
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Security and Experimental Performance Analysis of

a Matrix ORAM

Author(s)
Gordon, Steven; Miyaji, Atsuko; Su, Chunhua;

Sumongkaoythin, Karin

Citation
2016 IEEE International Conference on

Communications (ICC): 1-6

Issue Date 2016-05-22

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/13710

Rights

Copyright (C) 2016 IEEE. Steven Gordon, Atsuko

Miyaji, Chunhua Su and Karin Sumongkaoythin, 2016

IEEE International Conference on Communications

(ICC), 2016, 1-6.

http://dx.doi.org/10.1109/ICC.2016.7511195

Description



Security and Experimental Performance Analysis of
a Matrix ORAM

Steven Gordon∗, Atsuko Miyaji† Chunhua Su‡ and Karin Sumongkayyothin§
∗§ Sirindhorn International Institute of Technology (SIIT), Thammasat University

† Graduate school of engineering, Osaka University
†‡§ Japan Advanced Institute of Science and Technology (JAIST)

† Japan Science and Technology Agency (JST) CREST
Corresponding Author: §s1420209@jaist.ac.jp,

Abstract—Oblivious RAM can hide a client’s access pattern
from an untrusted storage server. However current ORAM
schemes incur a large communication overhead and/or client
storage overhead, especially as the server storage size grows. We
have proposed a matrix-based ORAM, M-ORAM, that makes
the communication overhead independent of the server size. This
requires selecting a height of the matrix; we present how to select
the height to match the functionality of the well-known Path
ORAM. We then given both theoretical models and experimental
results that show M-ORAM can achieve a lower communication
overhead than Path ORAM, without a significant increase in
maximum client storage overhead.

I. INTRODUCTION

Cloud computing has many benefits; however, raises signif-
icant privacy issues. For example, with cloud-based storage,
a client stores data remotely on a server, accessing that
data when necessary. The client may encrypt the data before
uploading to the server to ensure the server cannot read the
data. However by observing the pattern in which the client
accesses the data (e.g. the address locations on the server,
the order of reading and writing data), it is possible for the
server to learn valuable information about the client [1], [2].
Oblivious RAM (ORAM) [3] is an approach for the client
to hide these access patterns. The aim is to allow the client
to access the data on the server without the server knowing:
whether the client is performing a read (download) or write
(upload); which data the client intends to access; and if a
sequence of accesses is the same or different an observed
previous sequence.

The general approach for ORAM schemes to achieve these
aims is for every time the client wants to access one block of
data, the client actually reads multiple blocks of data (with one
being the block of interest) and then writes the same number
of blocks back to the server. The blocks written back may not
be the same as those read, as the aim is to move the data
to random addresses on the server. With this approach it is
possible to ensure the server cannot distinguish a sequence
of accesses by the client from random accesses, thereby
providing privacy of the access pattern. The main limitation of
ORAM is however performance. Ideally, an ORAM scheme
should minimize the: bandwidth cost (number of reads/writes);
computation on the client; storage on the client; and wasted
storage on the server. Various ORAM schemes have been

proposed that consider different tradeoffs of these performance
requirements [4]–[12].

Our previously proposed Matrix ORAM [13] is one such
scheme. In this paper, we provide new design details of M-
ORAM, analysis of the security parameters, and experimental
evaluation of the bandwidth cost and client storage usage.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work and summarizes our contribution.
Section III presents the design of our M-ORAM. Section IV
gives theoretical performance analysis of M-ORAM. Sec-
tion V discusses M-ORAM’s security properties. Section VI
presents experimental results comparing M-ORAM to Path
ORAM. Section VII concludes the paper.

II. RELATED WORK AND OUR CONTRIBUTION

A. Related Work

ORAM algorithms can generally be divided by the server
storage structure: either a hierarchical structure [4]–[12] where
each layer is independent of each other; or a tree–structure
[14]–[17] where nodes in neighboring layers have a relation
of child and parent. The size of storage in both constructions
is counted as a bucket, with each bucket containing either a
single or multiple blocks of encrypted data.

