These functions can be divided into two
classes: (1)constructor operators - functions that create or initialize the data elements,
or construct complex elements from simpler ones, (2)defined operators - functions that
operate on the data types, and are defined in terms of the constructor functions.

CafeOBJ is a recent developments of algebraic specification show that evolution of
systems can be neatly modeled by rewriting logic algebraically in which CafeOBJ pro-

8

vides an unified basis for system design, specification, and verification. CafeOBJ is also
a multi-paradigm specification language which is a modern successor of the most noted
algebraic specification language OBJ. CafeOBJ adopts rewriting logic as its underlying
logic. Rewriting logic is a simple computational logic that covers a wide-range of (poten-
tially non-deterministic) methods of replacing subterms of a formula with other terms.
What is considered is rewriting systems which consist of a set of objects and relations on
how to transform those objects.

To formally verify that a system satisfies a desired property with CafeOBJ, the system
is first formalized as a state machine M together with a state predicate p expressing the
property. CafeOBJ is used to prove that p is an invariant of M . We use a proof score
approach to systems verification called the OTS/CafeOBJ method. The state machine M
consists of a set S of states that includes the initial states I and a binary relation T over
states, called transitions. Each system state is characterized by observable values observed
with functions called observers, and each transition is expressed as functions defined in
term of changes of observable values with equations. A distributed system DS can be
formalized as M and many desired properties of DS can be expressed as invariants of M .
An invariant of M is a state predicate p of M such that p holds for all s ∈ RM . What we
have to do is to prove that p is an invariant of M . There are three main activities in the
OTS/CafeOBJ method to conduct ITP: application of simultaneous structural induction
(SSI), case analysis (CA) and use of lemmas (including lemma conjecture).

2.2.2 Specification and Verification of TAS - A mutual exclusion Protocol

TAS is a system in which multiple processes execute a parallel program which is used to
explain how to specify a system and how to verify that it has properties. The program
supposedly solves the mutual exclusion problem, namely that is allows at most one process
to enter the critical section, where resources such as I/O devices that have to be accessed
by at most one process at any given time are used. TAS written in an Algol-like language
is shown in Fig. 1 (a). A process repeatedly executes this program, namely if the process
at Critical Section (or at cs) executes lock := false, it moves to the next loop. TAS uses
lock, which is shared by all processes, to control processes such that there is at most
one process in cs. Initially, lock is false and each process is in Remainder Section (or at
rs). test&set(b) atomically sets b true and returns false if b is false, and just returns true
otherwise.

2.2.2.1 Observational Transition Systems

We assume that there exists a universal state space called Υ . We also suppose that each
data type used has been defined beforehand, including the equivalence between two data
values v1, v2 denoted by v1 = v2. A system is modelled by observing, from the outside
of each state of Υ , only quantities that are relevant to the system and how to change the
quantities by state transition. An OTS (observational transition system) can be used to
model a system in this way. An OTS S = 〈O, I, T 〉 consists of:

9

Figure 1: TAS and a state machine MTAS formalizing TAS

• O: A set of observable values. Each o ∈ O is a function o : Υ → D, where D us a
data type and may be different for each observable value. Given an OTS S and two
values v1, v2 ∈ Υ , the equivalence between two states, denote by v1 =S v2, w.r.t. S
is defined as v1 =S v2

def
= ∀o ∈ O.o(v1) = o(v2).

• I: The set of initial states such that I ⊂ Υ .

• T : A set of conditional transition rules. Each τ ∈ T is a function τ : Υ/ =S on
equivalence classes of Υ w.r.t. =S . Let τ(v) be the representative element of τ([v])
for each v ∈ Υ and it is called the successor state of v w.r.t. τ . The condition
cτ for a transition rule τinΥ , which is a predicate on states, is called the effective
condition. The effective condition is supposed to satisfy the following requirement:
given a state v ∈ Υ , if cτ is false in v, namely τ is not effective in v, then v =S τ(v).

An OTS is described in CafeOBJ. Observable values are denoted by CafeOBJ observa-
tions, and transition rules by CafeOBJ actions.

An execution of S is an infinite sequence v0, v1, . . . of states satisfying:

• Initiation: v0 ∈ I.

• Consecution: For each i ∈ {0, 1, . . . }, vi+1 =S τ(vi) for some τ ∈ T .

A state is called reachable w.r.t. S iff it appears in an execution of S. Let RS be the
set of all the reachable states w.r.t. S.

All properties considered in this section are invariants, which are defined as follows:

invariant p
def
= (∀v ∈ I.p(v)) ∧ (∀v ∈ RS .∀τ ∈ T .(p(v) =⇒ p(τ(v)))),

which means that the predicate p is true in any reachable state of S. Let x be all free
variables except for one for states in p. We suppose that invariant p is interpreted as
∀x.(invariant p).

10

2.2.2.2 Specification

Two kinds of observation values and two kinds of transition rules are used to specify TAS,
which are as follows:

• Observable values

– lock denotes the boolean value shared by all process, which is initially empty;

– pci (i ∈ Pid) denotes the section of a command that process i will be execute
next, which is initially rs.

• Transition rules

– tryi (i ∈ Pid) denotes the command corresponding to Remainder Section (rs).

– exiti (i ∈ Pid) denotes the command corresponding to Critical Section (cs).

Pid is a set of process IDs.
The OTS modeling the system is specified in module TAS, which imports modules LOC

and PID. The signature of TAS is as follows:

[Sys]

-- any initial state

op init : -> Sys {constr}

-- observations

op lock : Sys -> Bool

op pc : Sys Pid -> Loc

-- actions

op try : Sys Pid -> Sys {constr}

op exit : Sys Pid -> Sys {constr}

The state space Υ is represented by the sort Sys, observable value lock and pci by
observations lock and pc, respectively, and transition rules tryi and exiti by actions
try and exit, respectively. Constant init denotes any initial state of OTS. A operator
(started with op, declared a attribute constr, is a constructor operator such that the
operator define recursively/inductively the set of terms which constitute a sort, in this
module, sort Sys.

Equations defining the three actions show, where S is a CafeOBJ variable for Sys, and
P and Q for Pid. Action try is defined with equations as follows:

op c-try : Sys Pid -> Bool

eq c-try(S,P) = (pc(S,P) = rs and not lock(S)) .

--

eq lock(try(S,P)) = true .

ceq pc(try(S,P),Q) = (if P = Q then cs else pc(S,Q) fi) if c-try(S,P) .

ceq try(S,P) = S if not c-try(S,P) .

11

Operator c-try denotes the effective condition of transition rule tryi.
Action exit is defined with equations as follows:

op c-exit : Sys Pid -> Bool

eq c-exit(S,P) = (pc(S,P) = cs) .

eq lock(exit(S,P)) = false .

ceq pc(exit(S,P),Q) = (if P = Q then rs else pc(S,Q) fi) if c-exit(S,P) .

ceq exit(S,P) = S if not c-exit(S,P) .

Operator c-exit denotes the effective condition of transition rule exiti.

2.2.2.3 Verification

We verify TAS has the following invariant:

• Invariant 1 Mutual Exclusion

pc(s, i) = cs and pc(s, j) = cs implies i = j. (1)

This invariant means that at most one process can executes Critical Section at any
given time. To prove the invariant, we need one more invariant, which is as follows:

• Invariant 2
pc(s, i) = cs implies lock(s). (2)

How to Construct Proof Scores We briefly describe how to construct proof scores
of invariants [10]. Suppose that all predicates and action operators takes only states as
their arguments for simplicity. Invariants are often proved by induction on the number
of transition rules applied. Suppose that we prove that the system has invariant p1(s) by
induction on the number of transition rules applied, where s is a free variable for states.

It is often impossible to prove invariant p1(s) alone. Suppose that it is possible to prove
invariant p1(s) together with n − 1 other predicates. Let the n − 1 other predicates be
p2(s), . . . , pn(s). That is, we prove invariant p1(s)∧· · ·∧pn(s). Let p(s) be p1(s)∧· · ·∧pn(s).

Let us consider an inductive case in which it is shown that any transition rule de-
noted by CafeOBJ action operator a preserves p(s). To this end, it is sufficient to show
p(s) =⇒ p(a(s)). This formula can be proved compositionally. The proof of the formula
is equivalent to the proofs of the n formulas:

p(s) =⇒ p1(a(s))
. . .

p(s) =⇒ pn(a(s))

Moreover, it suffices to prove the following n formulas, if possible, instead of the previous
n formulas:

12

p1(s) =⇒ p1(a(s))
. . .

pn(s) =⇒ pn(a(s))

But, some of them may not be proved because their inductive hypotheses are too weak.
Let pi(s) =⇒ pi(a(s)), where 0 ≤ i ≤ n, be one of such formulas. Let SIHi be a formula
that is sufficient to strengthen the inductive hypothesis pi(s). SIHi can be pi1(s)∧· · ·∧pik
, where 1 ≤ i1, . . . , ik ≤ n. Then, all we have to do is to prove (SIHi∧pi(s)) =⇒ pi(a(s)).

Besides, we may have to split the case into muptiple subcases in order to prove (SIHi∧
pi(s)) =⇒ pi(a(s)). Suppose that the case is split into l subcases. The l subcases are
denoted by l formulars casei1, ..., case

i
l, which should satisfy (casei1∨, dots,∨caseil) = true.

Then, the proof can be replaced with the l formulas:

(casei1 ∧ SIHi ∧ p1(s)) =⇒ p1(a(s))
. . .

(caseil ∧ SIHi ∧ pl(s)) =⇒ p1(a(s))

SIHi may not be needed for some subcases.
Proof scores of invariants are based what has been discussed. Let us consider that we

write proof scores of the n invariants discussed. We first write a module, say INV, where
pi(s)(i = 1, . . . , n)is expressed as a CafeOBJ term as follows:

op inv1 : H -> Bool

...

op invn : H -> Bool

eq inv1(S) = p1(S) .

...

eq invn(S) = pn(S) .

where H is a hidden sort and S is a CafeOBJ variable for H. Term pi(S) (i = 1, ...,n)

denotes pi(s).
We are going to mainly describe the proof of the ith invariant. Let init denote any

initial state of the system. To show that pi(s) holds in any initial state, the following
proof score is written:

open INV

red invi(init) .

close

We next write a module, say ISTEP, where two constants s, s’ are declared, denoting
any state and the successor state after applying a transition rule in the state, and the
predicates to prove in each inductive case are expressed as a CafeOBJ term as follows:

op istep1 : -> Bool

...

op istepn : -> Bool

13

eq istep1 = inv1(s) implies inv1(s’) .

...

eq istepn = invn(s) implies invn(s’) .

In each inductive case, the case is usually split into multiple subcases. Suppose that
we prove that any transition rule denoted by CafeOBJ action operator a preserves pi(s).
As described, the case is supposed to be split into the l subcases casei1, ..., case

i
l. Then,

the CafeOBJ code showing that the transition rule preserves pi(s) for caseij(j = 1, . . . , l)
looks like this:

open ISTEP

-- Declare constants denoting arbitrary objects.

-- Declare equations denoting caseij .

-- Declare equations denoting facts if necessary.

eq s’ = a(s) .

red istepi .

close

Constants may be declared for denoting arbitrary objects. Equations are used to express
caseij. If necessary, equations denoting facts about data structures used, etc. may be
declared as well. The equation with s’ as its left-hand side specifies that s′ denotes the
successor state after applying the transition rule denoted by a in the state denoted by s.

If istepi is reduced to true, it is shown that the transition rule preserves pi(s) in
this case. Otherwise, we may have to strengthen the inductive hypothesis in the way
described. Let SIHi be the term denoting SIHi. Then, instead of istepi, we reduce the
term (SIHi and invi(s)) implies invi(s

′), or SIHi implies istepi .

Proof Scores In module INV, the following operator is declared and defined:

op inv1 : Sys Pid Pid -> Bool

op inv2 : Sys Pid -> Bool

eq inv1(S,P,Q) = ((pc(S,P) = cs and pc(S,Q) = cs) implies (P = Q)) .

eq inv2(S,P) = (pc(S,P) = cs implies lock(S)) .

In the module, constants i and j for Pid are declared.
In module ISTEP, the following operator denoting the predicate to prove in each induc-

tive case is declared and defined:

op istep1 : -> Bool

op istep2 : -> Bool

eq istep1 = inv1(s,p,q) implies inv1(s’,p,q) .

eq istep2 = inv2(s,p) implies inv2(s’,p) .

Fig. 2 shows a snip of a proof tree for invariant inv1(s). Given a state s and a process
identifier k, try(s, k) is the state obtained by applying transition tryk in s, exit(s, k) is the

14

Figure 2: A snip of a proof tree that mx(s) is an invariant of MTAS

state obtained by applying transition exitk in s, and lock(s) is the Boolean value stored in
variable lock in s. SSI on s is first used to split the initial goal into three sub-cases. What
to do for the three sub-cases is to show inv1(s0, i, j), inv1(s, i, j) ⇒ inv1(try(s, k), i, j)
and inv1(s, i, j)⇒ inv1(exit(s, k), i, j), respectively, where s0 is an arbitrary initial state,
s is an arbitrary state, and i, j, k are arbitrary process identifiers. CA is then repeatedly
used until what to show reduces either true or false. Any case in which what to show
reduces true is discharged. For any case in which what to show reduces false, we need to
conjecture lemmas3.

Let us consider the case marked Case A in Fig. 2 in which inv1(s, i, j)⇒ inv1(try(s, k), i, j)
reduces false. Therefore, Case A needs a lemma. Let inv2(s, i) be such a lemma. We will
soon describe how to conjecture the lemma. inv2(s, i)⇒ (mx(s, i, j)⇒ inv1(try(s, k), i, j)
reduces true, discharging Case A, provided that we prove that (∀x ∈ Pid) inv2(s, x) is an
invariant of MTAS. The proof needs inv1(s, i, j) as a lemma. This is why we use simulta-
neous structural induction. The following code is the proof score of Case A using inv2

as a lemma.

open ISTEP .

-- arbitrary objects

op k : -> Pid .

-- assumptions

-- eq c-try(s,k) = true .

eq pc(s,k) = rs .

eq lock(s) = false .

--

eq i = k .

3It is possible and/or necessary to conjecture and use a lemma to discharge a case even though what
to show in the case does not reduce to false.

15

Figure 3: Some possible situations when proving that p is an invariant of M

eq (j = k) = false .

eq pc(s,j) = cs .

eq s’ = try(s,k) .

red inv2(s,k) implies istep1 .

close

Let P and Q be the sets of states that correspond to predicates p and q, respectively. S,
I, RM , P and Q can be depicted as shown in Fig. 3. Proving that p is an invariant of M is
the same as proving R ⊆ P . Let (s, s′) ∈ T be an arbitrary transition. In each induction
case or a subcase of each induction case, all needed is basically to show p(s)⇒ p(s′) so as
to prove that p is an invariant of M . There are four possible situations: (1) s, s′ 6∈ P , (2)
s 6∈ P and s′ ∈ P , (3) s, s′ ∈ P , and (4) s ∈ P and s′ 6∈ P. p(s)⇒ p(s′) holds for (1), (2)
and (3), but does not for (4). To complete the proof that p is an invariant of M , we need
to know s′ 6∈ RM for (4), namely that s’ is not reachable for (4). To this end, we need to
conjecture a lemma q such that q does not hold for s’. Case A in Fig. 2 is an instance of (4).
Case A is characterized with pc(s, k) = cs, lock(s) = false, i 6= k, j = k, and pc(s, i) 6= cs
(that are attached to the path to Case A from the root), from which we can systematically
conjecture the following lemma: ¬(pc(s, k) = rs∧¬lock(s)∧ i 6= k∧ j = k∧pc(s, i) = cs).
This lemma could be used to discharge Case A, but lemmas should be shorter because
we need to prove that lemmas are invariants of M . Any state predicate that implies the
lemma could be a lemma, one of which is ¬(pc(s, i) = cs ∧ ¬lock(s)) that is equivalent to
pc(s, i) = cs⇒ lock(s) that is lem1(s, i).

To prove that p is an invariant of M , it suffices to find an inductive invariant q of M
such that q(s)⇒ p(s) for each s ∈ S. An inductive invariant q of M is a state predicate
of M such that (∀s0 ∈ I) q(s0) and (∀(s, s′) ∈ T) (q(s) ⇒ q(s′)). Note that an inductive
invariant of M is an invariant of M but not vice versa.

