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Abstract— Toward a global picture of the radiation expo-
sure of an area, particularly for fast emergency response, a
UAV based exploration method is proposed. Without a priori
knowledge of the radiation field, it is difficult to select the
region of interest (ROI) which includes all radiation sources.
For the case of a single radiation source, a greedy algorithm
may localize the source by finding the maximum radiation
value. However, when multiple sources generate a hotspot in
a cumulative manner, the hotspot position does not coincide
with one of the source positions. Therefore, we propose an
efficient exploration method to quickly localize the radiation
sources using the following procedures: (1) ROI selection using
topographic maps with specific radiation level selection methods
and (2) source localization estimating the number of sources and
their positions with incremental variational Bayes inference of
Gaussian mixtures. Under three different conditions according
to the number of sources and their positions, we have shown
that the proposed model can reduce the ROI and significantly
improve the estimation accuracy than existing methods.

I. INTRODUCTION

In disaster recovery planning after a nuclear accident,
it is important to know the distribution of radiation levels
over contaminated areas so that rescue missions could be
accelerated to minimize the losses. In this kind of situation,
autonomous flying robots such as Unmanned Air Vehicles
(UAVs) can be deployed to monitor the state of radiation
effect. The intensity of radiation follows an inverse square
relationship as a function of the distance. A radiation field
can be characterized by the unimodal Gaussian model if
the field contains a collection of sources widely separated
from one another [1], [2]. The distribution of sources is then
obtained with some form of UAV exploration.

However, if the cumulative radiating effect of sources
exists, the field turns out to be complex to estimate, and
the sources are no longer at the center of each distribution.
Accordingly, the hotspot, where the radiation intensity is
maximum, does not coincide with the positions of sources.
Therefore, an appropriate model is needed to characterize
such a field. Furthermore, UAVs encounter difficulties when
exploring a large area with limited resources, e.g., limited
battery life and sensing range. Thus, an efficient exploration
within a limited fraction of areas should be designed. It is
important to estimate the distribution of radiation intensity
on the geographic map so that we can reduce our region of
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interest (ROI) not only for field characterization but also for
source localization. In this paper, given the hotspot location
along with limited samples of the radiation field, our aim
is to localize all radiation sources in a temporally invariant
radiation environment.
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Fig. 1: Motivation: UAV explores a radiation field (a, b).
With a partial map (yellow line and corresponding measure-
ment) (c), it determines ROI (red line) and sources (red dots)
(d). The measurement is indicated by colored bands (b, c).

In contrast to earlier exhaustive search based source
seeking algorithms [2], [3], we show how to reduce ROI
and improve the accuracy of source localization. Radiation
sources can be localized using either the Hough transforma-
tion (HT) [2] or Gaussian mixture models (GMM) [3]. Since
HT utilizes the geometric shape of the contour, if multiple
sources are located within close proximity, it considers them
a single source, resulting in large localization errors. GMM
leads to an accurate estimate of the source position when
the number of sources are known, which is usually not
possible in unknown radiation fields. We therefore propose
the incremental density estimation method that automati-
cally determines the number of components (sources), mean,
and variance. Furthermore, the proposed estimation method
improves the accuracy of source localization compared to
HT. The main contributions of this paper are to answer the
following questions.

1) How to classify the radiation field into a finite number

of bands?
2) How to find ROI in the field?
3) How to localize multiple sources within ROI?



The rest of the paper is organized as follows: in Sec. 2,
we introduce the related works; in Sec. 3, we describe the
field characterization and rough classification based on the
partial data; in Sec. 4, we present a complete geographical
classification based on the local sensing and our strategy to
find ROL In Sec. 5, we explain the proposed source location
algorithm. Finally, in Sec. 6 and 7, we present experimental
results and draw our conclusion.

II. RELATED WORK

The radiation field can be considered as the mixture of
sources. Earlier works dealt only with widely separated
sources [1], [2], [4]. Recent studies have made progress in
predicting the radiation field with multiple sources using
Gaussian Processes [5], [6]. Although several strategies tried
to find the radiation hotspot [1], [7], [8], the source positions
were difficult to localize when multiple sources exist in
an area [3], [9], [10]. Those strategies are mostly divided
into model-free and model-based approaches. In the absence
of a priori knowledge, model-free approaches are basically
extremum seeking methods, where the gradient ascending or
the maximum likelihood path is followed. Thus, without a
pre-specified threshold of the hotspot, those algorithms tend
to converge to local maxima [10], [11], [12]. In the context
of model-based approach, source seeking can be performed
using either the mutual information (MI) [11], [13] or MI
gradient [14], [15].

