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A Reliably Weighted Collaborative Filtering System

Van-Doan Nguyen, Van-Nam Huynh

Japan Advanced Institute of Science and Technology (JAIST), Japan.

Abstract. In this paper, we develop a reliably weighted collaborative filtering
system that first tries to predict all unprovided rating data by employing context
information, and then exploits both predicted and provided rating data for gener-
ating suitable recommendations. Since the predicted rating data are not a hundred
percent accurate, they are weighted weaker than the provided rating data when
integrating both these kinds of rating data into the recommendation process. In
order to flexibly represent rating data, Dempster-Shafer (DS) theory is used for
data modelling in the system. The experimental results indicate that assigning
weights to rating data is capable of improving the performance of the system.

1 Introduction

Research on collaborative filtering systems (CFSs) has focused on the sparsity prob-
lem, which is that the total number of items and users is very large while each user
only rates a small number of items. The challenge in this problem is how to generate
good recommendations when a small number of provided rating data is available. Until
now, various methods have been developed for overcoming the problem. In [14], the
author introduced a method that employs additional information about the users, e.g.
gender, age, education, interests, or other available information that can help to classify
users. Recently, Matrix Factorization methods [8, 10, 15, 18] have become well-known
for combining good scalability with predictive accuracy; but they are not capable of
tackling the data imperfection issue caused by some level of impreciseness and/or un-
certainty in the measurements [9]. In [19], the authors proposed a new method that not
only models rating data by using DS theory but also exploits context information of
users for generating unprovided rating data. Further to the method developed in [19],
the method in [12] employs community context information extracted from the social
network for generating unprovided rating data. However, the methods in both [19] and
[12] consider the role of the predicted rating data to be normally the same as that of the
provided rating data, and they are not capable of predicting all unprovided rating data
(see Example 1 in Section 4). In this paper, these two limitations will be overcome.

Additionally, over the years, management of data imperfection has become increas-
ingly important; however, the existing recommendation techniques are rarely capable
of dealing with this challenge [19]. So far, a number of mathematical theories have been
developed for representing data imperfection, such as probability theory [4], fuzzy set
theory [20], possibility theory [21], rough set theory [13], DS theory [3, 16]. Most of
these approaches are capable of representing a specific aspect of data imperfection [9].
Importantly, among these, DS theory is considered to be the most general one in which
different kinds of uncertainty can be represented [7, 19].



For CFSs, DS theory provides a flexible method for modeling information without
requiring a probability to be assigned to each element in a set [11]. It is worth to know
that different users can have different evaluations on the same item in that users’ pref-
erences are subjective and qualitative. Additionally, the existing recommender systems
usually provide rating domains representing as finite sets, denoted by Θ={θ1,θ2,...,θL},
where θi < θj whenever i < j; these systems only allow users to evaluate an item as
a hard rating value, known as a singleton, θi ∈ Θ. However, in some cases, users need
to rate an item as a soft rating value, also referred to as a composite, representing by
A ⊆ Θ. For example, according to some aspects, a user intends to rate an item as θi,
but regarding other aspects, the user would like to rate the item as θi+1; in this case, it is
better to use a soft rating value as a setA = {θi, θi+1}. With DS theory, rating entries in
the rating matrix can be represented as soft rating values. Besides, this theory supports
not only modeling missing data by the vacuous mass structure but also generating both
hard as well as soft decisions; here, hard and soft decisions can be known as the recom-
mendations presented by singletons and composites, respectively. Specially, regarding
DS theory, some pieces of evidence can be combined easily by using Dempster’s rule
of combination to form more valuable evidence. Under such an observation, DS theory
is selected for modeling rating data in our system.

In short, the system in this paper is developed for not only dealing with the sparsity
problem, but also overcoming the data imperfection issue. The main contributions of
the paper include (1) a new method of computing user-user similarities which considers
the significant role of the provided rating data to be higher than that of the predicted
rating data, and (2) a solution for predicting all unprovided rating data using context
information.

The remainder of the paper is organized as follows. In the next section, background
information about DS theory is provided. Then, details of the methodology are de-
scribed. After that, system implementation and discussions are represented. Finally,
conclusions are illustrated in the last section.