The first ORAM was introduced by Goldreich et al. [3]
with a hierarchical structure. Each hierarchy level i has 2i

buckets where i ∈ {1, 2, . . . , logN} and N is the number of
blocks in server’s storage. To get the information of interest,
buckets are scanned from level 1 to level logN . By using a
permutation function and unique secret key for each level, the
client can determine the specific bucket on each level to be
scanned for retrieving the target information. For each level
that does not contain target information, a dummy block will
be retrieved. Ultimately, the target information is moved to
level 1. To protect each level from overflowing, information
is evicted from level i to the level i+1; this is done every 2i

access operations and a new secret key for level i+1 is applied.
Hierarchical-based ORAM incurs O(log3 N) bandwidth cost
with O(1) client storage and involves complex processing by
the client.

Binary tree based ORAM was first proposed by Shi et
al. [15] with O(log2 N) bandwidth cost and O(N) client
storage when using the normal construction and O(log3 N)



bandwidth cost and O(1) client storage with the recursive
construction (where data stored on the client in the normal
construction is instead stored on the server in a second
ORAM). This construction was improved by Stefanov et al.
in the scheme called Path ORAM [16]. Path ORAM focused
in simplifying the client operations, and can improve the
performance to O(logN) bandwidth cost with O(N) client
storage for normal construction and O(log2 N) bandwidth cost
with O(logN) · ω(1) client storage for recursive construction
where ω(1) is a constant number. Each block of real data in
Path ORAM is associated with the a single leaf node, with
a path from leaf to root. Instead of searching through the
path, every element that is associated with that path will be
downloaded and temporarily stored in the client (in a data
structure call a stash). A new leaf node is chosen uniformly at
random for the target information. Then the client will try to
upload the blocks that are stored in the stash to the path that
was previously downloaded from. However, not all blocks can
fit in the path, meaning the stash will not be empty.

B. Our Contribution

Many ORAM schemes make a performance tradeoff of
bandwidth cost versus client storage/processing. In particular,
Path ORAM offers low bandwidth cost of O(log(N)) with
only a minor increase of client processing/storage.

In [13] we proposed a theoretical construction called Matrix
ORAM (M-ORAM), which uses similar concepts as Path
ORAM but the server storage structure is based on a matrix.
The design allows the bandwidth cost to depend on a system
parameter, the matrix height, rather than the size of the
ORAM, thereby allowing a reduction in bandwidth cost for
a fixed server storage size. A theoretical analysis of the
bandwidth cost and client storage was given in [13]. In this
paper, we offer the following new contributions:

1) Updated design of M-ORAM, including the method at
which the matrix height is determined.

2) Analysis of the minimum recommended height for M-
ORAM, so it provides similar behavior as Path ORAM.

3) The python-based prototype of M-ORAM.
4) Experimental results obtained to confirm the theoretical

performance model, in particular that M-ORAM can
reduce the bandwidth cost compared to Path ORAM
while requiring only small increases in the client storage.

III. M-ORAM STORAGE AND OPERATION

In this section we present the design of M-ORAM. We
focus only on the normal (non-recursive) construction. As with
other ORAM schemes, a recursive construction is possible that
allows reducing the size of the client storage at the expense
of increased bandwidth cost. The feasibility of the recursive
construction is given in [13]; however it is not within the
scope of this paper. Key notations of the M-ORAM design
are summarized in Table I.

TABLE I: Notation

Parameter Description
N Total number of data blocks stored in server [blocks]
H Height of ORAM logical structure in server-side
S Size of each stash buffer [blocks]
SecretKey Secret key for encryption/decryption key generator
K Encryption/Decryption Key
dataID Data identification number
stash Temporary buffer for downloaded information
(x , y) Position of column and row in matrix structure
counter Individual counter of each information
Pos[i ] [counter, (x, y)], Position map of dataID i
loclist Temporary address list of downloaded data
oldlist Address list of previous access operation
PRF () Pseudo-Random function

Fig. 1: M-ORAM structure

A. M-ORAM Storage Structure

In M-ORAM, N blocks of data are stored on the server
in a matrix data structure of height H and width N/H as
illustrated in Figure 1. An element in column i and row j is
referred to as (xi, yj).