Finding an inductive invariant q (or conjecturing a lemma q) is one of the most intel-
lectual activities in ITP4. This activity requires human users to profoundly understand

4q may be in the form q1 ∧ . . . ∧ qn. Each qi may be called a lemma and is an invariant of M if q is
an inductive invariant of M , although qi may not be an inductive invariant of M .

16

the system under verification or M formalizing the system to some extent. The users
must rely on some reliable sources that let them get better understandings of the system
and/or M to conduct the non-trivial task, namely lemma conjecture. For this end, our
experiences on ITP tell us that it is useful to get better understandings of RM . Some
characteristics of RM can be used to systematically construct a state predicate qi that is
a part of q.
s ∈ S is characterized by some values that are called observable values. Based on our

experiences on ITP, the characteristics of RM are correlations among observable values
of the elements of RM . Generally, the number of the elements of RM is unbounded and
then a huge number of reachable states are generated from M . The task of extracting
correlations among a huge number of data (reachable states in our case) is the role of
Machine Learning (ML).

The systematic way to conjecture lemmas may not work for larger examples than TAS
because case analysis may have to be repeated too many times until what to show reduces
either true or false. Even if we reach the case in which what to show reduces false, a lemma
conjectured could be so long that we may find it trouble to prove that the lemma is an
invariant of M .

Our experiences on ITP tell us that better understandings of M and/or how M behaves
let us conjecture useful lemmas to complete the proof concerned. Moreover, the properties
we are interested in are invariants in this paper. Therefore, it suffices to get better
understandings of RM . In general, RM contains an infinite number of states, and the task
of extracting knowledge from such a huge database is the role of ML. However, classical
machine-learning techniques only work for a database whose elements are expressed in
propositional form, while our database consists of system states expressed in first-order
form. There is the ML technique that can deal with first-order forms: Inductive Logic
Programming (ILP). This is why we use ILP.

2.3 Inductive Logic Programming (ILP)

2.3.1 The ILP learning task

The task of ILP is concerned with the inference of theories (hypotheses) from observation
(data) in machine learning such that the set of hypotheses is in form of a language which is
a subset of first order logic. In which, it is related to first-order theory induction. A first-
order theory can be represented by a logic program, hence the word ”programming” in ILP.
Note that the first-order language and therefore also the class of logic programs is provably
as computationally powerfully as the Turing machine, in other words, a logic program
can implement any computable function. A special feature of the usually considered ILP
learning task is that the learner is also provided a background knowledge , which is also a
first-order theory.

By using logic programming languages as the representation mechanism for hypotheses
and observations, ILP can overcome two main limitation of classical machine learning
techniques: the use of a limited knowledge representation formalism (essentially a propo-
sitional logic) and the difficulties in using substantial background knowledge in learning

17

process. The first limitation is important because many domains of expertise can be
expressed in first-order logic, or a variant of first-order logic and not in a propositional
one. For example, logic synthesis is one such domain. Most of logic programs cannot
be defined using only propositional logic. The second limitation is also crucial because
one of the well-established findings of artificial intelligence is that the use of background
knowledge is essential for archiving intelligent behaviour. From computational logic, ILP
inherits its representation formalism, its programming language semantics and various
well-established techniques. In contrast to most other approaches to inductive learning,
ILP is interested in properties of inference rules, in convergence of algorithms and in the
computational complexity of procedures. Many ILP systems benefit from using the results
of computational logic. ILP extends the theories and practice of computational logic by
investigating induction rather than deduction as the basic mode of inference. Whereas
computational logic theory describes deductive inference of logic formulae provided by the
user, ILP theory describes the inductive inference of logic programs from observations and
background knowledge. In general setting, the ILP’s learning task is defined as Definition
1.

Definition 1 Given background knowledge B and observations O. The observations O =
O+ ∧ O− consists of positive observation O+ and negative observation O−. The aim is
then to find a hypothesis H such that the following condition hold.

• Prior Satisfiability. B ∧O− 6|= �

• Posterior Satisfiability. B ∧H ∧O− 6|= �

• Prior Necessity. B 6|= O+

• Posterior Sufficiency. B ∧H |= O+

To formalize fully an ILP task, the relation between B, H, E+ and E− need to be
defined. This depends on several factors which include the chosen logic programming
language (e.g. definite or normal logic programs), logic programming semantics (e.g.
well-founded or stable). ILP methods often require some form of bias on the solution
search space to restrict the computation to hypotheses. Forms of bias include language
bias and search bias (e.g. top-down or bottom-up). A Mode Declaration is a form of
language bias that specifies the syntactic form of the hypotheses that can be learned.
It contains head declarations and body declarations that describe predicates that may
appear, the desired input and output and number of instantiations, e.g. recall.

2.3.2 Mode-Directed Inverse Entailment and Progol

Progol, an state-of-art ILP system, uses an approach to the general problem of ILP called
Mode-Directed Inverse Entailment (MDIE). The general problem of ILP can be summa-
rized as follows. Given a background knowledge B and examples E find the simplest
consistent hypotheses H such that

18

B ∧H |= E

If we rearrange the above using the law of contraposition we get the more suitable form

B ∧ Ē |= H̄

In general B, H and E can be arbitrary logic program but if we restric H and E to be
single Horn clauses, H̄ and Ē above will be ground skolemized unit clauses. If ⊥̄ is the
conjunction of ground literals which are true in all models of B ∧ Ē, we have

B ∧ Ē |= ⊥̄ |= H̄

and so

H |=⊥

A subset of the solutions for H can then be found by considering those clauses which
θ-subsumes ⊥. The complete set of candidates for H could in theory be found from those
clauses which imply ⊥. As yet Progol does not attempt to find a fuller set of candidates
(bypassing the undecidability of implication between clauses with bounds on the number
of resolution steps in the Prolog interpreter). Prolog searches the latter subset of solution
for H that θ-subsumes ⊥.

In general ⊥ can have infinite cardinality. Progol uses the head and body mode declara-
tions together with other settings to build the most specific clause and hence to constrain
the search for suitable hypotheses.

A mode declaration has either the form modeh(n, atom) or n, atom, where n, the recall,
is an integer greater than zero or ”*” and atom is a ground atom. Terms in the atom are
either normal or place-marker. A normal term is either a constant or function symbol
followed by a bracketed tuple of terms. A place-maker is either +type, -type, #type where
type is a constant.

The recall is used to bound the number of alternative solutions for instantiating the
atom. A recall of ”*” indicates all solutions - in practice a large number. +type, -type,
#type correspond to input variables, output variables and constants respectively.

Progol imposes a restriction upon the placement of input variables in hypothesized
clauses. Suppose the clause is written as h : −b1, . . . , bn where h is the head atom and
bi, 1 ≤ i ≤ n is either of +type in h or -type are body of atoms. Then every variable of
+type in any atom bi is either of +type in h or -type in some atom bj where 1 ≤ j ≤ i.
This imposes a quasi-order on the body atoms and ensures that the clause is logically
consistent in its use of input and output variables.

19

3 The Framework of Tools used

We have designed a framework which is a collection of the tools used to characterize the
reachable states of a state machine. The architecture of the framework is shown in Fig. 4.
In general, conducting a learning process in machine learning usually require the following
tasks: data collecting, data requirement/data transformation, feature selection and learn-
ing. Fortunately, we use ILP as the machine learning technique for our purpose, we do not
need to consider to the feature selection since the representation of data in ILP is first-
order logic, not propositional logic as other classical machine learning techniques/systems
which are using. Therefore, our framework mainly focus to three tasks: data collection,
data refinement (data transformation) and learning. Our framework takes a CafeOBJ
system specification in form of equational logic as its input. Every required components
for a ILP learning task will be generated from the specification. Unfortunately, we uses
Progol, a state-of-art ILP system for our learning task, which uses a Prolog interpreter.
Prolog is a logic programming language in form of clausal logic, a subset of first order
logic. Basically, we need to transform our data to the suitable form for Progol doing the
task of characterization.

3.1 Data Collection

As mentioned in Definition 1, we need to collect background knowledge B and the ex-
amples E consisting of positive examples E+ and negative examples E−. In Fig. 4,
the system specification of a state machine consists of two parts: data structure defini-
tions and state machine specification by using the data structures. For example, natural
numbers are recursively defined in term of Peano style as follows:

[Nat]

op 0 : -> Nat {constr}

op s : Nat -> Nat {constr}

In Peano style, natural numbers are considered as zero and non-zero numbers. The
constructor operator 0 is a constant standing for zero. And the other constructor operator
s is a function defining a non-zero number such that the function takes a natural number
as argument and return to a its successor number. For example, s(0) is interpreted as
number 1, s(s(s(s(s(0))))) is interpreted as number 5, etc. In general, natural numbers
are a primitive data type and supported in many systems or programming languages. But
when it is defined in Peano style as recursively structure, it is hard to be learned by a
classical machine learning system since a recursively data structure are usually costly at
computation resource and it is impossible to transform to a propositional form. Progol
does not need to transform to the propositional one since Prolog and CafeOBJ share the
same first order logic theory. Moreover, Progol also has such problem at computation
resource limitation but we can limit the size of a natural number term during the learning
task. Another structure data usually used in a CafeOBJ system specification is list and
one possible definition of list of natural numbers in CafeOBJ as follow:

20

Figure 4: Architecture of proposed method

pr(NAT)

[List]

--

op nil : -> List {constr}

op __ : Nat List -> List {constr}

--

op hd : List -> Nat

op tl : List -> List

eq hd(X:Nat L:List) = X .

eq tl(X:Nat L:List) = L .

The definition import the above definition of natural numbers. The list are recursively
defined as empty list (represented by constructor operator nil) and non-empty lists rep-
resented by constructor operator . The operator takes two arguments, one is natural
number and other is a list in order, then returns to a non-empty list. For examples, 0
s(0) s(s(0)) nil is a non-empty list. There are two other operators hd and tl which
are considered as helper functions such that operator hd will take a non-empty list as its
argument then returns to the top number of the list but tl returns to a list excepting the
top number. For example, we have 0 s(0) s(s(0)) nil, hd returns to 0 and tl returns
to s(0) s(s(0)) nil.

We can directly use the data structure definitions as the background knowledge B but
the definitions are in form of CafeOBJ language, we need to transform them to Prolog
language, a set of Horn clauses of clausal logic at the next task, data transformation.

Since our learning task is to characterize reachable states of a state machine, the reach-
able states are considered as positive examples E+ and the unreachable states are con-

21

sidered as negative examples E−. Unfortunately, it is impossible to generate any system
states from a CafeOBJ system specification since the system specification in from of
equational logic suited for theorem proving. In general, model checking is also a formal
verification in systems verification is related to system states during verification. For-
tunately, Maude a model checker which use a sibling language with CafeOBJ such that
its specification in form of rewriting theory suited for model checking. Although some
existing strategies to translate an equational theory specification to a rewriting system
one are inefficient and rarely used for model checking in practice, Zhang Min et al. [12]
had developed a tool, called YAST, implementing a strategy for the translation. The
strategy is proved that translated specifications by the strategy are more efficient than
those by existing strategies. Let consider to the specification of TAS’s state machine in
Section 2.2.2, we have the specification generated by YAST. And we use the Maude search
command to generate the system states of TAS. For example, we want to collect 1000
reachable states of TAS with respected to three processes p1, p2 and p3 from the initial
state by the following command:

search [1000] init =>* S:State

then we have the following sequence output.

Solution 1 (state 0)

states: 1 rewrites: 12 in 0ms cpu (0ms real) (352941 rewrites/second)

S:State --> lock : false

(pc[p1]: rs)

(pc[p2]: rs)

(pc[p3]: rs)

Solution 2 (state 1)

states: 2 rewrites: 65 in 0ms cpu (0ms real) (371428 rewrites/second)

S:State --> lock : true

(pc[p1]: cs)

(pc[p2]: rs)

(pc[p3]: rs)

Solution 3 (state 2)

states: 3 rewrites: 68 in 0ms cpu (0ms real) (309090 rewrites/second)

S:State --> lock : true

(pc[p1]: rs)

(pc[p2]: cs)

(pc[p3]: rs)

...

At the beginning, Solution 1 (state 0), variable lock is false and all three pro-
cesses p1, p2 and p3 are at Remainder Section. If p1 go to Critical Section, we have

22

Solution 2 (state 1), and if p2 go to Critical Section, we have Solution 3 (state

2). All these states are reachable states of TAS. But for unreachable states E− genera-
tion, we cannot use Maude since only reachable states are generated from a state machine
specification if the state machine is well-defined. One possible solution to generate such
system states, we need to assign randomly the corresponding values to each observable
data of a system state. Then, an invariant express some characteristics of reachable states
of a state machine is applied to select to unreachable one. For example, let consider an
unreachable state in which all three processes are at critical section, such unreachable
state can be obtained since the invariant, has been proved in Section 2.2.2, returns false.
It is difficult to collect such unreachable states for the system such that we do not obtain
any invariant. Fortunately, the using ILP system, Progol, is implemented an learning
mode such that it can learn from a data lacking of negative examples E−.

In summary, an input to the framework is an equational system specification of a state
machine of which we would like to extract the characteristics of the reachable states. An
equational specification is written in CafeOBJ and suited for ITP. An equational speci-
fication is first translated into a rewrite theory specification written in Maude (a sibling
language of CafeOBJ) with an automatic translator YAST. A rewrite theory specification
is suited for model checking. The Maude search command, a bounded model checker for
invariants, is then used to generate reachable states that are positive examples in our
learning task. Possible unreachable states that are negative examples in our learning task
are generated as follows. Given a state predicate that is likely to be an invariant of a state
machine concerned, we randomly generate states and then produce each of the states that
does not satisfy the state predicate as an unreachable state.

3.2 Data Tranformation

Background knowledge B and examples E are in form of Horn clauses in which each
clause has at most one positive literal. In other words, the clause has at most one literal
in its head part. And Prolog is used as the logic language programming to represent
background knowledge B, examples E and the hypotheses H learn from E with respected
to B. We can collect B from the structure data definitions of a system specification
and collect E+ from the state machine definition of a state machine (the state machine
definition is translated to the one suited from model checking) but E+ is more complex.

Let consider to the above definition of natural numbers in Peano style which is converted
into the following Prolog clauses:

pnat(0).

pnat(s(X)) :- pnat(X).

This two clauses defines a type pnat in the background knowledge B, such information
to declare about the structure of the clauses/hypotheses we want to learn. We will discuss
in detail in the next section. The logic programming language Prolog has a specific syntax
for list/queue, but any kind of objects can be an element of such list. In other words,
there is no constraint in the type of elements. For example, [a | 1 | cafeob | maude

23

| s(0)] is a Prolog list/queue. However, in a CafeOBJ system specification, there is only
one type of elements appearing on a queue/list. Then, to define such kind of queues/lists
in Prolog, we need to check the type of each element in a list. Let consider to the above
definition of list of natural numbers, we can convert it into the following Prolog clauses:

nlist(nil).

nlist([X | L]) :- pnat(X), nlist(L)

hd([X | L], X).

tl([X | L], L).

At the second clause defining predicate nlist, its body check if the top element X is a
natural number and recursively check if the tail L is a list of natural number. There are
two other clauses without body defining hd and tl, respectively. Each the clause has two
arguments in which the first one is its input and the second one is its output.

Because each reachable state generated by Maude is an informal output. We need to
pick all Maude term to construct a system state which will be expressed as a fact in Prolog
language. Fact is a Horn clause without body but a literal in it head. For example, we
have the following TAS reachable state.

Solution 1 (state 0)

states: 1 rewrites: 12 in 0ms cpu (0ms real) (352941 rewrites/second)

S:State --> lock : false

(pc[p1]: rs)

(pc[p2]: rs)

(pc[p3]: rs)

It can be converted to the following Horn clauses:

dict(pc123,p1,rs).

dict(pc123,p2,rs).

dict(pc123,p3,rs).

state(false,pc123).

Since we have three processes and each process will be located at a section in a moment,
we need to express such information. One possible solution is to use structure of dictionary,
e.i. at the initial state, p1 is at rs, we use the dictionary pc123 storing the key p1 and the
valuers. And the dictionary pc123 has three different pairs of key and value. pc123 is the
second argument of predicate state and the first argument is the value of variable lock.
The definition of predicate state is the set of clauses which we ask Progol to construct
from example E with respected to Background knowledge B.