2 Dempster-Shafer Theory

Let us consider that a problem domain is represented by a finite set, denoted as Θ =
{θ1, θ2, ..., θL}, of mutually exclusive and exhaustive hypotheses, called frame of dis-
cernment [16]. A mass function, or basic probability assignment (BPA), m : 2Θ →
[0, 1] is the one satisfying m(∅) = 0 and

∑
A⊆Θ

m(A) = 1, where 2Θ is the power set of

Θ. The mass function m is called to be vacuous if m(Θ) = 1 and ∀A ⊂ Θ, m(A) = 0.
A subset A ⊆ Θ with m(A) > 0 is called a focal element of m, and the set of all
focal elements is called the focal set. If a source of information providing a mass func-
tion m has probability δ ∈ [0, 1] of trust, the discounting operation is used for creating
new mass function mδ , which takes this reliable probability into account. Formally, for
A ⊂ Θ, mδ(A) = δ ×m(A); and mδ(Θ) = δ ×m(Θ) + (1− δ).

Two evidential functions, known as belief and plausibility functions, are derived
from the mass functionm. The belief function onΘ is defined as a mappingBl : 2Θ →
[0, 1], whereA ⊆ Θ,Bl(A) =

∑
B⊆A

m(B); and the plausibility function onΘ is defined



Fig. 1. The context information influencing on users and items
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as mapping Pl : 2Θ → [0, 1], where Pl(A) = 1 − Bl(Ā). A probability distribution
Pr satisfying Bl(A) ≤ Pr(A) ≤ Pl(A),∀A ⊆ Θ is said to be compatible with the
mass function m; and the pignistic probability distribution [17], denoted by Bp, is a
typical one represented as Bp(θi) =

∑
{A⊆Θ|θi∈A}

m(A)
|A| . Additionally, a useful operation

that plays an important role in the forming of two pieces of evidence into a single one
is Dempster’s rule of combination. Formally, this operation is used for aggregation of
two mass function m1 and m2, denoted by m = m1 ⊕m2, in the following

m(A) = 1
1−K

∑
{C,D⊆Θ|C∩D=A}

m1(C)×m2(D),

where K=
∑

{C,D⊆Θ|C∩D=∅}
m1(C)×m2(D) 6= 0, and K represents the basic probability

mass associated with conflict.

3 Methodology

3.1 Data Modeling

Let U = {U1, U2, ..., UM} be the set of all users and let I = {I1, I2, ..., IN} be the
set of all items. Each user rating is defined as a preference mass function spanning
over a finite, rank-order set of L preference labels Θ = {θ1, θ2 ..., θL}, where θi < θj
whenever i < j. The evaluations of all users are represented by a DS rating matrix
created asR = {ri,k}, where i = 1,M , k = 1, N . For a provided rating entry regarding
the evaluation of a user Ui on an item Ik, ri,k = mi,k, with

∑
A⊆Θ

mi,k(A) = 1. Each

unprovided rating entry is assigned the vacuous mass function; that means ri,k = mi,k,
with mi,k(Θ) = 1 and ∀A ⊂ Θ, mi,k(A) = 0. All items rated by a user Ui, and all
users rated an item Ik are denoted by IRi = {Il | ri,l 6= vacuous}, and URk = {Ul |
rl,k 6= vacuous}, respectively.

3.2 Predicting Unprovided Rating Data

As mentioned earlier, each unprovided rating entry in the rating matrix is modeled
by the vacuous mass function. It can be seen that this function has high uncertainty.
Thus, context information from different sources is used for the purpose of reducing
the uncertainty introduced by the vacuous representation [19]. Here, context informa-
tion, denoted by C, is considered the concept for grouping users. Let us consider a



movie recommender system. In this system, characteristics such as user gender, user
occupation, movie genre can be considered concepts because they may have signifi-
cantly influenced user ratings. Each concept can consist of a number of groups, e.g. the
movie genre might contain some groups such as drama, comedy, action, mystery, hor-
ror, animation. We assume that, in our system, there are P characteristics considered as
concepts, and each concept Cp ∈ C, consists of Qp groups [12, 19], as shown in Fig. 1.
Formally, the context information can be represented as follows

C = {C1, C2, ..., CP };Cp = {Gp,1, Gp,2, ..., Gp,Qp}, where p = 1, P .

Simultaneously, a user Ui as well as an item Ik may belong to multiple groups from
the same concept. For each Cp ∈ C, the groups in which a user Ui is interested are
identified by the mapping functions fp : U → 2Cp : Ui 7→ fp(Ui) ⊆ Cp; and the
groups to which an item Ik belongs are determined by the mapping function gp : I →
2Cp : Ik 7→ gp(Ik) ⊆ Cp, where 2Cp is the power set of Cp.

