
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Resource Management for Smart Services in the

Home

Author(s) MARIOS, SIOUTIS

Citation

Issue Date 2016-06

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/13718

Rights

Description Supervisor:丹　康雄, 情報科学研究科, 博士

Resource Management for Smart Services
in the Home

Marios Sioutis

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

Resource Management for Smart Services
in the Home

Marios Sioutis

Supervisor: Yasuo Tan

School of Information Science
Japan Advanced Institute of Science and Technology

June 2016

Abstract

Advances in network technology and consumer electronics have brought the
dream of an intelligent home a step closer to reality. Currently, the most com-
mon approach to introduce intelligence in a home is by using commercially
available home automation systems. However, these automation systems
have many disadvantages. A non-exhaustive list of these disadvantages in-
cludes the following: home automation systems are platforms that are closed
or tightly controlled by a single vendor, have severely limited interoperability
and extensibility in terms of supported devices and services, offer limited or
no third party services and finally the degree of sophistication of the services
that these automation systems bring to the table is relatively low. These
disadvantages thus lower the value proposition of home automation.

To address the above limitations of home automation and realize the
dream of a truly intelligent home, the idea of middleware platforms, col-
lectively known as “home service platforms”, was pursued by the research
community. These middleware platforms address the problems of traditional
home automation systems by following a layered design approach. In a home
service platform, the intelligent decision making process is decoupled from
the actual hardware and devices, and it is delegated to software programs
called “smart services”. In turn, these smart services can access any device
that is present in the home through a well defined Application Program-
ming Interface (API) that is offered by the home service platform, leading
to services of far greater sophistication. This clean separation of devices and
application logic with the use of a middleware platform also addresses inter-
operability issues, and new services may be introduced at will, making such
middleware platforms very extensible.

The design of home service platforms enables uninhibited device access to
smart services. In contrast to home automation systems that are closed by
nature and tightly controlled, this design now raises the possibility for con-
flicts among services over the use and operation of devices. If such conflicts
are not addressed, they will negatively impact the user’s experience, and the
illusion of the smart home will dissolve.

The topic of this research is to address conflicts among smart services
by introducing resource management as part of the home service platform.
Through resource management, the author argues that conflicts among ser-
vices can be resolved adequately with minimum impact on the user’s overall
experience. Other contemporary home service platforms tend to have limited
capabilities for addressing conflicts or outright ignore this problem.

In regards to conflicts among services over resources, two types of conflicts
have been identified:

• conflicts over devices,

• conflicts over physical properties of space.

The first type of conflict occurs when two or more services try to operate
the same device in contradictory fashion over an overlapping period of time.
A typical example would be the operation of an illumination device by two
services, with one service trying to turn a light on and the second trying to
turn it off; if the middleware platform does not intervene, the outcome of the
above operations is time dependent. Furthermore, if device status feedback
is available, the above scenario can lead to rapid blinking of the light.

The proposed home service platform addresses conflicts over devices by
treating devices as resources, the access to which is managed by the platform
itself. The problem of resource management in the home is similar to the
resource management in computer operating systems, a source of inspira-
tion for this research. To manage access to devices, the proposed platform
introduces four design primitives that are readily usable by smart services:

• device access rights,

• service and user priorities,

• event notification mechanism,

• condition sets.

Using these primitives, the design of resilient services which exhibit well-
defined behaviour in case of device conflicts is simplified. Exclusionary access
to a device becomes explicit and services have a chance to gracefully recover
in cases of conflicts. The effectiveness of these primitives is demonstrated
through a set of several scenarios.

The second type of conflict (conflicts over physical properties of space)
occurs when two or more smart services operate devices that have conflicting
effects on the home environment. For example, the operation of a heater and
an air condition unit at the same time is not only self-defeating but also a
waste of electric power.

To address conflicts over physical properties, the proposed system man-
ages physical properties of space as environmental resources and provides a
high-level API to interact with them. Using this powerful API, a smart ser-
vice may make requests such as “set the temperature of the room to 25 ◦C”

or “ set the illumination around the user to 300 lx, thus further simplifying
the development of smart services.