24

3.3 Learning

In section Data Collection and Data Transformation, we have collected the background
knowledge B and the examples E from a CafeOBJ system specification. We have enough
sufficient components for an ILP learning. In our case, we use Progol implementing the
Mode-Directed Inverse Entailment such that we need to define some mode declarations in
the input before feed into Progol. As mentioned, Mode declaration is the information that
Progol requires to construct the most specific clause for each example. Each most specific
clause constraints the search space consisting of candidate hypotheses. The following is
set of the mode declarations using to learn a definition of predicate state.

:- modeh(1,state(#bool,+dictionary))?

:- modeb(1,dict(+dictionary,+process,cs))?

:- modeb(1,dict(+dictionary,+process,rs))?

:- modeb(1,dict(+dictionary,-process,cs))?

:- modeb(1,dict(+dictionary,-process,rs))?

:- modeb(1,+process = +process)?

There are two kind of mode declaration: head mode declaration modeh and body mode
declaration modeb. There is only one head mode declaration but several body mode
declarations. The first argument of each mode declaration is recall and the second one
is the atom which can be appeared in the hypothesis clauses, followed by its structure.
For example, in modeh, we have the second argument state(#bool,+dictionary), then
each clause in the learn hypothesis set will have exactly a literal state followed by true

or false and a constant of type dictionary. The following clause is one of possible
clauses returned by Progol:

state(true, A) :- dict(A,B,cs), dict(A,C,cs), B = C.

The above clause expresses the characteristic expressed by the invariant which is proved
in Section CafeOBJ such that when the variable lock is true, only one process is allowed
to enter Critical Section.

Beside background knowledg B, examples E and the mode declarations, Progol also
requires us to provide some of runtime parameter settings. For instance, to use the
learning from positive only learning mode, we declare the following clause.

:- set(posonly)?

Learning from positive example only is inspired by a classical example such that children
can learn natural language grammars almost exclusively from positive example. Stephen
Muggleton at el. [15] proposed that within a Bayesian framework, not only grammars,
but also logic programs are learnable with arbitrarily low expected error from positive
examples only. In addition, he show that the upper bound for expected error of a learner
which maximises the Bayes’ posterior probability when learning from positive example is
within a small additive term of one which does the same from a mixture of positive and

25

negative examples. The approach was implemented together the normal learning mode
in Progol.

Since Progol use a Prolog interpreter which is a implementation of SLD-resolution
such that a proof is searched by deep first search and from left to right, there are some
proofs which cannot to terminate. The non-termination problem happen when the provide
background knowledge is not satisfied a example, but the interpreter still checks and
retrieves the search. Therefore, Progol needs to constraint the computation resource, e.g.
the maximum depth h (default is 30) of any proof, the maximum depth r (default is 400)
of resolutions (unifications), the number of search nodes in the hypothesis space (default
is 200), the maximum number of atoms in the body of any hypothesised clause, etc.

3.4 Framework of Assessment

Our task is characterization of reachable states of a state machine. The complexity and
number of characteristics of reachable states are explosive because of enormous amount of
observable values specifying the reachable states. And each observable value is an instance
of a recursively defined data structure, this makes the learnt clauses obtained from our
framework is hard to understand by human-being. Then, we can not evaluate that the
set of clauses are correct in showing that a system state is reachable or not. Moreover,
we cannot recognize if which clause is interesting to conjecture lemma.

We can check these clauses by preparing multiple databases consisting of reachable
states and unreachable states, then applying some statistical techniques to evaluate the
correction of each clauses. But it does not show if the clauses can be used in ITP or
not. We have conducted the experiments on ABP and SCP in which the case studies
were successfully verified that the protocols satisfy Reliable Communication Property.
And the verifications require several lemmas to be conjectured to completed the proofs
in CafeOBJ. To show that the results of my framework is useful to let the user get better
understanding about the system, we will use ABP and SCP to make comparison.

During the verifications, we carefully consider each reachable state of the protocol, then
manually draw a picture of the state to capture the characteristics. Finally, we obtained a
series of pictures for each protocol such that any reachable state can be classified into one
of the pictures. And we reply on the pictures as a source to get better understanding, then
it is possible to conjecture several lemmas from them. We call the series of pictures are
State Patterns. There are four state patterns for SCP as Figure 8 and six state patterns
for ABP as 9. The way to conjecture lemmas from these state patterns is described in
detail in the next section.

To evaluate the clauses obtained from the characterization tasks of SCP/ABP, the
comparison between the state patterns and the learnt clauses will be made such that
there are two comparison directions: soundness (Figure 5) and completeness (Figure 6).
For the soundness direction, we compare whether if the characteristics captured in the
state patterns are also expressed in the learnt clauses. And for the reversed direction,
completeness, we compare whether if the characteristics expressed in the learnt clauses
are captured in the state patterns. Depend on how many state patterns/learnt clauses
capture/express the characteristics, we can judge the quality of each experiment. More-

26

learnt clauses state patterns
expressed ?

Characteristics X

Figure 5: Comparison between the state patterns with the learnt clauses

learnt clauses state patterns
captured ?

Characteristics X

Figure 6: Comparison between the learnt clauses with the state patterns

over, it is impossible to extract automatically some characteristics in state patterns/learnt
clauses, we need to manually extract and consider each characteristic from them.

Hypotheses specified in the set of Horn clauses returned from each experiment heavily
rely on a set of reachable states. That means, the number of instances of a characteristic
decide if the characteristic appears at the results. Moreover, because of the limitation of
resource computation, that means the size of each term specifying the observable values
for reachable states is too big, the characteristic may not be extracted. Then, we have
conducted multiple experiments with respected to multiple database with different at
setting. And each experiment will result a set of clauses.

The number of experiments for each case study are from 20 - 40 experiments and each
will return about 5 clauses. There are some clauses repeatedly appearing in multiple
experiments. That means the probabilistic values of the clauses which expressing some
characteristics of reachable states are higher than the other. In other word, the clauses
cover more reachable states appearing in the databases than other. This relates to com-
pleteness property of an ILP learning task such that B ∧ H |= E+. By relying on this
property, we can reduce the number of clauses, also the number of experiments, which we
need to consider on the assessment part.

When applied to all set of clauses returned from all conducted experiments, Algo. 1
will reduce the number of sets of clauses. If a clause from a set is new, then the set is
added to the final sets.

27

Algorithm 1 Reducing number of sets of clauses from all conducted experiments

1: Ein := all sets of clauses
2: Eout := ø
3: Cout := ø
4: for all e ∈ Ein do
5: for all c ∈ e do
6: if c 6∈ Cout then
7: add e to Cout
8: Eout := Eout ∪ e

4 Application

We have conducted two case studies on Alternating Bit Protocol (ABP, a simplified version
of Sliding Window Protocol used in TCP) and Simple Communication Protocol (SCP, a
simplified version of ABP) using our framework to extract some characteristics of the
reachable states of their state machines formalizing the protocols. Before showing the
experiments on these two protocols, we introduce the specification and verifications of
these protocols in CafeOBJ. During the verifications, we conjectured some lemmas to
discharge some non-trivial cases when writing their proof scores. To complete the task
of conjecture lemmas, we reply on a series of snapshots capturing all characteristics of
their reachable states. Then, we call these snapshots as state patterns. To conjecture
lemmas for a non-discharged case, we need carefully consider the assumption described
in the case, then map it to a corresponding state pattern. We must to combine the
characteristics showing in the state pattern with the proof of the case related to the
rewrite theory in CafeOBJ to conjecture a useful lemma. Our framework chracterizes the
reachable states with respected to the state machine and background knowledge provided
by a CafeOBJ system specification such that the learnt hypothesised clauses chareterize
some approximate state patterns of the state patterns we were using in the verifications.
Therefore, we will make a comparison between the learnt clauses one each experiment
with the state patterns such that ILP or machine learning is useful to characterize the
reachable states of a state machine. And we also consider if it is possible to conjecture
some useful lemmas from such clauses.

4.1 Specification and Verification of Communication Protocols

Communication Protocol is a class of algorithms designed to manage the data transmitted
between senders and receivers through unreliable channels such that packets may be
duplicated and dropped. There are many such algorithms proposed so far. In general,
Sender wants to send a sequence of data to Receiver. Let consider the sequenced data
expresses a sequence of ordered natural numbers started with zero. Packets are sent from
Sender to Receiver through a unreliable channel, called data channel as shown in Figure
7 , e.i. internet network, the unreliability means each packet on the channel may be lost,
duplicated or modified. Each packet contains a copy of the number in the numbers which

28

Figure 7: SCP and part of a state machine MSCP formalizing SCP

Sender wants to send to Receiver.
Because of the unreliability of the channel, Sender repeatedly send multiple duplication

of the sending packet to the channel, hopefully one of them can reach Receiver. But, when
Receiver has received the packet, Sender must to know that and then start to send the
packets of a new number. One possible solution is that Receiver needs to send back an
acknowledgement message to Sender such that it can notify Sender. This communication
requires another channel from Receiver to Sender. Unfortunately, this channel is also
unreliable. This opens the same problem with the delivery of packets from Sender to
Receiver such that Sender must notify to Receiver that the message has been get. In
this section, we take into account two simplified versions of TCP: SCP and ABP, where
SCP is a simplified version of ABP. They uses a bit on each site, Sender and Receiver,
to control the communication process. Figure 7 shows the sketch of a communication
protocol for SCP and ABP, we constrain the unreliable actions happened in the channels
to only duplication and/or drop.

One property which both these protocols should enjoys is Reliable Communication
Protocol such that whenever the sending number is i, the data up to i or i− 1 has been
successfully delivered to Receiver from Sender without any duplication and drop. In two
these next section, we shows the verifications of SCP and ABP one by one.

4.1.1 Simple Communication Protocol

Fig. 7 shows a snapshot (a state) of a state machine MSCP formalizing SCP in which the
capacity of a channel is 1 such that the channel only has at most one packet/message
at a time . Therefore, a packet/message in the channel only be dropped. Since Sender
wants to send data to Receiver, it starts to put the packet consist of a pair of a bool
value and a number into the data channel, called dc. The number is the current number
which Sender is delivering and the bool value is the value of Sender’s bit. Action snd1 is
that Sender repeatedly put its packets into dc. For example, at the beginning, the pair
is false and 0. Now, dc has the packet, then Receiver gets the packet by action rec2 in
which Receiver compares the bool value with its bit. If they are satisfied its condition,
Receiver’s bit will be updated by its compliment and the number is store to a buffer.
While Sender repeatedly puts its packets into dc by action snd1, Receiver also repeatedly
puts its acknowledgement messages into Acknowledgement Channel, called dc, by action

29

snd2 such that each message consists of the current value of Receiver’s bit. The same
process as action rec2, Sender gets the message from ac by rec1, if any. Sender’s bit
will be updated and the sending number will updated instead by the next if the condition
is satisfied. The behaviours of the protocol is controlled by these bits in an alternating
mechanism such that the protocol is satisfied Reliable Communication Protocol. The
property is proved as an invariant of SCP by a formal verification in CafeOBJ.

We first describe the basic data types used to specify the state machine of SCP. The
sorts and the corresponding data constructors are as follows:

• Bool denotes the sort of Boolean values.

• Nat denotes the sort of Natural Numbers. These numbers are defined in Peano style
as same as the above definition.

• BNPair denotes the sort of pairs of a Boolean value and a natural number. Given
a boolean value false and a natural number n, < false ; n > is a BNPair pair.

• PCell denotes the sort of dc. Given a pair < false ; n >, then c(< false ; n >)

is a channel has a packet, otherwise, it is pempty. Both c and pempty are constructor
operators of PCell.

• BCell denotes the sort of ac. c(false) is a channel has a message, otherwise, it is
bempty. Both c and bempty are constructor operators of BCell.

• List denotes the sort of list of natural numbers.

Six kinds of observable values and eight kinds of transitions rules are used to specify
SCP, which are as follows:

• Observable values

– cell1 (cell1 ∈ PCell) denotes dc, which is initially empty or pempty.

– cell2 (cell2 ∈ BCell) denotes ac, which is initially empty or bempty.

– sb (sb ∈ Bool), Bool is a build-in module in CafeOBJ, denotes Sender’s bit,
which is initially false.

– sb (sb ∈ Bool) denotes Receider’s bit, which is initially false.

– nxt (nxt ∈ PNat) denotes the sending number at Sender, which is initially
zero.

– buf (buf ∈ List) denotes Receiver’s buffer storing the received number from
Sender, which is initially empty or nil.

• Transition rules

– send1 denotes the action of Sender repeatedly putting its packets into dc.

– send2 denotes the action of Receiver repeatedly putting its messages into ac.

30

– rec1 denotes the action of Sender getting a message from ac and may update
its values if any

– rec2 denotes the action of Receiver getting a message from dc and may update
its values if any

– drop1 denotes the action of removing a packet from dc if any

– drop2 denotes the action of removing a packet from ac if any

Transition rec2 is defined as follows:

op c-rec2 : Sys -> Bool .

eq c-rec2(S) = not(cell1(S) ~ pempty) .

ceq cell1(rec2(S)) = pempty if c-rec2(S) .

eq cell2(rec2(S)) = cell2(S) .

eq sb(rec2(S)) = sb(S) .

ceq rb(rec2(S)) = (if rb(S) ~ fst(get(cell1(S)))

then not(rb(S)) else rb(S) fi)

if c-rec2(S) .

eq nxt(rec2(S)) = nxt(S) .

ceq buf(rec2(S)) = (if rb(S) ~ fst(get(cell1(S)))

then (snd(get(cell1(S))) | buf(S))

else buf(S) fi)

if c-rec2(S) .

ceq rec2(S) = S if not(c-rec2(S)) .

The operator c-rec2 denotes the effective condition of any transition rule denoted by
rec2. c-rec2(S) means mean that in a state S, Receiver will check if dc (cell1(S)) is
non-empty. If the condition holds, Receiver’s bit (rb(rec2(S))) and buffer (buf(rec2(S)))
of the next state rec2(S) are updated.

We briefly describe the proof scores showing that no duplication and drop in the buffer,
which means SCP enjoys Reliable Communication Protocol. This can be expressed by the
following invariant rcp:

(sb(S) = rb(S) impliesmk(nxt(S)) = (nxt(S)|buf(S)) and (not(sb(S) = rb(S)) implies

mk(nxt(S)) = buf(S)).
(3)

where mk is predicate using to generate a list of number from a specific number as the
first argument. The list is in decrement order, the predicate mk is defined as follows:

eq mk(0) = 0 nil .

eq mk(s(X)) = s(X) mk(X) .

31

Conducting the formal verification that rcp is an invariant of MSCP and gradually get-
ting better understandings of SCP, we have realized that the reachable states of MSCP can
be classified into the four state patterns shown in Fig. 8, and lemmas can be conjectured
from the four state patterns. To prove that rcp(s) is an invariant of MSCP, we first apply
SSI to s, generating seven sub-cases (or sub-goals). One sub-case is the induction case
in which rec2 is taken into account. Let us consider the induction case. The case is first
split into two sub-cases based on the condition of rec2: (1) dc is empty and (2) dc is not
empty. Case (1) is discharged. For case (2), let dc contain 〈b, n〉. Case (2) is further split
into two sub-cases based on whether rb equals b: (2-1) rb 6= b and (2-2) rb = b. Case (2-1)
is discharged. Case (2-2) is further split into two sub-cases based on whether sb equals
b: (2-2-1) sb 6= b and (2-2-2) sb = b. Case (2-2-1) is not discharged without use of any
lemmas. The four state patterns shown in Fig. 5 let us realize that state pattern 1 is one
and only one such that rb equals b, from which we can conjecture the lemma:

not(cell1(S) = pempty)and rb(S) = fst(get(cell1(S))) implies

next(S) = snd(get(cell1(S))).
(4)

The lemma is used to discharge case (2-2-1). Case (2-2-2) is further split into two sub-
cases based on whether d equals n: (2-2-2-1) d 6= n and (2-2-2-2) d = n. Case (2-2-2-1)
is discharged with another lemma. Case (2-2-2-2) is discharged with a simple lemma of
Boolean values. Then, the induction case is discharged.

It is impossible to prove rcp alone.We need totally 4 more invariants, which are as
follows:

not(cell2(S) = bempty) implies

(sb(S) = get(cell2(S)) or rb(S) = get(cell2(S))).
(5)

not(cell1(S) = pempty) and rb(S) = fst(get(cell1(S))) implies

sb(S) = fst(get(cell1(S))).
(6)

not(cell1(S) = pempty) andnot(cell2(S) = bempty)

(sb(S) = get(cell2(S)) or not(rb(S) = fst(get(cell1(S))))).
(7)

In general, The proof of (3) uses (4), (5) and (6) as lemmas. The proofs of (5) and (7)
use (6) as a lemma, the proof of (7) also uses (5) as a lemma. The proofs of (4) uses (7)
as a lemma. The proofs of (6) uses (7) as a lemma.

