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Abstract

Wireless geolocation techniques are of crucial importance for current and
future dense wireless networks to support location-based services and ap-
plications requiring high accuracy. One of the challenging problems in
wireless geolocation is to estimate the position of an unknown (anony-
mous) radio wave emitter. The location detection of unknown radio emit-
ter is very important especially for helping people in disastrous situations;
such as, finding the victims who are buried due to landslide, tsunami,
and/or earthquake. It is also important for monitoring illegal radio emit-
ter to prevent public broadcasting from being jammed.

In this research, factor graph-based techniques for geolocation tech-
niques are considered the most promising candidates having several ben-
efits; namely, (i) it decomposes the complex problem with many variables
into a set of simple sub-problems with fewer variables, (ii) it operates in
the form of mean and variance messages under the Gaussianity assump-
tion of the measurement error, and (iii) it also requires only solving linear
equations resulting significant reduction in computational complexity. It
should be noticed that low computational complexity is of great impor-
tance for green technology to save the energy consumption. Furthermore,
high accuracy is achieved by the factor graph because it effectively and
efficiently performs statistical signal processing for probability marginal-
ization.

The primary objective of this research is to propose novel algorithms of
high accuracy and low complexity wireless geolocation techniques, based
on the factor graph technique, to detect non-moving (static) position of
a single unknown (anonymous) radio wave emitter. However, it should
be emphasized that the proposed technique is not only applicable for un-
known radio wave emitter, but also for general radio wave emitter position
detections. In this research, three propagation parameters, i.e., direc-
tion of arrival (DOA), time difference of arrival (TDOA), and differential
received signal strength (DRSS) are proposed, and their corresponding
factor graph geolocation techniques are derived. Those techniques are
suitable for solving the problems arising in each scenario for detecting the
static position of single radio wave emitter.
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In the presence of imperfect time synchronization with line-of-sight
(LOS) condition, the DOA-based geolocation technique is known to be
the best solution to the single static location detection. We consider fac-
tor graph geolocation technique, where the input is the samples of DOA
measurement results sent from the sensors. This research proposes DOA-
based factor graph (DOA-FG) with linear approximation of the tangent
function so-called Taylor series DOA-FG (TS-DOA-FG), where the first
order Taylor series expansion of the tangent is taken into account. It
is shown that the accuracy of the DOA-FG geolocation algorithm can
be improved by introducing approximated expressions for the mean and
variance of the tangent and cotangent functions.

The TDOA-based geolocation techniques are known to be the most
suitable solution in the presence of perfect time synchronization among the
sensors. The proposed new technique, so-called Pythagorean TDOA-based
factor graph (P-TDOA-FG), requires much less computational complex-
ity compared to the conventional TDOA-based factor graph techniques
employing hyperbolic function (H-TDOA-FG). The great improvement is
due to the use of simple Pythagorean function, which is widely used in
TOA-based geolocation techniques. The function is considered for the use
of the conventional time of arrival (TOA)-based factor graph technique
(TOA-FG). However, in practice, it is impossible for the TOA-based lo-
cation identification techniques including the conventional TOA-FG to
detect the position of the unknown target. This is because the TOA mea-
surements require the knowledge of the absolute departure time of the
signal, and this knowledge is unavailable.

The proposed P-TDOA-FG introduces several sets of new nodes and
expressions into the conventional TOA-FG technique to convert the TDOA
information from the measurements to the equivalent TOA information.
The TDOA measurements do not require the knowledge of the absolute
departure time information of the measured signal sent from the target.
Hence, the equivalent TOA can be utilized in the modified TOA-FG to de-
tect the position of the unknown target. The results have shown that the
proposed P-TDOA-FG improves the accuracy of the conventional TOA-
FG technique.

On the other hand, neither RSS-based nor DRSS-based geolocation
techniques require the perfect time synchronization among the sensors and
as well as between the target and sensors, array antenna, and knowledge of
the absolute departure time of the signal sent from the target. In such con-
ditions, the RSS and DRSS-based geolocation techniques are believed to
be the most promising solution for the geolocation detection. However, the
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conventional RSS-based factor graph RSS-FG) technique can not estimate
the position of an unknown radio emitter because the technique requires
the knowledge of the absolute value of the transmit power. Nevertheless,
in practice, the transmit power information from the signal transmitted
by the unknown target emitter is unavailable. It should be noticed that
the knowledge of the transmit power is necessary for calibration/reference
of linear approximation process using training signal sent from the mon-
itoring spots. Thus, the DRSS-based factor graph (DRSS-FG) technique
is proposed to solve the problem, where the necessity for the knowledge
of the absolute transmit power of unknown target is eliminated. Hence,
the DRSS-FG can estimate the unknown target.

Closed-form expression of the Cramer Rao lower bound (CRLB) taking
into account of the number of samples, for DOA- and TOA- geolocation
techniques, are also derived in this dissertation. An approximated CRLB
taking into account of the number of samples, for TDOA-based technique,
is also derived. The performance of the proposed technique is evaluated
in terms of root-mean-square error (RMSE). The results show that the
proposed techniques accurately estimate the location of unknown target,
while they requires low computational complexity. It is shown that all of
our proposed techniques achieve much higher accuracy compared to the
conventional techniques. The achieved RMSE with the proposed tech-
niques are also evaluated and found to be very close to the CRLB.

Keywords : Wireless Geolocation, Factor Graphs, DOA, TDOA, DRSS,
TOA, RSS, CRLB, Voronoi Diagram, Unknown Radio Wave Emitter, Sin-
gle Static Target
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Chapter 1

Introduction

1.1 Motivation and Method

1.1.1 Wireless Geolocation Overview

Accurate wireless geolocation has been recognized as a key technology with
significant importance to supporting various location-related services and
applications which require the capability of detecting the location [1–5].
Moreover, it is also expected to play important roles when location-based
services are to be in practical operations on the basis of the current sys-
tems and wireless communication systems of the future [6, 7]. Wireless
geolocation is defined as the process to compute the accurate geograph-
ical coordinates of radio wave emitters location by observing the precise
measurement results of electromagnetic wave properties of the signal sent
from the emitters. The measurements are performed by spatially sepa-
rated number of sensors and/or receivers. This process is also known as
positioning system, localization, and navigation [8, 9].

It should be noticed that research in global positioning system (GPS)
started over four decades ago [10]. However, this research topic has at-
tracted considerable attention over the past two decades [11–13]. This
is because since 1996, U.S. Federal Communications Commission (FCC)
issued the requirement of the location identification capability for Emer-
gency 911 (E-911) applied in any wireless communication networks [14–
16]. Hence, the research activity in the geolocation field has substantially
increased.

In the future, high speed processing capability is required for designing
dense wireless networks. This is because various services are supposed
to be provided by the future mobile wireless systems. Several services
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may require heavy computational complexity. Hence, geolocation-based
services should not require heavy computational burden. Furthermore,
high accuracy is required in wireless geolocation because it plays crucial
roles to provide location-related services and applications in many aspects
of human life.

The geolocation techniques are of great importance in commercial as-
pects, to support the location-based services and applications such as au-
tomated and location-sensitive billing [5,6,11,17–19], package and parcel,
cargo, and personnel tracking [5, 20], mobile yellow pages [5, 11], interac-
tive map consultation [19], and resource management [6,14]. Furthermore,
these techniques are momentous for enabling the intelligent transport sys-
tems [11,19] such as the vehicle navigation [6], traffic information, vehicle
and fleet tracking [5,20], accident reporting, and roadside assistance [20].
Also, in the health care and civilian services we need the position de-
tection capability for tracking of patients requiring special care, mentally
impaired people, and the elderly and/or young children [18–21].

In public safety and military applications [4, 21, 22], the wireless geo-
location techniques play crucial roles to activate many services such as
Emergency or Enhanced-911 (E-911) [5, 6, 11, 14, 17–19, 23, 24], fraud de-
tection [6, 11, 17, 20, 23, 24], tracking and navigating of emergency-rescue
personnel, policemen, firefighters, and soldiers in their missions [18,21,25].
Moreover, the location identification capability is the key to enabling the
technologies, e.g., precision mobile communication networks planning [20],
deployment of wireless sensor networks (WSN) supporting a variety of ap-
plications [26–30], navigating beam-forming for wireless charging [31], bio-
logic systems [4], environment monitoring, and precision agriculture1 [25].

Besides those described above, one of the challenging problems in wire-
less geolocation is to estimate the position of unknown (anonymous)2 ra-
dio wave emitter. The location detection of unknown radio emitter is very
important in helping people in disastrous situations, e.g., finding the vic-
tims who are buried due to landslide, tsunami, and/or earthquake. It is
also important for detecting and identifying the presence of illegal radio
emitters because of the significant increase in radio wireless communica-
tions deployment nowadays [33]. Hence, we have to seriously secure the
wireless and mobile networks by geolocation detection and identification
of any malicious radio wave attackers, wireless jamming, and dangerous

1The example of the use of geolocation techniques for precision agriculture is to
observe the potentially infected zones, hence we can identify the plant disease [32].

2The terminology ”anonymous” is omitted in the rest of the dissertation for sim-
plicity.
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intruder [34]. Those attacks tend to threaten major social events such
as Olympic games and other major events. These events use wireless
communication networks for several purposes, such as, broadcasting the
event scenes to the public, coordination between personnel, communica-
tion among visitors, and other activities.

The primary objective of this research is to propose novel algorithms of
high accuracy and low complexity wireless geolocation algorithms to detect
position of a single static unknown radio wave emitter. The unknown
radio wave emitter is defined as the anonymous device emitting radio
wave where the sensors/receivers have no any knowledge regarding the
emitter. The knowledge can be as follows: (1) There is no synchronization
between the target and sensors, (2) the absolute knowledge of transmit
power and time of departure of the signal are unavailable, and others. The
example of unknown radio emitter can be an illegal radio or pirate radio.
This problem is also known as passive radio positioning systems [35, 36].
However, it should be emphasized that the proposed techniques are not
only applicable for position detection of unknown radio wave emitter, but
also for known radio wave emitter in general. It should be noticed that
neither the terminology of ”known” nor ”unknown” refers to the positions
of the radio wave emitter.

1.1.2 Factor Graph-based Geolocation Tehniques

Factor graph for geolocation is considered as one of the most promising
candidates. This is because the factor graph has several benefits that
enable great reduction in computational complexity; because, (1) it pro-
vides a natural graphical description of the factorization of a global mul-
tivariate function into a product of several local functions, hence, it de-
composes the complex problem with many variables into a set of simple
sub-problems with fewer variables, (2) The message passing takes place
among the nodes in the factor graph where the messages are expressed
in the form of only the means and variances, owing to the Gaussian-
ity assumption of the measurement error, (3) In most cases, the factor
graph-based geolocation technique requires only solving linear functions,
by which the Gaussianity assumption always holds. It should be noticed
that low computational complexity is of great importance for green tech-
nology to save the energy consumption Nevertheless, high accuracy is
achieved by the factor graph because it effectively and efficiently per-
forms statistical signal processing by iteratively exchanging the messages
among the nodes according to sum-product algorithm for the probabil-
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Figure 1.1. Basic structure of measured parameter-based factor graph geolocation
techniques with N = 3 sensors consisting of a single static unknown radio wave emitter,
4 monitoring spots (monitoring spots are only required for the conventional RSS-FG
and the proposed DRSS-FG technique).

ity marginalization. Since the factor graph visualizes the process of the
behavior of the message passing for the probability marginalization, new
view of the processing structure will likely be created to improve perfor-
mance of the algorithms/techniques [4, 17,18,23,37,38].

1.2 Related Work

The use of the factor graph has been used in wireless geolocation tech-
niques since past decade.3 In 2003, the first geolocation technique by
using the factor graph algorithm was introduced in [39], which was a few
years after the mathematical framework of the factor graph was first in-
troduced in [37]. Currently, several factor graph techniques have been
developed with different types of measured parameters such as time of ar-

3In this dissertation, the position identification using factor graph is simply referred
to as factor graph technique. The term ”techniques” in this dissertation refer to ”geo-
location technique” except specified.
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rival (TOA) [3,5,17,19], direction of arrival (DOA)4 [4,23], time difference
of arrival (TDOA) [6], and received signal strength (RSS) [18], with the
aim of detection of radio wave emitter location.

The basic structure of factor graph-based techniques is shown in Fig. 1.1.
The sensors measure the signal sent from a single static unknown radio
wave emitter. The DOA, TOA, and RSS samples can be processed in
the sensor, however, as a consequence, the sensors require the capability
for processing. Alternatively, the measured signal is directly sent to the
fusion center. In this case, the process to obtain the measured samples is
performed at the fusion center. While, the TDOA and difference received
signal strength (DRSS) samples to be processed in the fusion center be-
cause the processing requires the difference of TOA and RSS samples,
respectively, between two sensors. After the measured parameter samples
are obtained, the factor graph algorithm is performed in the fusion cen-
ter to estimate the position of the unknown target. It should be noticed
that technical details of the measurement process is not discussed in this
research because it is out of scope.

However, it is impossible for the TOA-based factor graph technique
identification techniques in [5, 17, 19] to detect the position of the un-
known target because absolute departure time of the unknown signal is
unavailable. As shown in Fig. 1.2, TOA measurements need the knowledge
of absolute departure time of the signal5. Furthermore, the conventional
received signal strength (RSS)-based factor graph technique (RSS-FG)
in [18] cannot estimate the position of an unknown radio emitter because
the knowledge of absolute value of the transmit power is also unavail-
able. In practice, however, the transmit power information from the signal
transmitted by the unknown target emitter is unavailable. It should be
noticed that the knowledge of the transmit power is necessary for calibra-
tion/reference of linear approximation process using training signal sent
from the monitoring spots.6 For clarity, the configuration of monitoring
spots can be seen in Fig. 1.1.

The conventional DOA-based factor graph (DOA-FG) techniques in
[23] has incorrect expression as explained in [17]. Furthermore, the ex-
pression in another conventional DOA-FG [4] is not provided in complete

4In this dissertation, we use terminology DOA instead of Angle of Arrival (AOA)
for better expression.

5Absolute departure time of the signal is also known as time of departure (TOD).
This information can be extracted from the time stamp (if available) in the signal
transmitted by the target.

6In this dissertation, monitoring spot is used instead of training point in [18] for
better expression.
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Figure 1.2. General insight of the measurement parameters in wireless geolocation. θi
denoting the DOA in i-th sensor, i, i = 1, 2, ..., N , denoting the sensor index or the
primary sensor index, j, j = 2, 3, ..N , denoting the secondary sensor index, N denoting
number of sensors in total, τi denoting the TOA in i-th sensor, τi,j denoting the TDOA
between i-th primary sensor and j-th secondary sensor, vc denoting velocity of the light
3 · 108 m/s, r denoting the Euclidean distance, (x, y) denoting the target position, and
(Xi, Yi) denoting the sensor position. It should be noticed that the τd is unavailable in
the signal sent from unknown radio emitter.

form. The detailed discussion of conventional DOA-FG can be found in
Chapter 2. Moreover, the conventional TDOA-based factor graph tech-
nique in [6] requires high computational complexity. This is because the
conventional technique performs twice conversion as the initial process;
i.e., (i) the conversion of TDOA values and known sensor positions into
hyperbolic functions, then (ii) the conversion of hyperbolic functions into
general quadratic equations. It also involves the use of rotation, shifting,
and mapping equations for iteration process. More detailed explanation
of that conventional TDOA-based technique will be given in Chapter 2.

The problems described above have motivated us to develop several
new factor graph-based algorithms to detect the position of a single static
unknown radio emitter. In this work, three propagation parameters, DOA,
TDOA, and DRSS are considered when developing their corresponding
factor graph geolocation techniques, as summarized in Table. 1.1. These
proposed techniques are suitable for solving problems arising in each sce-
nario for detecting the position of a single static unknown radio wave
emitter.

DOA samples can be measured using either antenna arrays or direc-
tional antenna [40, 41] without requiring perfect synchronization, time
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Table 1.1. The Conventional vs. Proposed Factor Graph-Based Tech-
niques.

Measured
parameters

Motivation towards developing new
techniques

Proposed solution

DOA
Incorrect expression in [23] and incom-
plete expression in [4]

TS-DOA-FG [42]

TOA
Unable to detect the position of un-
known target [5, 17,19] P-TDOA-FG

TDOA
High computational complexity due to
hyperbolic conversion [6]

RSS
Unable to detect the position of un-
known target [18] DRSS-FG [43]

DRSS Not found in literature

stamp7, or transmit power information of a single static unknown radio
wave emitter. In such condition, the factor graph geolocation technique
is considered, where the input is the samples of DOA measurement re-
sults sent from the sensors. This research proposes DOA-FG with a li-
near approximation of tangent function by using the first order Taylor
series, so-called Taylor series DOA-FG (TS-DOA-FG). It is shown that
the accuracy of the DOA-FG geolocation algorithm can be improved by
introducing approximated expressions for the mean and variance of the
tangent and cotangent functions based on the first-order Taylor series at
the tangent factor nodes of the TS-DOA-FG.

On the other hand, the TOA and TDOA measurements require nei-
ther array antennas, monitoring spots, nor knowledge of transmit power.
Furthermore, the presence of perfect time synchronization among target
and sensors provides reliable TOA and TDOA measurements. Moreover,
the presence of line-of-sight (LOS) conditions also increases the reliabil-
ity of the measurements. However, the TDOA measurements have two
advantages over the TOA measurements, which are: (i) TDOA param-
eter can be measured without requiring the knowledge of the absolute
time departure of the target, while TOA measurement requires it. (ii)

7In DOA-based technique, time stamp may be required for multiple-target detection,
however, in this work we only consider a single static target. The development of
multiple-target detection is left for future work.
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TDOA measurement requires time synchronization only among the sen-
sors, while the TOA measurement requires time synchronization among
the targets and the sensors. Because of the advantageous nature over the
other measurement techniques, the TDOA-based techniques are the most
widely investigated and in fact, it is has already been put into practice for
aviation control [12,35,44–48]

Given the facts described above, under such conditions, the TDOA
measurements are the most suitable for the factor graph-based technique.
Most of the TDOA-based geolocation techniques solve the position de-
tection problem by solving the hyperbolic functions because the TDOA
values can be converted to hyperbolic functions. The conventional TDOA-
based factor graph technique in [6] also utilizes hyperbolic functions. As
mentioned above, even though the conventional technique is already uti-
lizing the factor graph, it still requires high computational complexity.
Hence, the Pythagorean TDOA-based factor graph (P-TDOA-FG) tech-
nique which requires much less computational complexity compared to the
conventional TDOA-based factor graph techniques employing hyperbolic
functions (H-TDOA-FG) in [6]. The brief hyperbolic function explanation
is described in Chapter 2.

The factor graph algorithm used in the P-TDOA-FG employs a simple
Pythagorean functions which is the general functions of TOA-based geo-
location technique. Apparently, the conventional TOA-based factor graph
technique (TOA-FG) in [17] also utilizes Pythagorean function. However,
as mentioned above, the conventional TOA-FG can not be used for loca-
tion detection of unknown radio wave emitter.

In this research, several sets of new factor graph nodes and expressions
are introduced into the conventional TOA-FG. By using the TDOA values
as the input, the nodes calculate the equivalent TOA values.8 The new
factor graph structure also enables the modified TOA-FG to exchange the
TDOA information from the measurement. Hence, the proposed technique
can perform location detection of a single static unknown radio wave emit-
ter, where the input is TDOA from the measurement. The problem due
to the necessity of having to know the absolute time stamp information
needed by the conventional TOA-FG are solved by P-TOA-FG. Evidently,
P-TOA-FG also improves the accuracy of the conventional TOA-FG tech-
nique.

8TOA and TDOA, τi and τi,j , discussed in this paragraph refer to the corresponding
Euclidean distance and difference Euclidean distance, ri and di,j , respectively. This is
because the TOA and TDOA can be easily converted in terms of distance/range due
to the velocity of the radio propagation wave.
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On the other hand, in the presence of imperfect synchronization, it
is obvious that TOA and TDOA measurements are not preferable. Fur-
thermore, without array antenna or with a small number of elements in
the array antenna, for example three elements antenna array, the DOA
measurement is also not desirable. Moreover, the TOA, TDOA, and DOA
measurements error are increased due to insufficiency of LOS condition
between the target and sensors resulting in multipath-rich propagation
scenario [18]. However, the RSS and DRSS measurements require neither
array antenna, perfect time synchronization, nor the time stamp. Also,
RSS measurement is already standardized in IEEE 802.11 [18]. Hence,
under such conditions, the RSS and DRSS measurements are probably
the most suitable solution for the factor graph-based technique.

As shown in Fig. 1.3, the RSS measurements contain path-loss, shad-
owing variations, and instantaneous attenuation9. The instantaneous at-
tenuation together with accumulation effect of many independent factors
cause the measurement error [17,18]. The conventional RSS-FG technique
in [18] utilizes linear approximation of the shadowing variations in indoor
environments. The approximation utilizes the least square (LS) algorithm
to the RSS measurement of training signals sent from monitoring spots.
There are several monitoring spots deployed as shown in Fig. 1.1. Then,
the pattern-recognition technique, i.e., RADAR,10 is used by the conven-
tional RSS-FG [18] to find four appropriate monitoring spots covering the
target. However, the process to select the monitoring spots is not ex-
plained in detail in [18]. Moreover, because of the reason discussed before,
the RSS-FG technique in [18] can not be used to estimate the position of
unknown radio wave emitter.