A radiation map can be represented as an intensity grid
that could have a finite number of rectangular cells [16]. One
can also represent the radiation field using a topographic
map [7], [17] whereby the field is characterized by large
scale intensity measurements and quantitative representation
of distribution with contour lines.

Several search strategies have introduced in literature to
estimate the radiation sources. The Archimedian spiral search
pattern [18] is basically an exhaustive search within the area
of interest. The artificial potential field based exploration
[8] might get confused easily with the presence of multiple
sources. Multi-robot adaptive sampling classified the radia-
tion field via recursive geometric sub-division [19]. If the
area map is known a priori, seveal existing methods such as
the submodular optimization [20], mutual information gain
[21], and maximum entropy based path planning [22] yielded
good results.

In the sensor network literature, Chin et. al. [23] proposed
a hybrid formulation of particle filter and mean shift tech-
nique to localize multiple sources. GMM is well-suited for
the joint effects of multiple sources [3], [24]. Considering
the fixed number of sources, the expectation maximization
algorithm was used to estimate the component parameters
[9], [23]. If the number of sources are unknown, additional
algorithms such as Akaikes information or Bayesian Infor-
mation Criterion were used to estimate them [24]. Note that
measurements of the whole field were available in sensor
networks, whereas in our case, the UAV has to gather them
with the cost of exploration.

We therefore propose an efficient path planning algorithm
for a UAV to localize multiple sources. First, a topographic
mapping represents the radiation field with a finite num-
ber of contour lines. Few efforts have been made to im-
prove radiation source detection using topographic mapping.
Towler et. al. [7] used Archimedian spiral search patterns to
gather measurement, discovered contour lines with the user
defined intensity value, and proposed a HT based approach
to estimate the source position. Secondly, we adapt GMM
to characterize the radiation field. Finally, we design a
novel kernel function for the incremental density estimation
algorithm with the Variational Bayesian (VB) framework
to automatically estimate the number of sources and their
corresponding positions, while limiting computational costs
for real time applications.

Fig. 2 shows all the necessary steps of our proposed
algorithm. From a given partial map, we find a set of
interested measurements (intensity values) coupled with the
position information using the log gradient classifier. Starting
with initial positions, multiple contour lines are generated by
tracking the intensity values. The ROI contour line is then
automatically chosen by the contour shape analysis. We limit
the UAV exploration for gathering measurements only to the
area bounded by the ROI contour. Lastly, we propose a VB
algorithm to localize multiple sources accurately.

III. RADIATION FIELD MODELLING

We aim to include the distribution of radiation intensity
[16] on the geographic map, assuming that the UAV self-
localization error is negligible. In this radiation mapping
problem, only a partial sample of the field is available observ-
ing a UAV trajectory coupled with measurement attributes.
It is necessary that the UAV trajectory connects an arbitrary
lower intensity zone to the hotspot so that a rough estimation
of the radiation field can be made. Toward an efficient and
effective mapping method considering the limited resources
of UAVs, we categorize the field so that the UAV does not
need to visit all the areas, but rather exploring the ROI area
to localize the sources.

In this section, we first characterize the radiation field us-
ing GMM, and explain how to incorporate prior knowledge.
Note that UAV exploration in the ROI area is mandatory, be-
cause we cannot determine the parameters of GMM without
having real measurement attributes of the field.

A. Field characterization

The intensity in the field could change gradually or
abruptly depending on the source location. A region could
have high intensity values due to the influence of multiple
sources or the presence of strong nearby sources. Hence, it
is not possible to detect individual sources with unknown
diffusion information about each source. In order to predict
their location, we attempt to show their effect in the geo-
graphic map, adding the distribution of radioactive intensity
on the map. In other words, the cumulative radiation effect
of the sources is unlikely to be represented using a unimodal
Gaussian model. For this reason we use GMM to characterize
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Fig. 2: System Overview: A hotspot directed path coupled with measurement is considered as a partial map denoted by
the yellow line. The classifier segments the partial observation into a finite number of interested positions denoted by (+)
symbols. Topographic mapping generates contour lines from the starting positions assigned by the classifier. UAV chooses
ROI further explored to determine the source locations. The blue boxes are the output of each process. The yellow boxes
and red arrows are the processes for ROI selection. The gray box and black arrows are the processes for source localization.

the radiation field. Let + € X represent the location of
the field and z (x) € Z the corresponding measurement.
The field property is characterized using GMM with M
components such that

M

F (250, 1, 0) :2M7

2
Oj

(1)

Jj=1

where ¢ (x) = exp (7%) /(27) 5 pa,...,unr are the
means; o1,...,0p are the variances; and g, ...,ap are
the mixing weights that describe the Gaussian components.
The mixing weights are non-negative and added up to one.
In order to generate the ground truth, we assume that
each component has equal strength and the relative distance
between each mean and measured location has influenced a.
However, in our case « is equally divided by the number
of sources (M), and the variance (o) is not important to
localize sources. Therefore, we only estimate the mean (u)
of the sources using VB.