4.1.2 Alternating Bit Protocol

SCP is a simplified version of ABP such that ABP’s channels are unbounded. Therefore,
the unreliable property is not only drop but also duplication. To keep the verification to
not be so complex, we specify those channels as queues such that the drop and duplication
happens on only the top element of a queue. These actions nondeterministically occur
when a channel contains packets/messages.

The data types used to specify the state machine of ABP are the same as SCP but in
stead of PCell and BCell, we use two new data types to specify the unbounded channels:

32

Figure 8: Four state patterns of MSCP

• DChan denotes the sort of queues of pairs of a boolean value and a natural number
for Data Channel. Given two pairs < false ; n1 > and < false ; n2 > where
n1 and n2 are numbers, we have a queue < false ; n1 > , < false ; n2 > in
which , is a constructor operator of DChan.

• AChan denotes the sort of queues of boolean values for Acknowledgement Channel.
Given two boolean values b1 and b2, we have a queue b1 , b2 in which , is a
constructor operator of AChan

Similar as SCP, ABP has six kinds of observable values and two more kinds of transition
rules used to specify, which are follows:

• Observable values

– d− chan (d− chan ∈ DChan) denotes dc, which is initially pempty.

– a− chan (a− chan ∈ AChan) denotes ac, which is initially pempty.

– sb (sb ∈ Bool), Bool is a build-in module in CafeOBJ, denotes Sender’s bit,
which is initially false.

– sb (sb ∈ Bool) denotes Receider’s bit, which is initially false.

– nxt (nxt ∈ PNat) denotes the sending number at Sender, which is initially
zero.

– buf (buf ∈ List) denotes Receiver’s buffer storing the received number from
Sender, which is initially empty or nil.

• Transition rules

– send1 denotes the action of Sender repeatedly putting its packets into the end
of queuedc.

– send2 denotes the action of Receiver repeatedly putting its messages into the
end of queueac.

– rec1 denotes the action of Sender getting a message from the top of queue ac
and may update its values if any

33

– rec2 denotes the action of Receiver getting a message from the top of queue dc
and may update its values if any

– drop1 denotes the action of removing the top packet of queue dc if any

– drop2 denotes the action of removing the top message of queue ac if any

– dup1 denotes the action of duplicating the top packet of queue dc if any

– dup2 denotes the action of duplicating the top message of queue ac if any

Transition rec2 is defined as follows:

op c-rec2 : Sys -> Bool .

eq c-rec2(S) = not(d-chan(S) ~ empty) .

ceq d-chan(rec2(S)) = get(d-chan(S)) if c-rec2(S) .

eq a-chan(rec2(S)) = a-chan(S) .

eq sb(rec2(S)) = sb(S) .

ceq rb(rec2(S))

= (if rb(S) ~ fst(top(d-chan(S)))

then not fst(top(d-chan(S))) else rb(S) fi)

if c-rec2(S) .

eq nxt(rec2(S)) = nxt(S) .

ceq buf(rec2(S))

= (if rb(S) ~ fst(top(d-chan(S)))

then (snd(top(d-chan(S))) buf(S)) else buf(S) fi)

if c-rec2(S) .

ceq rec2(S) = S if not c-rec2(S) .

The operator c-rec2 denotes the effective condition of any transition rule denoted by
rec2. c-rec2(S) means mean that in a state S, Receiver will check if dc (d-chan(S)) is
non-empty. If the condition holds, Receiver’s bit (rb(rec2(S))) and buffer (buf(rec2(S)))
of the next state rec2(S) are updated.

Conducting the formal verification that rcp is an invariant of MABP and gradually
getting better understandings of ABP, we have realized that the reachable states of MABP

can be classified into the six state patterns shown in Fig. 9, and lemmas can be conjectured
from the six state patterns. Finally, we need totally 10 more invariants, which are as
follows:

not(a− chan(S) = empty) implies

((sb(S) = top(a− chan(S))) or (rb(S) = top(a− chan(S)))).
(8)

(not(d− chan(S) = empty) and rb(S) = fst(top(d− chan(S))))

implies

(sb(S) = fst(top(d− chan(S))) andnext(S) = snd(top(d− chan(S)))).

(9)

34

Figure 9: Six state patterns of MABP

(not(a− chan(S) = empty) andnot(sb(S) = top(a− chan(S)))

andBIT in a− chan(S))

implies (top(a− chan(S)) = BIT).

(10)

(not(a− chan(S) = empty) andBIT in a− chan(S) andnot(sb(S) = BIT))

implies (rb(S) = BIT).
(11)

(not(d− chan(S) = empty) and rb(S) = fst(top(d− chan(S)))

andPAIR in d− chan(S))

implies (top(d− chan(S)) = PAIR).

(12)

(not(d− chan(S) = empty) andPAIR in d− chan(S) and rb(S) = fst(PAIR))

implies (sb(S) = fst(PAIR) andnext(S) = snd(PAIR)).
(13)

((a− chan(S) = BFIFO1@(BIT1, BIT2, BFIFO2) andnot(BIT1 = BIT2))

implies ((BIT3 inBFIFO2 impliesBIT2 = BIT3) andBIT2 = rb(S))).
(14)

((d− chan(S) = PFIFO1 @ (PAIR1, PAIR2, PFIFO2)

andnot(PAIR1 = PAIR2))

implies ((PAIR3 in PFIFO2 implies PAIR2 = PAIR3)

andPAIR2 =< sb(S);next(S) >)).

(15)

((sb(S) = rb(S)) implies(BIT in a− chan(S) impliesBIT = rb(S))). (16)

35

(not(sb(S) = rb(S))

implies (PAIR ∈ d− chan(S) implies PAIR =< sb(S);next(S) >)).
(17)

The proof of (3) uses (8) and (9) as lemmas. The proof of (8) uses (9), (10) and (11)
as lemmas. The proof of (9) uses (12) and (13) as lemmas. The proof of (10) uses (14)
as a lemma. The proof of (11) uses (8), (9) and (10) as lemmas. The proof of (12) uses
(15) as a lemma. The proof of (13) uses (12) and (15) as lemmas. The proof of (14) uses
(16) as a lemma. The proof of (15) uses (8) and (17) as lemmas. The proof of (16) uses
(9) and (10) as lemmas. The proof of (17) uses (8) and (12) as lemmas.

4.2 Experiments on ILP

We shows the experiments and results of two case studies: SCP and ABP, using our
framework. On each case study, we introduce the input contents consisting of Background
knowledge B, Examples E, Mode Declarations and Settings. Moreover, we provide some
constraints in each set of examples such that it is effect to the results. There are some
constraints which optimize the results. Then, we discuss about the results: compare
them with the state patterns shown in Figure 8 and Figure 9 ,and also consider whether
if these hypothesised clauses are useful to conjecture some lemmas, hopefully can be used
to discharge some cases in the proofs.

4.2.1 Characterizing MSCP

4.2.1.1 Background knowledge B

A system state of SCP is defined by six observable values: cell1 ∈ PCell, cell2 ∈ BCell,
sb, rb ∈ Bool, nxt ∈ PNat and buf ∈ List. The background knowledge needs to be pro-
vide all the definitions from SCP’s system specification. Although the Prolog interpreter
of Progol has a built-in definition of Boolean, it cannot be used since we use Boolean val-
ues as some compound functions’ arguments in which the uses may cause some conflicts
in the interpreter. Therefore, we define the type bool with two constants: t (stand for
true) and f (stand for false), as follows:

bool(t).

bool(f).

The definition of type pnat consists two clauses:

pnat(0).

pnat(s(X)) :- pnat(X).

Then, we can define the type of pairs of a boolean value and a natural number as
follows:

bnpair(p(B,N)) :- bool(B), pnat(N).

36

We use function p/2 followed by a bool argument and a number argument to define an
object of pnat. The body of the clause check if the arguments’ types are correct. The
definitions of types pcell for Data Channel and bcell are as follows:

pcell(c(p(B,N))) :- bool(B), pnat(N).

bcell(c(B)) :- bool(B) .

Similar to type pnat, we use a function c/1 to define a cell. Depend on each type of an
argument, it can be decided as an object of pcell or bcell. Finally, we have a definition
of type nlist, standing for lists of natural numbers, as follows:

nlist([]).

nlist([H|T]) :- pnat(H), nlist(T).

The first clause defines that an empty list by using the syntax of empty list provided
in Prolog. We also use Prolog’s syntax of non-empty list to define the non-empty list of
nlist such that the first argument H is the top element of the list and T is the tail queue
of the list. And the type of each argument must be check at the body part to ensure that
[H|T] is an object of nlist.

The data structure definitions of the system specification do not contain only construc-
tor operators but also they have some defined operator such that we can observe values
which construct the data. In SCP’s system specification, we have these operators: fst -
gets a bool value of a pair, snd - gets a number of a pair and mk - constructs a order list
from a number. These operators are converted to Prolog clauses as follows:

fst(p(B,N),B) :- bnpair(p(B,N)).

snd(p(B,N),N) :- bnpair(p(B,N)).

mk(0,[0]):-!.

mk(s(N),[s(N)|L1]) :- pnat(N), mk(N,L1).

Although there are some trivial operators such that they do not need to explicitly
declare in a system specification, we need to explicitly provide them in the background
knowledge in form of Prolog clauses. For example, a operator states the relation between
two boolean constants, a operator checks two numbers whether if one is the successor of
the other. We provide these clauses to the background knowledge as follows:

neg(f,t).

neg(t,f).

succ(X,s(X)) :- pnat(X).

37

4.2.1.2 Positive Examples E+

As mentioned in Chapter 3, we use YAST to convert our SCP’s system specification suited
for theorem proving in CafeOBJ to the one suited for model checking in Maude. Then,
using the build-in command search of Maude to generate a finite number of reachable
states. However, a reachable state of SCP is informally represented as follows:

Solution 3 (state 9)

states: 10 rewrites: 178 in 0ms cpu (0ms real) (689922 rewrites/second)

S:State --> buf : (0 | nil)

nxt : 0

rb : true

sb : false

PC:PCell --> c(< false ; 0 >)

BC:BCell --> c(true)

We needs to convert them to Prolog facts which are used as positive examples during
ILP learning process. As the convention mentioned in Chapter 3, we convert them to the
ground terms of predicate state/6 in which arity 6 is the number of observable values
specifying a system state. The above output can be converted to a fact state as follows:

state(t,s(0),t,[0],c(p(f,0)),c(t)).

where the first argument is sb (Sender’s bit is true), the second one is nxt (Sending
number is s(0), standing for 1), the third one is rb (Receiver’s bit is true), the fourth
one is buf (Receiver got 0 on its buffer), the fifth one is d-chan (Data Channel has packet
containing pair < false ; 0 >) and the last one is a-chan (Acknowledgement Channel
has a message which is true).

4.2.1.3 Mode Declarations and Settings

Mode declarations describe the relations (predicates) between objects of given types which
can be used either in the head (modeh declarations) or body (modeb declarations). Modes
also describe the forms of these atoms that can be used in a clause. For the head of any
clause defining state, we might give one of the following head mode declarations:

: −modeh(1, state(+bool,+pnat,+bool,+nlist,+pcell,+bcell))? (18)

: −modeh(1, state(+bool,+pnat,+bool,+nlist, c(p(+bool,+pnat)), c(+bool)))? (19)

In these mode declarations, any clause defining state has six arguments in order
Sender’s bit, Sending numbder, Receiver’s bit, Receiver’s buffer, Data Channel and Ac-
knowledgement Channel. Each argument of (18) is replaced by a input variable because
of + such that the variable must appear on the body part of the clause. If we use (18) to

38

define the head of clause, then we must to define a set consisting of the following body
mode declarations:

: −modeb(1, neg(+bool,−bool))? (20)

: −modeb(1, succ(+pnat,−pnat))? (21)

: −modeb(1, neg(−bool,+bool))? (22)

: −modeb(1, succ(−pnat,+pnat))? (23)

: −modeb(1, neg(+bool,+bool))? (24)

: −modeb(1, succ(+pnat,+pnat))? (25)

: −modeb(1,mk(+pnat,+nlist))? (26)

: −modeb(1,mk(+pnat, [+pnat|+ nlist]))? (27)

: −modeb(1,mk(+pnat,−nlist))? (28)

: −modeb(1,mk(+pnat, [−pnat| − nlist]))? (29)

: −modeb(1, fst(+bnpair,−bool))? (30)

: −modeb(1, snd(+bnpair,−pnat))? (31)

: −modeb(1, get(+pcell,−pnat))? (32)

: −modeb(1, get(+bcell,−bool))? (33)

Each out put variable, declared by -type, will introduce a new variable from input
variables. Because Progol computation resource is limited, we can optimize by modifying
the mode declarations such that we use head mode declaration (19). In which, we declare
the functions using to construct some structure data such as bnpair, bcell and pcell,
then we do not need to declare body mode declaration (30) (31) (32) (33). Furthermore,
the head mode (19) only considers to the reachable states such that Data Channel and
Acknowledge Channel are not empty. From our experience, these reachable states which

39

have empty channels are not interested since their characteristics are not useful to con-
jecture lemma. As show as in the state patterns of Figure 8, there are no such reachable
states.

:- set(posonly)?

:- set(h,300000)?

:- set(r,4000000)?

:- set(nodes,20000)?

:- set(c,15)?

As mentioned, we use the learning for positive only mode, then we enable it by using
the clause :- set(posonly)?. Since the characteristics of SCP’s reachable states are the
correlations between the observable values and such state has six values, some of them
are instances of the recursively structured data such as Natural number, list and queues,
the default settings of Progol is not sufficient to process the learning task. We must to
explicitly config such parameters in the settings parts, as shown as on above clauses, we
use big numbers for depth of proof h, depth of resolutions r, search nodes nodes and
clause length c.

4.2.1.4 Experiments

By applying learning form positive example (reachable states) only, we have conducted
around 40 experiments with respected to different database and collected several sets
of clauses. There are some clauses repeatedly appearing on several experiments. We
carefully observe and minimize their appearance in the experiments with respected to the
completeness criteria of an ILP learning task. Finally, we obtain the follow set of clauses.

Result 1

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- succ(F,B), mk(B,[B|C]).

This clauses are collected from experiments in which each set of positive examples E+ are
generated from a specific initial state representing a state pattern in Figure 8 and a specific
number of examples. Moreover, we constraints the size of any natural number instance
since it is significant to consume the computation cost. The detail of each experiment is
as follows:

40

Initial State State Pattern # States Size of a number

state(f,0,t,[0],c(p(f,0)),c(f)). 2 38 nxt < 11
state(f,0,t,[0],c(p(f,0)),c(t)). 3 77 nxt < 21

state(t,s(0),t,[0],c(p(f,0)),c(t)). 4 36 nxt < 11
state(t,s(0),t,[0],c(p(f,0)),c(t)). 4 76 nxt < 21
state(t,s(0),t,[0],c(p(f,0)),c(t)). 4 276 nxt < 71
state(t,s(0),t,[0],c(p(f,0)),c(t)). 4 316 nxt < 81
state(t,s(0),t,[0],c(p(f,0)),c(t)). 4 356 nxt < 91
state(t,s(0),t,[0],c(p(f,0)),c(t)). 4 396 nxt < 101

The first clause defines State Pattern 2 and State Pattern 3 since buf D is a list of
numbers generated by nxt B (mk(B,D)), but E is a free-variable. The second clause
defines State Pattern 4 and State Pattern 1.

Result 2

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), succ(E,B).

state(A,B,A,C,c(p(A,B)),c(A)) :- mk(B,[B|C]).

Initial State State Pattern # States Size of a number

state(f,0,t,[0],c(p(f,0)),c(f)). 2 78 nxt < 21

The first clause defines State Pattern 2 and State Pattern 3 since buf D is a list of
numbers generated by nxt B (mk(B,D)), but E is a free-variable. The second clause
exactly defines State Pattern 4. And the third clause exactly defines State Pattern 1.

Result 3

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), mk(B,[B|C]).

state(A,B,A,C,c(p(A,B)),c(A)) :- mk(B,[B|C]).