In order to overcome the shortcomings of the conventional RSS-FG
in [18], several research works are addressed as follows: (A) DRSS-based
factor graph (DRSS-FG) technique is proposed in this research to elim-
inate the necessity of the knowledge of the transmit power information,
and hence this technique successfully estimates the position of a single
static unknown radio emitter [43]. (B) The joint RSS-based Voronoi fac-
tor graph (RSS-V-FG) technique is proposed. The RSS-based Voronoi
(RSS-V) algorithm is used for selecting four appropriate monitoring spots
for the RSS-FG algorithm [51, 52]. Nevertheless, the development joint
RSS-V and DRSS-FG technique, and joint P-TDOA-FG and DRSS-FG

9We use these terminologies instead of mean path-loss, shadowing, and small-scale
fading used in [49] for clarity.

10RADAR is a radio-frequency (RF) based system for locating and tracking users
inside buildings [50].
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Table 1.2. Measured parameter-based geolocation technique requirements
for unknown radio position detection.

Requirements D
O

A

T
O

A

T
D

O
A

R
S

S

D
R

S
S

Remarks

Sufficient array antenna
or direction antenna

O X X X X
- The antenna is required for
DOA measurement

LOS condition O O O X X

- The DOA, TOA, and
TDOA measurements suffer
from harsh multipath ef-
fects [18]
- The shadowing component
in RSS and DRSS samples
can be eliminated by long
enough averaging over an
area around the reference
position of the sensors

Perfect time
synchronization among
the sensors

X O O X X

- The TDOA measurement
does not require the presence
of perfect time synchroniza-
tion between the unknown
target and sensors

Perfect time
synchronization between
the target and sensors

X O X X X

- It is impossible to establish
perfect time synchronization
between the unknown target
and sensors

Knowledge of absolute
time departure
information (time stamp)

X O X X X
- The information is unavail-
able in the signal sent from
the unknown target

Knowledge of absolute
transmit signal power

X X X O X
- The information is unavail-
able in the signal sent from
the unknown target

Monitoring spots (For
pattern recognition
technique)

X X X O O

- The monitoring spots are
required by the conventional
RSS- and proposed DRSS-
based factor graph techniques

Note: - The category of RSS- and DRSS-based techniques discussed in this
table are only the pattern recognition technique category. This is because the
conventional RSS- and proposed DRSS-based factor graph techniques employ
the pattern recognition technique by utilizing the monitoring spots
- The circle (O) and cross (X) marks indicate that the conditions are required
and not required, respectively, by the corresponding techniques
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Figure 1.3. Path-loss, shadowing, and instantaneous attenuation as shown in [49]

.

are left for future work. The proposed DRSS-FG and RSS-V-FG were
tested by a series computer simulations in the outdoor scenario. For this
purpose, the path-loss profile is used. The outdoor scenario consists of
two conditions: (i) free space or LOS environments, and (ii) Non-LOS
environments. In the Non-LOS environments, the shadowing variations
can be eliminated by long (in distance/range) enough averaging over the
surrounding geography of the sensors. The requirements of the factor
graph-based techniques are summarized in Table. 1.2 and 1.3.

It should be noticed that the area of monitoring spots can be any
forms. In this research, we follow [18] to use rectangular area shaped
by four monitoring spots covering the target. The size of rectangular
area of monitoring spots are flexible for both environment with shadow-
ing variations or path-loss only. The smaller size of rectangular area of the
monitoring spots, the more accuracy of the linear approximation can be
achieved for shadowing variations. For example, the conventional RSS-FG
in [18] is successfully tested in the indoor environments, taking into ac-
count shadowing variations. The technique uses small rectangular area of
monitoring spots, i.e., 6 m × 6 m, and 3 m × 3 m, to linearly approximate
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Table 1.3. Summary of the factor graph-based techniques for location
detection of a single static unknown radio emitter.

Measured
parameters

Factor graph-based techniques for unknown radio position
detection

DOA
Suitable for location detection of a single static unknown radio
wave emitter if sufficient array antenna is available and also LOS
condition exists

TDOA

Suitable for location detection of a single static radio wave emit-
ter without array antenna, with LOS condition and perfect time
synchronization

DRSS

Suitable for location detection of a single static unknown radio
wave emitter in LOS and/or Non-LOS condition, and imperfect
time synchronization

TOA

Unsuitable for location detection of unknown radio wave emitter
because the knowledge of the abolute time departure of the un-
known target is unavailable

RSS

Unsuitable for location detection of unknown radio wave emitter
because the knowledge of absolute transmit power of the unknown
target is unavailable

the shadowing variations.
On the other hand, the larger size of rectangular area of the monitoring

spots, the accuracy of the linear approximation is only suitable for path-
loss component. The proposed DRSS-FG in [43] and RSS-V-FG in [51,
52] are successfully tested by a series computer simulations in outdoor
environments by taking into account path-loss only. The reasonable size
of rectangular area of monitoring spots for linear approximation of the
path-loss component is 200 m × 200 m, based on our finding in [53]. If it
is not possible to perform long (in distance/range) enough averaging of the
RSS measurements, the solution is by reducing the size of rectangular area
of the monitoring spots. Hence, the smaller size of the area, the higher
accuracy of the RSS- and DRSS-based factor graph techniques achieved.
The detail discussion of the rectangular area size of the monitoring spots
can be found in Chapter 5.

A closed-form expression of the Cramer Rao lower bounds (CRLBs),
taking into account the number of samples, for DOA- and TOA-based geo-
location techniques, as well as the approximated CRLB for TDOA-based
geolocation are also derived in this dissertation. The performance of the
proposed technique is evaluated in the term of root-mean-square error
(RMSE). The results show that the proposed techniques accurately esti-
mate the location of unknown target, while it requires low computational
complexity. It is shown that all of the techniques proposed in this dis-
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sertation can achieve much higher accuracy compared to the conventional
techniques. The achieved RMSE with the proposed techniques are also
evaluated, and are found to achieve very close RMSE to the CRLB. The
derivation of CRLB for RSS- and DRSS-based techniques will be explored
further in our future work.

1.3 Summary of Contribution

Usually, in many dissertations of this nature, the research work focuses
on a single measured parameters of propagation electromagnetic waves.
In this dissertaion, however, the proposal to develop new geolocation al-
gorithms incorporates many measured parameters because our research
work initially motivated by industry requirements. The focus in indus-
trial problem is to detect the location of unknown radio wave emitter.
Hence, several techniques based of factor graph algorithm and measured
parameters, such as, DOA, TDOA, and DRSS, are proposed.

Such industrial background invokes the theoretical bounds; and mathe-
matical expression of the proposed techniques are derived, where these are
the part of academic research works. Furthermore, the detailed explana-
tion of how the messages are updated at each node, and how the updated
messages are exchanged between the nodes, is provided. The results of
a series of simulation are presented to evaluate the convergence property
and the accuracy of the proposed techniques. The focus of our research
work is to develop several new mathematical formulas and/or algorithm
for calculating the position of unknown radio by utilizing the samples of
measured parameters. The dissertation does not cover the security issue,
sensor specification, bandwidth, signal waveform, measurement issue, etc.

The contributions of this research are based on published conference
paper [51, 53], accepted journal paper [52], conditional accepted journal
paper [42], and accepted conference paper [43], summarized as follows:

1. For the presence of imperfect time synchronization with LOS condi-
tion, we propose a new TS-DOA-FG [42] to estimate the position of
the unknown target, where the input is the samples of DOA mea-
surement results sent from the sensors. Incorrect and incomplete
algorithms of the conventional DOA-FG techniques are fixed by in-
troducing new expressions and nodes. A linear approximation of
tangent and cotangent functions by utilizing the first order Taylor
expansion series is derived. It is shown that the accuracy of the
proposed technique outperforms the conventional DOA-based least
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squares (DOA-LS) and Gauss-Newton (DOA-GN) techniques and
also achieves close to the theoretical limit.

2. In addition, with the presence of perfect time synchronization among
the sensors and also LOS condition, we propose a new P-TDOA-FG
technique requiring much less computational complexity compared
to the conventional H-TDOA-FG techniques. The proposed tech-
nique uses simple Pythagorean function-based FG technique, which
has been taken into account for the use of conventional TOA-FG
technique. The establishment of several sets of formulas is to con-
vert the TDOA (different Euclidean distance) to equivalent TOA
(Euclidean distance). Hence, the necessity of the knowledge of the
absolute time stamp information in the TOA-FG can be eliminated.
It is shown that our proposed technique successfully estimates the
unknown target. It is also shown that the accuracy of the proposed
technique outperforms the conventional TOA-FG and also achieves
close to the theoretical limit.

3. Furthermore, with the LOS and/or Non-LOS condition, where per-
fect time synchronization and sufficient array antenna are unavail-
able, we propose a new DRSS-FG technique [43]. The proposed tech-
nique solves the problem of conventional RSS-FG technique which
is unable to estimate the position of a single static unknown radio
wave emitter without the knowledge of absolute value of its transmit
power. The necessity of the knowledge of the absolute value is elim-
inated by performing subtraction the RSS value (in terms of dB)
among the sensors. It is shown that the accuracy of our proposed
technique outperforms the conventional RSS-based FG to estimate
the position of an unknown target.

4. Besides proposing above three factor graph geolocation techniques,
we also propose new RSS-V-FG [51, 52] utilizing the initial point
given by the conventional RSS-V technique. The initial point is
required for selecting four most appropriate monitoring spots. It is
shown that our proposed technique also improves the accuracy of
RSS-V technique.

1.4 Dissertation Outline

The outline of this doctoral research dissertation is organized as follows.
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In Chapter 1, the background, motivation, overview, and related work
of this research have been described. The summary of the contributions
and the organization of this dissertation has also been presented this chap-
ter. In Chapter 2, the factor graph algorithm overview is discussed. It is
followed by the description of several measured-based factor graph tech-
niques. The Gaussianity assumption and theoretical limit in wireless geo-
location are also discussed in Chapter 2.

The main contributions in this research are presented in the following
three chapters. In Chapter 3, a new TS-DOA-FG technique is proposed.
The derivation of linearly approximated expressions of the tangent and
cotangent functions is presented. This approximation utilizes the first-
order Taylor series of the tangent and cotangent functions. In Chapter 4,
a new P-TDOA-FG technique is proposed. In Chapter 5, new DRSS-FG
and RSS-V-FG techniques are proposed. Results of a series of simulations
conducted to evaluate the size required for monitoring spots.

Finally, conclusions and future work for further development of the
geolocation techniques using factor graph are presented in Chapter 6.
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Chapter 2

Research Background

2.1 Overview of Factor Graph

As described in [37], A factor graph is a bipartite graph showing the fac-
torization/decomposition structure of global function into several local
function. It can be seen that the factor graph is used to derive many algo-
rithms to be working as sum-product algorithm, e.g., low-density parity-
check (LDPC) codes, turbo codes, Kalman filter, fast Fourier transform
(FFT), spanning tree, and geolocation techniques. The factor graph is
also well known for the LDPC code because the factor graph is applying
the functions into Tanner graph, where the Tanner graph is utilized to
described the LDPC code. In this dissertation, we utilize the factor graph
for position detection of the unknown target.

In general, the factor graph consists of the factor and variable nodes.
In Fig. 2.1, the factor node is shown by a square, while the variable node
by a circle. The factor node updates the messages forwarded from the
connected variable nodes by using the specific simple local function, and
the result is passed to the destination variable node. The variable node
combines all messages sent from the corresponding factor nodes by using
sum-product algorithm.

It is alo explained in [37] that the sum-product algorithm is a generic
message passing algorithm to calculate the various marginal functions.
The marginal function of a variable node is the product of all incoming
messages from connected factor nodes. For example, the global function
for the factor graph in Fig. 2.1 is g(x1, x2, x3, x4). Assume that g is the
product of several simple functions as

g(x1, x2, x3, x4) = fA(x1, x2) · fB(x1, x3) · fC(x1, x4) · fD(x3). (2.1)
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Figure 2.1. The simple structure of the factor graph.

Hence, the marginal function for x1 can be computed by using distributive
law, expressed as

g(x1) =

(∑
∼x1

fA(x1, x2)

)(∑
∼x1

fB(x1, x3)fD(x3)

)(∑
∼x1

fC(x1, x4)

)
,(2.2)

where
∑
∼x1 is the summary operator for x1, and fA(·), fB(·), fC(·), fD(·)

are the local function in factor nodes A,B,C,D, respectively [37].
In this research, we calculate the marginal function for coordinate po-

sition of the target (x, y). The calculation is repeated in each iteration. It
should be noticed that the iteration process appears in the factor graph
with cycles. In the most cases, the measured parameters-based factor
graph geolocation techniques have cycles in the graph [3,5, 6, 17–19,23].

Fig. 2.2 shows a simple structure of the factor graph with cycles. Dur-
ing the iteration process, the messages sent from the source factor nodes
are further combined in the variable node and passed back to the destina-
tion factor node for the next round of iteration. The messages combined
in the variable node z, during the iteration process are calculated by sum-
product algorithm as [37]

N∏
j=1,j 6=i

N (z,mZj→z, σ
2
Zj→z) ∝ N (z,mz→Zi , σ

2
z→Zi), (2.3)
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Figure 2.2. The simple structure of the factor graph with cycles.

where the fact that product of several Gaussian variables is proportional
to Gaussian-distributed is used. z and Z indicate any variable and factor
nodes, respectively. The mark → in the suffix indicates the message flow
directions in the factor graph. N indicates the total edge-connecting vari-
able node z to factor nodes Zi. The edge-connecting indexes are indicated
by i, i = 1, 2, ...N and j, i = 1, 2, ..., N .

It should be noticed that as shown in the explanation of Fig. 1.2, N
indicates the total number of sensors, i, i = 1, 2, ..., N and j, j = 2, 3, ..., N
indicate the primary sensor and secondary sensor indexes, respectively,
for the use of the discussion of the TDOA-based factor graph and DRSS-
based factor graph technique. i also indicates the sensor index regardless
secondary or primary sensor indexes, for the use of the discussion of the
DOA-based factor graph techniques.

Furthermore, as has been derived in [37] with the Gaussianity assump-
tion, the message passing algorithm needed to perform the sum-product
algorithm can be expressed as

1

σ2
z→Zi

=
N∑

h=1,h 6=i

1

σ2
Zh→z

, (2.4)

mz→Zi = σ2
z→Zi

N∑
h=1,h 6=i

mZh→z

σ2
Zh→z

. (2.5)
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Finally, when the iteration converges, the variable node z combines all
incoming messages from the node Zi, as

N∏
i=1

N (z,mZh→z, σ
2
Zh→z) ∝ N (z,mz, σ

2
z), (2.6)

where, in the similar way as above,

1

σ2
z

=
N∑
i=1

1

σ2
Zi→z

, (2.7)

mz = σ2
z

N∑
i=1

mZi→z

σ2
Zi→z

. (2.8)

The equations (2.4)–(2.8) are utilized in Chapter 3 – 5 for calculating
the estimated coordinate position (x, y) of a single static unknown target.
Especially in Chapter 4, these equations are also employed to calculate
the equivalent TOA. The conventional RSS-FG in Section 2.3.1 can be
used as a simple example of the factor graph-based geolocation technique
.

2.2 Measurement Error in Geolocation

In this research, we directly use the samples of measurement corrupted
by Gaussian noise for estimating the position of the unknown target. The
mismatch between real signal with the signal model is also assumed to
be included in measurement error. Hence, the signal model of the un-
known radio wave emitter is not discussed. The measured samples are
also corrupted by error due to spatial spread of the multipath component,
impairments in measurement, and many other independent factors.

The Gaussianity assumption is used in this research because of the
accumulative effects of many independent factors, as in [4, 6, 17, 18, 23].
Hence, the assumption is reasonable for many of the wireless parameter
measurement-based techniques such as DOA [4, 23], TOA [17], TDOA
[6], and RSS-based factor graph technique [18]. The assumption is of
significant importance to simplify the operations in the factor graph so
that the message exchanged among the nodes can be expressed in the
form of only the means and variances. This research also uses the same
assumption.

The sample equation of DOA measurements is then given by

θ̂i,k = θi + nθi,k , k = {1, 2, ..., K}, (2.9)
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where k and i are the sample and sensor indexes, respectively. θi indicates
the true DOA. It is reasonable to assume that ni,k is zero-mean Gaus-
sian random variable where the DOA measurement is performed by using
circular array antenna, hence the measurement error is in angular value.
Then, θ̂i,k follows a Normal distribution N (θi, σ

2
i ) having a probability

density function p(θ̂i,k) as

p(θ̂i,k) =
1√

2πσθi
exp

(
−(θ̂i,k − θi)2

2σ2
θi

)
. (2.10)

The TOA, TDOA, RSS, and DRSS samples expression are similar to
(2.9) as follows: (i) θ̂i,k is replaced to r̂i,k, d̂i,j,k, P̂w,i,k, and P̂w,i,j,k, (ii) θi,k
is replaced to ri,k, di,j,k, Pw,i,k, and Pw,i,j,k, and (iii) nθi,k is replaced to nri,k ,
ndi,j,k , nPw,i,k , and nPw,i,j,k , respectively. The variables indicate: (i) samples
of, (ii) true value of, and (ii) measurement errors (the zero-mean Gaussian
noise) of, TOA/Euclidean distance (meter), TDOA/difference Euclidean
distance (meter), RSS (watt), and DRSS (watt), respectively. w indicates
the unit of RSS and DRSS parameters are in watt. Thus, r̂i,k, d̂i,j,k,

P̂w,i,k, and P̂w,i,j,k follow a Normal distribution N (ri, σ
2
ri

), N (di,j, σ
2
di,j

),

N (Pw,i, σ
2
Pw,i

), and N (Pw,i,j, σ
2
Pw,i,j

) with a probability density function

p(r̂i,k), p(d̂i,j,k), p(P̂w,i,k), and p(P̂w,i,j,k), respectively.
The TOA and TDOA samples measurement, τ̂i and τ̂i,j, can be di-

rectly converted to Euclidean distance and difference Euclidean distance
samples, r̂i and d̂i,j, respectively, due to the velocity of the light. Hence, in
the most cases in this dissertation, the TOA and TDOA refer to Euclidean
distance and difference Euclidean distance, respectively. The difference
Euclidean distance di,j is the difference between the Euclidean distance of
primary sensors ri and the Euclidean distance of secondary sensors rj to
the target, where di,j = ri − rj. We subtract the values in secondary sen-
sor from the values in primary sensor to obtain the difference in values for
both TDOA. The use of terminologies of primary and secondary sensors
are also applied for DRSS in the same way .

However, in the conventional RSS-FG and proposed DRSS-FG, the
RSS and DRSS samples in units of watt, P̂w,i,k and P̂w,i,j,k, are converted

into RSS and DRSS samples in units of dB, P̂i,k and P̂i,j,k, respectively,
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with probability density function (pdf) as [18]

p(P̂i,k) =
ln 10 · 10

P̂i,k
10

10 · σnPw,i ·
√

2π
· exp


−
(

10
P̂i,k
10 − Pw,i

)2

2σ2
nPw,i

 . (2.11)

The conversion from the units of watt to dB improves the linear approxi-
mation of the RSS profile . Furthermore, it has been confirmed in [18] that
the pdf of (2.11) is the approximation of Gaussian distribution because
the pdf shows similarity to Gaussian distribution. Hence, the Gaussianity
assumption is still preserved.

2.2.1 Assumption of LOS condition

The size of area used for computer simulation in the research is 1, 000
× 1, 000 m2. It may be difficult to achieve the LOS condition in areas
with size of 1, 000 × 1, 000 m2 especially in (sub)urban environments.
However, instead, the error due to the Non-LOS components can be in-
cluded to the variance of the measurement error as shown in [5,54], where
the variances are different between the sensors. For simplicity, it is as-
sumed that the variance σ2

θ of the measurement error is common to all
sensors as in [4, 6, 17, 18, 23]. However, it is rather straightforward to de-
rive the algorithm where each sensor has different values of variances. In
fact, in the simulation set up, the area size is much smaller than that
used in other references, for example, the TOA-based factor graph in [17],
TOA/DOA-based factor graph in [23], DOA-based factor graph in [4], and
TDOA-based factor graph in [6], where they consider the hexagonal area
with a radius of 5 km. For example, as found in the simulation results
of TS-DOA-FG technique in Chapter 3, the estimation accuracy is quite
high even with relatively large variance, e.g., σ2

θ = 45◦. This indicates
that the assumption for the impact of the Non-LOS components being
represented by the measurement error variance is reasonable.

2.3 Overview of Conventional Factor Graph-

Based Techniques

2.3.1 RSS-Based Factor Graph

The RSS-FG presented in this section is based on the technique intro-
duced in [18]. Fig. 2.3 shows the conventional RSS-FG with number of
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Figure 2.3. The conventional RSS-FG with number of sensors N = 3 [18].

sensors N = 3. We modify the environment from an indoor area suffering
from shadowing fading [18] to an outdoor area experiencing from path-
loss only [53]. The target position to be estimated is at x. Multiple N
sensors perform measurement of RSS signal sent from both the target and
monitoring spots, where the position is indicated by X as described above.
Multiple M monitoring spots send training signals to the sensors, where
the position is indicated by Y = [xm ym]T , with m = 1, 2, ...,M being the
monitoring spot index. It should be noticed that monitoring spot index
are also not assigned in a vector Y.