We also assume that the users belonging to a group can be expected to possess
similar preferences. Based on this assumption, the unprovided rating entries are gen-
erated. For a concept Cp ∈ C, let us consider an item Ik, the overall group preference
of this item on each Gp,q ∈ gp(Ik), with q = 1, Qp, is defined by the mass function
Gmp,q,k : 2Θ → [0, 1]. This mass function is calculated by combining all the provided
rating data of the users who are interested in Gp,q and have already rated Ik, as below

Gmp,q,k =
⊕

{j|Ik∈IRj ,Gp,q∈fp(Uj)∩gp(Ik)

mj,k. (1)

If a user Ui has not rated an item Ik, the process for predicting the rating entry ri,k
regarding the preference of user Ui on item Ik is performed as follows

– Firstly, the concept preferences corresponding to user Ui on item Ik, denoted by the
mass functions Cmp,i,k : 2Θ → [0, 1], with p = 1, P , are computed by combining
the related group preferences of item Ik as follows

Cmp,i,k =
⊕

{q|Gp,q∈fp(Ui)∩gp(Ik)}

Gmp,q,k. (2)

– Secondly, the overall context preference corresponding to a user Ui on item Ik,
denoted by the mass function Cmi,k : 2Θ → [0, 1], is achieved by combining all
related concept mass functions as below

Cmi,k =
⊕
p=1,P

Cmp,i,k. (3)

– Next, the unprovided rating entry ri,k, which is vacuous, is replaced with its corre-
sponding context mass function as follows

ri,k = Cmi,k. (4)

– Finally, in case the rating entry ri,k is still vacuous after replacing such as Example
1 in Section 4, we propose that this entry is assigned the evidence obtained by
combining all preference mass functions of the users already rated item Ik as below

ri,k =
⊕

{j|Uj∈URk}

mj,k. (5)

Please note that, at this point, all unprovided rating data are completely predicted.



3.3 Computing User-User Similarities

In the DS rating matrix, every rating entry ri,k = mi,k represents user Ui’s preference
toward a single item Ik. Let us consider that the focal set of mi,k is defined by Fi,k =
{A ∈ 2Θ|mi,k(A) > 0}. The user Ui’s preference toward all items as a whole can be
defined over the cross-product Θ = Θ1 × Θ2 × ... × ΘN , where Θi = Θ,∀i = 1, N
[7, 19]. The cylindrical extension of the focal element A ∈ Fi,k to the cross-product Θ
is cylΘ(A) = [Θ1...Θi−1AΘi+1...ΘN ]. The mapping Mi,k : 2Θ → [0, 1] generates a
valid mass function defined on Θ by extending ri,k; and if B = cylΘ(A), Mi,k(B) =
mi,k(A), otherwise Mi,k(B) = 0 [7].

For a user Ui, let us consider the mass functionsMi,k defined over the cross-product

Θ, with k = 1, N . The mass function Mi : 2Θ → [0, 1], where Mi =
N⊕
k=1

Mi,k, is

referred to as the user-BPA of user Ui.
Consider user Ui’s user-BPA Mi and the rating mass functions mi,k, k = 1, N ,

each defined over Θ. The pignistic probability of the singleton θi1 × ... × θiN ∈ Θ, is

Bpi (θi1 × ...× θiN ) =
N∏
k=1

Bpi,k(θik), where θik ∈ Θ, and Bpi and Bpi,k are user

Ui’s pignistic probability distributions corresponding to its user-BPA and preference
rating of user Ui on item Ik , respectively [19].

For computing the distance among users, we adopt the distance measure method
introduced in [2]. According to this method, the distance between two user-BPAs Mi

and Mj defined over the same cross-product Θ is D(Mi,Mj) = CD(Bpi, Bpj) , where
CD refers to the Chan and Darwiche distance measure [2] represented as below

CD(Bpi, Bpj) = lnmax
θ∈Θ

Bpj(θ)

Bpi(θ)
− lnmin

θ∈Θ

Bpj(θ)

Bpi(θ)
.

In addition, CD(Bpi, Bpj) =
N∑
k=1

CD(Bpi,k, Bpj,k) [19]. Obviously, for each item Ik, it

is easy to recognize as follows

– In case neither user Ui nor user Uj has rated item Ik, that means both ri,k and
rj,k are predicted rating data. Since Bpi,k and Bpj,k are derived from entries ri,k
and rj,k, respectively, the value of the expression CD(Bpi,k, Bpj,k) is not fully
reliable.