The client uses a position map to store the (x, y) values
of each block of data stored on the server. Note that blocks
are identified by a unique dataID. The client also uses a stash
to temporarily store downloaded blocks. Unlike other ORAM
schemes which have a single stash, M-ORAM uses a separate
stash for each row in the matrix as illustrated in Figure 1.
We denote each stash as stashj where j is the matrix row
number. Each stash has a fixed length of S blocks, however
not all blocks are necessarily used at any one time.

B. M-ORAM Operations

The operations that a client can perform with M-ORAM
are: read data from the server, write/update data to the server,
add new data to the server, and delete data from the server.
The main operations are read and write, involving interactions
with the server. The add/delete operations involve only client-
side operations of inserting/deleting data into/from the stash,
respectively. In this section, we present the read/write opera-
tions as well as the secret key management procedure.

1) Read/Write Operation: In M-ORAM, whenever the
client wishes to read or write data, it must actually read
multiple blocks and then write multiple blocks back to the
server. One among the many downloaded blocks must be
the information that is required by the client, whereas the
uploaded blocks are not necessarily the same set as previously
downloaded. Whenever the client wants to access (read or



TABLE II: Description of functions

Function Name Description

ReadBl(x , y) Read information from server at position x and y
RndStash(data) Randomly put data to stashes without duplication
RndData(stashi ) Randomly pick up data from stashi without

duplication
RndOld(oldlist,n) Randomly pick up n addresses from oldlist
UpdatePos(i, (x , y)) Update position-map of dataID i
WriteBl(data, (x , y)) Write information to server at position x and y

(a) Read Operation

(b) Write Operation

Fig. 2: M-ORAM Operation

write) data dataID from the server, the address (xi, yj) is
obtained from the position map. The client then reads H
blocks from the server, one block from each row in the
matrix. The columns of the matrix are chosen as follows:
If the current row is yj , then the column is xi. Otherwise,
o block locations are chosen uniformly at random from the
set of blocks accessed by the previous operation, and the
columns are chosen uniformly at random for the remaining
(H−o−1) rows. The purpose of selecting columns randomly
(in addition to the block with the data of interest) is so the
server cannot identify which data is of interest. However, some
block locations must be the same as the previous operation so
that the server cannot distinguish if this access is different
from the previous operation. That is if we did not select
some addresses from the previous operation, then accessing
two different blocks would result in two distinct sets of (x, y)
being accessed (with high probability), allowing the server to
know the accesses are different. We discuss the appropriate
value of o in Section IV-A.

Algorithm 1 and 2 show the read and write operations,
respectively. Supporting functions are in Table II.

2) Secret Key Management: As with other ORAM schemes,
each time a data block is accessed, it is re–encrypted using
symmetric key encryption. After a block is downloaded it is
decrypted. Before it is uploaded again it is encrypted using

Algorithm 1 Read Operation
Input: dataID, data∗

(xd, yd)← Pos[dataID]

n
$←{1, 2, 3}

o← RndOld(oldlist, n)
for j ∈ {0, 1, 2, 3, . . . , H} do

if yj = yd then
data← ReadBl(xd, yd)
loclist← loclist ∪ {(xd, yd)}
if update operation then

data← data∗

end if
RndStash(data)

else
if yj ∈ o then

loclist← loclist ∪ {(x∗, yj)}
RndStash(ReadBl(x∗, yj))

else
xi

$←{0, 1, 2, 3, . . . , N
H
}

loclist← loclist ∪ {(xi, yj)}
RndStash(ReadBl(xi, yj))

end if
end if

end for
return data

Algorithm 2 Write Operation
Input: loclist, stash
for j ∈ {0, 1, 2, 3, . . . , H} do