The linear plane equation used to convert the messages of RSS from
target to the coordinate is derived in [18], as

axi · xj + ayi · yj + api · Pm,i = c, (2.12)

where for the i-th sensor, axi , ayi , and api are the coefficients of x, y,
and Pi variables of linear plane (5.3), respectively. The variables are
obtained by solving the LS equation (2.15), (xm, ym) is the position of the
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m-th monitoring spot, Pm,i is the RSS of the m-th the monitoring spot,
obtained from the training sequence, and c is a constant which is set at
arbitrary value [18]. We set c = 1 in this research work. The matrix
equation from (5.2) is expressed as below

B · a = c, (2.13)

where B is a matrix with its elements xj, yj, and P,m as a is vector of axi ,
ayi , and api , and c is constant vector, as

B =


x1 y1 Pi,1
x2 y2 Pi,2
x3 y3 Pi,3
...

...
...

x4 y4 Pi,M

 , a =

axibxi
api

 , c =


1
1
1
1

 , (2.14)

where i, i = 1, 2, ..., N indicates sensor index, N indicates total number of
sensors, m,m = 1, 2, ..,M indicates the monitoring spots index, and M is
the total number of monitoring spots. We can use at least 3 monitoring
spots. In this research, we follow [18] to use 4 monitoring spots having
rectangular area shape. The use of 3 monitoring spots decreases the ac-
curacy of the RSS-FG technique, while the use of more than 4 monitoring
spots does not increase the accuracy of the RSS-FG. This is because we
use linear plane to approximate the RSS profile.

The coefficient of the variables are obtained by employing a least square
(LS) solution to (2.13), as

a = (BT ·B)
−1 ·BT · c. (2.15)

The coefficients in a from (2.15) are used for the final linear plane equation
to convert the target RSS to the target coordinate (x, y) as expressed:

axi · x+ ayi · y + api · Pi = c, (2.16)

where Pi is the RSS of target measured by the i-th sensor. In the RSS-FG
algorithm, Pi contains the information of mean and variance of the k RSS
samples from the target. The node Ap uses (5.3) to convert the target
RSS message to the target position in the coordinate. The summary of
formulas for updating the mean and variance at each node of the RSS-FG
can be found from Table I in [18], where the message flow in the RSS-FG
algorithm is described below.

Now, since the equations to be calculated in the node AP is established,
we can start the factor graph algorithm. The first step in the factor graph
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algorithm is conducted in RSS measurement factor node BP to feed the
mean mBpi→PRi and variance σ2

Bpi→PRi
messages extracted from k RSS

samples of the target, corrupted by zero-mean Gaussian measurement
error. The means and variances of the samples are calculated as

mBpi→PRi =
1

K

K∑
k=1

P̂i,k, (2.17)

σ2
Bpi→PRi

=
1

K

K∑
k=1

(
P̂i,k −mBpi→PRi

)2

. (2.18)

After that the messages are forwarded by the node BP to the averaged
RSS variable node NP , as shown in Fig. 2.3. The variable node NP per-
forms sum-product algorithm (2.4) and (2.5). However, because there are
only two connecting edges to the node NP , hence the node NP directly
forwards the RSS messages of the target in the form of mean and variance,
obtained from the node BP to the node AP , as

mPRi→APi = mBPi→PRi , (2.19)

σ2
PRi→APi

= σ2
BPi→PRi

. (2.20)

The messages of the mean and variance of RSS samples as well as the x
and y coordinate are exchanged iteratively between the nodes AP and the
estimated geolocation coordinate variable node (x, y) in the factor graph
as shown in Fig. 5.1. In the node AP , the messages of mean and variance
of RSS are converted to the target (x, y) coordinate, as

mAPi→x = αxi + βxi ·my→APi + γxi ·mPRi→APi , (2.21)

mAPi→y = αyi + βyi ·mx→APi + γyi ·mPRi→APi , (2.22)

σ2
APi→x

= β2
xi
· σ2

y→APi
+ γ2

xi
· σ2

PRi→APi
, (2.23)

σ2
APi→y

= β2
yi
· σ2

x→APi
+ γ2

yi
· σ2

PRi→APi
, (2.24)

where

αxi = c/axi , αyi = c/ayi ,

βxi = −ayi/axi , βyi = −axi/ayi ,
γxi = −aPi/axi , γyi = −aPi/ayi . (2.25)

During the iteration, the node (x, y) forwards the messages, obtained
as the result of the sum-product algorithm performed in the node (x, y),
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Table 2.1. The Operations Required for Each Node in The Conventional
RSS-FG [18].

Message
Flow

(Nodes)

Samples (ˆ) and/or (Means, Variances)

Inputs Outputs

BPi → NPi P̂w,i

(
mP̂i

, σ2
P̂i

)
NPi → APi

(
mP̂i

, σ2
P̂i

) (
mP̂i

, σ2
P̂i

)
APi → x

(
mP̂i

, σ2
P̂i

)
(
myi , σ

2
yi

) (
ci−ayimyi−aPimP̂i

axi
,
a2yiσ

2
yi

+a2Pi
σ2
P̂i

a2xi

)

APi → y

(
mP̂i

, σ2
P̂i

)
(
mxi , σ

2
xi

) (
ci−aximxi−aPimP̂i

ayi
,
a2xiσ

2
xi

+a2Pi
σ2
P̂i

a2yi

)
x → APi
y → APi

(
mj, σ

2
j

)
j 6= i

(
σ2
i

∑
j 6=i

mj
σ2
j
, σ2

i = 1∑
j 6=i

1

σ2
j

)

x and y (mi, σ
2
i )

(
σ2

Λ

∑
i
mi
σ2
i
, σ2

Λ = 1∑
i

1

σ2
i

)

back to the node AP as in (2.4) and (2.5). When the iteration converges,
the mean value (mx,my) obtained from (2.8) indicates the final estimate
of the target position, where mz indicates mx and my. We summarize the
operation required at each node in Table. 2.1.

In [53], we have investigated the RSS-FG in outdoor environments,
where solely path-loss taken into account. The shadowing and instan-
taneous fading components are eliminated by assuming averaging over a
long enough range. We also found that the accuracy of the RSS-FG de-
pends on the width size of monitoring spot area1 where the target is inside.
Furthermore, if the target is surrounded by four monitoring spots, adding
more monitoring spots does not increase the accuracy.

Path-Loss Model

The only path-loss remains due to the free space loss assumption. In addi-
tion, when the free space loss condition in outdoor environment is unavail-
able, the condition that the only path-loss component remains can also be
achieved by performing measurement around the initial sensor position

1We use the terminology ”monitoring spot area” instead of ”training cell” mentioned
in [18].
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Figure 2.4. RSS profile of path-loss model with sensor position at (901,−421) m, n = 3
for urban area, fc = 1 GHz, and r0 = 100 m.

(Xi, Yi), i = 1, 2, ..., N . The areas for the averaging by each sensor are
large enough to eliminate the shadowing components in the RSS samples.
The samples of measured signal of monitoring spots and a single static
unknown target are sent to the fusion center. The averaging is performed
in the fusion center to obtain the average RSS samples which indicate
the path-loss only. The profile of RSS at sensor position (901,−41) m is
shown in Fig. 2.4, where the path-loss exponent model is used as

Pi(ri) = 20 log

(
4πr0fc
c

)
+ 10n log

(
ri
r0

)
, (2.26)

where r0 denotes reference distance, fc denotes carrier frequency, and n
denotes path-loss exponent. ri denotes Euclidean distance from target or
monitoring spot to the i-th sensor [49, 53]. We use Pi instead of Pi(ri) in
the rest of this dissertation for simplicity, where Pi is in unit of dB.

Monitoring Spot Area in Outdoor Area Scenario

In [53], we investigates the accuracy of RSS-based FG geolocation tech-
nique in outdoor environment. We consider the path-loss fading channel
by averaging RSS samples of each monitoring spot and target, where the
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averaging is long enough to eliminate the shadowing and small-scale fad-
ing component of RSS. This chapter shows the effect of the number and
wide area of monitoring spot to the accuracy of RSS-based FG geolocation
technique in outdoor environment.

Area of investigation in this simulation is 1, 000 × 1, 000 m2. The
square wide area of monitoring spot is evaluated from 100× 100 m2 until
800 × 800 m2. The configuration of location in the simulation as follow,
initial point of iteration is at (0, 0) m, and three sensors location is at
(100, 0), (1100, 0), (600,−1000) m. Target location is randomly permuted
800×800 m2 where the grid is every 10 m and (600,−500) m is the center.
The position of the sensor, target, and monitoring spots are shown in
Figs. 2.5(a) and 2.5(b). The exponential path-loss model PL is expressed
as in (2.26), where frequency carrier fc is 1 GHz, reference distance r0

is 100 m, path-loss exponent n is 3 for urban area, and r is distance
from sensor to target or monitoring spot. The RSS-based FG geolocation
technique in this simulation is same as in [18]. The simulation is conducted
in 10, 000 realizations, where each realization contains 10 iterations and
100 samples of RSS target. Each sample is from path-loss exponent (in
watt), which is added zero-mean Gaussian noise as error measurement
with SNR of 0 to 45 dB.

RSS-based FG geolocation technique employs the equation of linear
plane derived in [18] as expressed as axx + ayy + app = c, where x and y
is coordinate position, ap is the RSS of target, and c is constant which we
set 1. ax, ay, and ap are the variable coefficients obtained by applying the
leased square (LS) to the RSS monitoring spot. Therefore, the accuracy
is depending on how the RSS profile of linear plane matches the actual
RSS profile (RSS profile model).

Fig. 2.5(a) shows the trajectory reaches the target position after several
iterations in monitoring spot area 200 × 200 m2 because the RSS profile
of model and the RSS profile of the equation are almost fitted each other
as shown in Fig. 2.6(a). In other hand, Fig. 2.5(b) shows the trajectory
can not reach the target position accurately after several iterations in
monitoring spot area 800× 800 m2 because the RSS profile of model and
the RSS profile of the equation are separated far away each other as shown
in Fig. 2.6(b).

Fig. 2.7 shows that the accuracy increases when the area of monitor-
ing spot is getting smaller. The accuracy of RSS-based FG geolocation
technique is not depending the number of monitoring spot due to the LS
property. If the monitoring spot number increases and spreads, then the
accuracy is depending on how close the monitoring spot to the target.
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Figure 2.5. Trajectory of RSS-based FG with 3 sensors.
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(a) RSS profile in 200× 200 m2.

(b) RSS profile in 800× 800 m2.

Figure 2.6. RSS profile vs RSS plan equation of RSS-based FG at sensor #3.
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Figure 2.7. Fig. 2. RMSE vs. σRSS for each wide area of monitoring spot.

2.3.2 DOA-Based Factor Graph

A lot of work in DOA-based geolocation techniques has been proposed
over the past 30 years [55, 56]. However, it was quite recently that the
factor graph-based techniques using DOA were proposed, where the mea-
surement data related to the DOA parameters are used as the input to the
algorithms. A Joint TOA-DOA-based factor graph geolocation algorithm
was proposed in [23], where the measured samples are efficiently used in
factor graph to estimate the position accurately.

The factor graph geolocation technique derived in [23] is improved in [4]
as suggested in [17]. It also removes the necessity of measuring the TOA
data from the joint TOA-DOA-based factor graph geolocation algorithm
shown in [23] to obtain a simple DOA-based factor graph technique. After
the DOA-based factor graph technique reaches a convergence point, the
position estimate results are used as the initial position for the Gauss-
Newton (GN) algorithm as the second step of the algorithm, so-called
factor graph - Gauss-Newton (FG-GN) geolocation technique in [4], to
achieve even higher accuracy.
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We found that: (i) The joint TOA-DOA-based factor graph geolocation
algorithm shown in [23] is still not fully correct because the message to be
exchanged, the information of measurement error derived from the mea-
surement results, enters the factor graph at improper node as identified
by [17]. Furthermore, the derivation of the formula in tangent factor node
Cθ in [23] is not provided. (ii) The mean formula at node Cθ [4] is not com-
pletely written. Furthermore, the derivation of the formula is unavailable.
Hence, we are unable to complete the formula. (iii) The factor node used
for collecting the samples is not available in DOA-based factor graph geo-
location techniques in [4,23]. Fig. 2.8 shows the conventional factor graph
for DOA-based geolocaiton technique. The mathematical expressions of
the conventional DOA-FG in [4,23] are not shown in this dissertation be-
cause we proposed new expressions with detailed derivation in Chapter
3.

2.3.3 TOA-Based Factor Graph

The conventional TOA-FG in [17] is shown in Fig. 2.9. The required
mathematical operations in the conventional TOA-FG are summarized in
Table. 2.2, where the (mi, σ

2
i ) indicates the updated messages for each

iteration in general. We replace (mi, σ
2
i ) with

(
mxi , σ

2
xi

)
and

(
myi , σ

2
yi

)
for the messages forwarded from the node ∆x and ∆y to the node Ci,
respectively, to provide more clarity. As we has described before in Chap-
ter 1, the conventional TOA-FG technique can not be used to detect the
position of unknown target because knowledge of the absolute departure
time in the signal sent from the unknown target is unavailable. In Chap-
ter 4, we present the proposed P-TDOA-FG with the detailed discussion
of modification of the conventional TOA-FG in [17]. Hence, the modified
TOA-FG can detect the position of a single static unknown radio wave
emitter with TDOA parameters as the input.

2.3.4 Hyperbolic TDOA-Based Factor Graph

The conventional hyperbolic TDOA-Based Factor Graph (H-TDOA-FG)
technique [6] uses a set of hyperbolic functions to obtain the target position
estimate from TDOA samples. The measured TDOA samples and the
information of sensor positions are converted into hyperbolic geometric
parameters, e.g., the central point between the sensors, and the distances
between the two points related to the hyperbolic curves where all the
combinations of the hyperbolic curves in the set have to be taken into
account. Only after that, the general quadratic hyperbolic function can
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Table 2.2. The operations required for each node in the conventional
TOA-FG [17].

Messages Flow
Samples (ˆ) and/or (Means, Variances)

Inputs Outputs

Eri → Nri r̂i samples
(
mr̂i , σ

2
r̂i

)
Nri → Cri

(
mr̂i , σ

2
r̂i

) (
mr̂i , σ

2
r̂i

)
Cri → ∆yi

(
mxi , σ

2
xi

)(
mr̂i , σ

2
r̂i

) (
±
√
m2
r̂i
−m2

xi
,
m2
r̂i
σ2
r̂i

+m2
xi
σ2
xi

m2
r̂i
−m2

xi

)
Cri → ∆xi

(
myi , σ

2
yi

)(
mr̂i , σ

2
r̂i

) (
±
√
m2
r̂i
−m2

yi
,
m2
r̂i
σ2
r̂i

+m2
yi
σ2
yi

m2
r̂i
−m2

yi

)
Cri ← ∆xi → Ai
Cri ← ∆yi → Bi

(mi, σ
2
i ) (mi, σ

2
i )

∆xi ← Ai → x (mi, σ
2
i ) (Xi −mi, σ

2
i )

∆yi ← Bi → y (mi, σ
2
i ) (Yi −mi, σ

2
i )

x → Ai
y → Bi

(
mj, σ

2
j

)
j 6= i

(
σ2
i

∑
j 6=i

mj
σ2
j
, σ2

i = 1∑
j 6=i

1

σ2
j

)
x and y (mi, σ

2
i )

(
σ2

Λ

∑
i
mi
σ2
i
, σ2

Λ = 1∑
i

1

σ2
i

)

be obtained. It should be noticed that hyperbolic function depends on the
type, i.e., horizontal or vertical [57].

The coefficient of the general quadratic formula is used to obtain uni-
tary matrix and its eigenvalues. Finally, the values are used by the nodes
in the H-TDOA-FG nodes to perform hyperbolic rotation and shifting be-
fore obtaining the target coordinate position. Hence the conventional H-
TDOA-FG technique is not compared to the proposed P-TDOA-FG tech-
nique because: (i) The conventional H-TDOA-FG technique has high com-
putational complexity, even compared to the Gauss-Newton technique, as
described before in Chapter 1. (ii) The derivation of conversion the TDOA
parameters into hyperbolic functions and then converted again to the gen-
eral quadratic functions are unavailable. Hence, it is quite difficult to fully
investigate the conventional H-TDOA-FG technique. The detailed equa-
tions of the conventional H-TDOA-FG can be found in [6].

The brief explanation of hyperbolic function is provided in this section.
There are two types of hyperbolic equations, i.e., horizontal and vertical
hyperbolic equations. We discuss horizontal hyperbolic expressed as

(x− hi,j)2

a2
i,j

− (y − ki,j)2

b2
i,j

= 1, (2.27)
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Figure 2.10. Intersection of at least two hyperbolic curves indicates the position of the
unknown target.

with ai,j =
di,j
2

, ci,j =
ri,j
2

, bi,j =
√
c2
i,j − a2

i,j, hi,j =
Xi+Xj

2
, and ki,j =

Yi+Yj
2

.

di,j is the different Euclidean distance, where we can directly obtain from
TDOA conversion as di,j = τi,j · vc. Euclidean distance between sensor i
and j is denoted by ri,j. This hyperbolic equation can be converted to
general quadratic equation as

Ai,jx
2 +Bi,jxy + Ci,jy

2 +Di,jx+ Ei,jy + Fi,j = 0, (2.28)

with Ai,j = b2
i,j, Bi,j = 0, Ci,j = −a2

i,j, Di,j = −2b2
i,jhi,j, Ei,j = 2a2

i,jki,j,
and Fi,j = −a2

i,jb
2
i,j − a2

i,jk
2
i,j + b2

i,jh
2
i,j. The intersection of at least two

hyperbolic curves is the position of the unknown target radio wave emitter
as shown in Fig. 2.10.

2.3.5 Convergence Analysis of Factor Graph-Based
Geolocation Technique

Since the factor graph-based geolocation was introduced more than 10
years ago by [39], various derivative algorithms using different wireless
parameters have been proposed [3, 5, 6, 17–19, 23]. However, the proof of
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the algorithm convergence in fully mathematical way has not yet been
given. This is because of the difficulty in the analysis due to the cycles
appearing inside the factor graph as mentioned in [6]. Despite the contro-
versy of the convergence analysis, the functions in the factor graph-based
techniques in many cases well behave as mentioned in [17]. Hence, it can
be concluded that the factor graph techniques are near-optimum solution
as mentioned also in [6,18] for wireless geolocation problems. Fully mathe-
matical analysis of the convergence property of the factor graph techniques
is also left as a future work.

2.4 Other Conventional Geolocation Tech-

niques

2.4.1 RSS-based Voronoi

The algorithm of RSS-V [58] is briefly described in [59]. According to
the technique shown in [58], the target receives the RSS information from
several beacons, hence the target processes the RSS information to detect
its own position estimate. The beacon in [58] is defined as the trans-
mitter with fixed position, such as base station, wireless access point,
etc. The position estimate is obtained by accumulating the measured
RSS belonging to each Voronoi region. In [58], the Voronoi region is
defined as V (Pvi) = x ∈ V (Pvi)|r(x, Pvi) ≤ r(x, Pvj), where x and Pvi
indicate any point and a set of Voronoi point in the whole region, re-
spectively, r(x, Pvi) indicates the Euclidean distance between x and Pvi ,
i, i = 1, 2, ..., N, j, j = 1, 2, ..., N, j 6= i, indicate the Voronoi point in-
dexes. The Voronoi points can be the position of beacons, sensors, access
points, and base stations. After that, the algorithm was improved in [59]
by employing the triangle algorithm between two sensors and the target
to obtain the straight line. The several crossing points made by several
straight lines are close to the target position. The measured RSS value is
included to the expectation of the crossing points as weighting factor in
calculating the position estimate. In the RSS-V, high accuracy is achieved
with the large number of sensors.

The RSS-V technique is used to select four monitoring spots for RSS-
FG algorithm. The following process of RSS-V algorithm is modified
from [59] so that it can be performed in the fusion center: 1) Create the
Voronoi diagram based on sensors position. 2) Sort the sensors based on
RSS value, where sensor with the highest RSS value is in the first position.
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3) Add plots having the highest RSS value to the first Voronoi region. 4)
Remove the first sensor from the system. 5) Re-create the Voronoi region
based on the rest of the sensors, where the second sensor works as the new
first sensor. 6) Add the plots having the second largest RSS value to the
new Voronoi region of the next first sensor. 7) Repeat the processes of
3) to 6) until the calculation of the last sensor completed. 8) Obtain the
target position by calculating the expectation of the coordinate positions
with the highest accumulated RSS value.

2.4.2 RSS-Based RADAR and LANDMARC

Other well-known techniques in RSS-based geolocation are the RADAR
[50] and the LANDMARC2 [60]. The RADAR estimates the position by
averaging several location of monitoring spots having the RSS measure-
ment values close to the RSS measurement values of the signal sent from
target. The LANDMARC, on the other hand, improves RADAR by in-
troducing a weighting factor. The weighting factor is obtained from the
Euclidean distance between RSS measurements of the signal sent from
monitoring spots and the target. It is indicated in [18] that stochastic
properties of RSS measurement errors are not taken into account by both
conventional techniques. Moreover, the Euclidean distance used in the
LANDMARC is not geometrically representing the actual distance. Sim-
ilar to the conventional RSS-FG, the conventional RSS-based RADAR
and LANDMARC also can not be used for the location detection of the
unknown radio wave emitter because all of those three conventional tech-
niques require the knowledge of the absolute transmit power of the un-
known signal.

2.4.3 DOA-Based Least Squares

The conventional DOA-based least squares DOA-LS technique in [61] is
summarized below: [

myLS

mxLS

]
=
(
AT
θ Aθ

)−1
AT
θ bθ, (2.29)

2LANDMARC is a location sensing prototype system that uses Radio Frequency
Identification (RFID) technology [60].
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where

Aθ =


1 − tan

(
mNθ1→Cθ1

)
1 − tan

(
mNθ2→Cθ2

)
...