B. Log-gradient classifier

The log-gradient classifier (Igc) works like a rounding
function, converting the partial map into a finite number
of interested positions based on the numerical relationship.
Let z;—0 be the UAV initial position and z;—; indicate
the hotspot location. Also let the function z (xg,x;) be the
relative measurement attribute of the location x; w.rt. zg
such that z : R? — R. Let us draw a line as shown in Fig.
1(c) connecting the UAV location to the hotspot location.
The line also contains the measurement attributes of the

region traversed by the UAV. Therefore, the partial map is
a small fraction of the field including the corresponding
measurement attribute. Our target is to group the partial
map in an efficient way. First, we investigate how the
measurement varies w.r.t. the UAV position by taking the
gradient at exploration index ¢ given by

z (zo, ;)
d (.To, xl) ’

where d(xo,x;) is the distance function w.rf. the initial
position of the UAV. In order to group the different zones
into the same layer, we rather focus on the power of gradient

values given by
z (Io, xl) >

log (V;) =1

og (Vi) = log (d(mxi)
The log-gradient operator classifies the partial map using
Eqgn. (3), which depends on the precision value, A, to get
the number of classified regions :cz where j C 4. In short,
the Igc takes the set of explored locations, X, and the user
defined precision value A as the inputs to yield the set of
classified regions x] which is basically an n x 3 matrix.

lge (2 (0),A) = ({2 (o) .2}

jci

Vi= 2
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“

Intuitively, if A is a high value, the number of contour lines
would increase.
IV. TOPOGRAPHIC MAPPING

Based on the initially assigned positions by the Igc, the
whole contour lines are discovered in the contour generation



phase. We use the intensity information to track the contour
line. Since the intensity along the contour line is a constant
value, the UAV follows the contour line by reducing the mea-
surement error in the intensity domain. However, this kind
of contour following algorithms gives fluctuations which are
required to be smoothed out, before the analyzing phase
starts. In this section, we explain the contour detection and
smoothing phases. Note that we start to generate contours
radially outward from the hotspot.

A. Contour line discovering

In the contour discovering phase, we draw a contour
line enclosing the hotspot, xj,. Thus, the UAV position
coordinates are transformed from the global coordinates to
a local coordinate system whose origin is xj. Specifically,
we use the polar coordinate system to describe the UAV
position. Let r be the Euclidean distance between z; and a
classifier region, say xl. Also let 30 € 6 be a constant angle
of increment in the range [0 — 2] and dr be the unit arc
length w.r.t. 06. If r (f) remains equal to r along the whole
contour line, it is obvious that the UAV draws a circle from
the center x. The contour length in the geographic domain,
C,, can be derived using the following equation.

2m 5 2
_ 2 or
Cr—/r +<69) 60. 5)
0

The value of r (8) changes at each exploration step in order to
track the assigned intensity /. We now compute the contour
length Cr in the intensity domain such that

27
A
_ 2 oL
C’If/I +(59> 00, (6)
0

where §1 is the difference in the intensity domain. Let the
function f map the intensity error such that f : I — 7. One
can argue that f may not linearly map the errors. Therefore,
to find the gradient in geographic radius, Vr = g—g, at each
exploration step, we adjust 7(f) in such a way that g—é is
minimized.

Vr =argmin E{r(0), f (61)}, (7

acA

where a is the opted action among the set A in Eqn. (7).
After that, the contour radius is updated as follows

r=r+Vr 8)

B. Contour line smoothing

Typically, a contour line needs to be smoothed out after
the contour discovering process. For instance, d6 in Eqn.
(5) is assumed to be a constant value. Then, a quadratic
spline interpolation is carried out to smooth the explored
line. However, numerical smoothing methods do not take
account of actual measurements. Limiting the exploration
over the detection process might not be able to represent
the true shape of the line w.r.t. the field intensity. Therefore,
we adaptively adjust the value d¢ while exploring the contour

line. Let us assume that 3 (66) for which 47 is large. We take
more measurements in such a way that the current contour
radius 7 (#) adaptively controls the step increment given by

56* =66 (cot1 <\/ gé;)) ) )

It is obvious from the above equation that §6* asymptoti-
cally decreases for a larger 4/, resulting in increased UAV
exploration. Thus, a sudden change of intensity cannot cause
the UAV to deviate significantly from the contour line.