(xi, yj)← loclist[j]
loclist← loclist− {(xi, yj)}
dataID, data← RndData(stashj)
UpdatePos(dataID, (xi, yj))
WriteBl(data, (xi, yj))

end for

Algorithm 3 Secret Key Management
Input: dataID, SecretKey
counter ← Pos[dataID]
K ← PRF(dataID, counter, SecretKey)
text← DecryptK(data)
counter ← counter + 1
Pos[dataID]← counter
K ← PRF(dataID, counter, SecretKey)
data← EncryptK(text)

a new key. Therefore, the server cannot identify that the up-
loaded data is the same as previously accessed. In M-ORAM,
we use AES for encryption, where the data block and its ID
are encrypted using a key generated from a pseudo-random
function (PRF) as described in Algorithm 3. Importantly, the
PRF takes as input the dataID (unique to each block), a secret
key (common across all blocks) and a counter (specific to each
block). The counter is incremented after each access and stored
in the position map on the client.

IV. PERFORMANCE ANALYSIS

The key aim of M-ORAM is to decrease the bandwidth
cost usage when the client accesses data on the server. The
bandwidth cost will depend on the matrix height. In Sec-



tion IV-A, we analyze the appropriate height, comparing it
to the equivalent measure in Path ORAM. In Section IV-B,
we analyze the bandwidth cost of M-ORAM and then in
Section IV-C show that with M-ORAM, the stash buffer is
impossible to be overflow even though its size is fixed.

A. Height of M-ORAM Storage

In M-ORAM, the height (H) of the matrix storage used in
constructing the ORAM can be chosen independently of the
number of blocks N stored on the server. However, varying the
height leads to the changing bandwidth cost and the security
level of the ORAM. To determine the appropriate height
from a security perspective, we aim to provide equivalent
functionality as Path ORAM.

The M-ORAM read operation downloads a block from each
row in the matrix structure. One row contains the information
of interest while the columns in the other rows are chosen
randomly. However, to ensure two different accesses cannot
be distinguished by the server, the columns in some of those
other rows must be the same as in the previous read operation.
Path ORAM also uses some blocks from the previous read
operation. We therefore aim to set the number of blocks from
the previous operation to be the same or greater than for Path
ORAM.

First we find the average number of blocks that are re-used
in Path ORAM, denoted as oporam. Consider the example Path
ORAM binary tree in Figure 3. If the tree height is H nodes,
then there are 2H−1 leaf nodes, and therefore 2H−1 possible
paths. Suppose that a set of blocks chosen in the previous
access operation are the gray nodes in Figure 3. Of the 2H−1

possible paths, only one of them will result in all H nodes
being the same as the previous operation. Alternatively, there
are 2i possible paths for which H − i nodes being the same
as the previous operation (for i ∈ {1, 2, . . . ,H − 1}). Hence,
the average number of re-used blocks in Path ORAM is:

oporam =
H +

∑H−1
i=1 (H − i) · 2i−1

2H−1

=

∑H
i=1 2

i−1

2H−1
,where i ∈ {1, 2, . . . H}

As H tends to infinity, using the geometric series of 1
2i , the

average number of blocks re-used between two operations in
Path ORAM tends to 2.

Therefore, if M-ORAM chooses 1 to 3 blocks from the
previous operation uniformly at random, then on average it
selects the same number of re-used blocks as Path ORAM.
Hence, the minimum height requirements for M-ORAM is 5
blocks: 2 new blocks (one being the data of interest) and 3
re-used blocks. However, a larger height can be used to allow
for more new blocks.