...

1 − tan
(
mNθ3→Cθ3

)

 ,bθ =


Y1 −X1 tan

(
mNθ1→Cθ1

)
Y2 −X2 tan

(
mNθ2→Cθ2

)
...

YN −XN tan
(
mNθ3→Cθ3

)

 ,

with (mxLS ,myLS) being the target position estimate.

2.4.4 DOA-Based Gauss-Newton

The Gauss-Newton algorithm is one of the most popular iterative algo-
rithms for solving non-linear equations. Hence, the algorithm can be
used for the estimation the target position, in principle. The algorithm is
very fast to converge in terms of iteration number with given good initial
value [6]. The Gauss-Newton algorithm for geolocation is summarized as
below [6, 62][
x(q+1)

y(q+1)

]
=

[
x(q)

y(q)

]
+
((

J(q)
)T

Σ−1
θ

(
J(q)
))−1 (

J(q)
)T

Σ−1
θ

(
mθ − θ(q)

)
,(2.30)

where for the DOA-based Gauss-Newton (DOA-GN) geolocation tech-
nique, J(q) = ∂θ

∂x
denotes Jacobian matrix at q-th iteration given by [4]

J(q) = JDOA
(q) =



Y1−y(q)

(r
(q)
1 )2

−X1−x(q)

(r
(q)
1 )2

Y2−y(q)

(r
(q)
2 )2

−X2−x(q)

(r
(q)
2 )2

...
...

YN−y(q)

(r
(q)
N )2

−XN−x(q)

(r
(q)
N )2

 (2.31)

with the rN denoting the Euclidean distance between the target and the
sensors, Σ−1

θ and mθ indicates the covariance matrix and mean of DOA

samples, respectively, and θ(q) = arctan
(
Yi−y(q)
Xi−x(q)

)
in units of radiant. As

indicated in [6], The Gauss-Newton algorithm faces convergence problems
for the conditions as follows: (i) the target is at the undesirable locations,
for example, very near to the sensors, and (ii) the initial value for the
iteration process of the Gauss-Newton has to be correctly chosen. This
is because rank deficiency in those conditions results in failure to inverse
the matrix.
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2.5 Complexity Analysis Overview of Con-

ventional Techniques

The complexity analyses of conventional factor graph geolocation tech-
niques are provided in [6, 17, 18] for TOA-FG [17], RSS-FG [18], and H-
TDOA-FG [6]. It is mentioned in [17, 18] that the conventional TOA-
FG [17] and RSS-FG [18] have computational complexity/load linearly
proportional to N . This is because the both factor graph techniques only
require to solve linear functions. The linear approximation is of great
importance in the factor graph techniques to preserve the Gaussianity as-
sumption so that the messages in the factor graph algorithm can only be
in the form of means and variances. This approximation also provides
simple mathematical operations in each factor node. Hence, it results in
significant reduction of computational complexity.

Even though other geolocation techniques without using factor graph,
such as, Newton’s method, Gauss-Newton aglorithm, nonlinear least squares
(NLSS), and method of moments (MOM), have been able to achieve
CRLB, those techniques require high computational complexity for solving
non-linear equations [6, 19, 63]. It is indicated in [17, 18] that the number
of derivative alone required in the Newton’s method, the popular method
to solve the non-linear functions, is proportional to (2N)2.

2.6 Geolocation Theoterical Limit

The CRLB is widely used for evaluation and benchmarking of the per-
formance of the estimator including the accuracy of position estimate of
geolocation techniques [64, 65]. In this section we derived the CRLB for
DOA- and TOA-based technique taking into account the number of sam-
ples. We also derive the approximated CRLB for TDOA-based technique.
Accurate derivations for CRLB for TDOA-, RSS- and DRSS-based geo-
location techniques are left for future work.

Among the existing variance bounds, the CRLB is the easiest lower
bound on the variance of any unbiased estimator to determine whether
an estimator can achieve the bound [64]. The measured parameter-based
geolocation technique is also an estimator that is used for calculating the
position estimate of the radio emitter by utilizing the measured parame-
ter. As shown in [65], the errors of target position estimation due to the
variance are included in the RMSE as

RMSE =
√
E[(x− x̂)2 + (y − ŷ)2], (2.32)
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where (x̂, ŷ) is the target position estimate. The CRLB provides a lower
bound to the RMSE as

RMSE ≥ CRLB, (2.33)

where the variance inside the CRLB is from the given parameter measure-
ment errors.

In the CRLB, the lowest achievable variance as well as the relationship
between the variance of the parameter measurement errors and the target
position can be seen from the Fisher Information Matrix (FIM) as [10,64,
65]

F(x) = E

[(
∂

∂x
ln p(θ̂)

)2
]
, (2.34)

where the sensor index i is omitted. Hence, the CRLB is expressed as

CRLB =
√

trace(F−1(x)). (2.35)

The detailed derivation of the CRLB refers to Appendix A.

2.6.1 CRLB for DOA-based Geolocation

This section derives the CRLB for DOA-based geolocation, taking into
account the number of samples. The CRLB for DOA-based geolocation
is presented in [4], however, it does not take into account the number of
samples. Assume that the unknown radio wave emitter is located at coor-
dinate position x = [x y]T , where (·)T is the transpose function. Sensors
are located at positions X = [Xi Yi]

T , where i, i = {1, 2, ..., N}, is the
sensor index. It should be noticed that the sensor index is not assigned in
a vector X.

The likelihood for K identically independently distributed (i.i.d.) sam-
ples, each following the Gaussian distribution is presented in [64], as

p(θ̂i) =
K−1∏
k=0

1√
2πσ2

θi

exp

(
− 1

2σ2
θi

(
θ̂i,k − θi

)2
)
,

where θ̂k, k = {1, 2, ..., K}, indicates the DOA samples, θi = arctan
(
Yi−y
Xi−x

)
indicates the true DOA. After several mathematical manipulations shown
in Appendix A, a closed-form of the second-order derivative of log-likelihood
function (LLF) is expressed as [64]

∂2

∂θ2
i

ln p(θ̂i) = −K
σ2
θi

. (2.36)
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A closed-form CRLB for DOA-based geolocation technique taking into
account the number of samples is found to be

CRLB =

√
trace

((
JTΣ−1

θ J
)
K
)−1

, (2.37)

where Σθ = σ2
θIN denotes Gaussian covariance, IN denotes an N × N

identity matrix, (.)−1 is the inverse matrix of its argument, and J denotes
Jacobian matrix given by

J = JDOA =


Y1−y
r21

−X1−x
r21

Y2−y
r22

−X2−x
r22

...
...

YN−y
r2N

−XN−x
r2N

 (2.38)

with the rN denoting the Euclidean distance between the target and the
sensors.

2.6.2 CRLB for TOA-based Geolocation

The CRLB for TOA-based geolocation as the same with (2.37). Σθ is
replaced by Σr = σ2

rIN indicating Gaussian covariance for TOA measure-
ment error vectors with the multiple sensors. IN indicates an N × N
identity matrix. N denotes the number of sensors, and K the number of
samples.

The CRLB for the TOA-based estimates in [6] do not take into account
the number of samples. The CRLB for the TOA-based technique in [66]
takes into account the number of samples, but it is not in the closed form.

J denotes Jacobian matrix as described in [6, 64], given by

J = JTOA =


x−X1

r1

y−Y1
r1

x−X2

r2

y−Y2
r2

... ...
x−XN
rN

y−YN
rN

 , (2.39)

2.6.3 Approximated CRLB for TDOA-based Geo-
location

Since the calculation of TDOA samples involves the subtraction of the
arrival time of the signal of the target at two sensors, the TDOA samples
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Figure 2.11. RMSE of CRLBs for TOA and TDOA geolocation vs. σr

are correlated. However, the CRLB for TDOA-based geolocation tech-
nique is needed for comparison purpose. For simplicity, we follow [6] to
use the approximation of CRLB for TDOA-based geolocation technique
in this research. As mentioned in [6], the approximated CRLB assumes
perfect power control to obtain the TDOA measurement is linearly inde-
pendent. Hence, the noise covariance matrix of TDOA measurement error
is diagonal matrix.

The approximated CRLB of position estimate for TDOA-based geo-
location in [6] does not take into account the number of samples. Hence,
we use (2.37) to derive the approximated CRLB by replacing Σθ with
Σd = σ2

dIN . Σd indicates Gaussian covariance for TDOA measurement
error vectors with the multiple sensors. J denotes Jacobian matrix as
described in [6, 64], given by

J = JTDOA =


x−X2

r2
− x−X1

r1

y−Y2
r2
− y−Y1

r1
x−X2

r2
− x−X1

r1

y−Y3
r3
− y−Y1

r1

... ...
x−XN
rN
− x−X1

r1

y−YN
rN
− y−Y1

r1

 . (2.40)

Fig. 2.11 shows that the higher number of samples, the lower of the CRLB
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of and the approximated CRLB for TOA- and TDOA-based geolocation,
respectively, can be achieved. It is also shown in the figure that the
approximated CRLB for TOA-based geolocation always (in most cases)
higher than that for TDOA, which is consistent to [6].

It should be noticed that the CRLB for TDOA-based geolocation is
only one. However, beside the approximation as described above, other
works related to the approximated CRLB for TDOA-based gelocation are:
(i) The CRLB for TOA-based geolocation shown in [67] is always (in most
cases) lower than that for TDOA. This is because the noise covariance
matrix for TDOA is non-diagonal matrix due to the correlation of TDOA
measurement. ii) The CRLB of position estimate by using the TDOA
and the TOA measurement computed in [68] shows that the CRLBs are
identical for both TOA-based and TDOA-based geolocation. Given the
facts described above, the further study of the CRLB of position estimate
for TDOA-based geolocation is left for future work.

2.7 Summary

In this section we have presented the factor graph overview, Gaussian-
ity assumption for measurement error, the overview of several geolocation
techniques, computational complexity analysis, and the CRLB for geo-
location. The overview of conventional factor graph-based technique dis-
cussed in this chapter covers the RSS-FG, DOA-FG, TOA-FG, and H-
TDOA-FG. We also describe the path-loss model within the RSS-FG des-
cription. The other conventional techniques briefly discussed in this chap-
ter are the RSS-V, RADAR and LANDMARC, DOA-LS, and DOA-GN
techniques.
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Chapter 3

Taylor Series DOA-Based
Factor Graphs Geolocation

This chapter provides a description of our technique using the first order of
Taylor-series expansion to established the new TS-DOA-FG technique for
position detection of unknown target. Clear understanding of the DOA-
based geolocation techniques using FG, where the detail explanation of
how the messages are updated at each node, and how the updated mes-
sages are exchanged between the nodes is presented in this chapter. The
primary objectives of this chapter are as follows: (A) The Taylor-series ex-
pansion used for linear approximation at the tangent and cotangent factor
nodes is introduced. This approximation maintains the Gaussianity of the
messages. (B) Results of a series of simulations are presented to evaluate
the convergence property of the proposed technique, where the trajectory
of the iterative estimation process is presented. Comparison between the
RMSE of the proposed technique and the new CRLB is also provided. It
is shown that the proposed algorithm can achieve close-CRLB accuracy,
where the number of the samples, the number of the sensors, and the
standard deviation of measurement error, are used as a parameter.

Since the detailed description of the algorithm for the DOA-FG geo-
location techniques presented in [4, 23] have improper expression as men-
tioned above in Chapter 2, the accuracy of the proposed technique is not
compared with that of [23] and [4]. Instead, the accuracy comparison
is between the proposed technique and the (DOA-LS) geolocation [61]
and DOA-GN [6, 62]. The factor-graph proposed in this chapter includes
the DOA measurement factor node Eθ as shown in Fig. 3.1, according
to [17]. It is also shown in this section that with the proposed technique,
the accuracy of the target position estimation outperforms the conven-
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Figure 3.1. The proposed TS-DOA-FG for Geolocation Technique . We propose new
expression/functions in lightgray nodes, mainly in node Cθ, and new nodes in darkgray
nodes

tional DOA-LS geolocation technique, and the results are also very close
to theoretical CRLB for the DOA-based geolocation.

3.1 System Model

The orientation of the sensors is assumed to be known to ensure that the
sensors measure the angle with respect to the global coordinate system.
The sensor-to-fusion center transmission is perfect via wired or wireless
connections. ∆x = [∆yθi ∆xθi ]

T is the relative distance between the sen-
sor position (Xi, Yi) and target position (x, y), given by[

∆xθi
∆yθi

]
=

[
Xi

Yi

]
−
[
x
y

]
, (3.1)
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with the θi being the true DOA. For the notation simplicity, the sensor
index i is omitted from the equations common to all the sensors, while it
is included when needed, in the rest of the dissertation.

The relative distance in (3.1) in the (X, Y ) coordinate and the true
DOA θ are connected by the tangent and cotangent functions, as [4, 23]

∆yθ = ∆xθ · tan(θ), (3.2)

∆xθ = ∆yθ · cot(θ). (3.3)

Even though (3.2) and (3.3) are self-referenced point equation, which can
be solved by iterative techniques, the iteration needs proper initialization
of the mean and variance of the argument variables ∆x̂θ and ∆ŷθ which
are corresponding to x̂ and ŷ by (3.1) and (2.9), where the detail of ini-
tializations are described in Section 5. The true values of θ, ∆xθ, ∆yθ, x,
and y, are not known, however, the message needed in the factor graph
is the mean and variance of samples θ̂, ∆xθ̂, ∆yθ̂, x̂, and ŷ, which can be
produced from the angle messages in the form of mean and variance of
samples θ̂, (mEθ→Nθ , σ

2
Eθ→Nθ). The details of entire process are described

in next section.

3.2 Proposed Technique

Each sensor does not know the needed values of θ and σθ. Hence, Each
sensor in the proposed TS-DOA-FG geolocation technique first calculates
the mean mEθ→Nθ and the variance σ2

Eθ→Nθ from the K measured sam-
ples. The node Eθ forwards the messages (mEθ→Nθ , σ

2
Eθ→Nθ) to the angle

variable node Nθ and then the messages (mNθ→Cθ , σ
2
Nθ→Cθ) are directly

forwarded to the tangent factor node Cθ, where mNθ→Cθ = mEθ→Nθ and
σ2
Nθ→Cθ = σ2

Eθ→Nθ . The angle messages (mNθ→Cθ , σ
2
Nθ→Cθ) are converted

to relative distance messages (mCθ→∆xθ , σ
2
Cθ→∆xθ

) and (mCθ→∆yθ , σ
2
Cθ→∆yθ

)
in the node Cθ.

The messages corresponding to ∆yθ and ∆xθ of (3.2) and (3.3), respec-
tively, are the mean and variance, i.e., (mCθ→∆xθ , σ

2
Cθ→∆xθ

) and (mCθ→∆yθ ,
σ2
Cθ→∆yθ

), where mCθ→∆xθ and mCθ→∆yθ are the means of ∆xθ̂ and ∆yθ̂,
respectively; σ2

Cθ→∆xθ
and σ2

Cθ→∆yθ
are the variances of ∆xθ̂ and ∆yθ̂, re-

spectively. The messages for (3.2) and (3.3), are derived based on the
formula for the product of two independent random variables (a · b) as
[69]

ma·b = ma ·mb, (3.4)

σ2
a·b = m2

a · σ2
b +m2

b · σ2
a + σ2

a · σ2
b , (3.5)
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where mx and σ2
x, x ∈ {a, b, a · b}, are the mean and variance of x, respec-

tively. It should be noticed from (3.2)–(3.5) that the means and variances
of tan(θ̂) and cot(θ̂), mtan(θ̂) and σ2

tan(θ̂)
, and mcot(θ̂) and σ2

cot(θ̂)
, are re-

quired. However, there arises a problem because tan(θ̂) and cot(θ̂) in
(3.3) and (3.2) are both nonlinear functions, that violates the Gaussianity
assumption to express the messages only by the mean and variance in the
FG. This motivates us to use the first-order Taylor series to derive linear
approximation of the tangent and cotangent functions to obtain the mes-
sages corresponding to the relative distance, as (mCθ→∆xθ , σ

2
Cθ→∆xθ

) and
(mCθ→∆yθ , σ

2
Cθ→∆yθ

). The detailed derivation is described below.
The first-order Taylor series is expressed as [70]

f(θ̂) ≈ f(mθ̂) + f ′(mθ̂)(θ̂ −mθ̂), (3.6)

where f(θ̂) is either tan(θ̂) or cot(θ̂), θ̂ is the DOA sample, mθ̂ is the

mean of θ̂, f(mθ̂) is either the tan(mθ̂) or cot(mθ̂), and f ′(mθ̂) is the first
derivative of f(mθ̂). The condition for that approximation is working well

for θ̂ − mθ̂ approaching 0 (zero). It is shown in Fig. 3.5 showing that
the lower standard deviation of measurement error, the higher accuracy
is achieved. We obtain the linear approximation as

tan(θ̂) ≈ tan(mθ̂)−mθ̂ sec2(mθ̂) + sec2(mθ̂)(θ̂), (3.7)

cot(θ̂) ≈ cot(mθ̂)−mθ̂ csc2(mθ̂) + csc2(mθ̂)(θ̂). (3.8)

It can be seen that (3.7) and (3.8) are linear equations with respect to
θ̂ variable, where mθ̂, tan(mθ̂), cot(mθ̂), sec2(mθ̂), and csc2(mθ̂) are con-
stants.

It should be noticed that (3.6) is a linear approximation for function
of θ̂, and hence it is found that f(θ̂) can be approximated by a Gaussian
variable. The mean mf(θ̂) and variance σ2

f(θ̂)
can then be approximated

using (3.6) as [70]

mf(θ̂) ≈ f(mθ̂), (3.9)

σ2
f(θ̂)

≈ (f ′(mθ̂))
2 · σ2

θ̂
, (3.10)

where σ2
θ̂

is the variance of θ̂. The mean and variance of tan(θ̂) and cot(θ̂)
are obtained from (3.9) and (3.10) as below:

mtan (θ̂) ≈ tan (mθ̂), (3.11)

mcot (θ̂) ≈ cot (mθ̂), (3.12)

σ2
tan(θ̂)

≈ sec4(mθ̂) · σ
2
θ̂
, (3.13)

σ2
cot(θ̂)

≈ csc4(mθ̂) · σ
2
θ̂
. (3.14)
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The approximation of (3.8), (3.12), and (3.14) works very well over rel-
atively large value range of the angle except for mean of angle around
0◦. This exception is because cot(0) and csc(0) are infinity. Hence, we
can solve the infinity problem by empirically setting a limit value of mθ.
We found that mθ̂ ≥ |0.1| in units of radiant is reasonable. It should
be noticed, that in our computer simulation, the tangent and cotangent
functions are with argument angle in units of radiant. By setting the
limit value properly, unstable behavior of the algorithm can be avoided.
Theoretically, we also require to set the limit value of mθ̂ for (3.7), (3.11),
and (3.13) to avoid the infinity value. It should be noticed that, in prac-
tice, tangent function for mθ̂ = {π/2, 3π/2} does not result in the infinity
value. This is because the π value in the computer simulation is also an
approximated value.

The node Cθ calculates relative distance messages, (mCθ→∆xθ , σ
2
Cθ→∆xθ

)
and (mCθ→∆yθ , σ

2
Cθ→∆xθ

), according to (3.2)–(3.5) and (3.11)–(3.14), as:

mCθ→∆yθ ≈ m∆xθ→Cθ · tan(mNθ→Cθ), (3.15)

mCθ→∆xθ ≈ m∆yθ→Cθ · cot(mNθ→Cθ), (3.16)

σ2
Cθ→∆yθ

≈ σ2
∆xθ→Cθ · tan2(mNθ→Cθ) (3.17)

+m2
∆xθ→Cθ · σ

2
Nθ→Cθ · sec4(mNθ→Cθ)

+σ2
∆xθ→Cθ · σ

2
Nθ→Cθ · sec4(mNθ→Cθ),

σ2
Cθ→∆xθ

≈ σ2
∆yθ→Cθ · cot2(mNθ→Cθ) (3.18)

+m2
∆yθ→Cθ · σ

2
Nθ→Cθ · csc4(mNθ→Cθ)

+σ2
∆yθ→Cθ · σ

2
Nθ→Cθ · csc4(mNθ→Cθ).

The node Cθ forwards the messages (mCθ→∆xθ , σ
2
Cθ→∆xθ

) obtained from
(3.16) and (3.18) to the relative distance variable node ∆xθ for the X-
coordinate, while the messages (mCθ→∆yθ , σ

2
Cθ→∆yθ

) obtained from (3.15)
and (3.17) is forwarded to the relative distance variable node ∆yθ for
the Y -coordinate. The variable node ∆xθ directly forwards the mes-
sages (m∆xθ→Aθ , σ

2
∆xθ→Aθ) to the relative distance factor node Aθ, where

(m∆xθ→Aθ , σ
2
∆xθ→Aθ) = (mCθ→∆xθ , σ

2
Cθ→∆xθ

). The node ∆yθ forwards the
messages (m∆yθ→Bθ , σ

2
∆yθ→Bθ) to the relative distance factor node Bθ, where

(m∆yθ→Bθ , σ
2
∆yθ→Bθ) = (mCθ→∆yθ , σ

2
Cθ→∆yθ

).
The messages in the nodes Aθ and Bθ are finally converted to the
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coordinate variable node, as [4, 17, 23]

(mAθ→∆xθ , σ
2
Aθ→∆xθ

) = (X −mx→Aθ , σ
2
x→Aθ), (3.19)

(mBθ→∆yθ , σ
2
Bθ→∆yθ

) = (Y −my→Bθ , σ
2
y→Bθ), (3.20)

(mAθ→x, σ
2
Aθ→x) = (X −m∆xθ→Aθ , σ

2
∆xθ→Aθ), (3.21)

(mBθ→y, σ
2
Bθ→y) = (Y −m∆yθ→Bθ , σ

2
∆yθ→Bθ). (3.22)

As shown in Fig. 3.1, the messages of (3.21) and (3.22), (mAθ→x, σ
2
Aθ→x)

and (mBθ→y, σ
2
Bθ→y), produced by the nodes Aθ and Bθ, respectively, are

forwarded to the estimated target position variable node x and y. Ac-
cording to the message passing principle, now the reverse process is in-
voked. Recall that the sensor index was omitted in the equations, however
to derive the message sent from the variable nodes x and y, the sensor
index has to be introduced. All the messages coming from the nodes
Aθj , j = {1, ..., N}, except for the message sent back to the node Aθi , are
used in the node x. It can be easily found by invoking the fact that the
products of multiple Gaussian pdfs having different means and variances
are also Gaussian pdf, the messages sent back from the variable node x to
the factor node Aθi is given by (mx→Aθi , σ

2
x→Aθi

) [4,17,23,37] by using sum-

product algorithm in (2.5) and (2.4), where mz→Zi indicates mx→Aθi and

σ2
z→Zi indicates σ2

x→Aθi
. The messages (my→Bθi , σ

2
y→Bθi

) can be obtained

in the same way as (mx→Aθi , σ
2
x→Aθi

) calculated by (2.5) and (2.4).