The proposed system is now able to not only detect such conflicts (using
the notion of “Area of Effect”) but also attempt conflict resolution, using ei-
ther a space-based or intensity-based resolution scheme. To find a solution to
such conflicts, the platform must decide on a set of device settings that can at
least partially fulfill the conflicting environmental requests. As the number
of devices and possible device settings increases, the search space becomes
increasingly vast and an exhaustive search is prohibitive. The proposed sys-
tem thus utilizes local and global search algorithms as well as simulation
of physical properties in each iteration step to evaluate possible solutions.
The effectiveness of this approach is demonstrated over several experiments
regarding illumination in which conflicting requests were made. The experi-
ments were performed in a real smart home environment and the difference
between estimated and actually measured illumination intensity formed the
basis for evaluating these solutions. Furthermore, the system was evaluated
in terms of performance. As conclusion, the proposed home service platform
is able to produce high quality solutions within a tight execution time frame
of 1 second.

The final key piece of information necessary to perform conflict resolution
is user location information. Currently, in contrast to outdoor location sys-
tems where GPS is the defacto standard, there is no such standard for indoor
location. A multitude of indoor location systems exist with different advan-
tages and disadvantages. For the purpose of this research, a user location
information system based on passive infrared sensors and space subdivision
was developed. This location system is non-intrusive, relatively low cost and
can be replicated with off-the-self parts, while providing location information
that is accurate to within 50cm.

Overall, this research led to the development of a home service platform
that advances the state of the art of smart homes. The proposed platform
offers compelling features and advanced functionality, while at the same time
making smart service development simpler and more robust. By addressing
conflicts among services adequately, the last technical obstacle towards mass
adoption of home service platforms by consumers has been cleared. Any
future home service platform that fails to offer functionality that is at least
equivalent to that of the proposed platform will face obsolescence.
Keywords. Smart Home, Home Service Platform, Pervasive Computing,
Resource Management, Conflict Resolution

This page is intentionally left blank.

Acknowledgments and
Dedications

To my friends and family,
to my colleagues and advisers over the years,

you made this work possible.

Thank you.

To Penelope,
I’ve reached Ithaca, but you were gone.

Contents

1 Introduction 1
1.1 Quality of Life in the House 1
1.2 The Smart Home . 2
1.3 Ubiquitous Intelligence and Automation 3
1.4 Ubiquitous Intelligence and the Home: a Home Service Platform 5
1.5 Limitations of Current Home Service Platforms - Conflicts

Among Smart Services . 6
1.6 Targets and Scope of this Research 8

2 Management of Environmental Resources in the Home 10
2.1 Introduction . 10
2.2 Related Works . 11
2.3 Design and Rationale . 13

2.3.1 Design Principles and Advantages 13
2.3.2 Area of Effect and Compromising Techniques 14
2.3.3 Achieving an Optimal Solution: a Combinatorial Prob-

lem . 15
2.3.4 Local Search and Search Iterations 16
2.3.5 Exploration . 19
2.3.6 Simulation . 22
2.3.7 Evaluation . 26
2.3.8 Meta-Heuristic Search Strategies 28

2.4 Environmental Resource Request API 29
2.5 Experiments . 31

2.5.1 Experiment Setup . 31
2.5.2 Illumination Conflict Among Multiple Services 31
2.5.3 Evaluation of Optimized Fitness Function for Single

Requests . 37
2.5.4 Illumination Conflict for Moving Target 42

2.6 Conclusions and Future Work 43

i

3 Managing Devices as Resources of the Home Environment 46
3.1 Related Research . 46

3.1.1 Consumer Oriented Platforms 46
3.1.2 Conflict Detection and Conflict Resolution 48
3.1.3 Interconnectivity and Home Automation 49
3.1.4 Home Service Platform Architecture 49

3.2 Platform Architecture and Smart Services 50
3.3 Device Modeling . 51

3.3.1 Operations . 51
3.3.2 Device Implementation 52
3.3.3 Adapter Interfaces . 54

3.4 Primitives for Conflict Resolution 55
3.4.1 Device Access Rights 55
3.4.2 Service and User Priority 57
3.4.3 Event Notification Mechanism 57
3.4.4 Condition Sets . 58