Initial State State Pattern # States Size of a number

state(f,0,t,[0],c(p(f,0)),c(f)). 2 78 nxt < 31
state(f,0,t,[0],c(p(f,0)),c(f)). 2 78 nxt < 61
state(f,0,t,[0],c(p(f,0)),c(t)). 3 117 nxt < 31
state(f,0,t,[0],c(p(f,0)),c(t)). 4 116 nxt < 31

The first clause defines State Pattern 2 and State Pattern 3 since buf D is a list of
numbers generated by nxt B (mk(B,D)), but E is a free-variable. The second clause
exactly defines State Pattern 4. And the third clause exactly defines State Pattern 1.

41

Result 4

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- mk(B,[B|C]).

Initial State State Pattern # States Size of a number

state(f,0,t,[0],c(p(f,0)),c(f)). 2 158 nxt < 41
state(f,0,t,[0],c(p(f,0)),c(f)). 2 278 nxt < 71
state(f,0,t,[0],c(p(f,0)),c(f)). 2 318 nxt < 81
state(f,0,t,[0],c(p(f,0)),c(f)). 2 358 nxt < 91
state(f,0,t,[0],c(p(f,0)),c(f)). 2 398 nxt < 101
state(f,0,t,[0],c(p(f,0)),c(t)). 3 157 nxt < 41
state(f,0,t,[0],c(p(f,0)),c(t)). 3 277 nxt < 71
state(f,0,t,[0],c(p(f,0)),c(t)). 3 317 nxt < 81
state(f,0,t,[0],c(p(f,0)),c(t)). 3 357 nxt < 91
state(f,0,t,[0],c(p(f,0)),c(t)). 3 387 nxt < 101
state(f,0,t,[0],c(p(f,0)),c(t)). 4 156 nxt < 41

The first clause defines State Pattern 2 and State Pattern 3 since buf D is a list of
numbers generated by nxt B (mk(B,D)), but E is a free-variable. The second clause
defines State Pattern 4 and State Pattern 1, but E is a free-variable.

Result 5

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), mk(E,C).

state(A,B,A,C,c(p(A,B)),c(A)) :- mk(B,[B|C]).

Initial State State Pattern # States Size of a number

state(f,0,t,[0],c(p(f,0)),c(f)). 2 198 nxt < 51
state(f,0,t,[0],c(p(f,0)),c(t)). 3 197 nxt < 51

The first clause defines State Pattern 2 and State Pattern 3 since buf D is a list of
numbers generated by nxt B (mk(B,D)), but E is a free-variable. The second clause
exactly defines State Pattern 4. And the third clause exactly defines State Pattern 1.

Result 6

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), mk(B,[B|C]).

state(A,B,A,C,c(p(A,B)),c(A)).

Initial State State Pattern # States Size of a number

state(f,0,t,[0],c(p(f,0)),c(t)). 2 237 nxt < 61

The first clause defines State Pattern 2 and State Pattern 3 since buf D is a list of
numbers generated by nxt B (mk(B,D)), but E is a free-variable. The second clause
exactly defines State Pattern 4. And the third clause exactly defines State Pattern 1.

42

Result 7

state(A,B,C,D,c(p(A,B)),c(C)) :- mk(B,[B|D]).

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), mk(E,C).

Initial State State Pattern # States Size of a number

state(t,s(0),t,[0],c(p(t,s(0))),c(t)). 1 237 nxt < 51
state(t,s(0),t,[0],c(p(t,s(0))),c(t)). 1 237 nxt < 35

state(f,0,t,[0],c(p(f,0)),c(t)). 3 237 nxt < 51

The first clause defines State Pattern 2 and State Pattern 3 since buf D is a list of
numbers generated by nxt B (mk(B,D)), but E is a free-variable. The second clause
exactly defines State Pattern 4. And the third clause exactly defines State Pattern 1.

Result 8

state(A,B,C,D,c(p(A,B)),c(C)) :- mk(B,[B|D]).

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), succ(E,B).

Initial State State Pattern # States Size of a number

state(t,s(0),t,[0],c(p(t,s(0))),c(t)). 1 237 nxt < 51

The first clause defines State Pattern 1 and State Pattern 4.The second clause clause
defines State Pattern 2 and State Pattern 3 since buf D is a list of numbers generated by
nxt B (mk(B,D)), but E is a free-variable. The third clause exactly defines State Pattern
4.

Result 9

state(A,B,C,D,c(p(A,B)),c(A)) :- mk(B,[B|D]).

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), mk(B,[B|C]).

Initial State State Pattern # States Size of a number

state(f,0,t,[0],c(p(f,0)),c(f)). 2 238 nxt < 61
state(t,s(0),t,[0],c(p(t,s(0))),c(t)). 1 395 nxt < 101
state(t,s(0),t,[0],c(p(t,s(0))),c(t)). 1 115 nxt < 31

The first clause defines State Pattern 1 and State Pattern 4.The second clause clause
defines State Pattern 2 and State Pattern 3 since buf D is a list of numbers generated by
nxt B (mk(B,D)), but E is a free-variable. The third clause exactly defines State Pattern
4.

43

Result 10

state(A,B,C,D,c(p(A,B)),c(E)).

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), mk(E,C).

Initial State State Pattern # States Size of a number

state(t,s(0),t,[0],c(p(t,s(0))),c(t)). 1 155 nxt < 41

The first clause defines State Pattern 1, State Pattern 2 and State Pattern 3.The second
clause exactly defines State Pattern 4.

4.2.1.5 Evaluation

Let consider to the following clause:

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), mk(B,[B|C]).

This clause express characteristic (1), (4) and (5) in Table 1 showing the relation between
three the bits: sb, rb and the bit on achan (by state(A,B,A,C,c(p(D,E)),c(A))), char-
acteristic (15) shows that the bit in top packet of dchan and sb are complement (by literal
neg(A,D)). Moreover, the clause also expresses characteristic (8) showing that the list
made by sending number nxt is the same as the list made by next and the buffer buf .
The characteristic is captured by the State Pattern 4 as Figure 10 . This is an example
of comparison for checking that the clause is complete.

To the other direction, let consider Figure 8, we can observe a characteristic which the
state patterns capturing is about the relation between sb and rb. Whenever they are the
same, the list made by nxt and the list made by next and the buffer buf are the same.
Otherwise, the list made by nxt and buf are the same. This characteristic is expressed
in the following clauses of Experiment 4:

state(A,B,C,D,c(p(A,B)),c(E)) :- neg(A,C), mk(B,D).

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), succ(E,B).

state(A,B,A,C,c(p(A,B)),c(A)) :- mk(B,[B|C]).

We applied the same assessment technique to all other characteristics which we can
manually observe. Then, all considered characteristics are captured/expressed. In other
words, we have successfully characterized reachable states of SCP.

On these experiments, there are some clauses defining exactly a snapshot on the series
of snapshots (Result 3 and Result 12). The size of term such as natural numbers make
the computation costly, even it may be wrong and effected to final results. Since we fix
the size, it causes an bound number of reachable states in database for a experiment. Let
consider to the Result 3.

44

Sender Receiver

<f,i>

t

achan

dchan

drop2

sb: t

nxt: i+1

rb: t

buf: i, … 0

State Pattern 4

Figure 10: State Pattern 4 captures the characteristics expressing on the clause
state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D), mk(B,[B|C]).

state(A,B,C,D,c(p(A,B)),c(E)) :- mk(B,D) .

state(A,B,A,C,c(p(D,E)),c(A)) :- neg(A,D),mk(B,[B|C]) .

state(A,B,A,C,c(p(A,B)),c(A)) :- mk(B,[B|C]) .

The clauses define the predicate that takes six arguments whose types are declared in Mode
declaration 1. The six arguments correspond to sb, rb, d, buf , dc, and ac, respectively.
The first clause in Set 1 says that if buf is the list that consists of d, d − 1, . . . , 0 in this
order, then the head is reachable. The head also says that dc consists of the pair of sb and
p. Therefore, the clause extracts the characteristics shared by State Pattern 2 and State
Pattern 3. The second clause in Set 1 says that if sb is different from the first element b in
the pair 〈b, n〉 of dc and buf is the list that consists of d− 1, . . . , 0 in this order, then the
head is reachable. The head also says that rb and the Boolean value in ac are the same
as sb. Therefore, the clause extracts almost all characteristics of State Pattern 4. The
clause does not mention the second element n in the pair 〈b, n〉 of dc. The third clause in
Set 1 says that if buf is the list that consists of d− 1, . . . , 0 in this order, then the head is
reachable. The head also says that sb, rb, the first element b in the pair 〈b, n〉 of dc, and
the Boolean value in ac are the same. The clause perfectly extracts the characteristics of
State Pattern 1.

If the set {state(−→x) :- condi(
−→x) | i = 1, . . . , n} of clauses perfectly defines the reachable

states of a state machine concerned,
∨n
i=0 condi(

−→x) must be the strongest inductive in-
variant of the state machine, where −→x is a sequence of variables. Note that we assume that
term patterns are written as part of conditions. For example, state(A,B,A,C, c(p(A,B)), c(A)) :
- mk(B, [B|C]) is written as state(A,B,A2, C,D,E) : - mk(B, [B|C]), A2 = A,D =
c(p(A,B)), E = C(A). Since such a perfect set of clauses cannot be learned in general
due to the undecidability of the reachability problem, however, this is not the way we can
use to conjecture lemmas from learned hypotheses. Moreover, the formula constructed by∨n
i=0 condi(

−→x) must be too long to be used effectively, even if it is the strongest inductive
invariant.

Let condi(
−→x) be prei(

−→x), coni(
−→x), othi(

−→x), where othi(
−→x) may be void. We suppose

that if prek(
−→x) holds, then each condi(

−→x) for i ∈ {1, . . . , n} − {k} does not hold. Then,
prek(

−→x) ⇒ conk(
−→x) is one possible candidate of lemma. If there exist more than one

such k, say k1, . . . , km, then
∧m
j=1(prekj(

−→x) ⇒ conkj(
−→x)) is one possible candidate of

45

lemma. This is basically how we conjecture lemmas from learned axioms (or hypotheses)
or state patterns, such as the four state patterns for SCP and the six state patterns for
ABP.

The third axiom of the learned ones for SCP contains rb = b, dc = c(〈b, n〉), 〈sb, d〉 =
〈b, n〉 as part of the condition. If rb = b, the condition of the second axiom does not hold.
The first axiom has 〈sb, d〉 = 〈b, n〉 as part of the condition. Therefore, according to the
way to conjecture lemma, we can conjecture dc = c(〈b, n〉) ∧ rb = b ⇒ 〈sb, d〉 = 〈b, n〉 as
one lemma. This lemmas is the same as the one conjectured from the four state patterns
in Sect. ??.

With respected to the background knowledge provided by the system specification,
Progol has successfully characterize all the characteristics in The four state patterns.
Unfortunately, there is no experiment such that each each hypothesised clause characterize
exactly a state pattern. Therefore, to understand about the state machine, we must
consider to the different results from several experiment. For example, combining Result
12 and Result 13, we have a set of clauses characterize all State patterns.

4.2.2 Characterizing MABP

4.2.2.1 Background knowledge B

A system state of ABP is defined by six observable values: d−chan ∈ DChan, a−chan ∈
AChan, sb, rb ∈ Bool, nxt ∈ PNat and buf ∈ List. The background knowledge needs to
be provide all the definitions from ABP’s system specification. We can reuse the definition
of Bool, PNat and List from SCP experiments. But DChan and AChan must to be
defined as follows:

pqueue([]).

pqueue([H|T]) :- bnpair(H), pqueue(T).

bqueue([]).

bqueue([H|T]) :- bool(H), bqueue(T).

where pqueue and bqueue are the predicates defining DChan and AChan, respectively.
Similar to define nlist, we use the syntax of list in Progol. Since the ABP’s behaviours

does not show the differences between list and queue, then we can define them as same as
nlist, just different at their predicate names and the condition parts checking the types
of arguments. Since the new data types are defined, their defined operators in ABP’s
system specification are also.

toppqu([H|T], H) :- bnpair(H).

topbqu([H|T], H) :- bool(H).

memberp(A,[A|B]):- bnpair(A),pqueue([A|B]),!.

memberp(A,[B|C]) :- bnpair(A), pqueue([B|C]), memberp(A,C).

46

memberb(A,[A|B]):- bool(A),bqueue([A|B]),!.

memberb(A,[B|C]) :- bool(A), bqueue([B|C]), memberb(A,C).

where toppqu/2 gets a non-empty queue as the first argument and return the top element
as the second argument. We provide two different clauses defining toppqu/2 since we
have two kinds of queue and the body parts checking the types of arguments. One
popular operator of queue/list are the operator checking whether if an element is in a
list/queue, then we provide two predicates memberp/2 and memberb/2 for pqueue and
bqueue, respectively.

4.2.2.2 Positive Examples E+

We use our framework such that the YAST tool to generate the reachable states of ABP’s
state machine. One output of an ABP state is as follows:

Solution 2 (state 1013)

states: 1014 rewrites: 71266 in 53ms cpu (53ms real) (1334369 rewrites/second)

S:State --> sb : true

rb : true

buf : (0 nil)

PQ:DChan --> < false ; 0 > ; < false ; 0 > ; < false ; 0 > ; < false ; 0 > ; <

true ; s(0) > ; (empty).PEmpty

BQ:AChan --> true ; true ; true ; true ; true ; (empty).BEmpty

N:Nat --> s(0)

The above state is converted to a fact of state as follows:

state(t,s(0),f,[0],[p(f,0),p(f,0),p(f,0),p(f,0),p(t,s(0))],[t,t,t,t,t]).

where the first argument is sb (Sender’s bit is true), the second one is nxt (Sending num-
ber is s(0), standing for 1), the third one is rb (Receiver’s bit is false), the fourth one is
buf (Receiver got 0 on its buffer), the fifth one is d-chan (Data Channel has packet con-
taining pair < false ; 0 > ; < false ; 0 > ; < false ; 0 > ; < false ; 0 > ;

< true ; s(0) > ; empty) and the last one is a-chan (Acknowledgement Channel has
a message which is true ; true ; true ; true ; true ; empty).

4.2.2.3 Mode Declarations and Settings

For the structure of predicate state which we want to learn, we define the mode decla-
rations. We can declare the body mode declaration as follows:

: −modeh(1, state(+bool,+pnat,+bool,+nlist,+pqueue,+bqueue))? (34)

: −modeh(1, state(+bool,+pnat,+bool,+nlist, [p(+bool,+pnat),

p(+bool,+pnat)|+ pqueue], [+bool|+ bqueue]))?
(35)

47

In these mode declarations, any clause defining state has six arguments in order
Sender’s bit, Sending numbder, Receiver’s bit, Receiver’s buffer, Data Channel and Ac-
knowledgement Channel. Each argument of (34) is replaced by a input variable because
of + such that the variable must appear on the body part of the clause. If we use (34) to
define the head of clause, then we must to define a set consisting of the following body
mode declarations:

: −modeb(1, neg(+bool,−bool))? (36)

: −modeb(1, succ(+pnat,−pnat))? (37)

: −modeb(1, neg(+bool,+bool))? (38)

: −modeb(1, succ(+pnat,+pnat))? (39)

: −modeb(1,mk(+pnat,+nlist))? (40)

: −modeb(1,mk(+pnat, [+pnat|+ nlist]))? (41)

: −modeb(1,mk(+pnat,−nlist))? (42)

: −modeb(1,mk(+pnat, [−pnat| − nlist]))? (43)

: −modeb(∗,memberp(p(+bool,+pnat),+pqueue))? (44)

: − : −modeb(∗,memberb(+bool,+bqueue))? (45)

: − : −modeb(1, topbqu(+bqueue,+bool))? (46)

: − : −modeb(1, toppqu(+pqueue,+bnpair))? (47)

We can optimize by modifying the mode declarations such that we use head mode
declaration (35). In which, we declare the functions using to construct some structure
data such as bnpair, bqueue and pqueue, then we do not need to declare body mode
declaration (44) (45) (46) (47). Furthermore, the head mode (35) only considers to the
reachable states such that Data Channel and Acknowledge Channel are not empty. From
our experience, these reachable states which have empty channels are not interested since
their characteristics are not useful to conjecture lemma. As show as in the state patterns
of Figure 9, there are no such reachable states.

48

:- set(posonly)?

:- set(h,300000)?

:- set(r,4000000)?

:- set(nodes,20000)?

:- set(c,15)?