The messages (mx→Aθi , σ
2
x→Aθi

) of (2.5) and (2.4) sent to the node

Aθi is used by (3.19) to calculate the messages (mAθi→∆xθi
, σ2

Aθi→∆xθi
),

and in the same way, the messages (mBθi→∆yθi
, σ2

Bθi→∆yθi
) is calculated

by (3.20) using (my→Bθi , σ
2
y→Bθi

). The messages (mAθi→∆xθi
, σ2

Aθi→∆xθi
) of

(3.19) is forwarded from the node Aθi to the node ∆xθi and then the
messages (m∆xθi→Cθi , σ

2
∆xθi→Cθi

) is directly forwarded to the node Cθi ,

where (m∆xθi→Cθi , σ
2
∆xθi→Cθi

) = (mAθi→∆xθi
, σ2

Aθi→∆xθi
). The messages

(mBθi→∆yθi
, σ2

Bθi→∆yθi
) of (3.20) is forwarded from the node Bθi to the

node ∆yθi and then the messages (m∆yθi→Cθi , σ
2
∆yθi→Cθi

) is forwarded to

the node Cθi , where (m∆yθi→Cθi , σ
2
∆yθi→Cθi

) = (mBθi→∆yθi
, σ2

Bθi→∆yθi
). The

entire process is repeated iteratively.
When the iteration converges or maximum iteration is reached, all

messages from the node Aθi and Bθi are combined in the nodes x and y
by using sum-product algorithm in (2.7) and (2.8) [4, 17, 23, 37]. Finally,
the estimated coordinate position (x, y) of unknown radio wave emitter is
determined by (mx,my). To provide more comprehensive understanding,
all equations operating at each node of the factor graph are summarized
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Table 3.1. The operations required for each node in the proposed TS-DOA-
FG.

Nodes
(Means, Variances)

Inputs Outputs Flops Remarks

Eθi → Nθi θ̂i samples
(
mθ̂i

, σ2
θ̂i

)
4K - New nodes pro-

posed
- Similar as in the
conventional TOA-
FG [17]
- K indicating total
samples

Nθi → Cθi

(
mθ̂i

, σ2
θ̂i

) (
mθ̂i

, σ2
θ̂i

)
–

Iteration Process

Cθi → ∆yθi

(
mi, σ

2
i

)(
mθ̂i

, σ2
θ̂i

)
(
mi · tan

(
mθ̂i

)
,

σ2
i · tan2

(
mθ̂i

)
+(

m2
i + σ2

i

)
·

σ2
θ̂i
· sec4

(
mθ̂i

))
?13
??6

- New expressions
proposed
- Derived by using
first order Taylor
series
- ?13 indicating
first iteration
- ??6 indicating
next iteration

Cθi → ∆xθi

(
mi, σ

2
i

)(
mθ̂i

, σ2
θ̂i

)
(
mi · cot

(
mθ̂i

)
,

σ2
i · cot2

(
mθ̂i

)
+(

m2
i + σ2

i

)
·

σ2
θ̂i
· csc4

(
mθ̂i

))
?13
??6

Aθi → ∆xi
Aθi → x

(
mi, σ

2
i

) (
Xi −mi, σ

2
i

)
1 - New expressions

proposed
- Similar as in the
conventional TOA-
FG [17]

Bθi → ∆yi
Bθi → y

(
mi, σ

2
i

) (
Yi −mi, σ

2
i

)
1

∆xi → Cθi
∆xi → Aθi
∆yi → Cθi
∆yi → Bθi

(
mi, σ

2
i

) (
mi, σ

2
i

)
– - Similar to conven-

tional TOA-FG [17]
and DOA-FG [4,23]
- N indicating total
number of sensors

x → Aθi
y → Bθi

(
mj , σ

2
j

)
j 6= i

(
σ2
i

∑
j 6=i

mj
σ2
j
,

σ2
i = 1∑

j 6=i
1

σ2
j

)
4(N − 1)

Iteration Converges

x and y
(
mi, σ

2
i

) (
σ2

Λ

∑
i
mi
σ2
i
,

σ2
Λ = 1∑

i
1

σ2
i

) 4N
- Similar to conven-
tional TOA-FG [17]
and DOA-FG [4,23]
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in Table 3.1, where the directions of the message flow is shown in the left
column. mi and σ2

i in the Table. 3.1 indicate updated messages at each
node in general.

3.2.1 Computational Complexity Analysis

In this section, the computational complexity is analyzed by using num-
ber of floating-point operations (flops). It should be noticed that flops can
also defined as floating-point operations per second. In this dissertation,
we follow the definition of floating-point operations without ”per second”
as mentioned in [18, 66, 71, 72]. Each operation for addition, subtraction,
multiplication, division, tangent, cotangent, secant, and cosecant is calcu-
lated as one flop which is similar to as shown in [5,66]. We also calculate
the number of flops for matrix operations with the same formula as in [5],
where the number of flops of the matrix multiplication, Anm×mmAmm×pm ,
and inverse matrix, (Anm×nm)−1, are nmmmpm and 2n3

m + n2
m + nm, re-

spectively, with A being a matrix, and nm, mm, pm, being the matrix
dimension indexes.

We summarize the the number of flops of each arithmetic operation at
the nodes of the TS-DOA-FG technique in Table. 3.1. The first iteration
of one messages flow of the TS-DOA-FG, xi → Aθi → ∆xi → Cθi →
∆yi → Bθi → y, requires 4(N −1) + 1 + 13 + 1 = 15 + 4(N −1) = 4N + 11
flops. The second iteration requires 4N + 4 flops because the number of
flops for Cθi → ∆yi are 6 after first iteration. It should be noticed that, as
described above, tan(mθ̂), cot(mθ̂), sec2(mθ̂), and csc2(mθ̂) are constants.
The required number of flops for N messages flow, two coordinates (X, Y ),
are 4N2+11N and 4N2+4N for the first iteration and the second iteration
(or after first iteration), respectively. The total number of flops required
when the iteration converges after first iteration are 8N + 4N = 12N .

In the DOA-GN technique (2.30), the operation to calculate J matrix
requires 8N flops. J, Σθ, and mθ has dimension N × 2, N × N , and
N ×1, respectively. The highest computational load is required to inverse
the covariance matrix, where Σ−1

θ requires 2N3 + N2 + N flops. The
multiplication operation of (JΣ−1

θ ) require 2N2 flops (without the number
of flops for matrix inversion operation). Hence, the total number of flops
required by DOA-GN for each iteration is 8N+2(2N3+N2+N)+2(2N2)+
4N + 22 + 2N = 4N3 + 6N2 + 16N + 22 flops.

Furthermore, in the DOA-LS (2.29), Aθ and bθ require N and 3N
flops. The inversion of matrix with dimension 2×2 requires 22 flops. The
matrix multiplication of (AT

θ Aθ) requires 4N flops. The total number of
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flops required by DOA-LS are 22 + 2(4N) + 2N = 10N + 22.
For example, let we take N = 3. The TS-DOA-FG requires 69, 48,

and 36 flops for the first iteration, second iteration, and when the iteration
converges. The DOA-GN requires 232 flops for each iteration. The DOA-
LS requires 42 flops. The computational complexity of TS-DOA-FG is
proportional to N when the iteration converge. The formula of each factor
node is also proportional to N . In iteration process, the computational
complexity of sum-product algorithm in the factor graph is proportional
to N2. The computational complexity of the DOA-GN is proportional to
N3. Hence, the computational complexity of the TS-DOA-FG is much
lower than the DOA-GN.

The DOA-LS has low computational complexity, this is because this
technique only works for mean of the samples. The DOA-LS does not
take into account the variance and/or covariance value of the samples.
The DOA-LS also does not have iteration process. Hence, the DOA-LS
can not achieve the theoretical limit. It is shown in the next section the
higher N value, the accuracy of DOA-LS does not increase. It can also be
seen in the next section that the accuracy of DOA-LS technique is lower
than the proposed TS-DOA-FG technique.

3.3 Simulation Results

The performance of the proposed technique was verified via computer
simulations, where the simulation round consists of 1, 000 single target
locations randomly chosen from the area of 1, 000× 1, 000 m2, where each
target location is tested in 100 trials. It should be noted here that the
scope in this dissertation is to estimate only one target position. The
case of unknown multiple-target detection is left for future work. It is
assumed that the illegal radio, as an example of unknown radio emitter,
emits the radio wave with strong enough transmit power covering the
area of 1, 000× 1, 000 m2. The values of the measurement error were σθ =
{1◦, 5◦, 10◦, 15◦, · · · , 45◦}. As mentioned in Chapter 2, it is assumed that
the DOA measurement is performed by using circular array antenna, hence
the measurement error is in angular value. In this simulation we directly
use the DOA samples from the model. The DOA samples is calculated as
follows: (1) calculate the true DOA between sensor and target, θi = Yi−y

xi−x ,
(2) after that we add Gaussian noise with standard deviation of angle, σθ,
in units of degree and also with 25 to 1, 000 samples. It was assumed that
the simulation does not contain outliers in angular measurement because
we do not consider the interference and non-Gaussian noise [73].
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Figure 3.2. 1,000 target and 6 sensor positions in area 1, 000× 1, 000 m2.

As shown in Fig. 3.2, six sensors were assumed in total, indicated by
the ∆ mark. The sensors were set at the positions (100, 0), (100,−1000),
(600, 500), (600,−1000), (1000, 0), and (1000,−1000) m in the (X, Y )
coordinate. The simulation for various position of sensors is not needed
because the randomly chosen of targets position in each trial as mentioned
above is already sufficient to evaluate the effectiveness of the proposed
technique. The accuracy of proposed technique was evaluated by using the
following parameters: a) 3 to 5 sensors taken from the total of 6 sensors,
b) 10 and 20 times of iterations for each trial. The initialization point is
set at (0, 0) for mx→Aθ and my→Bθ , and at (1, 1) for σ2

x→Aθ and σ2
y→Bθ . It

should be noted that the initialization point can be set arbitrary inside the
area of the expected target detection. Regardless of the target positions
(1, 000 points tested), with the initialization of mean and variance being
set at (0, 0) and (1, 1), respectively, final estimate of the target position
is quite accurate. Conversely, this observation should be understood in a
way that the estimation result is less sensitive to the initial values.

To demonstrate the convergence property of the proposed technique,
trajectory of a detection trail is shown in Fig. 4.7(b). It shows clearly that
the target position estimate successfully reaches the true target position
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Figure 3.3. Trajectory of the proposed technique with 3 sensors, 10 iterations, 100
samples, σθ = 10◦, and target at (444,−746) m.

at (x, y) = (444,−746) m in 10 iterations, where the iteration process is
started from the initial point (0, 0) m. The estimate target position is
calculated in each iteration by using sum-product algorithm as (2.8). It
should be noticed that only with 7 iterations, the position estimate of the
proposed technique reaches a point close to the true target position by
using 3 sensors.

Fig. 3.4 shows that even though with the target position being exactly
90◦ relative to a sensor position, the proposed TS-DOA-FG technique can
still detect the position of the target. As described above, the π value is
an approximated value so that the mathematical operations of tan(π/2)
and sec(π/2) in the computer simulation do not result in infinity value.
Hence, sum-product algorithm in the factor graph still can process this
value to accurately estimate the target position.

Fig. 3.5 shows the RMSE versus the iteration times with the standard
deviation σθ of the measurement error as a parameter. The RMSE of the
proposed technique converges after 9 iterations for σθ = 1◦, while it con-
verges after 5 iterations for σθ = 20◦ and σθ = 45◦ as shown in Fig. 3.5.
Hence, the iteration converges faster with higher standard deviation of
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Figure 3.4. Trajectory of the proposed technique with 3 sensors, 10 iterations, 100
samples, σθ = 10◦, and target at (600,−100) m. The target position is 90o from sensor
position at (600,−1000) m.

the measurement error because lower σθ need more times to achieve bet-
ter accuracy. Although the RMSE with σθ = 1◦ is worse with less than
5 iterations, the RMSE with smaller σθ is lower when the iterations con-
verges.

The RMSEs achieved by the proposed and the conventional DOA-LS
techniques are then compared with the CRLB. In each round of simula-
tions, the both techniques used the same parameter values as described
before. Fig. 3.6 shows that the RMSE versus the standard deviation σθ
of the measurement error with the number of sensor as a parameter. It is
found that the more sensors, the smaller RMSE. The larger the standard
deviation of measurement error, the higher improvement of the accuracy
is achieved by adding more sensors. It is shown that the accuracy is im-
proved for around 10 and 30 m at σθ = 10◦ and σθ = 45◦, respectively,
by adding 2 sensors. Figs. 3.6 and 3.8 show that with the conventional
DOA-LS technique, the RMSE with 3 sensors yields better performance
than that of with 4 sensors for σθ = 1◦; and the RMSE with 5 sensors
is almost the same as that with 4 sensors. This is because the RMSE is
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Figure 3.5. RMSE vs. iteration times of TS-DOA-FG geolocation technique with 3
sensors, 20 iterations, 100 samples, 1, 000 locations, 100 trials, and σθ = {1◦, 20◦, 45◦}.

calculated for 10 iterations. However, it is shown in Fig. 3.7 that with 20
iterations the RMSE of the proposed TS-DOA-LS outperforms the con-
ventional DOA-LS. It should be noticed, the TS-DOA-FG algorithm with
σ = 1◦ converges after 15 iterations as shown in Fig. 3.5.

Fig. 3.8 shows number of the sensors versus the RMSE with the stan-
dard deviation σθ of the measurement error as a parameter. It is found
from the figure that there is a clear difference in the tendency of the RMSE
between the proposed technique and the conventional DOA-LS technique.
The RMSE decreases by increasing the number of sensors for σθ = {1◦,
20◦, and 45◦} with the proposed technique, and such tendency is consis-
tent to the CRLB. It can be concluded that the geolocation accuracy in
terms of RMSE with the proposed technique outperforms the reference
conventional DOA-LS technique.

Fig. 3.9 shows the effect of number of samples to the accuracy of DOA-
based geolocation techniques with σθ as a parameter. The RMSE of both
the proposed and reference conventional techniques [61] as well as the
CRLB of the DOA-based geolocation decrease when more samples are
used. It is shown in the Fig. 3.9 that with RMSE 24 m, the proposed
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Figure 3.6. RMSE vs. σθ with 3 and 5 sensors, 10 iterations, 100 samples, 1, 000
locations, and 100 trials.

technique requires around 525 samples, while the conventional technique
requires around 630 samples. The accuracy of the proposed technique al-
ways outperforms the reference technique with the same number of sam-
ples used. Obviously, by increasing of the number of samples, the gap to
the CRLB decreases with the both proposed and reference techniques. It
is also found from the figure that the smaller the measurement error, the
smaller the gap to the CRLB. The gap with different σθ values decreases
when the number of samples increases.

As described before, the Gauss-Newton algorithm may diverge with
unsuitable initial points and the position of the target. In this computer
simulation, when the DOA-GN diverges resulting in the position estimate
with no available value (NAN) or very far from the target, we replace
the position estimate with the average of the sensor positions. The initial
points are fixed (0, 0) m for both the proposed TS-DOA-FG and conven-
tional DOA-GN. Figs. 3.10 and 3.11 show that the DOA-GN has RMSE of
around 500 m in target position area of 1, 000× 1, 000 m2. It means that
there are several target positions having the initial value too far. Also, the
target position has bad geometric position for the DOA-GN resulting in
rank deficiency. It is also shown that for the target position are of 800×800
m2, the accuracy of DOA-GN outperforms the proposed TS-DOA-FG for
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Figure 3.7. RMSE vs. σθ with 3 sensors, 20 iterations, 100 samples, 1, 000 locations,
and 100 trials.

σθ at 1◦ to 20◦.

3.4 Summary

A new FG-based geolocation technique using DOA information for a single
static unknown (anonymous) radio emitter with accuracy improvement of
the position estimate has been proposed. A set of new approximated ex-
pression for the mean and variance of the tangent and cotangent functions
has been derived based on the first-order Taylor series to hold the Gaus-
sianity assumption. The simulation results confirmed that the proposed
technique provides: (a) better accurate position estimate with number of
samples and sensors, and standard deviation of measurement error, as pa-
rameters, with RMSE lower than 8 m for σθ < 5◦, (b) fast convergence,
and (c) keep low computational complexity, which are suitable for the fu-
ture geolocation techniques requiring high accuracy and low complexity
in imperfect synchronization condition. The development of TS-DOA-FG
technique for multiple-target detection is left as future work.
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Chapter 4

Pythagorean TDOA-Based
Factor Graphs Geolocation

In this chapter, the Pythagorean TDOA-FG technique is described. A
simple Pythagorean function is used instead of the hyperbolic function.
Fig. 4.1 illuminates the difference between Pythagorean and hyperbolic ap-
proaches. The Pythagorean function is used by the factor node to convert
the Euclidean distance into relative distance. The target coordinate is ob-
tained by subtracting the relative distances to the known sensor position.
Currently, the Pythagorean function is used in TOA-based FG technique.
However, as mentioned above, the TOA-based FG technique requires the
absolute time stamp of the unknown signal emission. To eliminate the
necessity of the knowledge of the absolute time stamp information, sev-
eral sets of new nodes are introduced into the TOA-based FG, by which
the TDOA is converted into equivalent TOA-based. Hence, the simple
Pythagorean function approach can be used on the equivalent TOA-based
FG, converted from the TDOA-FG. It is shown that the proposed tech-
nique successfully estimates the unknown target position with high accu-
racy without requiring heavy computational complexity. The simulation
results show that the accuracy of the position estimate with the proposed
technique outperforms the Pythagorean TOA-based FG technique with
much higher accuracy because the proposed technique has more averag-
ing processes conducted in the additional nodes to calculate probability
marginals. The performance of the proposed technique in terms of RMSE
is then compared to the CRLBs. It is shown that the achieved RMSE per-
formance of the proposed technique is very close to TDOA-based CRLB
and also is better than the TOA-based CRLB.
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Pythagorean concept.

4.1 System Model

The system contains one unknown (anonymous) radio wave emitter, re-
ferred to as target. The target position is assumed to be fixed and no
mobility assumed. The position of the target is x = [x y]T , where T
indicates the transposition of the argument vector, is the objective of po-
sitioning algorithm. The system also contains multiple, N , sensors. The
sensor position is indicated by X = [Xh Yh]

T , where h is the sensor index.
The terminologies, primary and secondary sensors, are used in this

chapter because the TDOA information is the time difference between two
sensors, where the TOA information at secondary sensor is subtracted
from the TOA information at the primary sensor. Hence, we use the
subscripts h, i, j in the equations to identify the sensor type. The subscript
h, h = {1, 2, ...N}, in regardless of either the primary or secondary sensors,
where the value of h can be either h = i or h = j. The subscript i,
i = {1, 2, ..., N − 1}, is used to denote the index for the primary sensor,
while the subscript j, j = {2, 3, ..., N}, is used to denote the secondary
sensor. The sensor indexes for the primary and secondary sensors always
satisfy i < j.

The TOA information indicates the the range of time from the signal
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departure to it arrival at the sensors. The TOA information measured by
the sensor h is given by

τh = τah − τd, (4.1)

where τah denotes the time when the signal of the target arrives in the
sensor h. The subscript τd, so called TOD, denotes the time when the
signal departs from the target. We notice from (4.1) that the TOA-based
technique needs the TOD information τd provided by an absolute time
stamp. However, the TOD information is not available in the signal from
unknown target, as mentioned above. The TDOA information ∆τi,j elim-
inates the necessity of TOD information τd, as

∆τi,j = τi − τj (4.2)

= (τai − τd)− (τaj − τd)
= τai − τaj , (4.3)

hence the TDOA information can be obtained from the signal of unknown
target. Therefore, the TDOA of the unknown target is the difference of
the times when the signal arrives at two different sensors.