B. M-ORAM Bandwidth Cost

In M-ORAM, the bandwidth cost depends on the number
of blocks read and written for each data access. With a matrix
height of H , there are 2H blocks accessed (read then write

Fig. 3: Possible path of H − i overlapped nodes

for each accessed block). Similarly, Path ORAM (in the non-
recursive construction) requires 2P blocks to be accessed
where P is the path length. Hence, M-ORAM achieves the
same bandwidth cost as Path ORAM if the matrix height is
the same as the path length. However a key difference is
that the path length in Path ORAM depends on the server
storage size N , i.e. P ≈ log(N). In M-ORAM H can be set
independent of N (although there are constraints, as discussed
in the previous section), allowing for a lower bandwidth cost
than Path ORAM. Experimental results for bandwidth cost are
given in Section VI-B.

C. M-ORAM Stash Size and Usage

In M-ORAM, the stash usage is bounded by two con-
trollable parameters which are height (H) of ORAM and
width of stash buffer (S). As mentioned in Section III, the
number of downloaded blocks is equal to the number of
blocks that are uploaded back to the server during an access
operation. Therefore the stash buffer always have empty spaces
and impossible to be overflow for the upcoming downloaded
elements from next access operation. In addition, the reserved
space for stash buffer is efficiently used which is almost 90%
of its space all the time (see Section VI-A).

V. SECURITY ANALYSIS

In this section, we state the security requirements of ORAM
scheme and then explain why M-ORAM achieves the require-
ments.

A. ORAM’s Security Requirements

The security requirements of ORAM are:
1) The server cannot observe the relationship between data

and its address.
2) The server cannot distinguish between updated and non-

updated information when they are written back to the
server.

3) The sequence of requested information cannot be differ-
entiated from a random bit string.

We define a series of access requests from client that the
server will see as:

A = (posi[dataIDi]), posi−1[dataIDi−1], . . . , pos1[dataID1])



where posj [dataIDj ] is the set of addresses that have been
accessed during retrieving information dataIDj where j ∈
{1, 2, . . . , i}. Each block information is given in the format
(counterj , (xn, ym)), where counterj is a counter for re–
encryption operation, and xn and ym are the column n and
row m, respectively.

B. Random Re-encryption

Every time the client has data to upload, the client first
encrypts the data using a different key for each upload. We use
the set of (dataIDj , counterj) together with a shared SecretKey
as the inputs to a strong pseudo-random function (PRF) to
generate a secret key for encrypting the data. The reasons for
using these three inputs are: First, the dataID is unique per
data block. Second, the counter is introduced so that each
time the same data block is uploaded a different value input
to the PRF is used to ensure that the server cannot identify
multiple uploads of the same content. Third, the SecretKey is
secret, known by the only client and is necessary as the server
may be able to learn the dataID and counter. Combining these
three values as input to the PRF ensures that a “unique secret
encryption key” will be used before the uploading. Hence,
the SecretKey is secured and the server cannot distinguish
encrypted information uploaded by the client.

C. Randomization Over Access Pattern

In M-ORAM the client downloads H blocks from a matrix
of height H . The column is chosen uniformly at random for
every row that does not contain the information of interest.
Then every downloaded block is randomly pushed to the
stashes without duplication. Therefore, the possible ways to
store the downloaded blocks to stashes is H !. Suppose each
stash has S blocks and we need to randomly choose a block
from each stash to write back to the server. Therefore, the
possible ways to choose the data from each stash is S. Hence,
the probability that the same set of blocks will be written back
to their previous location is:

Pr(posj(dataIDj)) =
1

H!·SH , where j ∈ {1, 2, . . . , i}

Suppose we have access request sequence A size i and
j < k ∈ i. When the posj(dataIDj) is revealed to the server,
it will be randomly remapped to the new position by proba-
bility 1 − Pr(posj(dataIDj)). Therefore, the posj(dataIDj)
is statistically independent of posk(dataIDk), with dataIDj =
dataIDk. In the case of dataIDj 6= dataIDk, the address of
different information does not have any relation; thus, those
addresses are statistically independent of each other. As Bayes
rule, we can describe the statistically independent of A as:∏i

j=1 Pr(posj(dataIDsj)) =
(
H! · SH

)−i

It proves that the series of access requests is indistinguishable
from a random sequence of bit string.