As mentioned, we use the learning for positive only mode, then we enable it by using
the clause :- set(posonly)?. Since the characteristics of ABP’s reachable states are the
correlations between the observable values and such state has six values, some of them
are instances of the recursively structured data such as Natural number, list and queues,
the default settings of Progol is not sufficient to process the learning task. We must to
explicitly config such parameters in the settings parts, as shown as on above clauses, we
use big numbers for depth of proof h, depth of resolutions r, search nodes nodes and
clause length c.

4.2.2.4 Experiments

We have conducted around 30 experiments with the mode declaration modes: head mode
declaration (35) and body mode declarations (36) - (43) with respected to the back-
ground knowledge provided by ABP’s system specification on CafeOBJ. Each experiment
is different at the number of reachable states and the initial state used to generate the
reachable states. To optimise the computation cost of Progol, we constraint the size of an
instance of natural number as less than 11 but greater than 0, the size of Data channel
and Acknowledgement channel from 5 to 10. We shows each experiment with respected
to the features of using reachable states and then compare each clause with the state
pattern in Figure 9. In general, there are two classes of conducted experiments: about 20
experiments w.r.t. background knowledge from the specification (class 1) and about 10
experiments w.r.t. background knowledge from the specification and some user-defined
functions (class 2) such as gap0 and gap1. By apply completeness criteria, we collected
around 53 clauses for class 1 and around 39 clauses for class 2.

Experiment 1

• Database constraints

– 10000 states

– Initial states - an instance of State Pattern 4

state(t,s(0),f,[0],[p(f,0)],[t]).

• Clauses

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,C), succ(F,B), mk(B,[B|D]).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,[B|D]).

state(A,B,C,D,[p(A,B)|E],[F|G]) :- mk(B,D).

state(A,B,A,C,[p(D,E)|F],[A|G]) :- neg(A,D), succ(E,B), mk(B,[B|C]).

49

The first clause is a wrong description since if neg(A,C), then mk(B,D) is true but the
clause has mk(B,[B|D]).The second clause exactly defines State Pattern 1. The third
clause defines State Pattern 2, State Pattern 3 and State Pattern 4. The fourth clause
defines State Pattern 5 and State Pattern 6.

Experiment 2

• Database constraints

– 1500 states

– Initial states - an instance of State Pattern 4

state(t,s(0),f,[0],[p(f,0)],[t]).

• Clauses

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,E), succ(F,B), mk(B,[B|D]).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,[B|D]).

state(A,B,C,D,[p(A,B)|E],[F|G]) :- mk(B,D).

The first clause defines State Pattern 5 and State Pattern 6. The second clause exactly
defines State Pattern 1. The third clause defines State Pattern 2, State Pattern 3 and
State Pattern 4.

Experiment 3

• Database constraints

– 1500 states

– Initial states - an instance of State Pattern 3

state(t,s(0),f,[0],[p(t,s(0))],[t]).

• Clauses

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,C), mk(F,D), memberb(A,H).

state(A,B,C,D,[p(C,E)|F],[A|G]) :- mk(E,D), memberp(p(A,B),F).

state(A,B,C,D,[p(A,B)|E],[F|G]) :- mk(B,D).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,[B|D]).

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,E), succ(F,B), mk(B,[B|D]).

The first clause defines State Pattern 2 and State Pattern 3.The second clause defines
State Pattern 2, State Pattern 3, State Pattern 4, State Pattern 5 and State Pattern 6.
The third clause defines State Pattern 2, State Pattern 3 and State Pattern 4. The fourth
clause exactly defines State Pattern 1. The fifth clause defines State Pattern 5 and State
Pattern 6.

50

Experiment 4

• Database constraints

– 1394 states

– Initial states - an instance of State Pattern 4

state(t,s(0),f,[0],[p(f,0),p(f,0),p(f,0),p(f,0),p(f,0)],

[t,t,t,t,t]).

• Clauses

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,C), mk(F,D),

memberp(p(E,F),G), memberb(A,H).

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,E), succ(F,B), mk(B,[B|D]).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- neg(A,C), mk(B,[B|D]),

memberp(p(A,B),E).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,D), memberp(p(A,B),E).

state(A,B,C,D,[p(A,B)|E],[C|F]) :- mk(B,D), memberp(p(A,B),E),

memberb(C,F).

state(A,B,A,C,[p(A,B)|D],[A|E]) :- mk(B,[B|C]), memberp(p(A,B),D),

memberb(A,E).

state(A,B,A,C,[p(A,B)|D],[E|F]) :- mk(B,C), memberp(p(A,B),D).

The first clause defines State Pattern 2, State Pattern 3 and State Pattern 4.The second
clause defines State Pattern 5 and State Pattern 6. The third clause is a wrong description.
The fourth clause defines State Pattern 2, State Pattern 3 and State Pattern 4. The fifth
clause exactly defines State Pattern 4. The sixth clause exactly defines State Pattern 1.
The seventh clause defines State Pattern 1, State Pattern 4 and State Pattern 5.

Experiment 5

• Database constraints

– 1500 states

– Initial states - an instance of State Pattern 2

state(t,s(0),f,[s(0),0],[p(t,s(0))],[t,t,f]).

• Clauses

state(A,B,C,D,[p(C,E)|F],[A|G]) :- neg(C,H), succ(E,B), mk(B,[B|D]),

memberb(H,G).

state(A,B,C,D,[p(C,E)|F],[A|G]) :- mk(E,D), memberp(p(A,B),F).

state(A,B,C,D,[p(A,B)|E],[F|G]) :- mk(B,D).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,[B|D]).

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,E), succ(F,B), mk(B,[B|D]).

51

The first clause exactly defines State Pattern 6.The second clause defines State Pattern
2, State Pattern 3, State Pattern 4 and State Pattern 5. The third clause defines State
Pattern 2, State Pattern 3 and State Pattern 4. The fourth clause defines State Pattern
1, State Pattern 4 and State Pattern 5. The fifth clause exactly defines State Pattern 1.

Experiment 6

• Database constraints

– 1500 states

– Initial states - instance of Snapshot 1

state(f,s(s(0)),f,[s(0),0],[p(f,s(s(0))),p(f,s(s(0))),

p(f,s(s(0))),p(f,s(s(0))),p(f,s(s(0)))],[f,f,f,f,f]).

• Clauses

state(A,B,C,D,[p(A,B)|E],[A|F]) :- neg(A,C).

state(A,B,C,D,[p(C,E)|F],[A|G]) :- neg(C,H), succ(E,B), mk(B,[B|D]),

memberb(H,G).

state(A,B,C,D,[p(C,E)|F],[A|G]) :- mk(E,D), memberp(p(A,B),F).

state(A,B,C,D,[p(A,B)|E],[F|G]) :- mk(B,D).

state(A,B,A,C,[p(D,E)|F],[A|F]) :- mk(E,C).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,[B|D]).

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,E), succ(F,B), mk(B,[B|D]).

The first clause defines State Pattern 2 and State Pattern 3.The second clause exactly
defines State Pattern 6. The third clause defines State Pattern 2, State Pattern 3, State
Pattern 4, State Pattern 5 and State Pattern 6. The fourth clause defines State Pattern
2, State Pattern 3 and State Pattern 4. The fifth clause defines State Pattern 5 and State
Pattern 6. The sixth clause exactly defines State Pattern 1. The seventh clause defines
State Pattern 5 and State Pattern 6.

Experiment 7

• Database constraints

– 1394 states

– Initial states - an instance of State Pattern 3

state(t,s(0),f,[0],[p(t,s(0)),p(t,s(0)),

p(t,s(0)),p(t,s(0)),p(t,s(0))],[t,t,t,t,t]).

• Clauses

52

state(A,B,C,D,[p(A,B)|E],[A|F]) :- neg(A,C), mk(B,[B|D]),

memberp(p(A,B),E).

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,E), succ(F,B), mk(B,[B|D]).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,D), memberp(p(A,B),E).

state(A,B,C,D,[p(A,B)|E],[C|F]) :- mk(B,D), memberp(p(A,B),E),

memberb(C,F).

state(A,B,A,C,[p(A,B)|D],[A|E]) :- mk(B,[B|C]), memberp(p(A,B),D),

memberb(A,E).

state(A,B,A,C,[p(A,B)|D],[E|F]) :- mk(B,C), memberp(p(A,B),D).

The first clause exactly defines State Pattern 1.The second clause defines State Pattern
5 and State Pattern 6. The third clause defines State Pattern 2 and State Pattern 3.
The fourth clause exactly defines State Pattern 4. The fifth clause exactly defines State
Pattern 1. The sixth clause defines State Pattern 1, State Pattern 5 and State Pattern 6.

Experiment 8

• Database constraints

– 1394 states

– Initial states - an instance of State Pattern 2

state(t,s(0),f,[s(0),0],[p(t,s(0)),p(t,s(0)),

p(t,s(0)),p(t,s(0)),p(t,s(0))],[t,t,t,t,f,f]).

• Clauses

state(A,B,C,D,[p(A,B)|E],[A|F]) :- neg(A,C), mk(B,D),

memberp(p(A,B),E).

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,E), succ(F,B), mk(B,[B|D]).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- neg(A,C), mk(B,[B|D]),

memberp(p(A,B),E).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- neg(A,C), mk(B,[B|D]),

memberp(p(A,B),E).

state(A,B,A,C,[p(A,B)|D],[A|E]) :- mk(B,[B|C]), memberp(p(A,B),D),

memberb(A,E).

state(A,B,A,C,[p(A,B)|D],[E|F]) :- mk(B,C), memberp(p(A,B),D).

The first clause defines State Pattern 1 and State Pattern 3.The second clause defines
State Pattern 5 and State Pattern 6. The third clause defines State Pattern 1, State
Pattern 5 and State Pattern 6. The fourth clause exactly defines State Pattern 4. Two
last clauses define exactly State Pattern 1.

53

Experiment 9

• Database constraints

– 1394 states

– Initial states - an instance of State Pattern 1

state(f,s(s(0)),f,[s(0),0],[p(f,s(s(0))),p(f,s(s(0))),

p(f,s(s(0))),p(f,s(s(0))),p(f,s(s(0)))],[f,f,f,f,f]).

• Clauses

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,[B|D]), memberp(p(A,B),E),

memberb(A,F).

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,E), succ(F,B), mk(B,[B|D]).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,D), memberp(p(A,B),E).

state(A,B,C,D,[p(A,B)|E],[F|G]) :- neg(A,F), mk(B,D),

memberp(p(A,B),E), memberb(F,G).

The first clause exactly defines State Pattern 1.The second clause exactly defines State
Pattern 6. The third clause defines State Pattern 2, State Pattern 3 and State Pattern
4. The fourth clause exactly defines State Pattern 4. The last clause define exactly State
Pattern 4.

Experiment 10

• Database constraints

– 1394 states

– Initial states - an instance of State Pattern 3

state(t,s(0),f,[0],[p(t,s(0)),p(t,s(0)),

p(t,s(0)),p(t,s(0)),p(t,s(0))],[t,t,t,t,t]).

– providing user-defined predicates gap0 and gap1

• Clauses

state(A,B,C,D,[p(A,B)|E],[A|F]) :- neg(A,C), gap0(p(A,B),E).

state(A,B,C,D,[p(A,B)|E],[C|F]) :- mk(B,D), gap0(p(A,B),E).

state(A,B,A,C,[p(D,E)|F],[A|G]) :- neg(A,D), succ(E,B), mk(B,[B|C]),

gap1(p(A,B),F).

state(A,B,A,C,[p(A,B)|D],[A|E]) :- mk(B,[B|C]), gap0(p(A,B),D).

The first clause exactly defines State Pattern 3.The second clause defines State Pattern
2, State Pattern 2 and State Pattern 4. The third clause exactly defines State Pattern 6.
The fourth clause exactly defines State Pattern 1.

54

4.2.2.5 Evaluation

We also apply the framework of assessment. For the completeness assessment, we have
77% characteristics of clauses in class 1 are correctly captured by the state patterns
and 74% for class 2. But, when checking the soundness assessment, there are some
characteristics appearing in the state patterns but there is no clause expressed them. Let
consider the following case.

There are some clauses defining exactly a snapshot such as Experiment 1, Experiment
4 and Experiment 6. If we constraint the number of each snapshot and the 1st state
in the database, the result will be different. Let consider to the hypothesised clauses of
Experiment 6:

state(A,B,C,D,[p(A,B)|E],[A|F]) :- neg(A,C).

state(A,B,C,D,[p(C,E)|F],[A|G]) :- neg(C,H), succ(E,B), mk(B,[B|D]),

memberb(H,G).

state(A,B,C,D,[p(C,E)|F],[A|G]) :- mk(E,D), memberp(p(A,B),F).

state(A,B,C,D,[p(A,B)|E],[F|G]) :- mk(B,D).

state(A,B,A,C,[p(D,E)|F],[A|F]) :- mk(E,C).

state(A,B,C,D,[p(A,B)|E],[A|F]) :- mk(B,[B|D]).

state(A,B,C,D,[p(E,F)|G],[A|H]) :- neg(A,E), succ(F,B), mk(B,[B|D]).

We asked Progol to learn the definition of predicate state for ABP as we did for SCP.
The first clause partially extracts the characteristics of State Pattern 1 shown in Fig. 9.
The second clause partially extracts the characteristics of State Pattern 6. The third
clause partially extracts the characteristics of State Pattern 2 and State Pattern 3. The
fourth clause partially extracts the characteristics of State Pattern 2 and State Pattern 3
as well. The fifth clause partially extracts the characteristics of State Pattern 1. The sixth
clause partially extracts the characteristics of State Pattern 6. But, some very important
characteristics on dc and ac cannot be extracted by any clauses learned.

We suspected that we did not use enough background knowledge so that some very
important characteristics on dc and ac could be extracted in the experiment in which the
last set of clauses were learned. The important characteristics on dc is that dc contains at
most one gap such that two adjacent pairs 〈b, i〉 and next(〈b, i〉) appear at most once in
dc, where next(〈b, i〉) = 〈¬b, i + 1〉. We have added two predicates gap0 and gap1 whose
definitions as follows

gap0(P,[]) :- bnpair(P).

gap0(P,[P|T]) :- gap0(P,T).

gap1(P1,[P2,P2|T]) :- next(P2,P1), gap1(P1,[P2|T]).

gap1(P1,[P2|T]) :- next(P2,P1), gap0(P1,T).

Then, the following set of clauses have been learned by Progol in Experiment 10:

55

state(A,B,C,D,[p(A,B)|E],[A|F]) :- neg(A,C), gap0(p(A,B),E).

state(A,B,C,D,[p(A,B)|E],[C|F]) :- mk(B,D), gap0(p(A,B),E).

state(A,B,A,C,[p(D,E)|F],[A|G]) :- neg(A,D), succ(E,B), mk(B,[B|C]),

gap1(p(A,B),F).

state(A,B,A,C,[p(A,B)|D],[A|E]) :- mk(B,[B|C]), gap0(p(A,B),D).

The third clause more precisely extracts the characteristics of State Pattern 6 showing
in Fig. 9, including the important characteristics of dc. Since the third clause is the
only one in which gap1(p(A,B), F) holds, we can conjecture a lemma from this clause.
gap1(p(A,B), F) can be rephrased as follows: dc = ps1@(p1, p2, ps2) ∧ p1 6= p2 ∧ (p3 ∈
ps1⇒ p3 = p1)∧ (p4 ∈ ps4⇒ p4 = p2), where @ is the concatenation function of queues.
Therefore, we can conjecture the following:

(dc = ps1@(p1, p2, ps2) ∧ p1 6= p2 ∧ (p3 ∈ ps1⇒ p3 = p1)∧
(p4 ∈ ps4⇒ p4 = p2))⇒ (p2 = 〈sb, d〉 ∧ buf = d− 1, . . . , 0)

This lemma is very useful to prove that ABP enjoys the reliable communication protocol.
Honestly speaking, it is not easy to systematically come up with gap0 and gap1 from

the formal specification of ABP. This has something to do with what is called Predicate
Invention [?]. It is one piece of our future work to systematically discover some predicate,
such as gap0 and gap1 that do not explicitly appear in formal specifications. We anticipate
that Meta-interpretive learning and its implementation Metagol [?] will help us do so.