Since the radio signal is an electromagnetic wave, the TOA1 and TDOA
information, in unit of second, can be directly converted to Euclidean
distance information, in unit of meter. Hence, the TOA and TDOA sample
arrived in the fusion center is directly converted to the Euclidean distance
and difference of Euclidean distance, given by rh = τh ·c, and di,j = ∆τi,j ·c,
respectively, where c = 3 · 108 m/s is the velocity of electromagnetic wave
propagation. The Euclidean distance rh between the sensor and the target
is expressed as

rh =
√

(Xh − x)2 + (Yh − y)2. (4.4)

The converted TDOA information corresponds to the difference Euclidean
distance between the primary and secondary sensors, given by

di,j = ri − rj. (4.5)

Substituting (4.4) with h = i for primary sensor and h = j for secondary
sensor into (4.5) yields

di,j =
√

(Xi − x)2 + (Yi − y)2

−
√

(Xj − x)2 + (Yj − y)2. (4.6)

1Even though the TOA is not available in the radio signal of the unknown target,
we still use the TOA terminology to derive the Euclidean distance. The Euclidean
distance is used in the derivation of converted TDOA to difference Euclidean distance.
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Fig. 4.1 illustrates the sensors, a target, and Euclidean distance.
Now, notice that since the value of (Xi, Yi) and (Xj, Yj) are known,

di,j is obtained from the measurement, where (x, y) are the coordinate
position of the target to be estimated. The FG solves the global function
(4.6) by decomposing it into several simple local functions. The process
of obtaining the measurement data is out of the scope in this dissertation.
The proposed technique assumes that the TDOA samples are the input
to the FG algorithm performed at the fusion center.

However, the sensors have no knowledge of di,j and σdi,j . Hence, the
proposed technique first converts K measured samples of the TDOA in-
formation to the difference Euclidean distance information, and then cal-
culates the mean mEi,j→di,j and the variance σ2

Ei,j→di,j . The mean and
variance of the difference Euclidean distance are then used as the input
for iterative processing among the nodes between the Euclidean distance
estimator node Di,j and Estimated target position variable node x and y
as shown in Fig. 4.2.

4.2 Proposed Technique

Currently, the TDOA-based techniques use the hyperbolic to convert the
TDOA parameter to the difference Euclidean distance based on the hyper-
bolic curves representing the geometric relationship of the sensors. The
TDOA-based FG technique in [6] converts the hyperbolic function to a
general quadratic formula before using it in the FG algorithm. It is men-
tioned in [6] that the TDOA-FG with hyperbolic function is more compli-
cated than TOA-based FG technique with Pythagorean functions, because
of the property of the functions.

The P-TDOA-FG technique proposed in this dissertation eliminates
the necessity of the use of the complicated hyperbolic function. Since
the converted TDOA corresponds to the difference Euclidean distance, we
can further convert the information back to the equivalent Euclidean dis-
tance. The equivalent Euclidean distance is then used as the input to the
Pythagorean TOA-based FG technique in [17]. Hence, the Pythagorean
TOA-based technique can be extended to the Pythagorean TDOA-FG
technique.

Our Pythagorean TDOA-FG technique consists of the factor nodes
Ah, Bh, Ch, Di,j, Ei,j, and variable nodes di,j, rh, x, y,∆xh,∆yh, as shown in
Fig. 4.2. The factor nodes calculate the functions to update the messages.
The variable nodes in the FG combine the messages from the factor nodes,
according to the sum-product algorithm, then forward the messages to
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the other factor nodes. The nodes between the Pythagorean node Ch
and the nodes x and y are equivalent to those used in [17]. Originally
in [17], the Euclidean distance information is directly obtained from the
measurement and input into the node Ch. In our proposed technique,
the Euclidean distance input into the node Ch is the equivalent Euclidean
distance. The main contribution of this chapter is three folds, which are
related to the introductions of the new nodes to equivalent TOA convert
back from the TDOA information: (a) new factor nodes Di,j (Euclidean
distance estimator node), (b) new variable node rh (Euclidean distance
variable node), and (c) additional functions in the node Ch (Pythagorean
node), as indicated by the lightgray boxes for (a) and (b), darkgray boxes
for (c), in the Fig. 4.2.

The process performed in the additional nodes (a)-(c) are summarized
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as follows:
(a) Euclidean distance estimator node: The node converts the differ-

ence Euclidean distance to the equivalent Euclidean distance. The equa-
tions calculated in the node Di,j are very simple, which are only a sum-
mation or subtraction operations, as shown in (4.8)-(4.11).

(b) Euclidean distance variable node: The node rh connects the edge
from node rh to the node Di,j by using (4.12)-(4.15). Information passed
between node Di,j and the node rh is the equivalent TOA values which is
already in the form of the equivalent Euclidean distance.

(c) Pythagorean node: In [17], no information is passed from the node
Ch to the node rh. Hence, we modify the function at the node Ch by intro-
ducing additional Pythagorean functions (4.16) and (4.17) corresponding
to the information from the node Ch to the node rh. Finally, we introduce
three constraints in the message update performed by (4.22)-(4.24) at the
node Ch to ensure the stability of proposed technique. Constraint (A): to
avoid the value of the node rh to diverge in (4.22). Constraint (B): to pre-
vent the value of the node rh to shrink to zero in (4.23). Constraint (C):
to avoid negative value in the square root of the Pythagorean function in
the nodes Ch in (4.24).

The Pythagorean TOA-based FG technique in [17] requires good ini-
tial point before the iteration process begin. We modify the Pythagorean
functions at the node Ch for the messages sent to Relative distance vari-
able nodes ∆x and ∆y, hence the initial position of target can start from
anywhere. The improvement in this case is obtained by introduction Con-
straint (C). All detailed mathematics for nodes (a)-(c) and Constraints
(A)-(C) are shown in Section 4.2.2.

4.2.1 Local Functions in the FG Algorithm

It is found from (4.6) that the TDOA FG algorithm contains the subtrac-
tion of two Pythagorean functions. The proposed TDOA-based technique
uses Pythagorean function instead of the Hyperbolic function, which re-
quires complicated process for solving the global function (4.6) to obtain
position estimate (x, y) of target. However, The FG algorithm factors
the global function (4.6) into several simple local function as follows: 1)
(Xh − x), (Yh − y), either h = i or h = j, and i < j, are extracted from
(4.6), hence the functions are decoupled into simple local functions, so
called relative distance, given by (3.1), where xθi and yθi are replaced by
xrh and yrh , then the functions are calculated in the nodes Ah, Bh, respec-
tively. 2) The relative functions are used in the Pythagorean functions to
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obtain the Euclidean distance for both the primary and secondary sensors,
expressed as

rh =
√

∆xrh
2 + ∆yrh

2, (4.7)

where the calculation for the functions are performed at the node Ch,
respectively. 3) The simple function of (4.5) representing the relationship
between the difference Euclidean distance di,j and Euclidean distance (ri
and rj) is calculated at the node Di,j. The three groups of functions
described above can avoid the use of the hyperbolic function.

The messages exchanged between the nodes are in the form of mean
and variance because of the Gaussianity assumption of the measurement
error. Hence, the messages, the result of the local functions and the sum-
product algorithm, are in the form of mean ma→b and variance σ2

a→b with
the suffix a and b indicates the source and destination nodes, respectively.
We describe the messages exchanged between the nodes in the next Sub-
section.

4.2.2 Messages Exchanged in the Proposed Algo-
rithm

The input to the node Ei,j is the samples of difference Euclidean distance

information d̂i,j. K samples are collected before starting the FG processing
to obtain the position estimate of the target. The node Ei,j calculates
the mean mEi,j→di,j and variance σ2

Ei,j→di,j from the collected samples,
where it is assumed that the collected samples follow Normal distribution
as mentioned in the previous Section. The node Ei,j then forwards the
messages mEi,j→di,j and σ2

Ei,j→di,j to the node di,j, where the messages are
directly forwarded to the node Di,j because the messages arriving in the
node di,j come from only one node Ei,j. Hence, the messages forwarded
by node di,j to node Di,j are mdi,j→Di,j and σ2

di,j→Di,j , where mdi,j→Di,j =

mEi,j→di,j and σ2
di,j→Di,j = σ2

Ei,j→di,j . The processes performed in the nodes

Ei,j and di,j are similar to that shown in [6, 17].
The iterative processing is initiated from the node Di,j. The processes

in the node Di,j convert the difference Euclidean distance messages into
the estimated Euclidean distance messages as mentioned before. The in-
put messages mdi,j→Di,j and σ2

di,j→Di,j to the node Di,j does not change
during the iteration because the messages are obtained from the measure-
ment. The node Di,j improves the accuracy of the equivalent Euclidean
distance estimate by utilizing the messages mdi,j→Di,j and σ2

di,j→Di,j as well
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as the other messages forwarded from the node rh, h = i, j, which per-
forms fine tuning of the radius of the circle having the updated Euclidean
distance as shown in Fig. 4.1. The message updating function of the node
Di,j is given by:

mDi,j→ri = mdi,j→Di,j +mrj→Di,j , (4.8)

mDi,j→rj = −mdi,j→Di,j +mri→Di,j , (4.9)

σ2
Di,j→ri = σ2

di,j→Di,j + σ2
rj→Di,j , (4.10)

σ2
Di,j→rj = σ2

di,j→Di,j + σ2
ri→Di,j , (4.11)

where (mDi,j→ri , σ
2
Di,j→ri) are the messages forwarded by the node Di,j to

node the ri, and (mDi,j→rj , σ
2
Di,j→rj) are the messages forwarded by the

node Di,j to the node rj. (mri→Di,j , σ
2
ri→Di,j) and (mrj→Di,j , σ

2
rj→Di,j) are

the messages forwarded from both the nodes ri and rj to the node Di,j,
respectively, where the value of the messages are set arbitrary for the first
iteration.

We notice that (4.5) at the factor node Di,j is connected to (4.7) at the
factor node Ch, where h = i is for primary sensor and h = j for secondary
sensor. Hence, we propose a new variable node rh to update the messages
from the nodes Dh and Ch and then forward the result of updated message
to the destination nodes, according to the sum-product algorithm. The
messages from both the node ri and rj to the node Di,j, from the node ri
to the node Ci, and from the node rj to the node Cj are expressed as

1

σ2
rh→Di,j

=

(
N∑

n=1,n 6=i,n 6=j

1

σ2
a

)
+

1

σ2
Ch→rh

, (4.12)

mrh→Di,j = σ2
rh→Di,j · (4.13)((

N∑
n=1,n 6=i,n 6=j

ma

σ2
a

)
+
mCh→rh
σ2
Ch→rh

)
,

1

σ2
rh→Ch

=
N∑

n=1,n6=h

1

σ2
a

, (4.14)

mrh→Ch = σ2
rh→Ch

(
N∑

n=1,n6=h

ma

σ2
a

)
, (4.15)

where either h = i or h = j, a = Dh,n → rh for h < n, and a = Dn,h → rh
for h > n. It should be noticed that in the first iteration, we need to use
any initial values for both the messages mCh→rh and σ2

Ch→rh , while the
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messages in the following iteration use the new function proposed in this
chapter. We describe the messages mCh→rh and σ2

Ch→rh later in (4.16) and
(4.17) when we derived the functions at the node Ch.

The messages mrh→Ch and σ2
rh→Ch containing the estimated Euclidean

distance information are forwarded by the node rh to the node Ch. The
proposed technique obtains the estimated Euclidean distance messages
extracted from difference Euclidean distance messages at the node rh by
exchanging the messages between the nodes Di,j and rh, which eliminates
the necessity of the knowledge of the absolute time stamp, on the contrary,
the TOA-based FG technique in [17] obtains Euclidean distance messages
at the node rh directly from the measurement of TOA samples, which
requires the absolute time stamp information.

However, it is not sufficient to estimate the Euclidean distance by hav-
ing knowledge of only the TDOA samples. It is shown in Figs. 4.3(a)
and 4.3(b), that the difference Euclidean distance messages from TDOA
samples are exchanged between the nodes Di,j and rh without receiving
messages from the node Ch resulting in the error ∆r between the tar-
get position and the circle of Euclidean distance of each sensor. This is
because process performed in the original node Ch in [17] does not take
into account the input to node rh from the node Ch, resulting in the error
∆r of Euclidean distance, when the node rh send the Euclidean distance
messages to the original node Ch of the TOA-based FG.

To avoid the bias, the information of the known sensor positions at
both the nodes Ah and Bh, is also utilized in the nodes Di,j and rh. The
known sensor positions information is converted to Euclidean distance
message by using Pythagorean function forwarded from the node Ch to
the node rh. We propose modifications of the function at the node Ch
in [17], of which result appears in the messages mCh→rh and σ2

Ch→rh from
the node Ch to the node rh. The modifications are summarized below:

mCh→rh =
√
m2

∆xh→Ch +m2
∆yh→Ch , (4.16)

σ2
Ch→rh =

m2
∆xh→Chσ

2
xh→Ch +m2

∆yh→Chσ
2
∆yh→Ch

m2
∆xh→Ch +m2

∆yh→Ch
, (4.17)

where the messages (m∆xh→Ch , σxh→Ch) and (m∆yh→Ch , σ∆yh→Ch) are for-
warded from the nodes ∆xh and ∆yh, respectively, to the node Ch, as
described later in (4.26) and (4.28).

The Pythagorean function is also used at the node Ch to obtain the
messages of relative distance (mCh→∆xh , σ

2
Ch→∆xh

) and (mCh→∆yh , σ
2
Ch→∆yh

)
for both the nodes ∆xh and ∆yh, respectively, in the same way as in [17],
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as

mCh→∆xh = ±
√
m2
rh→Ch −m

2
∆yh→Ch , (4.18)

mCh→∆yh = ±
√
m2
rh→Ch −m

2
∆xh→Ch , (4.19)

σ2
Ch→∆xh

=
m2
rh→Chσ

2
rh→Ch +m2

∆yh→Chσ
2
∆yh→Ch

m2
rh→Ch −m

2
∆yh→Ch

, (4.20)

σ2
Ch→∆yh

=
m2
rh→Chσ

2
rh→Ch +m2

∆xh→Chσ
2
∆xh→Ch

m2
rh→Ch −m

2
∆xh→Ch

. (4.21)

It should be noticed that the signs plus and minus (±) of mCh→∆xh and
mCh→∆yh in (4.18) and (4.19) follow the positivity and negativity of the
value of sign of m∆xh→Ch and m∆yh→Ch , respectively.

In the TOA-based FG technique in [17], the iteration process is per-
formed only between the nodes x, y, and Ch. After the modification of the
functions at the original node Ch in [17] by adding additional Pythagorean
function as in (4.16) and (4.17), the iteration is extended to between the
nodes x, y, and Di,j. However, we find that the value of the message
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Figure 4.6. The messages mrh→Ch , mCh→rh and σ2
Ch→rh with Constraint (A), target

is at (795,−457) m, 100 times iteration.
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σ2
Ch→rh increases to infinity during the iteration as shown in Fig. 4.5(a).

This is because the node Ch performs only additions, thereby the Eu-
clidean distance messages mCh→rh forwarded from the node Ch to the
node rh does not converge into the true value, as shown in Fig. 4.5(b).
Since the variance σCh→rh appears in the denominator of (4.13) and (4.12),
the messages mCh→rh and σ2

Ch→rh can be ignored when σ2
Ch→rh becomes

excessively large. Hence, the information of the known sensor positions in
the Euclidean distance messages forwarded from the node Dh to the node
rh are not used effectively. To solve this problem, we propose Constraint
(A), as

if σ2
C→r > max(σ2

D→r)

σ2
C→r = max(σ2

D→r)

end. (4.22)

With Constraint (A), the value of the messages σ2
Ch→rh can be kept close

to the messages σ2
Di,j→rh during the iteration. To verify the avoidance

of the message to diverge, we tested using the parameters shown in Ta-
ble. 5.1. Fig. 4.4 shows that the RMSE of the proposed technique has
higher accuracy if we use the maximum value of σ2

D→r for Constraint (A).
The simulation for Fig. 4.5(a)–4.6(c) is used the minimum value of σ2

D→r
for Constraint (A).

Fig. 4.6(a) shows that the variance messages σ2
Ch→rh converge after

around 60 times of iterations with the values around 8 ·104. It is shown in
Figs. 4.6(b) and 4.6(c) that the Euclidean distance messages mCh→rh and
mrh→Ch converge after around 40 and 60 times of iteration, respectively,
because the variance messages σ2

Ch→rh converge into a proper value with
Constraint (A).

The nodes Di,j and rh added to the TOA-based FG in [17] as well as the
node function modifications in Ch guarantees the proper operability of the
proposed P-TDOA-FG technique with Pythagorean function. However,
we still need to improve the stability of the convergence property of the
proposed technique by introducing other constraints, Constraints (B) and
(C), as described before.

Constraint (B): The equivalent Euclidean distance value in the mes-
sage mrh→Ch can be very small during iteration, which imposes numerical
instability. To avoid the numerical instability, we need Constraint (B), as

if mrh→Ch < ε

mrh→Ch = ε

end, (4.23)
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Table 4.1.
Simulation Parameters.

Parameter Value

N 4

K 10, 25, 100, 500, 1000

Trial 10000

(X,Y )
(100, 0), (100,−1000),
(1100, 0), (1100,−1000) m

ε 2

δ 1

Iteration 100

Target area 400× 400 m2

Sensor area 1000× 1000 m2

σr = σd {10, 50, 100, 150, · · · , 300} m

Initial position (x, y) (0, 0) m

where the value of ad-hoc parameter ε is chosen empirically (according to
the author’s experience, ε ≥ 1.0).

Constraint (C): To avoid the case where the argument of Pythagorean
function the becomes negative, we set the message value as:

if m2
rh→Ch −m

2
a < 0

ma = sign(ma)× (abs(mrh→Ch)− δ)
end, (4.24)

where the value of another ad-hoc parameter δ is determined empirically.
We found that δ = 1.0 is reasonable. a represents ∆xh → Ch and ∆yh →
Ch. Constraint (C) provides the advantage that the initial point x and y
for iteration can be at any position. It should be noticed that with the
TOA-based FG technique in [17], the initial values have to be carefully
chosen to avoid the case where the value calculated by the Pythagorean
function becomes imaginary.

The other processes of exchanging the messages between the nodes
Ch, x, and y, are in the same way as in [17], where we briefly describe the
processes below. The node ∆xh directly forwards the messages from the
node Ch to the node Ah and from the node Ah to the node Ch in opposite
way, as

(m∆xh→Ah , σ
2
∆xh→Ah) = (mCh→∆xh , σ

2
Ch→∆xh

), (4.25)

(m∆xh→Ch , σ
2
∆xh→Ch) = (mAh→∆xh , σ

2
Ah→∆xh

), (4.26)
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respectively, where the messagesmAh→∆xh and σ2
Ah→∆xh

are described later
in (3.19). The node ∆yh also directly forward the messages from the node
Ch to the node Bh and also from the node Bh to the node Ch, as

(m∆yh→Bh , σ
2
∆yh→Bh) = (mCh→∆yh , σ

2
Ch→∆yh

), (4.27)

(m∆yh→Ch , σ
2
∆yh→Ch) = (mBh→∆yh , σ

2
Bh→∆yh

), (4.28)

respectively, where the messages mBh→∆yh and σ2
Bh→∆yh

are described be-
low in (3.20).

The nodes Ah and Bh, taking into account the known sensor po-
sition, convert the relative distance messages (m∆xh→Ah , σ

2
∆xh→Ah) and

(m∆yh→Bh , σ
2
∆yh→Bh) to the coordinate of target position messages (mAh→x,

σ2
Ah→x) and (mBh→y, σ

2
Bh→y), respectively, where the reverse process is

also performed in the same nodes. The messages updating process in
the node Ah and Bh are calculated with the equations similar as (3.19),
(3.20), (3.21), and (3.22) in Chapter 3. The messages (mAh→x, σ

2
Ah→x) and

(mBh→y, σ
2
Bh→y) are then forwarded by the nodes Ah and Bh to the nodes

x and y, respectively.
In the nodes x and y, the reserve process having different means and

variance has also Gaussian pdf, are invoked according to the message
passing principle, where the fact that the product of independent multiple
Gaussian variables is utilized. Hence, the messages (mx→Ah , σ

2
x→Ah) and

(my→Bh , σ
2
y→Bh), needed for calculation by (3.19) and (3.20), are sent back

from the nodes x and y to the node Ah and Bh, respectively, by using sum-
product algorithm in (2.5) and (2.4) in Chapter 2, where (mz→Zi , σ

2
z→Zi)

indicates (mx→Ah , σ
2
x→Ah) and (my→Bh , σ

2
y→Bh).

The entire process described above is repeated. All messages from the
nodes Ah and Bh are combined by the sum-product algorithm in the nodes
x and y when the iteration converges, by using sum-product algorithm
in (2.8) and (2.7). The final decision to obtain the position estimate of
unknown radio emitter (x, y) is then made from the mean (mx,my) in (2.8)
after the iteration converges, where mz indicates mx and my. To provide
more comprehensive understanding, all equations operating at each node
of the FG are summarized in Table 4.2, where the directions of the message
flow is shown in the left column.

4.2.3 Computational Complexity

In [17], the linear approximation of Pythagorean is derived to be used in
the conventional TOA-FG. The proposed P-TDOA-FG follows the same
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Table 4.2. The operations required for each node in the proposed P-TDOA-
FG.

