
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
特定アプリケーションのためのRTOSの最適化に関する

研究

Author(s) LI, JIN

Citation

Issue Date 2016-06

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13654

Rights

Description Supervisor:田中　清史, 情報科学研究科, 修士



A Study of Optimization of RTOS for Individual Applications

LI JIN(1310206)

School of Information Science

Japan Advanced Institute of Science and Technology

May 19, 2016

キーワード: RTOS, system call, optimization, embedded system, error checking,

locking .

• Introduction

Nowadays, RTOS is widely used in the development field of embedded systems. By

using RTOS, the efficiency of resource management and real time processing can

be easily guaranteed. However, the functions of RTOS are fixed and a lot of RTOS

functions are unnecessary for the developing of target applications. Therefore, this

may affect the system overhead and binary file size. Since RTOS is assumed to be

used in all kinds of embedded systems, various error checking codes are included for

executing applications. Error checking for illegal use of ID numbers, non-existing

objects, and using of unauthorized parameters are examples. The error checking is

performed during runtime, hence execution overhead may happen. In general, most

embedded systems are specially designed for specific applications. Therefore, not

all of the provided RTOS error checking are required for particular applications.

Thus, by removing the extra error check codes irrelevant to that specific application

the execution overhead and the size of binary codes can be reduced significantly.

In addition, some system calls could be requested at the same time from multiple

tasks. In order to guarantee the consistency of data, the locking mechanisms in

system calls are used. However, in some applications, it is not necessary to provide

such exclusive access to kernel data. In the same manner as described above, it

would be effective to remove the locking codes on the place where locking would

not be required. In this research, a new method is proposed for automatic removal

of unnecessary checking and locking codes, based on the application code analysis

results. By using the proposed method, the system developers can optimize the

embedded systems automatically. Finally, evaluation of the proposed methods is

presented to illustrate the effectiveness of the proposed methods. The evaluation

Copyright c⃝ 2016 by LI JIN

1



showed the importance of such RTOS optimization that can greatly help in future

development of embedded systems.

• Proposed Method

In this research, the application source code will be analyzed, and the methods to

detect the unnecessary error code checking by system calls will be implemented.

Then, the necessity of the error check codes will be determined and the required

ones will be stored in a header file named“ define.h”. Depending on the values

written in the header file, the error checking codes within the system calls can be

removed. In the next step, a method to detect unnecessary locking done by the

system calls is proposed. Based on the analysis results of the application source

code, after checking if the locking code is necessary or not, the results will be

recorded in another header file named“ define2.h”. Similarly, depending on the

values written in the header file, the locking codes within the system calls can be

removed.

• Evaluation

The proposed system is implemented and evaluated via a simulation. A set of tasks

is created to be executed by the system. In order to evaluate its performance, size

and execution time of the binary code as well as the number of executed instructions

will be recorded. During the experiment, removal of the error checking codes from

the target system call has reduced the average binary size by 16.88%. Average

runtime was lowered by 10.46%, as well the average number of executed instructions

which was reduced by 9.46%. The average size of the binary code after the removal

of the lock code was reduced by 6.84%. Runtime was reduced by 28.51% on average

whilst the average number of executed instructions was reduced by 35.21%.

• Conclusion

In this research, a method to automatically remove the unnecessary codes from the

system calls was proposed, based on the results of the application code analysis. In

the evaluation results, it was shown that this method can reduce the execution over-

head and binary size. By analyzing the source code of the application task-set, the

method detects unnecessary error checking codes in system calls. The necessity of

error checking related to system calls was determined by symbolic constant analysis

and operands. In addition, the analysis of actual possible conflicts in-between tasks

determines the necessity of utilizing locking mechanisms. The proposed methods

work inputting the system/application implementation source codes. The system

2



calls from which unnecessary error checking and locking codes are removed, are the

output of the proposed methods. An implemented task-set is used to evaluate the

performance of the proposed methods.

3