VI. EXPERIMENTAL RESULTS

We implemented M-ORAM and Path ORAM in Python
as a means for comparing the performance of our proposed

Fig. 4: Stash usage for all 1× 105 access operations

scheme against one of the best-known ORAMs. In this paper,
we focus on bandwidth cost and stash usage. Using 20,000
string datasets from UCI Machine Learning Repository [18]
as data input, 100,000 access operations were made on each
ORAM. Experiments were run on an Intel Core i5 CPU with
2 GB of memory, with both client and server running on the
same computer.

A. Maximum Stash Size Requirement

An important performance metric for ORAM is the usage
of storage at the client. It is desirable for it to be as small as
possible. The position maps for M-ORAM and Path ORAM
both require one entry for each data block. However, there
are significant differences in the stash design: Path ORAM
uses a single stash, M-ORAM has H stashes of length S. We
measured the stash usage using the two different ORAMs.

Therefore, with the same number of downloaded elements
per access request,the ORAM size was set to approx 1000
blocks. This was chosen to allow a M-ORAM can be competed
with Path ORAM under same number of downloaded elements
per access request while keeping the experiment run-time
small. By giving around 1000 blocks of ORAM size, Path
ORAM has height of 10 blocks which is larger than the
minimum requirement of M-ORAM (Section IV-A).

Figure 4 shows the stash usage for both ORAMs which
Path ORAM and M-ORAM bucket size of 1. For M-ORAM,
we fix the height H to 10 and the stash size S to 10. The
tree height in Path ORAM is the same as M-ORAM height.
With a height of 10 blocks, M-ORAM requires 100 blocks for
stash buffer but Path ORAM needs more than 300 blocks. To
consider Path ORAM, the bucket size is increased, the stash
size is also increased. Therefore, M-ORAM will always has
a smaller stash than Path ORAM for height equal to 10. We
expect this to hold for lager height as well.

B. Bandwidth Cost

In this paper, the bandwidth cost is approximated as the
average number of blocks read/written per each access request.
We measured the bandwidth cost for M-ORAM and Path
ORAM with different ORAM sizes. For M-ORAM, the matrix



Fig. 5: Bandwidth cost for Path ORAM and M-ORAM

height is set to 10. For Path ORAM each node in the binary
tree stores a bucket of blocks; we consider bucket sizes of
1, 4 and 8 blocks (4 is recommended by [16]). Figure 5
compares the bandwidth cost for the ORAMs. The results
show the bandwidth cost of using M-ORAM is independent
of the ORAM storage size, whereas for Path ORAM the it
depends on the ORAM size. With Path ORAM, increasing
the bucket size can decrease the stash usage; however, it leads
to a significant increase in bandwidth cost.

VII. CONCLUSION

M-ORAM uses a matrix storage structure to provide the
same security as other ORAM schemes while reducing the
bandwidth cost and maintaining a manageable client storage
size. We have presented the design of M-ORAM, based on
an earlier version [13], specifically addressing the way in
which M-ORAM selects blocks from a previous operation
to ensure the server cannot identify two different access
requests. We have also given analysis the number of blocks
to be selected to give equivalent functionality to one of
the best performing binary-tree ORAMs, Path ORAM. Our
new experimental results backup the theoretical analysis that
indicate M-ORAM can achieve a bandwidth cost independent
of the server storage size, N (whereas Path ORAM bandwidth
cost is O(logN)) while keeping the practical stash size small.
The client storage size can be further reduced using a recursive
construction. That, and further analysis of different matrix and
stash parameters, is left for future work.

ACKNOWLEDGEMENT

This research is partly supported by Grant-in-Aid for Sci-
entific Research (C) (5K00183) and (15K00189) and Japan
Science and Technology Agency (JST), Infrastructure Devel-
opment for Promoting International S&T Cooperation.

REFERENCES

[1] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in Proc.
19th NDSS 2012, San Diego, California, USA, Feb 2012.