Messages
flow

(Means, Variances)
Inputs Outputs Flops Remarks

Ei,j → di,j τ̂i,j

(
md̂i,j

, σ2
d̂i,j

)
4K

- Similar to [17]
di,j → Di,j

(
md̂i,j

, σ2
d̂i,j

) (
md̂i,j

, σ2
d̂i,j

)
–

Di,j → ri

(
mr̂i , σ

2
r̂i

)(
md̂i,j

, σ2
d̂i,j

) (
md̂i,j

+mr̂i ,

σ2
d̂i,j

+ σ2
r̂i

) 2

Di,j → rj

(
mr̂i , σ

2
r̂i

)(
md̂i,j

, σ2
d̂i,j

) (
−md̂i,j

+mr̂i ,

σ2
d̂i,j

+ σ2
r̂i

) 2

- New proposed
- Sensor index is
omitted in r → D
and r → C for
simplicity. The
detailed equations
are in (4.12)–
(4.15)

r → D
r → C

(
mj , σ

2
j

)
j 6= i

(
σ2
i

∑
j 6=i

mj
σ2
j
,

σ2
i = 1∑

j 6=i
1

σ2
j

)
4(N − 1)

Ci → ri

(
mi, σ

2
i

)(
mj , σ

2
j

)
(√

m2
i +m2

j ,

m2
iσ

2
i+m2

jσ
2
j

m2
i+m

2
j

) 13

σ2
i σ

2
r̂i Constrain (A) –

Ci → ∆yi
Ci → ∆xi

(
mi, σ

2
i

)(
mr̂i , σ

2
r̂i

) Constrains (B)
and (C)

–(
±
√
m2
r̂i
−m2

i ,

m2
r̂i
σ2
r̂i

+m2
iσ

2
i

m2
r̂i
−m2

i

) 13 - Similar to [17]
- The sign (±) is
equal to the sign of
the messages from
the nodes ∆y and
∆x to the node C

Ai → ∆xi
Ai → x

(
mi, σ

2
i

) (
Xi −mi, σ

2
i

)
1

Bi → ∆yi
Bi → y

(
mi, σ

2
i

) (
Yi −mi, σ

2
i

)
1

∆xi → Ci
∆xi → Ai
∆yi → Ci
∆yi → Bi

(
mi, σ

2
i

) (
mi, σ

2
i

)
–

x → Ai
y → Bi

(
mj , σ

2
j

)
j 6= i

(
σ2
i

∑
j 6=i

mj
σ2
j
,

σ2
i = 1∑

j 6=i
1

σ2
j

)
4(N − 1)

x and y
(
mi, σ

2
i

) (
σ2
∑
i
mi
σ2
i
,

σ2 = 1∑
i

1

σ2
i

) 4N
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linear approximation as in [17]. Furthermore, the proposed P-TDOA-
FG only adds subtraction operation, and another Pythagorean function
and sum-product algorithm. Hence, the computational complexity for
arithmetic at the factor nodes is proportional to N . Similar to as described
in Chapter 2, the computational complexity of sum-product algorithm in
iteration process is proportional to N2.

Even though the H-TDOA-FG technique in [6] has also used the ap-
proximation in [17], the technique in [6] needs high computational com-
plexity as described above. It is shown in [6] that the conventional H-
TDOA-FG technique achieves higher accuracy but requires heavier com-
putational complexity over the Gauss-Newton technique. As described in
Chapter 2, the computational complexity of Gauss-Newton algorithm is
proportional to N3. Hence, the proposed P-TDOA-FG has lower com-
putational complexity compared to the conventional Gauss-Newton and
H-TDOA-FG techniques.

4.3 Performance Evaluation

A series of computer simulations were conducted to confirm the perfor-
mance superiority of the proposed P-TDOA-FG geolocation technique as
shown in Table. 5.1, where 10, 000 trials were conducted, each having 1
target randomly chosen from the area of 400 × 400 m2 in the middle of
sensor area of 1, 000×1, 000 m2 as shown in Fig. 4.7(a). We estimate only
one target position in each trial, where the case to estimate the multiple-
target of unknown radio emitter is left for the future work. The scenario
assumption taken in the simulation is for monitoring of illegal radio wave
emitter as one of the example of unknown radio emitter. It is assumed
that the radio wave emitted by the target is strong enough to reach area
width of 1, 000× 1, 000 m2.

Fig. 4.7(a) shows positions of the four sensors denoted by the ∆ mark.
The positions of sensors are set at (100, 0), (100,−1000), (1100, 0), and
(1100,−1000) m in the (X − Y ) coordinate. Since the target positions
are enough randomly chosen, relative to the sensor positions, we fixed the
sensor positions in the simulations.

We evaluated the accuracy of proposed technique by using the 3 and
4 sensors. The standard deviation of measurement error were set at
σr = σd = {10, 50, 100, 150, · · · , 300} m, where σr is for the TOA-
based technique and σd is for the P-TDOA-FG technique. We set the
same value for σr and σd to observe the improvement of the P-TDOA-
FG technique over TOA-based technique as done in [6]. We also assume
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that the measurements error has the same σr values for all the sensors
for the simplicity as we have mentioned in Chapter 2. We set the initial
value in the simulation with 0 for the means mrh→Di,j , mx→Ah , my→Bh ,
and mCh→rh . The initial value for variance σ2

rh→Di,j , σ
2
x→Ah , σ2

y→Bh , and

σ2
Ch→rh are set to 1. The small constant values of conditional constraint

are set ε = 2 and δ = 1.
We create the TDOA samples model directly converted to difference

Euclidean distance by using (4.6). After that, we add Gaussian noise with
standard deviation of measurement error, σr, as mentioned above. The
Gaussian noise is calculated by computer simulation in 10 up to 1, 000
samples. Finally, we utilize these samples to calculate mean and variance
as the messages of the P-TDOA-FG.

Fig. 4.7(b) shows the trajectory indicating the algorithm behavior for
each iteration to demonstrate the convergence property of the proposed
technique. Fig. 4.7(b) also shows the trajectory of the TOA-based FG
technique, for comparison where the absolute time stamp is assigned to
be available. The proposed technique successfully reaches the true target
position at (x, y) = (497,−344) m in around 21 iterations, while the TOA-
based FG technique exhibits faster convergence; around 6 iteration as
needed, where iteration process is started from the initial point (0, 0) m.
However, it is shown in the Fig. 5.18 that even though the TOA-based FG
technique is faster to converge in the both case. The fast convergence with
the TOA-based technique is because the absolute time stamp information
is available. The accuracy with the proposed technique is higher than the
TOA-based technique when the algorithms converge. This is because with
the proposed technique, the additional averaging process takes place both
in the nodes Di,j and Ch, while in the TOA-based technique the averaging
process takes place only in the node Ch.

Fig. 4.8(b) shows that the accuracy of the both techniques in term
of RMSE. It is found that the standard deviation σr of the measurement
error increases, the accuracy decreases, which is consistent to the tendency
of the CRLB curve. It is also shown that the accuracy of CRLB has the
same tendency. Fig. 4.8(b) also shows that the accuracy of the proposed
technique is very close to the TDOA-based CRLB, where the curve of
the proposed technique lies between the TOA-based CRLB and TDOA-
based CRLB. Obviously, we can see in the Fig. 4.8(b) that the accuracy
of the proposed technique outperforms the accuracy of the TOA-based
FG technique. Fig. 4.8(c) shows that all the curves goes down by the
increasing of the number of samples which means the accuracy increases
with larger number of samples. It is shown also in Fig. 4.8(c) that the
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proposed technique has reasonable high accuracy in the practical case
where only a few samples is available.

4.4 Summary

A new FG-based geolocation technique using the TDOA measurement to
detect the position of an unknown (anonymous) radio wave emitter has
been in this paper. The uniqueness of the proposed technique compared
to the conventional hyperbolic TDOA-based technique is the use of the
simple Pythagorean function instead of the hyperbolic functions. Sev-
eral sets of new nodes have been introduced to the conventional TOA-FG
technique. Furthermore, the modification has been made on the node
functions, so that it works with Pythagorean function where the input of
the FG is TDOA measurement. Constraints are also introduced in this
paper: (1) to allow the iteration to started at arbitrary point in the target
area, and (2) to preserve the numerical stability of the algorithm. It is
confirmed by the computer simulation results that our proposed technique
provides high accuracy with better position estimate, RMSE lower than
5 m for σr < 50 m, even though it does not require high computational
complexity. The accuracy proposed P-TDOA-FG outperforms the conven-
tional TOA-FG. Furthermore, the achieved RMSE curve of the proposed
technique is also close to CRLB curve.
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Chapter 5

DRSS-Based Factor Graph
Geolocation

In this chapter, the joint use of the conventional RSS-V and RSS-FG
techniques is proposed, where the RSS-V is used to select the appropriate
four monitoring spots of the RSS-FG covering the target. The RSS-V
also provides the initial value for iteration in the RSS-FG algorithm. The
RSS-FG itself improves the accuracy of the RSS-V. The main objectives
of this chapter are as follows: 1) The conventional RSS-V algorithm in [58]
is modified with the opposite way, i.e., the sensors measure the RSS of the
target and then forward it to fusion center, where the RSS-V algorithm
is performed in fusion center. It is called as opposite way because, in the
conventional RSS-V [58], the target measures the RSS of the signals sent
from several beacons/transmitters for estimating own position. 2) The
modified RSS-V with the RSS-FG are combined to improve the accuracy,
where RSS-V is used to select four monitoring spots, which are covering
the target, for RSS-FG. 3) We compare the performance of the proposed
technique with number of sensors and signal to noise power ratio (SNR)
as parameters. 4) The outdoor environment is assumed free space loss or
long enough averaging range performed to eliminate the shadowing and
instantaneous fading, hence the only path-loss still remains as in [53].

Furthermore, DRSS-based factor graph technique is proposed for out-
door environment with the aim of its application which detects the posi-
tion of the unknown radio wave emitter, e.g., emergency signal sent by the
victim of disaster, the signal sent by illegal radio emitter. The DRSS-FG
is developed by modifying the RSS-FG in [18]. The modification is sim-
ply by the subtraction of RSS parameters between two sensors, hence the
DRSS parameter is obtained to eliminate the necessity of transmit power

83



knowledge of unknown target. The DRSS-FG is able to detect the posi-
tion of the unknown target, while the conventional RSS-FG fails because
the absolute value of the transmit power is eliminated by the subtraction
of the RSS samples between two sensors. This is clearly shown in the next
section by analyzing the intersection of the approximated DRSS profile
obtained by assuming a linear plane path-loss model around the target
coordinate. The trajectory and the RMSE analysis results show that the
DRSS-FG technique accurately estimates the unknown target.

5.1 Joint RSS-Based Voronoi and

Factor Graph Geolocation Technique

5.1.1 Proposed Technique

The RSS-V-FG technique is a joint use of the RSS-V and RSS-FG tech-
niques as shown in Fig. 5.1. The RSS-V is used to provide the RSS-FG
algorithm with the initial point of the target and proper monitoring spots
surrounding the target. Before performing the RSS-V and RSS-FG in the
RSS-V-FG algorithm, the sensors measure the RSS samples using training
signals sent by monitoring spots. The measurement is performed in a long
range enough around the monitoring spots so that the measurement data
contains only path-loss information. The RSS samples of training signal
sent from monitoring spot are measured by the sensor over long duration
to obtain the RSS value which is free from measurement error [18]. It
should be noted that the RSS samples of the target still contain measure-
ment error. All measured RSS samples in the sensor are sent to the fusion
center, where the RSS-V-FG geolocation algorithm is performed. The
error-free measured RSS samples of the training signals are used for es-
tablishing the equation in the linear plane LS factor nodes Ap, where RSS
samples of the target is converted into the target position. The pseudo
code of the proposed RSS-V-FG technique can be found at Algorithm 1.

Fig. 5.2 shows the Voronoi diagram with 23 sensors. One of the Voronoi
region with the highest measured RSS value is assigned with its measured
RSS value. After that, since the sensor having the highest measured RSS
value is removed, there remain only 22 sensors. The Voronoi region of
the sensor, with highest measured RSS value among 22 sensors, is added
with its own RSS value. Hence, there is accumulation and overlapping
between the first Vornoi region and the second Voronoi region. When
all sensors are removed, we have the overlapping accumulation of RSS
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Algorithm 1 : RSS-V-FG

1: procedure RSS-V
2: Input: RSS samples and sensors position
3: calculate mean and variance k RSS samples
4: sort and make indexing the sensors
5: calculate meshgrid (xi, yi)
6: for ii = 1 until N sensors do
7: calculate di(xi, yi) to each grid
8: end for
9: for ii = 1 until N sensors do

10: PRV = maximum of Pi ∈ N + 1− ii
11: for all di(xi, yi) do
12: if di(xi, yi) minimum to other sensors then
13: P (xi, yi) = P (xi, yi) + PRV
14: end if
15: end for
16: remove the selected sensors, i ∈ N − ii
17: end for
18: select the grid (xi, yi) with maximum P (xi, yi)
19: Output: inital target of RSS-FG, (x0, y0) = E[(xi, yi)]
20: end procedure
21: procedure Select Monitoring Spots
22: Input: (∆xj ,∆yj) = (x0 − xj , y0 − yj)
23: (xr, yr) = sort (xj , yj) based on (∆xj ,∆yj)
24: for si = 1 until M monitoring spots do
25: if si = 1 then
26: xs1 = xr(1), ys1 = yr(1)
27: else
28: if xr(si) = xr(1) then do nothing
29: else
30: xs2 = xr(si)
31: break
32: end if
33: repeat: line 29 – 33 for y coordinate
34: end if
35: end for
36: Output: selected monitoring spots (xs1 , ys1), (xs2 , ys1), (xs1 , ys2), (xs2 , ys2)
37: end procedure
38: procedure RSS-FG
39: Input: Sensors position, selected monitoring spots, and RSS samples
40: calculate the coefficients (5.3), (2.25)
41: for ti = 1 until T iteration do
42: calculate σ2

APi→x
, mAPi→x (2.23),(2.21)

43: calculate σ2
x→APi

, mx→APi (2.4)

44: calculate σ2
APi→y

, mAPi→y (2.24), (2.22)

45: calculate σ2
y→APi

, my→APi (2.5)

46: end for
47: calculate σ2

x, σ
2
y (2.7)

48: Output: target coordinate, (mx,my) (2.8)
49: end procedure
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Figure 5.2. The Voronoi diagram with 23 sensors in 1, 000× 1, 000 m2.

value from 23 sensors, as shown in Fig. 5.3. It is found that the region
having the highest accumulated RSS of target measured by 23 sensors are
close to the true target position, which is at (468,−838) m. The position
estimate is obtained from the average of the coordinates having the highest
accumulated RSS, which is at (477,−840) m.

The computational complexity of the RSS value accumulation per-
formed for the overlapped Voronoi region in the RSS-V depends on the
resolution of the region. This means that higher resolution requires heav-
ier computation, for example, the resolution with grid 10 m2 has lower
complexity compare to higher resolution with grid 1 m2. We tested the
computation time of the RSS-V-FG, RSS-FG, and RSS-V with parameter
setting described in Table 5.2. The computation time of the RSS-V-FG,
RSS-FG, and RSS-V is shown in Table. 5.1. The RSS-FG which is using
only 3 sensors has much lower computation time over the RSS-V-FG and
RSS-V. One of the schemes that can be used to solve the complexity is-
sue is by using pre-computing for the RSS-V before using the technique
for geolocation. The result of pre-computing of RSS is simply used as a
look-up table. However, pre-computing of the RSS-V is not discussed in
detail in this dissertation because we leave it as a future work.
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Figure 5.3. The RSS of target accumulation by the RSS-V algorithm with 23 sensors,
where the target is at (468,−838) m.

Table 5.1.
The Computation Time of RFVF, RSS-FG, and RSS-V techniques.

Sensor Time Processing (second)
Number RSS-V-FG RSS-FG RSS-V

3 1.2036 0.0086 1.195
23 25.9462 – 25.93755
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Figure 5.4. The simulation setup describing monitoring spots with grid 100× 100 m2,
23 sensors, 1 targets in total outdoor area of 1, 000× 1, 000 m2.

5.1.2 Simulation Results

A series of computer simulations was conducted to verify the performance
of the proposed technique. The simulation round consists of 100 trials,
each having one target randomly chosen from the area of 800 × 800 m2.
Three sensors used by RSS-FG technique are set at fixed the positions of
(100, 0), (100,−1000), (600,−1000) m in (X − Y ) coordinate as shown in
Fig. 5.4. Each trial has also additional numbers of sensors, i.e, 0 to 20
sensors, randomly chosen from the area of 1, 000× 1, 000 m2, where all of
the sensors in total are used by RSS-V.

The monitoring spot positions are set in a square area of 1, 000×1, 000
m2 with grid step in 100 × 100 m2 as suggested in [53]. The RSS-V is
used to select one cell having four monitoring spots, covering the target
position. The results are followed by the RSS-FG technique to obtain
the accurate position estimate of the target by using the selected four
monitoring spots and initial value provided by RSS-V technique. The
RSS-FG technique also uses only three sensors which are set at the fixed
positions.
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The RSS values of target measured in sensors are made by path-loss
exponent model because of the long enough averaging range assumption
to eliminate the shadowing and instantaneous fading as in [53]. We set the
path-loss exponent n = 3, reference distance d0 = 100 m, and frequency
carrier f = 1 GHz.

The following parameters were used to evaluate the accuracy of the
proposed technique: a) 30 times of iterations for each trial, b) 100 sam-
ples, c) 3 to 23 sensors. The values of the measurement error is in SNR,
i.e., 0 to 30 dB. We assume that the measurements are corrupted by the
measurement error having the same variance in each sensor for simplicity.
The summary of computer simulation setting can be found in Table. 5.2.

Table 5.2.
Simulation Parameters.

Parameters Values

N Sensors 3 and 23

K Samples 100

Trial 100

(X,Y ) fixed in meter
(100, 0),(100,−1000),(600,−1000)
Other sensor positions are random

n path-loss exponent 3

f GHz 1

d0 meter 100

Iteration times 30

Target area in m2 800× 800

Sensor area in m2 1000× 1000 m2

SNR in dB 0 to 30

Figs. 5.5 and 5.6 show the trajectory of the proposed technique with 23
sensors. The initial value provided by RSS-V is close to the target position
at (498,−463) m because of many sensors involved, hence the accumula-
tion of the measured RSS value concentrated at averaged coordinate at
(500,−464) m, near to the target position. The trajectory of proposed
technique is compared to the trajectory of the idealistic of RSS-FG curve
where correct monitoring spots are always selected. The initial value is set
at (0, 0) m. The RSS-V with small number of sensors selects the wrong
monitoring spots area as shown in Fig. 5.7, with the number of sensors of
three. Therefore, the proposed technique can not reach close to the true
target position.

Figs. 5.8 and 5.9 show the the accuracy of the proposed technique in
term of RMSE with number of sensors as a parameter. It is shown that the
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Figure 5.5. The trajectory of the RSS-V-FG technique with 23 sensors (in this figure
only shown 3 sensors used by factor graph-based for simplicity in analysis) and target
at (498,−463)m.
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Figure 5.6. Zoom of the trajectory of the RSS-V-FG technique with 23 sensors (in this
figure only shown 3 sensors used by factor graph-based for simplicity in analysis) and
target at (498,−463)m.
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Figure 5.7. Zoom of the trajectory of the RSS-V-FG technique with 3 sensors (the
sensors are now shown because of the zoom of the figure) and target at (994,−669)m.

accuracy with 23 sensors is better than that with three sensors because the
larger the number of sensors the higher the accuracy of the initial value
given by the RSS-V for selecting the appropriate four monitoring spots
for the factor graph technique. It can be seen that when the iteration
converges, the RMSE curve of the RSS-V-FG is asymptotically equal to
the idealistic RSS-FG. This means that the RSS-V-FG having the initial
point given by the RSS-V with 23 sensors in most cases correctly select
the four appropriate monitoring spots. Fig. 5.8 shows that the RSS-V-
FG is faster to converge, requiring around 5 iterations, while the RSS-FG
alone requires around 10 iterations to converge. This is because the factor
graph algorithm with RSS-V-FG has initial value much closer to the target
rather than the RSS-FG alone which is set at (0, 0) m.

The proposed technique outperforms the conventional RSS-V for SNR
more than 7 dB with 23 sensors. For example, the improvement in estima-
tion accuracy with the proposed technique over the conventional RSS-V
is approximately 7.5 m at the SNR of 15 dB. Obviously, the tendency of
the RMSE curve decreases with the increased SNR values as shown in
Fig. 5.9.
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and P̂w,t being the input in units of watt. The new proposed nodes are marked by
darkgray. The message flow arrows are shown in part to avoid over crowded of the
figure.

5.2 DRSS-Based Factor Graph Technique

5.2.1 System Model

It is provided in this chapter, a new factor graph geolocation technique
that utilizes DRSS information used as the input to the corresponding fac-
tor graph as shown in Fig. 5.10. The factor graph is composed of factor
nodes denoted by square and variable nodes denoted by circle as shown in
Fig. 5.10. The factor node contains formula to process the messages com-
ing from several variable nodes, then forwards the output messages to the
destination variable node. During the iteration process, each connected
factor node into one variable nodes is the destination nodes. When one
of connected factor nodes to variable node served as destination node, all
other connected factor nodes are the incoming nodes. The variable node
performs sum-product algorithm to all the incoming messages, then it for-
wards the output messages to the destination node. Finally in convergence
process, all connected factor nodes to one variable node are the incoming
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nodes, where there is no connected factor node assigned as destination
node [17,37].

The factor graph algorithm is performed in fusion center. The samples
of RSS of unknown target and monitoring spots measured by each sensor
are sent to the fusion center. The first process in the factor graph algo-
rithm performed by the fusion center is to perform subtraction function
to the RSS samples between two sensors to obtain the DRSS samples.