3.5 API and Examples . 60
3.5.1 Searching For Devices 61
3.5.2 Acquiring Access Rights 62
3.5.3 Using Devices . 63
3.5.4 Receiving Notifications 66
3.5.5 Using Condition Sets 67

3.6 System Demonstration . 68
3.6.1 Sample Smart Services 68
3.6.2 Simple Device Conflict 70
3.6.3 Condition Set Demonstration 71

3.7 Conclusions and Future Work 75

4 A User Indoor Location System 77
4.1 Introduction . 77
4.2 Related Research . 77
4.3 Design Approach and Rationale 78

4.3.1 Subdivision of Space 81
4.3.2 Sensor Behaviour . 85
4.3.3 Area Evaluation Algorithm 86

4.4 Implementation Details And Cost 89
4.4.1 Implementation Details 89
4.4.2 Cost . 90

4.5 Experiments . 91
4.5.1 Room Setup . 91
4.5.2 Evaluation Approach 93

ii

4.5.3 Run Result Analysis 94
4.6 Conclusions and Future Work 98

5 In Conclusion 100
5.1 Summary of this Research . 100
5.2 The Importance and Impact of this Research 101

iii

Chapter 1

Introduction

1.1 Quality of Life in the House
Since the dawn of time, mankind has fought a hard battle for survival. The
weapons of choice for this battle include (but are not limited to) intuition,
perception, persistence, and above all, tenacity; countless tries and failures
with the occasional successes that push the species one tiny step forward
each time. Each hard fought success has made an impact to the way of life
of our species by first being stored in our collective memories and knowl-
edge through oral, written and later on digital means, and then replicated
countless times by the vast swath of the population, in order to aid survival.

The struggles of mankind over the past couple of millennia, with its incre-
mental successes such as the combustion engine and electricity, has lead us
to the current age, often hailed as the great “digital age”, where in any rea-
sonably civilized society there is a guaranteed standard of living. Although
exceptions to the rule still exist, survival of the individual is mostly thought
as a solved problem in such societies. However, mankind has not rested on
its laurels; with survival mostly a solved problem, the focus now swifts to
further improving quality of life in terms of safety, comfort and individual
fulfillment and growth.

One such area that is expected to be at the forefront in our collective
struggle for a better quality of life in the coming years involves the house, an
indoor environment tightly coupled with the quality of life of an individual.
Many activities that directly pertain to survival, safety and general well-
being of an individual are associated with the house. It is our respite from
the elements of nature, a safe haven from ill-meaning individuals, a place for
rest and sleep, a place where hunger can be satiated, hygiene maintained,
and in the recent years, a space for entertainment and personal growth. It

1

should be of no surprise that such a multi-purpose space is, to this day and
age, still riddled with inefficiencies.

The main focus of this research is the house and more specifically the
“smart home”, a concept that tries to address the numerous inefficiencies
present in the house. By extension, it is to this fight, the fight for a better
quality of life, that my research hopes to contribute, even if this contribution
is infinitesimal.

1.2 The Smart Home
As a result of progress in automation technology and electronics, the notion
of “smart houses” reached the general public in the late 1970’s with the re-
lease of products supporting the X10 protocol[11]. Furthermore, according to
[29], the term “smart home” appears for the first time in an official capacity
in 1984. In this term, the word “smart” is interpreted as “intelligent”, indi-
cating that the house itself exhibits some behaviour that can be perceived as
intelligent.

Indeed, in recent years, the term “smart house” has been closely associ-
ated with the regulation of power consumption and its reduction, achieved
through automation and other means. It can be easily argued that regulat-
ing power consumption is a “smart” thing to do, in the sense that regulating
power consumption leads to less power consumed, something that directly
benefits an individual in monetary terms.