[2] C. Liu, L. Zhu, M. Wang, and Y. Tan, “Search pattern leakage in
searchable encryption: Attacks and new construction,” Proc. Inf. Sci.,
vol. 265, pp. 176–188, 2014.

[3] Goldreich, Oded, and R. Ostrovsky, “Software protection and simulation
on oblivious RAMs,” Proc. JACM, vol. 43, no. 3, pp. 431–473, May
1996.

[4] D. Boneh, D. Mazieres, and R. A. Popa, “Remote oblivious
storage: Making oblivious RAM practical,” Massachusetts Institute
of Technology, Tech. Rep. MIT-CSAIL-TR-2011-018, 2011. [Online].
Available: http://hdl.handle.net/1721.1/62006

[5] J. L. D. Jr., E. Stefanov, and E. Shi, “Burst ORAM: Minimizing ORAM
response times for bursty access patterns,” in Proc. 23rd USENIX
Security Symposium 2014. San Diego, CA, USA: USENIX Association,
Aug 2014, pp. 749–764.

[6] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and
D. Wichs, “Optimizing ORAM and using it efficiently for secure
computation,” in Proc. 13th International Symposium PETS 2013.
Bloomington, IN, USA: Springer, Jul 2013, pp. 1–18.

[7] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving group data access via stateless oblivious RAM sim-
ulation,” in Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms
2012. Kyoto, Japan: SIAM, Jan 2012, pp. 157–167.

[8] N. P. Karvelas, A. Peter, S. Katzenbeisser, and S. Biedermann, “Efficient
privacy-preserving big data processing through proxy-assisted ORAM,”
Proc. IACR Cryptology ePrint Archive, vol. 2014, p. 72, 2014.

[9] Pinkas, Benny, and T. Reinman, “Oblivious RAM revisited,” in Proc.
Advances in Cryptology - CRYPTO 2010. Santa Barbara, CA, USA:
Springer, Aug 2010, pp. 502–519.

[10] R. Sion and P. Williams, “Fast oblivious storage,” Proc. ACM Transac-
tions on Information and System Security, vol. 15, no. 4, Mar 2013.

[11] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud
storage,” in Proc. IEEE Symposium on Security and Privacy 2013.
Berkeley, CA, USA: IEEE Computer Society, May 2013, pp. 253–267.

[12] E. Stefanov, E. Shi, and D. X. Song, “Towards practical oblivious RAM,”
in Proc. 19th NDSS 2012. San Diego, California, USA: The Internet
Society, Feb 2012.

[13] S. Gordon, A. Miyaji, C. Su, and K. Sumongkayothin, “M-ORAM: A
matrix ORAM with logN bandwidth cost,” in Proc. 16th International
Workshop on Information Security Applications 2015. Jeju, South
Korea: Springer, Aug 2015.

[14] L. Ren, C. W. Fletcher, X. Yu, A. Kwon, M. van Dijk, and S. Devadas,
“Unified oblivious-RAM: Improving recursive ORAM with locality and
pseudorandomness,” Proc. IACR Cryptology ePrint Archive, vol. 2014,
p. 205, 2014.

[15] E. Shi, T. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM with
O(log3N) worst-case cost,” in Proc. 17th Advances in Cryptology
ASIACRYPT 2011. Seol, South Korea: Springer, Dec 2011, pp. 197–
214.

[16] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path ORAM: An extremely simple oblivious RAM
protocol,” in Proc. ACM SIGSAC Conference on Computer and Com-
munications Security 2013. Berlin, Germany: ACM, Nov 2013, pp.
299–310.

[17] J. Zhang, Q. Ma, W. Zhang, and D. Qiao, “KT-ORAM: A Bandwidth-
efficient ORAM Built on K-ary Tree of PIR Nodes,” Proc. IACR
Cryptology ePrint Archive, vol. 2014, p. 624, 2014.

[18] M. Lichman. (2013) UCI machine learning repository. [Online].
Available: http://archive.ics.uci.edu/ml