C. Finding the ROI contour

A topographic map may contain multiple contour lines
depending on the precision value (A) of the classifier. How-
ever, all the contour lines are not important to explain the
characteristic property of distribution. Obviously, contours
near to the hotspot region are very important, since they
incorporate the most vital information on the field. As the
contour goes outwards from the hotspot, the shape tends to
be quite similar to each other. Therefore, we can analyze
the contours shape that allows the UAV to terminate the
exploration. From the contour line discovering process, we
can find C; = {Cq,Cq,...,C,}, where C; is the set of all
contour lines, C,. is the length of each contour, and n is the
number of contour lines. Also note that C; represents the
intensity of the contour. In order to measure the degree of
similarity between neighboring contour lines, we introduce
the elements o, and o, at each contour discovering process.
We now compute the relative changes of initially assigned
radius, 7,4, to the radius, r, at the current exploration step
such that

or = {(r—1r,)cos(60)},

oy = {(r —ra)sin (66)} . (10)

It is obvious from the above equation that o'y = {U UIi}
i

)
w.r.t. the globai Cartesian z-axis and y-axis, respectively.
Next, we will analyze the similarity between two neighboring
contour lines by defining a function given by A\ : R" —
R. We compute a score for each contour line w.rt. the
neighboring contour line closer to the hotspot using the
following equation

and oy = represent the change in the radius

L2
ot E{oz} B
12
E{oy}
where \* is the current contour score and A is the neighbor-
ing contour score. When A\* reaches a predefined tolerance
limit, adding a new contour would be redundant. Therefore,

the UAV can stop its exploration and narrow down ROI to
the previous contour such that

A" =ta A, (1D

arg;nin {)\rygﬁ {A" (Ch, Cnl)}} . (12)



V. RADIATION SOURCE LOCALIZATION

Although we have gathered the measurement attribute by
sampling the ROI area Z C (Z), the actual sources X C (X)
are hidden variables. We now find the maximum likelihood
estimate of the parameters of X. Assuming that we have
no prior distribution, the optimal number of components for
Bayesian GMM can be obtained iteratively using a varia-
tional EM algorithm [25]. This is achieved through partially
performing an E-step and observing the maximization of E-
step and M-step using the same function F[g, 7] such that

F[qﬂr]ZZ/

xeX

(X, Z.1,Ti7)

_ p
Z,1,T)1 - udT,
q(Z,p,T)log T 1

(13)
where the parameters (u,7T,7) are the mean (cen-
ter) of the sources, the precision matrices, and the
mixture weights, respectively. ¢ is the arbitrary dis-
tribution that approximates the posterior distribution

_ d _ _
p(X,Z,p,T;m) éfp (X|Z,p, T|X; 7). We prepare the in-
put vector for the Bayesian model as follow.
p(X12) = N(X,p) = k(2), (14)
where k is the kernel used to bias the location inputs based
on the magnitude of measurement such that

- 1

k(Z)= —— .

- 2+ exp(Z) (15)

From Eqn. (14), we can see that uniform samples inside
the ROI are explicitly biased toward the significant mea-
surement attribute, which results in conversion of cluster
samples. Therefore, VB can easily estimate the optimal
number of sources and their corresponding locations. The
detailed formulas for computing the parameters can be found
in [25]. At each iteration, VB performs the following two
steps:

o Variational E-Step: Evaluate ¢* = arg max F[q, ]
q
o Variational M-Step: Find 7* = argmax F' [¢*, 7]

A notable property of this model is that when maximizing
F, the prior distribution of p and T" penalize the overlapping
components, therefore the redundant sources whose effect is
negligible to the distribution are eliminated. Furthermore, it
is sufficient to find the mean p components to estimate the
source position.

VI. SIMULATION RESULT

We have performed an extensive simulation validation
of our algorithm in the different settings of the sources.
Our first experiment focuses on reducing ROI depending on
measurement distribution. Next, we demonstrate the source
localization strategy. The partial map given does not depend
on specific initial positions. It just contains the rough idea
of the intensity distribution from lower to higher zones.

A. Reducing ROI

The partial map of the environment contains the UAV
trajectory and corresponding measurement up to the hotspot
location. The Igc classifies the trajectory depending on the
measurement change. The main advantage of Igc is that
it automatically segments the trajectory depending on the
numerical properties of the measurement, resulting in a finite
number of groups. Each group contains the starting position
and the corresponding measurement value. It is then further
explored to determine the whole line through the contour
discovering process. We perform three experiments for the
scattered, clustered, and biased source cases, respectively.