However, this definition of a smart house is very narrow in scope, and
for the purpose of this research the term “smart home” is preferred. The
interpretation of this term by the author is the following: a smart home
is any indoor household environment which exhibits behaviour that can be
classified as intelligent, with the ultimate motive of improving the quality of
life of the house occupants. This definition encompasses power consumption
but also includes (but not limited to) notions such as personal safety, hygiene
regulation and comfort.

To an extent, the notion of a house exhibiting “behaviour” may seem
intuitive to a technologically savvy individual. However, this notion was
nothing sort of revolutionary as recently as fifty years ago, thus it is prudent
to expand on it and explain the finer details of house behaviour.

Behaviour implies action, reaction to stimulus and decision making, con-
cepts that must be explained in the context of a home environment. By
its inherent nature, a house is inert and static. There are characteristics of
the house such as weather insulation and natural light penetration that, al-
though designed intelligently, are passive traits of the house. In other words,

2

no dynamic action occurs as a result of these traits. There is no reaction to
stimulus and there is certainly no decision making in a newly built, unoccu-
pied house.

It is through electric and electronic devices installed in the house, where
it can be argued that the house exhibits some sort of behaviour. Indeed,
household appliances and electronic devices exhibit behaviour (and in many
cases quite complex behaviour) that may be considered intelligent. As such
an example, consider an air condition unit: it exhibits

1. action, as it regulates the temperature and humidity of a room, it
demonstrates

2. reaction, as through its sensors it varies its operation and power con-
sumption, and finally

3. decision making, as demonstrated through its “auto” operation setting,
where the device relies on some algorithm to decide its operation.

The above example shows a typical device that exhibits a complex be-
haviour that can be considered smart. However, introducing smart devices
in the house is not enough to consider a house as being “smart”. A way to
assess if a house is smart or not is to evaluate how ubiquitous and pervasive
this intelligence is throughout the house. It can be argued that introducing
smart devices in the house will improve the quality of life and introduce some
intelligent behaviour in the house. However, this intelligence will not be per-
vasive; it will be, at best, fragmented. Each smart device will be smart, on
its own, and the user will be able to tell so.

To realize a truly smart home, the boundaries among individual devices
must be removed so that the illusion of an intelligent indoor environment,
as a whole, can be maintained. This means that devices should be able to
interoperate in harmony, achieving tasks that are complex and the contribu-
tion of each device although distinct, is just a part of bigger effort. In this
model, the contributions of each device are blended together to achieve the
greater task at hand.

1.3 Ubiquitous Intelligence and Automation
The first attempts at a smart home involve automation. To this day, many
vendors such as Insteon[6] offer automation solutions for the home. The main
areas where such solutions focus (but are not limited to) are home security
and surveillance, energy management and automated control systems.

3

Home security automation solutions involve a vast array of sensors such as
open/close sensors, CO2 sensors, broken glass sensors, cameras and a central
controlling device that processes their feedback. In case of an emergency, this
central controlling device may be configured to contact a security company
or the local authorities directly, notifying them regarding the nature of the
emergency. Furthermore, surveillance solutions usually offer the option of
streaming video, providing an individual the chance to check up on the status
of a loved one or a pet, and in case of emergency contact a family member
or a friend for assistance.

Home energy management systems (collectively known as HEMS) is a
field of applied research with growing popularity, especially in this day and
age where cheaper energy from fossil fuels is in the process of being heavily
regulated and alternative power sources such as nuclear and renewable en-
ergy sources still struggle to become viable alternatives of producing power.
HEMS provide immediate monetary benefits to the occupants of a house by
reducing the amount of money spent on electric energy throughout the day.
These systems again rely on a series of sensors to measure power consump-
tion, a central controlling device that provides the user with feedback and
in recent years integrate with demand-response systems deployed by various
electric power companies. Such systems have the capability to schedule the
operation of devices during times when the electricity cost is lower and also
sell electric power back to the grid, if a solar panel or wind turbine is present.
With the advent of electric cars, such systems will gain in popularity even
more.