56

5 Conclusion

5.1 Summary

Interactive Theorem Proving is a formal method technique using to check if a system
is satisfied some expected properties such that the system’s implementation can adapt
to many criterions in which there is no any undesirable things happening during its
execution. Such undesirable things may cause many critical problems such as loss of life,
money and cost so much time to recover. One of the most intellectual activities in ITP is
Lemma Conjecture, which usually requires human users interactive with the system under
verification with respected to the understanding of not only the system behaviours but also
the proof problems. To obtain such understanding, the users must to rely on some reliable
sources. From our experience, one possible source we can rely on is the set of reachable
states of a state machine of the system. The correlations among of the reachable states are
called characteristics of the reachable states. Such characteristics are expressed in some
system properties which we are proving. Note that if we just arbitrarily choose some states
and some finite execution paths starting with those chosen states, the characteristics may
not be useful to Lemma Conjecture. We need to consider to a number of reachable states
as large (may be infinite) as possible. However, human beings is not able to tackle such
task. Fortunately, acquiring knowledge/patterns from such big database is the task of
machine learning. Our project is a consideration of a application of machine learning to
Interactive Theorem Proving, in which the problem instances are reachable states and the
knowledge we want to obtain is the characteristics of reachable states. Because the data
representation in most of traditional machine learning techniques is propositional logic
but our system specifications are based on first order logic, this requires a way to convert
between two kinds of representations. This is a non-trivial task for a way converting from
first order logic terms to propositional ones. To deal such representation problem, we
introduce Inductive Logic Programming, a research area stayed at intersection of machine
learning and logic programming. This machine learning technique treats the database in
form of first order logic and it has been developing many approach to deal with first-order
representation.

We have conducted a framework which is a combination of tools used such that YAST
and Maude are used to generate reachable states from a CafeOBJ system specification.
However, Progol accepts only input in form of Horn clauses, we needs to convert YAST’s
output to a set of facts in which each fact is a Prolog clause without body. This step
can process automatically by writing a convert program but we must to manually convert
from the definitions of a specification to a set of Prolog clauses using as the background
knowledge. Although Prolog and CafeOBJ shares the essential first order logic, they
are different on syntaxes and implementation, we needs manually convert them and/or
explicitly some basic definitions which automatically importing to CafeOBJ. Our frame-
work requires the input prepared in advance. In order words, we consider not only to the
conversion to get background knowledge and database but also to limitation of resource
computation of Progol, we needs to explicitly describe the parameters for the option.

57

Moreover, to optimize the computation we need to give some constraints for some types
of data such as its instance’s size. In general, our framework still partially replies on
human user for the purpose.

To demonstrate our framework for the task of characterizing reachable states of a state
machine of a verifying system, we have reported on case studies in which Progol has been
mainly used to extract the characteristics of the reachable states of MSCP and MABP.
We have compared them with the state patterns we had manually learned from our ITP
experiences for SCP and ABP. We have not formally proved that the four and six state
patterns exactly cover all reachable states of MSCP and MABP, respectively. But, our
experiences on conjecturing lemmas based on the state patterns say that they are most
likely to do so and very useful for lemma conjecture. It would be possible to generate
different state patterns by combining and dividing those state patterns. From a lemma
conjecture point of view, however, the four and six state patterns for SCP and APB are
very useful. The learned hypotheses (a set of clauses) for SCP is very close to the four
state patterns if not exactly the same. If gap0 and gap1 are used, the learned hypotheses
for ABP is also close to the six state patterns. Otherwise, the learned hypotheses for
ABP do not capture the important characteristics on dc appearing in State Pattern 6.
We have also described how to conjecture lemmas based on the learned hypotheses. This
demonstrate that our approach is likely to be promising for lemma conjecture.

In general, our framework has characterized all characteristics of SCP such that its
verification can be completed by providing such obtained characteristics to the users,
making them understand precisely SCP’s state machine and be possible to conjecture
some useful lemmas. But for the case of ABP, it is more complex than ABP because of the
unbounded channels, the framework cannot characterize some important characteristics
for the verification with respected to the current background knowledge provided by its
CafeOBJ system specification as mentioned above. Honestly, we have also conducted
several other experiments for several systems other than ABP and SCP. But their are
the toy case studies such that we have already done their verifications and be able to
compare the obtained characteristics with our conjectured lemmas. We need to do the task
of characterization with our framework with more complex systems such as distributed
systems, network protocol. But, with the result we obtained and the framework we are
using, we can conclude that Machine Learning can be apply to some non-trivial tasks of
Interactive Theorem Proving such as Lemma Conjecture.

5.2 Related Work

ML has been used to find lemmas in ACL2 [6]. Their tool can calculate the similarity
between the current proof and other proofs in a given proof library containing many
existing proofs that have already been proved. Their tool finds an existing proof whose
structure is most likely to be similar to that of the current proof, and proposes lemmas
for the current proof that are constructed from the lemmas used for the existing proof.

ILP has been successfully integrated with model checking [18]. Although a model
checker systematically finds a counterexample demonstrating that a system specification
(or a model) does not enjoy a property, human users are supposed to revise the system

58

specification so that the revised version can enjoy the property. They propose a way to
systematically conduct such a revision for the system specification with an ILP system
that uses a counterexample found by a model checker as a negative example, a witness
constructed according to the property concerned as a positive example, and a system
specification as the background knowledge.

Our way to use an ILP system is different from the two above mentioned studies.
Our learning task is considered to characterize reachable states of a state machine, in
other words, extract some patterns from reachable states, we do not require to prepare
any existing database in advance such as ACL2, our database is generated on-the-fly
from a system specification. And our learning task relates to classification problem of
Machine Learning such that the pattern obtained can let us know whether if a system
state is reachable. The integration with model checking in [18] so relates to one of the
most intellectual activities in ITP, that is writing a system specification such that some
results can be derived by a proof system or a theorem prover such as CafeOBJ. But our
project motivation is related to lemma conjecturing, this step is usually required during
a verification with respected to a sufficient system specification.

There are many researches which have been conducted for the purpose of conjecturing
lemmas. Some of them uses the concept of fixed point computation. Since the fixed point
computation is an undecidable, these researches have been tried to compute the approx-
imate ones, e.g. Creme [8]’s method using as lemmas state predicates whose invariant
proofs may not be completed. The reachable states of a state machine is also considered
for generating and strengthening invariants by Tiwari et al. [27] based on computing
under- and over-approximations of the reachable state. The bottom-up method, which
performs an abstract forward propagation to compute the set of all reachable configura-
tions, is used to compute under-approximation, and the top-down method, which starts
from an invariant candidate and performs an abstract backward propagation to compute
a strengthened invariant, is used to compute over-approximation.

There are a inductive theorem prover which supports some form of automated lemma
discovery such as ACL2 [6] using a top-down approach by which lemmas are discovered
from failed proof-attempts. ACL’s method is considered to a provided existing proof
set in which it will calculate the similarity of the current proof with some proofs in the
set by a machine learning technique, named clustering. Then it picks the most similar
one’s lemmas to calculate lemmas to the current proof by randomly generating terms
based on its structure. There a another theorem prover which also supports to automate
lemma discovery that is HipSpec [5], but it implemented a bottom-up theory exploration
approach. HipSpec automatically tries to discover a background theory for the relevant
functions, building up something like the human-create lemma libraries available for in-
teractive provers such as ACL2.

The approaches of Tiwari et al., Creme and HipSpec are symbolic methods whose
limitation are slow on large inputs due to the increase in the search space by deduction
inferences, usually rely on having access to good counter-example finders for filtering of
candidate conjectures. In our case, the approach is also related to a search space but the
search space are bounded by a most specific clause generated by Mode-directed inverse

59

entailment implemented by Progol. The approach also reply on the deduction theory in
logic since the data representation in form of first-order logic but it is combined with many
machine learning approach such as statistic or probabilistic for the purpose of learning
from data. Moreover, the most advantage of our machine learning approach is dealing
with a big number of data since a set of reachable states may be infinite.

5.3 Future Work

We have proposed a approach using ILP, a machine learning technique suited for learning
data in form of first-order logic, to characterize reachable states of a state machine such
that the state machine is used in a verification of ITP. The obtained characteristics in form
of Horn-clause are compared with State Patterns in form of series pictures we were used
in completed verifications. The comparison opens many future works for the application
of machine learning into ITP in which ILP is the main approach since the essence of
ITP is logic programming. In general, we consider to two main targets related to two
most intellectual activities in ITP has been mentioned, they are Lemma Conjecturing
and System Specifying.

Lemma Conjecturing is our current target, but we have not archived. There are many
ways to Conjecture Lemma which are related to Invariant Generation and our approach
is also. But, relied on our experience during the process of verification in ITP, we focus
on reachable states of a state machine. If we can understand the reachable states in some
extent with respected to the proof targets, we are able to conjecture some non-trivial
lemma, hopefully, they are useful to discharge our undischarged proofs. In practical, the
understanding can be improved by the characteristics of reachable states. In our exper-
iments, we have obtained the characteristics in form of clausal logic clauses. However,
the experiments with ABP, some important characteristics can not be obtained without a
suitable background knowledge, that means the current background knowledge provided
by ABP’s system specification is quite ’weak’ for an ILP learning task. This has been
show when we improve the background knowledge with two predicate gap0 and gap1. It
is not trivial to come up with such predicates because they do not explicitly appear in
an equational specification written in CafeOBJ. It is called predicate invention to come
up with new predicates from a program or specification in which those predicates are not
explicitly used. Metagol has implemented a mechanism with which predicate invention is
doable. One piece of our future work is to come up with a method in which Metagol is
mainly used to invent new predicates, such as gap0 and gap1. We need to conduct more
case studies in which our approach is applied to other protocols and algorithms, such as
Paxos and the Chandy-Lamport snapshot algorithm. Another piece of our future work is
to come up with how to select the best one among several sets of learned axioms without
knowing any oracles in advance and/or how to integrate multiple sets of learned axioms
so as to obtain a better one.

Assuming that we already proposed a characterization method that can be applied to
a wide-range system in which the user can systematically conjecture some lemmas, which
are useful to discharge some induction cases/subcases of a verification. We can come up
to Design/Implement a new ILP system on top of Maude. While our system specifica-

60

tions are written by CafeOBJ language with equational theory, mainly replied on pattern
matching, Progol or Metagol use Prolog as a language to represent its data such that Pro-
log usually applies resolution in its proofs. Therefore, we need to convert from CafeOBJ
language to Prolog for the learning task. Then, after the learning task, the clauses ex-
tracted may be need to convert back to CafeOBJ language if the characteristics they ex-
pressed can be used as a lemmas for induction cases/induction cases on CafeOBJ system.
This difference and the back and forward translation costs the computation resources and
some features belong to each underlying theory may be not guaranteed. Moreover, since
Maude language is a sibling language of CafeOBJ language, its translation between them
is guarantee. Furthermore, Maude is equipped with unification that generalizes pattern
matching. Hence, resolution can be implemented on top of Maude. And Maude admits
associative and commutative reduction with unification as well as pattern matching. But,
there is not any implementation of Prolog that admits associative and commutative res-
olution. So, an ILP system that admits associative and commutative resolution may be
implemented on top of Maude. Specifications of distributed systems in Maude often use
associative and commutative data structures. Therefore, to capture the characteristics of
specifications of distributed systems in Maude, an ILP system that admits associative and
commutative resolution. The new ILP system accepts a CafeOBJ/Maude system specifi-
cation as an input, and then each components of an ILP learning task will be generated.
We do not need to manually convert Background Knowledge as current Research Status
since all clauses in Background knowledge are written in Maude language. And reachable
states will be automatically generated by search command and prepare in advance.

In other words, one possible our target is to design and implement a new ILP system
based on order-sorted equational/rewriting logic. First, we need come up with a method to
precisely characterize reachable states of a state machine. One possible target is Predicate
Invention with the new ILP system, Metagol. When we successfully adapt to the task of
characterization, a new ILP system can be designed and implemented on top of Maude
since our ultimate goal is conjecture lemmas for a verification on CafeOBJ. The new
system will take the advantage of resource computation and optimize the learning process
with some theory provide by Maude such as associative and commutative resolution. To
archive this goal, we require a basic understanding ML and logic programming. Especially,
we need to adapt to the most achievements not only ILP but also Theorem Proving,
especially ITP on CafeOBJ and Maude. The new ILP system requires us a good skill at
meta-programming to build an application on top of Maude.

System Specifying activity also requires human interaction in ITP such that the users
must understand system requirements in some extent and then come up with a way to
specify system’s state machine in a specification language, e.g. CafeOBJ, Maude, etc. such
that it is suitable for a verification of a ITP prover. As mentioned on Section Related
Work, there is an approach to this target [18] but it is related to Model Checking, as
same as ITP, also Formal verification but it is a model-based approach. This approach
uses a model checker to generate each essential component for an ILP learning, then
correcting the current system specification iteratively. Let consider to ITP, we also need
to specify each essential component for an ILP learning task with ones in ITP. Honestly,

61

we are considering the problem but this is an interesting application for our future work.
If we have a correct system specification, which means that we may have a suitable
system specification to generate a suitable background knowledge for purpose of Lemma
Conjecturing.

62

References

[1] R. Diaconescu, K. Futatsugi, CafeOBJ Report, World Scientific, 1998

[2] C. Bishop Pattern Recognition and Machine Learning , Information Science and
Statistics, 1st edition, 2006

[3] L. De Readt Logical and Relational Learning, Springer, 2008

[4] A. Ireland, A. Bundy, Productive use of failure in inductive proof JAR 16 (1996)
79-111

[5] K. Claessen, M. Johansson, D. Rosen, N. Smallbone, Automating inductive proofs
using theory exploration. In: CADE-24. LNCS 7898 (2013) 392-406

[6] J. Heras, E. Komendantskaya, M. Johansson, E. Maclean, Proof-pattern recognition
and lemma discovery in ACL2. In: LPAR-19. LNCS 8312 (2013) 389-406

[7] E. Komendantskaya, J. Heras, G. Grov, Machine learning in proof general: Interfac-
ing interfaces. In: UITP. EPTCS 118 (2013) 15-41

[8] M. Nakano, K. Ogata, M. Nakamura, K. Futatsugi, Creme: An automatic invariant
prover of behavioral specifications. IJSEKE 17 (2007) 783-804

[9] S. Muggleton, L. De Raedt, Inductive logic programming: Theory and methods, The
Journal of Logic Programming 19, 629-679

[10] K. Ogata, K. Futatsugi, Proof scores in the OTS/CafeOBJ method, FMOODS’03,
LNCS 2884,pp.170-184,Springer,2003

[11] K. Ogata, K. Futatsugi, Some tips on writing proof scores in the OTS/CafeOBJ
method, Essays Dedicated to Jeseph A. Goguen, LNCS 4060, pp. 596-615, 2006

[12] M. Zhang, K. Ogata, M. Nakamura, Translation of state machines from equational
theories into rewrite theories with tool support. IEICE Transactions 94-D (2011)
976-988

[13] L. De Raedt, Logical and Relational Learning, Springer, 2008

[14] S. Muggleton, Inverse entailment and Progol, New generation computing 13 (3),
1995, 245-286

[15] S Muggleton, Learning from positive data, Inductive logic programming Workshop
1996, 358-376

[16] N. Lynch, Distributed algorithms, Morgan Kaufmann, 1996

[17] F. Clavel,M. Duran, All about Maude, LNCS 4350, Springer, 2007.

63

[18] D. Alrajeh, A. Russo, S. Uchitel, J. Kramer, Integrating model checking and inductive
logic programming, ILP’11, 45–60, (2011).

[19] L. De Readt Attribute-value learning versus inductive logic programming: The miss-
ing links, Volume 1446 of the series Lecture Notes in Computer Science, pp 1-8,
2005

[20] L. Sterling and E. Y. Shapiro, The Art of Prolog, MIT Press, 1986.

[21] T. Richards, Clausal Form Logic an Introduction to the Logic of Computer Reason-
ing, Monograph Collection, 1989.

[22] A. M. Turing, On computable numbers, with an application to the entschei-
dungsproblem, Proc. Lond. Math. Soc., 42(2):230?265, 1936.

[23] M. Sipser, Introduction to the Theory of Computation. Springer-Verlag, 2003

[24] M. Kaufmann and J.S. Moore, Some Key Research Problems in Automated The-
orem Proving for Hardware and SoftwareVerification, Spanish Royal Academy of
Science(RAMSAC), Volume 98, 181?196, 2004

[25] I. Stahl, Predicate invention in ILP - an overview, ECML-93, 313- 322, 1993

[26] S.H. Muggleton, D. Lin and A. Tamaddoni-Nezhad, Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited, Machine Learning, Vol-
ume 100, 49-73, 2015

[27] A. Tiwari, H. Rueb, H. Saidi, and N. Shankar, A technique for invariant generation,
7th TACAS,LNCS 2031, Springer,2001, pp.113-127.