– The value of the expression CD(Bpi,k, Bpj,k) is also not fully reliable if either
user Ui or user Uj has rated item Ik.

– The value of the expression CD(Bpi,k, Bpj,k) is only fully reliable if both user Ui
and Uj have rated item Ik.

Under such an observation, in order to improve the accuracy of the distance mea-
surement between two users, we propose a new method to compute the distance be-
tween two user-BPAs Mi and Mj , as shown below

D̂(Mi,Mj) =
N∑
k=1

µ(xi,k, xj,k)× CD(Bpi,k, Bpj,k),

where µ(xi,k, xj,k) ∈ [0, 1] is a reliable function referring to the trust of the evaluation
of both user Ui and user Uj on item Ik. ∀(i, k), xi,k ∈ {0, 1}; xi,k = 1 when ri,k



is a provided rating entry, otherwise ri,k is a predicted rating one. Note that because
of µ(xi,k, xj,k) ∈ [0, 1], the distinguishing of the provided and the predicted rating
data does not destroy the elegance of the selected distance measure method [2]. When
µ(xi,k, xi,k) < 1 indicates that the distance between user Ui and user Uj is shorter than
it actually is. That means user Ui has a high opportunity for being a member in user
Uj’s neighborhood set, and vice versa.

Table 1. The values of the reliable function

xi,k xj,k µ(xi,k, xj,k)

0 0 1
0 1 1− w1

1 0 1− w1

1 1 1− 2× w1 − w2

Fig. 2. The domains of w1 and w2

The reliable function µ(xi,k, xj,k) can be selected according to specific application.
In the general case, we suggest that µ(xi,k, xj,k) = 1−w1×(xi,k+xj,k)−w2×xi,k×
xj,k, where w1 ≥ 0 and w2 ≥ 0 are the reliable coefficients representing the state when
a user has actually rated an item and two users together have rated an item, respectively.
Because of ∀(i, k), xi,k ∈ {0, 1}, the function µ(xi,k, xj,k) has to belong to one of four
cases as shown in Table 1. Under the condition 0 ≤ µ(xi,k, xj,k) ≤ 1, the domains of
w1 and w2 must be in the parallel diagonal line shading area as illustrated in Fig. 2.

Consider a monotonically deceasing function ψ: [0,∞] 7→ [0, 1] satisfying ψ(0) =
1 and ψ(∞) = 0. Then, with respect to ψ, si,j = ψ(D(Mi,Mj)) is referred to as
the user-user similarity between users Ui and Uj . We use the function ψ(x) = e−γ×x,
where γ ∈ (0,∞). Consequently, the user-user similarity matrix is then generated as
S = {si,j}, i = 1,M, j = 1,M .

3.4 Selecting Neighborhoods

The method of neighborhood selection proposed in [5] is an effective one because it pre-
vents the recommendation result from the errors generated from very dissimilar users.
This method, selected to apply in our system. Formally, we need to select a neigh-
borhood set Ni,k for a user Ui. First, the users already rated item Ik and whose sim-
ilarities with user Ui are equal or greater than a threshold τ are extracted. Then, K
users with the highest similarity with user Ui are selected from the extracted list. The
neighborhood is the largest set that satisfies Ni,k = {Uj ∈ U | Ik ∈ IRj , si,j ≥
max∀Ul /∈Ni,k

{τ, si,l}}. Note that for a new user, the condition Ik ∈ IRj is removed.
The estimated rating data for an unrated item Ik of a user Ui is presented as r̂i,k =

m̂i,k, where m̂i,k = m̄i,k⊕mi,k. Here, m̄i,k is the mass function corresponding to the
neighborhood prediction ratings, as shown below

m̄i,k =
⊕

{j|Uj∈Ni,k}
m
si,j
j,k ,with msi,j

j,k =

{
si,j ×mj,k(A), for A ⊂ Θ;

si,j ×mj,k(Θ) + (1− si,j), for A = Θ.



3.5 Generating Recommendations

Our system supports both hard and soft decisions. For a hard decision, the pignistic
probability is applied, and the singleton having the highest probability is selected as the
preference label. If a soft decision is needed, the maximum belief with overlapping in-
terval strategy (maxBL) [1] is applied, and the singleton whose belief is greater than the
plausibility of any other singleton is selected; if such as class label does not exist, deci-
sion is made according to the favor of composite class label constituted of the singleton
label that has the maximum belief and those singletons that have a higher plausibility.