Due to the Gaussianity assumption, we can use the mean and variance
as the messages in the factor graph processing, hence the computational
complexity is very light. Before using the algorithm, it is assumed that
sufficient amount of RSS samples of the training signal sent from moni-
toring spots are averaged by the fusion center to obtain both of the DRSS
and RSS samples of the monitoring spots which are free from noise.

It is assumed that long enough averaging of the RSS samples sent by
unknown radio emitter is sufficient to eliminate the instantaneous and
shadowing fading. Hence, the RSS sample is modelled as path-loss expo-
nent as (2.26). Figs. 5.11(a)–5.11(c) show the RSS of path-loss exponent
model with fc is 1 GHz, d0 is 100 m, n is 3 for urban area, and sensor
positions at (100, 0), (1100, 0), (600,−1000) m.

The configuration of sensor, target, and monitoring spot locations are
as follow, X = (Xi, Yi)

T is sensor position, xT = (xT , yT )T is the unknown
radio emitter (target) position, and xM = (xMj

, yMj
)T is the coordinate of

monitoring spot, where j = 1, 2, ...,M is the monitoring spot number [18].
It is assumed that the four monitoring spots are always appropriate used
in the simulation where the target is in the middle of monitoring spots.
In this section, the selected four monitoring spots are the appropriate one
without any help from other algorithm, even though our works in selecting
the monitoring spots has been done in [51].

5.2.2 Proposed Technique

The proposed technique modifies the RSS-FG in [18] to solve the prob-
lem of conventional RSS-FG for estimating the location of unknown radio
emitter position. The modification is simply by performing subtraction
of the RSS samples between two sensors to obtain the DRSS samples as
shown in Fig. 5.10. The subtraction of RSS sample is performed in DRSS
factor node BP . Hence, the other process after obtaining the DRSS sam-
ples follow the RSS-FG algorithm in [18]. In this section, the RSS-FG
in [18] is summarized as the DRSS-FG, where the details of the RSS-
FG refer to [18]. The analysis of the DRSS profile, which eliminates the

96



(a) at Sensor 1.

(b) at Sensor 2.

(c) at Sensor 3.
Figure 5.11. RSS profile from path-loss exponent model in each sensor.
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necessity of knowledge of transmit power, is presented in this section.
The first process in the DRSS-FG is to receive the RSS samples, in

units of watt, in RSS measurement factor node CP . After that, the node
CP converts RSS samples P̂w,i in units of watt to P̂i dB. It should be

notice that the distribution of RSS samples, P̂i, in units of dB, shows the
similarity to Gaussian distribution. Hence, the proposed DRSS-FG and
conventional RSS-FG still preserve the Gaussianity assumption as shown
in [18]. The RSS samples, P̂i, in units of dB, are forwarded to the Averaged
RSS variable node NPRSS . The node NPRSS directly forwards P̂i the node
BP . The RSS samples in units of dB from two sensors are subtracted in
the node BP resulting DRSS samples, P̂i,j, in units of dB, by performing
the operation of (5.1), where j, j = 2, 3, ..., N, is the secondary sensor
index. We obtain the DRSS samples dexpressed as

P̂i,j = P̂i − P̂j. (5.1)

As shown in Fig. 5.10, there are three DRSS variables, i.e., P̂1,2, P̂1,3, and

P̂2,3. It should be noticed that P̂2,3 is a linear combination of P̂1,2 and

P̂1,3, however, P̂2,3 is not redundant. This is because P̂2,3 has different

DRSS profile as shown in Fig. 5.13(b)–5.14(b). Hence, P̂2,3 is useful for
detection position of the unknown target. After a set of the DRSS samples
are obtained, the node BP calculates the mean and variance messages, in
units of dB, and then forward the messages to the DRSS variable node
NPDRSS . After that, node NPDRSS directly forward the messages to the
linear plane LS factor node AP . The iteration process starts from the
node AP .

Before the node AP is used for the iterations, the function at the node
AP has to be set. The proposed DRSS-FG technique uses the error-free
DRSS of four monitoring spots to obtain the variable coefficient of the
linear plane equation at the node AP , expressed as [18]

axi,j · xm + ayi,j · ym + aPi,j · Pm,i,j = cm,i,j, (5.2)

where axi,j , ayi,j denote the coefficient of coordinate variable x, y, respec-
tively, xm and ym denote the position coordinate of monitoring spots,
where m = 1, 2, ...,M is the monitoring spot index. Pm,i,j denotes the
error-free DRSS of the signal sent from monitoring spot in units of dB.
The error free of the DRSS is obtained by performing averaging over large
enough of the amount of DRSS samples. The large amount of the sam-
ples are collected from the DRSS measurement over long enough in time
duration. aPi,j indicates the coefficient of variable Pm,i,j. cmi,j indicates
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a constant with the value being always the unity. It is assumed that the
four monitoring spots are always used in the simulations so that the tar-
get is in the middle of monitoring spots. In this paper, the selected four
monitoring spots are the most suitable without any help from other al-
gorithm, even though our recent work for selecting the monitoring spot
surrounding the target [51] can be used for this purpose.

Due to the values of xm, ym, and Pm,i,j are known, hence we can uti-
lize the least square (LS) algorithm to obtain the coefficients of linear
equations at the node AP . The detailed explanation of the use of LS for
obtaining the coefficients of the variables axi,j , ayi,j , and aPi,j , can be found
in [18]. Finally, the coefficients complete the final linear equations as

axi,j · x+ ayi,j · y + aPi,j · Pi,j = ci,j, (5.3)

where x and y denotes the unknown target position, Pi,j is the DRSS of
unknown target in unit of dB, and ci,j is the constant with value being
unity. The detail derivation formula of (5.3) in terms of mean and variance
can be found in [18].

In this paper, we summarize the equations/operations used in this
algorithm in Table. 5.3, with the most left column being the message flow
between the nodes, h being general sensor index, m being the mean, and
σ2 being the variance. For example, mx and my indicates the mean values
from the nodes x and y, and mP̂ indicates the mean of the samples from
measurement. It is also shown in Table. 5.3 that the proposed technique
requires simple operations. Furthermore, the computational complexity of
the proposed technique is linearly proportional to N similar as mentioned
in [18]. The output of the last two rows in Table. 5.3 are the sum-product
algorithm used to combine the messages coming to the nodes x and y.
Finally, the final position estimate of the unknown target emitter is taken
from the mean value, mΛ.

We compare both the RSS the DRSS profiles at 3 sensors calculated
(2.26) with transmit power gap between the target and monitoring spots,
∆PT , being 5 dB. Both the approximated DRSS and RSS profiles are
calculated by using (5.3). The simulation setup is detailed later in the
Section III. As shown in Figs. 5.12(a) – 5.14(b), there are gaps between the
RSS profile of path-loss mode and the approximated linear plane of RSS
profile at all sensors, because there is the gap of transmit power between
the unknown target and the monitoring spots. Hence, the conventional
RSS-FG fails in estimating the position of unknown radio emitter. On
the contrary, the path-loss plane has intersection with the approximated
DRSS profile around the unknown target, because the necessity of the
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Table 5.3. The Operations Required for Each Node in The Proposed DRSS-
FG.

Message Flow
(Nodes)

Samples (ˆ) and/or (Means, Variances)

Inputs Outputs Remarks

CPh → NPh
P̂w,h,
h = {i, j}

P̂h, h = {i, j} Similar to [17,18]

NPh → BPi,j
P̂h,
h = {i, j}

P̂h, h = {i, j} New proposed

BPi,j → NPi,j P̂i and P̂j
P̂i,j = P̂i − P̂j(
mP̂i,j

, σ2
P̂i,j

) New proposed

NPi,j → APi,j

(
mP̂i,j

, σ2
P̂i,j

) (
mP̂i,j

, σ2
P̂i,j

)
Similar to [17,18]

APi,j → x

(
mP̂i,j

, σ2
P̂i,j

)
(
myi,j , σ

2
yi,j

)
(
ci,j−ayi,jmyi,j−aPi,jmP̂i,j

axi,j
,

a2yi,jσ
2
yi,j

+a2Pi,j
σ2
P̂i,j

a2xi,j

) Similar to [18];
Iteration pro-
cess is only
performed bet-
ween nodes
APi,j and x,
y. Initial val-
ues are set for
mxi,j , myi,j ,
σ2
xi,j , σ

2
yi,j

APi,j → y

(
mP̂i,j

, σ2
P̂i,j

)
(
mxi,j , σ

2
xi,j

)
(
ci,j−axi,jmxi,j−aPi,jmP̂i,j

ayi,j
,

a2xi,jσ
2
xi,j

+a2Pi,j
σ2
P̂i,j

a2yi,j

)

x → APi,j
y → APi,j

(
mk, σ

2
k

)
k 6= l

(
σ2
k

∑
l 6=k

ml
σ2
l
, σ2
k = 1∑

l 6=k
1

σ2
l

) Similar
to [17, 18]; Iter-
ation process;
For simplicity,
let replace (·)i,j
to (·)k

x and y
(
mk, σ

2
k

) (
σ2

Λ

∑
k
mk
σ2
k
, σ2

Λ = 1∑
k

1

σ2
k

)
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(a) RSS profile at sensor 1. (b) DRSS profile at sensor 1.
Figure 5.12. RSS and DRSS profiles of linear plane and model in each sensor with the
power transmit gap between the unknown target and monitoring spots are 5 dB. The
sensor positions are at (100, 0), (1100, 0), (600,−10000) m.

(a) RSS profile at sensor 2. (b) DRSS profile at sensor 2.

Figure 5.13. RSS and DRSS profiles of linear plane and model in each sensor with the
power transmit gap between the unknown target and monitoring spots are 5 dB. The
sensor positions are at (100, 0), (1100, 0), (600,−10000) m.

knowledge of transmit power is eliminated by the subtraction in the node
BP . Hence, the DRSS-FG successfully estimates the position of unknown
target radio emitter.

5.2.3 Computational Complexity

The proposed DRSS-FG [43] follows [18] which allows us to use the li-
near approximation. The DRSS-FG only adds one additional subtraction
function, which is a simple arithmetic operation, to the conventional RSS-
FG. Hence, as stated in Chapter 2, that the computational complexity of
the conventional RSS-FG is proportional to N . Hence, the computational
complexity of the proposed DRSS-FG technique is also proportional to
N . It means that the DRSS-FG has low computational complexity. As
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(a) RSS profile at sensor 3. (b) DRSS profile at sensor 3.

Figure 5.14. RSS and DRSS profiles of linear plane and model in each sensor with the
power transmit gap between the unknown target and monitoring spots are 5 dB. The
sensor positions are at (100, 0), (1100, 0), (600,−10000) m.
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(b) Target at (650,−500) m.
Figure 5.15. Accuracy of the unknown target detection for many locations confirmed
by the trajectory analyses.
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(a) Target at (350,−270) m.
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(b) Target at (330,−550) m.
Figure 5.16. Accuracy of the unknown target detection for many locations confirmed
by the trajectory analyses.
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(a) Target at (620,−220) m.
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(b) Target at (740,−390) m.

Figure 5.17. Accuracy of the unknown target detection for many locations confirmed
by the trajectory analyses.

described in Chapter 3, the computational complexity of sum-product al-
gorithm is proportional to N2 during iteration process. However, It is still
lower than computational complexity of Gauss-Newton algorithm which
is proportional to N3.

5.2.4 Numerical Results

To verify the performance of the proposed technique, we conducted a
series of computer simulations. One target is randomly chosen from
area width of 600 × 600 m2 in each 10, 000 target positions performed
in the computer simulations. 100 samples of RSS and DRSS are pro-
cessed in 30 times of iteration for each trial. The sensors position are
at (100, 0), (1100, 0), (600,−1000) m in (X, Y ) coordinate, where the sen-
sors area width is 1, 000 × 1, 000 m2 as shown in Fig. 5.15(a). The root-
mean-square error (RMSE) performance is evaluated by the signal-to-noise
power ratio (SNR) from 0 to 45 dB. The gap of transmit power between
the unknown target radio emitter and the monitoring spots is 5 dB. For
simplicity, the RSS and DRSS measurements are assumed to be corrupted
by the measurement error having the same variance in each sensor. The
path-loss exponent model in (2.26) is used to create the RSS profile, where
the set-up of the exponent path-loss variables are set in Section II. The
monitoring spots area set in this simulation is 200 × 200 m2 according
to [53].

Figs. 5.15(b) – 5.16(b) show how the proposed DRSS-FG is very ac-
curate in detection, even though the location of the unknown target is
changed many times. The accuracy is confirmed via the trajectory analy-
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sis shown in the figures. The initial point can be set from arbitrary value,
however we set the initial value of nodes x and y at (0, 0) m. It is shown
in Figs. 5.15(b) – 5.16(b) that the conventional RSS-FG fails to reach the
unknown target radio emitter. This is because as we discuss in Section
III that the RSS profile of exponent path-loss model has a gap ∆PT = 5
dB to the approximated RSS profile created by linear plane of (5.3). On
the other hand, the trajectories of the DRSS-FG shows that the proposed
technique successfully reach the unknown target.

The Figs. 5.18 and 5.19 show that the proposed technique for any ∆PT
values is not only able to detect the location of unknown target radio emit-
ter, but it also provides very accurate detection after it converges around
50 iterations with RMSE of around 4.5 and 3.7 m, at SNR of 10 dB and
above, respectively. It is also shown that the high accuracies with RMSE
of around 5 and 4 m even have been achieved in 30 and 40 iterations,
respectively, at SNR of 15 dB. Hence, the proposed DRSS-FG technique
achieves high and stable accuracy for any transmit power gap values bet-
ween the target and monitoring spots, but it requires more iteration. The
proposed technique does not taken into account the difference of trans-
mit power between the unknown target and the monitoring spots because
the subtraction of RSS samples to obtain DRSS samples in the node BP

eliminates the necessity of transmit power.
On the other hand, Figs. 5.18 and 5.19 show that when the target

and monitoring spots have equal transmit power, the accuracy of conven-
tional RSS-FG technique, with RMSE of 1.9 and 1.6 m, at SNR of 15 dB
and above, respectively, outperforms the proposed DRSS-FG technique.
This is because the linear plane approximation of RSS parameter has bet-
ter shape than the DRSS parameter as shown in Figs. 5.12(a) – 5.14(b).
However, when there are transmit power gaps, 1, 3, and 5 dB, the accuracy
of the conventional RSS-FG technique drop significantly to 57, 171, and
286 m, respectively, at SNR of 15 dB. Opposite to the DRSS-FG curve,
the RSS-FG curve shows the best accuracy in SNR of 0 dB because the
gap 5 dB of transmit power is very big. Hence, the high noise power in
0 dB helps the RSS-FG for better accuracy than other SNR values even
tough the overall accuracy is still low.

5.3 Summary

A new wireless geolocation technique using joint RSS-based Voronoi and
factor graph (RSS-V-FG) has been proposed. The RSS-V geolocation is
used to select the area of monitoring spots for RSS-FG geolocation algo-
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Figure 5.18. RMSE vs. iteration number with 10, 000 target positions, SNR of 15 dB,
and 100 samples.
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rithm, as well as to provide its inital value. The simulation results con-
firmed that our proposed technique provides higher accuracy compared to
the conventional RSS-V technique. This technique is suitable for outdoor
environment in the future location based applications. The RSS-based
factor graph geolocation technique is successfully evaluated in outdoor
environment. The smaller area of monitoring spot around the target, the
higher accuracy is obtained. Reducing the complexity due to the RSS-V
technique by using pre-computing processing is left as a future study.

The new technique of DRSS-based factor graph (DRSS-FG) geolocation
algorithm has been presented in this paper. It is shown in this paper that
when the transmit power of target and monitoring spots are unequal,
the proposed technique successfully estimates the unknown radio emit-
ter with high accuracy around RMSE of 3.7 m, while the conventional
RSS-FG fails to detect the location of the unknown target. The transmit
power information of the unknown target is no longer required because it
can be replaced by performing subtraction of one sensor’s RSS samples
from another sensor’s RSS samples. This technique provides high accu-
racy and low computational complexity detection, which is suitable for
future geolocation technique.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In Chapter 3, a new factor graph-based geolocation technique using DOA
information for a single static unknown (anonymous) radio emitter with
accuracy improvement of the position estimate has been proposed. A set
of new approximated expression for the mean and variance of the tan-
gent and cotangent functions has been derived based on the first-order
TS to hold the Gaussianity assumption. The simulation results confirmed
that the proposed technique provides: (a) better accurate position es-
timate with number of samples and sensors, and standard deviation of
measurement error, as parameters, (b) fast convergence, and (c) keep low
computational complexity, which are suitable for the future geolocation
techniques requiring high accuracy and low complexity in imperfect syn-
chronization condition.

In Chapter 4, a new factor graph-based geolocation technique using the
TDOA measurement to detect the position of an unknown (anonymous)
radio wave emitter has been in this paper. The uniqueness of the pro-
posed technique compared to the conventional Hyperbolic TDOA-based
technique is the use of the simple Pythagorean function instead of the
Hyperbolic functions. Several sets of new nodes have been introduced on
the conventional TOA-based factor graph technique. Furthermore, the
modification has been made on the node functions, so that it works with
Pythagorean function where the input of the factor graph is TDOA mea-
surement. Constraints are also introduced in this paper: (1) to allow
the iteration to started at arbitrary point in the target area, and (2) to
preserve the numerical stability of the algorithm. It is confirmed by the
computer simulation results that our proposed technique provides high
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accuracy with better position estimate, even though it does not require
high computational complexity.

In Chapter 5, a new wireless geolocation technique using joint RSS-
based Voronoi and factor graph (RSS-V-FG) has been proposed. The RSS-
V geolocation is used to select the area of monitoring spots for RSS-FG
geolocation algorithm, as well as to provide its inital value. The simulation
results confirmed that our proposed technique provides higher accuracy
compared to the conventional RSS-V technique. This technique is suitable
for outdoor environment in the future location based applications. The
RSS-based factor graph geolocation technique is successfully evaluated in
outdoor environment. The smaller area of monitoring spot around the
target, the higher accuracy is obtained. Reducing the complexity due to
the RSS-V technique by using pre-computing processing is left as a future
study.

A new technique of factor graph-based geolocation algorithm utilizing
the DRSS (DRSS-FG) has been presented in this chapter. It is shown in
this chapter that the proposed technique successfully estimates the un-
known radio emitter with high accuracy, while the conventional RSS-FG
fails to detect the location of the unknown target. The DRSS-FG is devel-
oped by modifying the conventional RSS-FG with simply subtraction of
RSS samples between two sensor to obtain the DRSS samples for the factor
graph. The transmit power information of the unknown target is no longer
required because it can be replaced by performing subtraction of one sen-
sor’s RSS samples from another sensor’s RSS samples. All the proposed
techniques provide high accuracy and low computational complexity de-
tection, which is suitable for future geolocation technique. Fig. 6.1 shows
the flow chart of the use of the proposed measured parameter-based fac-
tor graph geolocation technique for position detection of unknown target
emitter.

6.2 Future Work

The development action points listed below are left for future work.

1. The development of location detection of multiple moving unknown
radio emitter takes into account the Doppler effect and frequency dif-
ference of arrival (FDOA). Hence, the technique can perform track-
ing of the moving target. In multiple target, we have to distinguish
more than one signal measured by the sensors.

2. The development of joint RSS-V and DRSS-FG technique, as well as
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joint P-TDOA-FG and DRSS-FG technique are important for select-
ing the appropriate monitoring spots for the DRSS-FG technique.
It is also required to increase the accuracy of the detection where
the RSS-V and the P-TDOA-FG provide rough position estimate.

3. Derivation of CRLB for TDOA-, RSS-, and DRSS-based technique
is required for theoretical limit or the bound of the accuracy of geo-
location technique.

4. Fully mathematical analysis of the convergence property of the factor
graph techniques is required to ensure that the proposed techniques
always converge.

5. The evaluation of the accuracy of the proposed techniques are veri-
fied by utilizing the field measurement data.
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Appendix A

CRLB Derivations for
DOA-based Geolocation

The sensor index i is omitted in this derivation for simplicity. By taking
the expectation of (2.36), we have

E

[
∂2

∂θ2
ln p(θ̂)

]
= −K

σ2
θ

. (A.1)

Since

E

[(
∂

∂θ
ln p(θ̂)

)2
]

= −E
[
∂2

∂θ2
ln p(θ̂)

]
, (A.2)

as shown in [64]

E

[(
∂

∂θ
ln p(θ̂)

)2
]

=
K

σ2
θ

. (A.3)

The FIM [10,64,65]

F(x) =
∂θ

∂x

T

E

[(
∂

∂θ
ln p(θ̂)

)T (
∂

∂θ
ln p(θ̂)

)]
∂θ
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is found to

F(x) =
∂θ

∂x

T

E

[(
∂

∂θ
ln p(θ̂)

)2
]
∂θ

∂x
. (A.5)

Substituting (A.3) into (A.5) yields

F(x) =
∂θ

∂x

T [K
σ2
θ

]
∂θ

∂x
. (A.6)
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Now, we replace θ by a vector θ = (θ1, . . . , θN). Then, the variance (σ2
θ)

is replaced by the Gaussian covariance matrix Σθ, as

F(x) = KJTΣ−1
θ J. (A.7)

Finally, by substituting (A.7) into the CRLB expression (2.37), as in [6,64],
and [4], we obtain the CRLB for DOA-based geolocation that takes into
account the measured sample number K, as expressed below

CRLBDOA =

√
trace

((
JTΣ−1

θ J
)
K
)−1

.
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