64

Contributions

[1] Tuan Dung Ho, Min Zhang and Kazuhiro Ogata, A Case Study on Extracting the
Characteristics of the Reachable States of a State Machine formalizing a Commu-
nication Protocol with Inductive Logic Programing, (accepted as Long Paper Short
Presentation through Peer Review), 25th International Conference on Inductive Logic
Programming, 2015

[2] Tuan Dung Ho, Min Zhang and Kazuhiro Ogata, An Approach to Application of
Inductive Logic Programming to Characterization of Reachable States, IEICE Tech-
nical Report, Vol. 114, No. 416, ISSN 0913-5685, pp.61-66, 2015

65

Appendices
Progol’s input for SCP experiment

% Settings

% :- set(posonly)?

% :- unset(cover)?

:- set(h,300000)?

:- set(r,4000000)?

:- set(nodes,20000)?

:- set(c,15)?

% :- set(i,5)?

:- set(noise,100)?

% Mode declarations

:- modeh(1,state(+bool,+pnat,+bool,+nlist,c(p(+bool,+pnat)),c(+bool)))?

%:- modeh(1,state(+bool,+pnat,+bool,+nlist,+pcell,+bcell))?

:- modeb(1,neg(+bool,-bool))?

:- modeb(1,succ(+pnat,-pnat))?

:- modeb(1,neg(-bool,+bool))?

:- modeb(1,succ(-pnat,+pnat))?

:- modeb(1,neg(+bool,+bool))?

:- modeb(1,succ(+pnat,+pnat))?

:- modeb(1,mk(+pnat,+nlist))?

:- modeb(1,mk(+pnat,[+pnat|+nlist]))?

:- modeb(1,mk(+pnat,-nlist))?

:- modeb(1,mk(+pnat,[-pnat|-nlist]))?

% Types

pnat(0).

pnat(s(X)) :- pnat(X).

bool(t).

bool(f).

bnpair(p(B,N)) :- bool(B), pnat(N).

66

pcell(c(p(B,N))) :- bool(B), pnat(N).

bcell(c(B)) :- bool(B) .

nlist([]).

nlist([H|T]) :- pnat(H), nlist(T).

% Background knowledge

fst(p(B,N),B) :- bnpair(p(B,N)).

snd(p(B,N),N) :- bnpair(p(B,N)).

neg(f,t).

neg(t,f).

succ(X,s(X)) :- pnat(X).

mk(0,[0]):-!.

mk(s(N),[s(N)|L1]) :- pnat(N), mk(N,L1).

% Examples

[states]?

67

Progol’s input for ABP experiment

% Settings

:- set(posonly)?

% :- unset(cover)?

:- set(h,300000)?

:- set(r,4000000)?

:- set(nodes,20000)?

:- set(c,15)?

% :- set(i,5)?

:- set(noise,100)?

% Mode declarations

:- modeh(1,state(+bool,+pnat,+bool,+nlist,[p(+bool,+pnat)|+pqueue],[+bool|+bqueue]))?

%:- modeh(1,state(+bool,+pnat,+bool,+nlist,+pqueue,+bqueue))?

%:- modeh(1, state(+bool,+pnat,+bool,+nlist,+pqueue,+bqueue))?

%:- modeh(1,state(+bool,+pnat,+bool,+nlist,+pqueue,+bqueue))?

:- modeb(1,neg(+bool,-bool))?

:- modeb(1,succ(+pnat,-pnat))?

:- modeb(1,neg(+bool,+bool))?

:- modeb(1,succ(+pnat,+pnat))?

:- modeb(1,mk(+pnat,+nlist))?

:- modeb(1,mk(+pnat,[+pnat|+nlist]))?

:- modeb(1,mk(+pnat,-nlist))?

:- modeb(1,mk(+pnat,[-pnat|-nlist]))?

:- modeb(*,memberp(p(+bool,+pnat),+pqueue))?

:- modeb(*,memberb(+bool,+bqueue))?

%% :- modeb(1,neg(+bool,-bool))?

%% :- modeb(1,succ(+pnat,-pnat))?

%% :- modeb(1,neg(-bool,+bool))?

%% :- modeb(1,succ(-pnat,+pnat))?

%% :- modeb(1,neg(+bool,+bool))?

%% :- modeb(1,succ(+pnat,+pnat))?

%% :- modeb(*,gap0(p(+bool,+pnat),+pqueue))?

%% :- modeb(*,gap1(p(+bool,+pnat),+pqueue))?

% Types

pnat(0).

68

pnat(s(X)) :- pnat(X).

bool(t).

bool(f).

bnpair(p(B,N)) :- bool(B), pnat(N).

pqueue([]).

pqueue([H|T]) :- bnpair(H), pqueue(T).

bqueue([]).

bqueue([H|T]) :- bool(H), bqueue(T).

nlist([]).

nlist([H|T]) :- pnat(H), nlist(T).

% Background knowledge

fst(p(B,N),B) :- bnpair(p(B,N)).

snd(p(B,N),N) :- bnpair(p(B,N)).

toppqu([H|T], H) :- bnpair(H).

topbqu([H|T], H) :- bool(H).

memberp(A,[A|B]):- bnpair(A),pqueue([A|B]),!.

memberp(A,[B|C]) :- bnpair(A), pqueue([B|C]), memberp(A,C).

memberb(A,[A|B]):- bool(A),bqueue([A|B]),!.

memberb(A,[B|C]) :- bool(A), bqueue([B|C]), memberb(A,C).

neg(f,t).

neg(t,f).

succ(X,s(X)) :- pnat(X).

mk(0,[0]):-!.

mk(s(N),[s(N)|L1]) :- pnat(N), mk(N,L1).

next(p(B1,N),p(B2,s(N))) :- bnpair(p(B1,N)),neg(B1,B2).

gap0(P,[]) :- bnpair(P).

gap0(P,[P|T]) :- bnpair(P), gap0(P,T).

69

gap1(P,[]) :- bnpair(P).

gap1(P1,[P2|T]) :- bnpair(P1),

bnpair(P2), ((P1 \== P2, next(P2,P1), gap1(P1,T)); gap0(P1,T)).

% Examples

[states]?

70

State Pattern Characteristic

Sender Receiver

<f,i>

f

achan

dchan

sb: f

nxt: i

rb: f

buf: i-1, … 0

State Pattern 1

(1) sb = rb
(2) dchan = c(〈b, n〉) ∧ sb = b
(3) dchan = c(〈b, n〉) ∧ rb = b
(4) achan = c(b) ∧ sb = b
(5) achan = c(b) ∧ rb = b
(6) dchan = c(〈b, n〉) ∧ achan = c(b′) ∧ b = b′

(7) dchan = c(〈b, n〉) ∧ nxt = n
(8) mk(nxt) = nxt | buf

Sender Receiver

<f,i>

f

send1

send2

rec2

rec1

achan

dchan

drop1

drop2

sb: f

nxt: i

rb: t

buf: i, … 0

State Pattern 2

(2) dchan = c(〈b, n〉) ∧ sb = b
(4) achan = c(b) ∧ sb = b
(6) dchan = c(〈b, n〉) ∧ achan = c(b′) ∧ b = b′

(7) dchan = c(〈b, n〉) ∧ nxt = n
(9) sb 6= rb
(10) dchan = c(〈b, n〉) ∧ rb 6= b
(11) achan = c(b) ∧ rb 6= b
(12) mk(nxt) = buf

Sender Receiver

<f,i>

t

send1

send2

rec2

rec1

achan

dchan

drop1

drop2

sb: f

nxt: i

rb: t

buf: i, … 0

State Pattern 3

(2) dchan = c(〈b, n〉) ∧ sb = b
(5) achan = c(b) ∧ rb = b
(7) dchan = c(〈b, n〉) ∧ nxt = n
(9) sb 6= rb
(10) dchan = c(〈b, n〉) ∧ rb 6= b
(11) achan = c(b) ∧ rb 6= b
(12) mk(nxt) = buf
(13) dchan = c(〈b, n〉) ∧ achan = c(b′) ∧ b 6= b′

(14) achan = c(b) ∧ sb 6= b

Sender Receiver

<f,i>

t

send1

send2

rec2

rec1

achan

dchan

drop1

drop2

sb: t

nxt: i+1

rb: t

buf: i, … 0

State Pattern 4

(1) sb = rb
(4) achan = c(b) ∧ sb = b
(5) achan = c(b) ∧ rb = b
(8) mk(nxt) = nxt | buf
(10) dchan = c(〈b, n〉) ∧ rb 6= b
(13) dchan = c(〈b, n〉) ∧ achan = c(b′) ∧ b 6= b′

(15) dchan = c(〈b, n〉) ∧ sb 6= b
(16) dchan = c(〈b, n〉) ∧ nxt 6= n

Table 1: Characteristics captured by the four state pattern in Figure 8.

71

State Pattern Characteristic

<f,i> … <f,i>

ReceiverSender

sb: f

nxt: i

rb: f

buf: i-1, …

dchan

achan

State pattern 1

f … f

(1) sb = rb
(2) dchan = (〈b, n〉 | q) ∧ sb = b
(3) dchan = (〈b, n〉 | q) ∧ rb = b
(4) achan = (b | q) ∧ sb = b
(5) achan = (b | q) ∧ rb = b
(6) dchan = (〈b, n〉 | q) ∧ achan = b′ | q′ ∧ b = b′

(7) dchan = (〈b, n〉 | q) ∧ nxt = n
(8) mk(nxt) = nxt | buf
(9) 〈b, n〉 ∈ dchan ∧ 〈b′, n′〉 ∈ dchan ∧ b = b′ ∧ n = n′

(10) b ∈ achan ∧ b′ ∈ achan ∧ b = b′

(11) 〈sb, nxt〉 ∈ dchan
(12) sb ∈ achan
(13) rb ∈ achan

<f,i> … <f,i>

ReceiverSender

sb: f

nxt: i

rb: t

buf: i, i -1, …

dchan

achan

State Pattern 2

f … f

(2) dchan = (〈b, n〉 | q) ∧ sb = b
(4) achan = (b | q) ∧ sb = b
(6) dchan = (〈b, n〉 | q) ∧ achan = b′ | q′ ∧ b = b′

(7) dchan = (〈b, n〉 | q) ∧ nxt = n
(9) 〈b, n〉 ∈ dchan ∧ 〈b′, n′〉 ∈ dchan ∧ b = b′ ∧ n = n′

(10) b ∈ achan ∧ b′ ∈ achan ∧ b = b′

(11) 〈sb, nxt〉 ∈ dchan
(12) sb ∈ achan
(14) sb 6= rb
(15) dchan = (〈b, n〉 | q) ∧ rb 6= b
(16) achan = (b | q) ∧ rb 6= b
(17) mk(nxt) = buf
(18) rb 6∈ achan

<f,i> … <f,i>

ReceiverSender

sb: f

nxt: i

rb: t

buf: i, i-1, …

dchan

achan

State Pattern 3

f … f t … t

(2) dchan = (〈b, n〉 | q) ∧ sb = b
(4) achan = (b | q) ∧ sb = b
(6) dchan = (〈b, n〉 | q) ∧ achan = b′ | q′ ∧ b = b′

(7) dchan = (〈b, n〉 | q) ∧ nxt = n
(9) 〈b, n〉 ∈ dchan ∧ 〈b′, n′〉 ∈ dchan ∧ b = b′ ∧ n = n′

(11) 〈sb, nxt〉 ∈ dchan
(12) sb ∈ achan
(13) rb ∈ achan
(14) sb 6= rb
(15) dchan = (〈b, n〉 | q) ∧ rb 6= b
(16) achan = (b | q) ∧ rb 6= b
(17) mk(nxt) = buf
(19) b ∈ achan ∧ b′ ∈ achan ∧ (b = b′ ∨ b 6= b′)
(20) achan = (q1@q2) ∧ q1 = (b | q) ∧ q2 = (b′ | q′)

∧b 6= b′ ∧ b 6∈ q2 ∧ b′ 6∈ q1

Table 2: Characteristics captured by the four state pattern in Figure 9.

72

State Pattern Characteristic

<f,i> … <f,i>

ReceiverSender

sb: f

nxt: i

rb: t

buf: i, i-1, …

dchan

achan

State Pattern 4

f … f

(2) dchan = (〈b, n〉 | q) ∧ sb = b
(4) achan = (b | q) ∧ sb = b
(6) dchan = (〈b, n〉 | q) ∧ achan = b′ | q′ ∧ b = b′

(7) dchan = (〈b, n〉 | q) ∧ nxt = n
(9) 〈b, n〉 ∈ dchan ∧ 〈b′, n′〉 ∈ dchan ∧ b = b′ ∧ n = n′

(10) b ∈ achan ∧ b′ ∈ achan ∧ b = b′

(11) 〈sb, nxt〉 ∈ dchan
(13) rb ∈ achan
(14) sb 6= rb
(15) dchan = (〈b, n〉 | q) ∧ rb 6= b
(17) mk(nxt) = buf
(21) achan = (b | q) ∧ rb = b
(22) dchan = (〈b, n〉 | q) ∧ achan = (b′ | q′) ∧ b 6= b′

(23) sb 6∈ achan

<f,i> … <f,i>

ReceiverSender

sb: t

nxt: i+1

rb: t

buf: i, i-1,…

dchan

achan

State Pattern 5

t … t

(24) dchan = (〈b, n〉 | q) ∧ sb 6= b
(4) achan = (b | q) ∧ sb = b
(5) achan = (b | q) ∧ rb = b
(6) dchan = (〈b, n〉 | q) ∧ achan = b′ | q′ ∧ b = b′

(25) dchan = (〈b, n〉 | q) ∧ nxt 6= n
(9) 〈b, n〉 ∈ dchan ∧ 〈b′, n′〉 ∈ dchan ∧ b = b′ ∧ n = n′

(26) 〈sb, nxt〉 6∈ dchan
(12) sb ∈ achan
(13) rb ∈ achan
(1) sb = rb
(8) mk(nxt) = nxt | buf

 <t,i+1> … <t,i+1> <f,i> … <f,i>

ReceiverSender

sb: t

nxt: i+1

rb: t

buf: i, i-1, …

dchan

achan

State Pattern 6

t … t

(24) dchan = (〈b, n〉 | q) ∧ sb 6= b
(4) achan = (b | q) ∧ sb = b
(5) achan = (b | q) ∧ rb = b
(6) dchan = (〈b, n〉 | q) ∧ achan = b′ | q′ ∧ b = b′

(25) dchan = (〈b, n〉 | q) ∧ nxt 6= n
(9) 〈b, n〉 ∈ dchan ∧ 〈b′, n′〉 ∈ dchan ∧ b = b′ ∧ n = n′

(11) 〈sb, nxt〉 ∈ dchan
(12) sb ∈ achan
(13) rb ∈ achan
(1) sb = rb
(8) mk(nxt) = nxt | buf
(27) 〈b, n〉 ∈ dchan ∧ 〈b′, n′〉 ∈ dchan∧

∧((b = b′ ∧ n = n′) ∨ (b 6= b′ ∧ n 6= n′))
(28) dc = (q1@q2) ∧ 〈b, n〉 ∈ q1 ∧ 〈b′, n′〉 ∈ q2

∧b 6= b′ ∧ (n+ 1) = n′ ∧ 〈b, n〉 6∈ q2 ∧ 〈b′, n′〉 6∈ q1)

Table 3: Characteristics captured by the four state pattern in Figure 9. (cont.)

73

	Introduction
	Outline of the Report
	Bibliographical Note
	Acknowledgement

	Preliminaries
	Systems Verification
	Formal Verification
	Interactive Theorem Proving

	Algebraic Formal Methods with CafeOBJ
	Overview
	Specification and Verification of TAS - A mutual exclusion Protocol
	Observational Transition Systems
	Specification
	Verification

	Inductive Logic Programming (ILP)
	The ILP learning task
	Mode-Directed Inverse Entailment and Progol

	The Framework of Tools used
	Data Collection
	Data Tranformation
	Learning
	Framework of Assessment

	Application
	Specification and Verification of Communication Protocols
	Simple Communication Protocol
	Alternating Bit Protocol

	Experiments on ILP
	Characterizing MSCP
	Background knowledge B
	Positive Examples E+
	Mode Declarations and Settings
	Experiments
	Evaluation

	Characterizing MABP
	Background knowledge B
	Positive Examples E+
	Mode Declarations and Settings
	Experiments
	Evaluation

	Conclusion
	Summary
	Related Work
	Future Work

	References
	Contributions
	Appendices