4 Implementation and Discussions

Movielens data set1, MovieLens 100k, was used in the experiment. This data set con-
sists of 100,000 hard ratings from 943 users on 1682 movies with the rating value
θl ∈ Θ = {1, 2, 3, 4, 5}, 5 is the highest value. Each user has rated at least 20 movies.
Since our system requires a domain with soft ratings, each hard rating entry θl ∈ Θ was
transformed into the soft rating entry ri,k by the DS modeling function [19] as follows

ri,k =


αi,k × (1− σi,k), forA = θl;

αi,k × σi,k, forA = B;

1− αi,k, forA = Θ;

0, otherwise,

withB =


(θ1, θ2), if l = 1;

(θL−1, θL), if l = L;

(θl−1, θl, θl+1), otherwise.

Here, αi,k ∈ [0, 1] and σi,k are a trust factor and a dispersion factor, respectively [19].
In the data set, context information is represented as below

C = {C1} = {Genre}; C1 = {G1,1, G1,2, ..., G1,19} = {Unknown,Action,Adventure,Animation,
Children′s, Comedy, Crime,Documentary,Drama, Fantasy, F ilm-Noir,
Horror,Musical,Mystery,Romance, Sci-Fi, Thriller,War,Western}.

Because the genres to which a user belongs is not available, we assume the genres of
a user Ui are assigned by the genres of the movies rated by user Ui. Each unprovided
rating entry was replaced with its corresponding context mass function predicted ac-
cording to equations (1), (2), (3), (4), and (5). Note that if the context mass functions
are fused by using the methods in [12, 19] (just applying equations (1), (2), (3) and (4)),
some unprovided rating entries are still vacuous after replacing, as in Example 1.

Example 1. In the Movielens data set, let us consider a user Uc with f1(Uc) = {G1,4, G1,5,
G1,6, G1,18} = {Animation,Children′s, Comedy,War} and an item It with g1(It) =
{G1,17} = {Thriller}. Assuming that user Uc has not rated item It and we need to predict the
value for rct. The predicting process is as follows

– According to equation (1), Gm1,17,t =
⊕

{j|It∈ URj ,G1,17∈f1(Uj)}
mj,t;

∀G1,q ∈ C1 and q 6= 17, Gm1,q,t = vacuous.
– Using equation (2), Cm1,c,t =

⊕
{q|G1,q∈f1(Uc)∩g1(It)}

Gm1,q,t = vacuous.

– According to equation (3), Cmc,t = Cm1,c,t = vacuous.
– Applying equation (4), rc,t = Cmc,t = vacuous.

1 http://grouplens.org/datasets/movielens/



Table 2. Overall MAE versus w1 and w2

w1

0.0 0.1 0.2 0.3 0.4 0.5

w2

0.0 0.8361 0.8366 0.8363 0.8350 0.8342 0.8334
0.1 0.8363 0.8363 0.8363 0.8347 0.8342
0.2 0.8366 0.8363 0.8361 0.8342 0.8342
0.3 0.8366 0.8363 0.8361 0.8339
0.4 0.8363 0.8363 0.8358 0.8339
0.5 0.8363 0.8363 0.8355
0.6 0.8363 0.8361 0.8355
0.7 0.8363 0.8361
0.8 0.8361 0.8361
0.9 0.8358
1.0 0.8358

Table 3. Overall DS-MAE versus w1 and w2

w1

0.0 0.1 0.2 0.3 0.4 0.5

w2

0.0 0.8406 0.8406 0.8405 0.8402 0.8399 0.8397
0.1 0.8406 0.8406 0.8405 0.8401 0.8399
0.2 0.8406 0.8406 0.8404 0.8401 0.8400
0.3 0.8406 0.8405 0.8404 0.8400
0.4 0.8406 0.8405 0.8405 0.8400
0.5 0.8406 0.8406 0.8404
0.6 0.8406 0.8405 0.8404
0.7 0.8406 0.8405
0.8 0.8406 0.8405
0.9 0.8405
1.0 0.8406

Fig. 3. Visualizing overall MAE Fig. 4. Visualizing overall DS-MAE

Firstly, 10% of the users were randomly selected. Then, for each selected user, we
accidentally withheld 5 ratings, the withheld ratings were used as testing data and the re-
maining ratings were considered as training data. Finally, recommendations were com-
puted for the testing data. We repeated this process for 10 times, and the average results
of 10 splits were represented in this section. Note that in all experiments, some param-
eters were selected as following: γ = 10−4, β = 1, ∀(i, k){αi,k, σi,k} = {0.9, 2/9}.