Fig. 3 represents our experimental results, where the
contour lines are drawn by mapping the intensity changes
into the geographic domain. The background gray colored
map is the distribution of the measurement, while the yellow
line represents the partial map that is fed to Igc. Although
lgc segmented the field into a finite number of groups, the
similarity analysis of contour shape allow us to reduce the
ROI further more. The similarity slope varies depending on
the distribution. As can be seen in Fig. 3 (c), (g), (k), the
similarity slope between two consecutive contours reaches a
saturation level after a certain period. When the slope gets
saturated, we can discard the current contour and fix our ROI
onto the previous one, which explains why the ROI contours
in Fig. 3 (d), (h), (1), are 2, 1, 2, respectively.

B. Source localization

We have extended our experiment to source localization.
Fig. 4 shows the overall procedure, where the partial map
in Fig. 3 (i) is discretized using the Igc to generate a finite
number of contours. Among the contours, the ROI contour
is selected for further exploration whereby uniformly spaced
samples are taken denoted by the red circles in Fig. 4 (b),
(e), (h). It can be seen from Fig. 4 (a), (d), (g) that the area
bounded by the initial contours was approximately 30m x
25m, while the ROI was at most 15m x 15m, showing a
significant reduction in exploration area size.

The localization accuracy of VB and HT was assessed by
the distance between the actual sources and the nearest esti-
mated source given by NDS1, NDS2, and NDS3, respectively
in Table I. In Fig. 4 (c), (), (i), the red dots are the actual
sources, while the black and green circles are the estimates
using HT and VB, respectively. The performance of VB is
outstanding and very close to the actual source location. VB
takes at most 264 iterations to converge to the resulting state
with a reduced sample size inside the ROI contour. The worst
case estimation error of VB is 4.490m, while that of HT is
10.837m.

VII. CONCLUSION

A UAV exploration based multiple radiation source local-
ization problem was investigated. The log gradient classifier
converted the partial map into a set of finite positions.
Starting with the assigned positions of the classier, the con-
tour lines were generated by tracking the constant intensity
values. The smoothing of a contour line was considered as an
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Fig. 3: Finding ROI: The ROI contour is determined by similarity analysis for three different cases: scattered (a-d), clustered
(e-h), and biased sources (i-1). The blue, green, red contours in (a,e,i) are labeled as (1,2,3) in (b, c, f, g, j, k). The variance
of each contour is computed over circular path while the similarity slope between two consecutive contours is computed
using Eqn. (12). The arrow in (c, g, k) indicates the starting position of similar contours. The red contour line in (d, h, 1)
represents the ROI contour, where the red dots are the actual sources.

TABLE I: Sources estimation

Sre. type | Method Z‘;'O Srrlfl trutny | NDS1 | NDS2 | NDS3
Scatter Proposed | 3 (3) 4.490 2.618 1.942
Hough 1(3) 4.490 2.618 7.758
Cluster Proposed | 2 (3) 0.778 1.399 1.604
Hough 1 (3) 0.778 1.408 1.707
Biased Proposed | 2 (3) 2.570 0.998 2.502
Hough 1(3) 10.837 | 0.998 10.687

online process, where further attentions were given to obtain
the measurement attributes from the radiation field.

We have demonstrated that the similarity analysis of
the contour lines significantly reduced the ROI. The area
bounded by the ROI contour was further explored to gather
the measurement attributes. The ROI also reduced the
amount of sample locations which were important for source
localization. Finally, we proposed a kernel function for VB
to localize multiple sources, where the radiation field was
characterized as a GMM. It was shown that VB clearly
outperformed HT.

Future research will focus on the following issues: (1)
Termination rule of exploration - The contour discovering
process was terminated by a threshold value. The effect
of acceptability threshold on the similarity analysis will be
considered. (2) 3D exploration- The proposed 2D planner

will be extended to 3D to see how the altitude influences
the localization. (3) Variable source strength- Since the
VB can compute the mixing weights for the sources, the
sources with variable strength will be tested in the same
manner. (4) The size of ROI - If the distribution of the
sources was bounded by the limited area, reducing the ROI
was reasonably enough to localize the sources. The future
work will involve the cost analysis between the required
exploration and the localization accuracy. (5) Real world
experiments - The proposed method will be demonstrated
in different fields generated by light, RF, or thermal sources.
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Fig. 4: Source Localization: A radiation field is turned into contour lines (a, d, g). Contour generation is terminated
depending on similarity in shape analysis and uniform samples are taken inside the ROI (b, e, h). In (c, f, i), red dots are
the actual sources, black circles are estimated by Hough transform and green circles by the proposed algorithm.
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