For recommender systems with hard decisions, the popular performance assessment
methods are MAE, Precision, Recall, and Fβ [6]. Recently, some new methods al-
lowing to evaluate soft decisions are proposed, such as DS-Precision and DS-Recall
[7]; DS-MAE and DS-Fβ [19]. We adopted all these methods for evaluating the pro-
posed system. Since the system is developed for aiming at extending CoFiDS [19], we
also selected CoFiDS for performance comparison.

Table 2 and 3 show the overall MAE and DS-MAE criterion results computed by
mean of these evaluation criteria with K = 15, τ = 0 according to two reliable co-
efficients w1 and w2, respectively. The statistics in these tables indicate that the per-
formance of the proposed system is almost linearly dependent on the value of w1; this
finding is the same for the other evaluation criteria. The coefficient w2 just slightly in-
fluences the performance in hard decisions, but seems not to affect the performance in
soft decisions; the reason is that, in the data set, when considering two users, the num-
ber of movies rated by these users is very small while the total of movies is large. Fig.
3 and 4 depict the same information as Table 2 and 3 in a visualization way.

For comparing with CoFiDS, we conducted the experiments with w1 = 0.5, w2 =
0, τ = 0, and several values of K. Fig. 5 and 6 show the overall MAE and DS-MAE



Fig. 5. Overall MAE versus K Fig. 6. Overall DS-MAE versus K

Table 4. The comparison in hard decisions

Metric True Rating Overall1 2 3 4 5

Proposed system:
Precision 0.3201 0.2210 0.3188 0.4002 0.4179 0.3630
Recall 0.0906 0.0892 0.3179 0.6413 0.1885 0.3709
MAE 2.1368 1.4242 0.7790 0.4212 1.0175 0.8383
F1 0.1205 0.1245 0.3170 0.4924 0.2571 0.3384
CoFiDS:
Precision 0.3118 0.2151 0.3177 0.3996 0.4171 0.3609
Recall 0.0873 0.0872 0.3157 0.6418 0.1866 0.3697
MAE 2.1435 1.4325 0.7813 0.4224 1.0202 0.8413
F1 0.1148 0.1216 0.3152 0.4921 0.2551 0.3366

Table 5. The comparison in soft decisions

DS True Rating Overall-Metric 1 2 3 4 5

Proposed system:
Precision 0.3001 0.2035 0.3150 0.3990 0.4016 0.3551
Recall 0.0663 0.0926 0.3164 0.6391 0.1847 0.3680
MAE 2.1963 1.4313 0.7721 0.4122 1.0317 0.8405
F1 0.1036 0.1248 0.3147 0.4909 0.2507 0.3349
CoFiDS:
Precision 0.2926 0.2032 0.3148 0.3990 0.4020 0.3547
Recall 0.0658 0.0934 0.3155 0.6398 0.1837 0.3679
MAE 2.1973 1.4323 0.7724 0.4118 1.0359 0.8415
F1 0.1028 0.1255 0.3141 0.4911 0.2500 0.3347

criterion results of both CoFiDS and the proposed system change with the neighborhood
size K. According to these features, the performances of two systems are fluctuated
when K < 42, and then appear to stabilize with K ≥ 42. In particular, both features
show that the proposed system is more effective in all cases.

Table 4 and 5 show the summarized results of the performance comparisons be-
tween the proposed system and CoFiDS in hard and soft decisions with K = 30, w1 =
0.5, w2 = 0, τ2 = 0, respectively. In each category in these tables, every rating has its
own column; and the bold values indicate the better performance, and underlined values
illustrate equal performance. Importantly, the statistics in both tables show that, except
for soft decisions with true rating value θ4 = 4, the proposed system achieves better
performance in all selected measurement criteria. However, the absolute values of the
performance of the proposed system are just slightly higher than those of CoFiDS. The
reason is that the MovieLens data set contains a small number of provided rating data.
In case more provided rating data are available, the proposed system can be much better
than CoFiDS.

5 Conclusions

In summary, in this paper, we have developed a CFS that uses the DS theory for rep-
resenting rating data, and integrates context information for predicting all unprovided
rating data. Specially, after predicting all unprovided data, suitable recommendations
are generated by employing both predicted and provided rating data with the stipula-
tion that the provided rating data are more important than the predicted rating data.
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