Finally, automation control systems allow the occupants of a house to au-
tomate tedious tasks such as controlling the illumination of a room, garden-
ing solutions and operating specific devices under certain conditions. These
automation solutions do exhibit action and reactions to stimuli (they can de-
termine whether the conditions for invoking an automation procedure have
been met) but it can be argued that there is limited to no automated decision
making in the process. Nevertheless, such systems are deemed useful by their
users, assisting them in their everyday lives.

A common theme in automation systems is that they instrument multi-
ple devices and combine them with a central control point to achieve their
task. Such systems are more sophisticated that single smart devices, albeit
still have a tight focus on a single task. These systems are pervasive and
ubiquitous in spatial terms as their deployment may cover the entirety of
the house. However, these systems are limited in terms of the functionality
offered, thus of limited intelligence.

Traditional automation systems have several other disadvantages that
severely limit their usefulness. First, automation systems are often incom-

4

patible. Devices from other vendors can rarely be integrated with the rest of
the automation system, leading to vendor lock-in. Second, the functionality
provided by such solutions is tightly controlled by the automation system
vendor. Upgrades to the functionality are usually distributed in the form of
closed-source firmware upgrades for the central controlling point, with the
users unable to officially extend and enhance said functionality. Thirdly,
each automation system comes with its own central control point, leading to
a clutter of devices that are both difficult to operate, maintain, manage and
secure. Many automation systems also prove to be a fertile attack vector, by
adopting weak encryption protocols or no security mechanisms at all.

To conclude, automation systems have many disadvantages and although
they may have spatial pervasiveness in the confines of the home, due to their
limited functionality fail to be truly intelligent.

1.4 Ubiquitous Intelligence and the Home: a
Home Service Platform

To overcome the limitations of automation systems, a different system design
approach has been pursued by the smart home research community. In this
approach, a software platform is designed in such a way that can commu-
nicate with a vast array of heterogeneous devices, ranging from sensors to
cameras, air conditions to multimedia equipment and others. The intelligent
decision making is delegated to software programs that integrate or commu-
nicate over the network with the software platform in order to interact with
the devices in the house. Throughout this research, such platforms will be
referred to as “home service platforms” and the intelligent decision making
programs as “smart services” (or plainly services).

A home service platform following this design paradigm can fulfill the
criteria of ubiquitous intelligence. First, spatial ubiquity can be achieved
in the same fashion as automation systems; as long as devices are installed
throughout the house, the system can exhibit its intelligence everywhere
inside the house. Secondly, in stark contrast to the automation systems, by
utilizing the home service platform services have now access to a multitude
of devices of diverse types. Using these diverse devices, it is now possible
to achieve far more sophisticated tasks that were simply not possible in the
confines of a traditional automation system.

This design paradigm also addresses the shortcomings of traditional au-
tomation solutions by offering

1. network communication protocol independence,

5

2. smart service implementation flexibility,

3. open or at least “hacker-friendly” service development tools and li-
braries.

Expanding on the above advantages, a home service platform avoids ven-
dor lock-in and has better device integration from multiple device vendors
by implementing various, often at times competing network communication
protocols. This fact combined with the diverse types of devices often sup-
ported leads to a more flexible ecosystem on which smart services are free to
utilize whichever devices are deemed necessary to carry out their tasks. Fur-
thermore, in their effort to support functionally diverse devices, such home
service platforms often some protocol independent API focused on the func-
tionality of the device, abstracting any communication protocol minutia and
in turn making the development of smart services easier. Lastly, a very im-
portant feature of home service platforms is their improved value proposition
by virtue of being extensible systems; new functionality can be added by de-
ploying smart services developed by a third party. In their effort to gain
traction, the tools for developing smart services are often offered usually free
of charge to third party developers, enterprise companies or hobbyist hackers
alike. It is expected that when a home service platform achieves widespread
adoption, such third parties that develop smart services are going to play a
crucial role for enhancing the functionality of the platform by offering new
and innovative smart services.

In their current form, home service platforms still have some limitations
that further prevent them for reaching widespread adoption. This research
hopes to address some of these limitations and thus make home service plat-
forms an even better value proposition over traditional automation systems.
An overview of the most important limitations of home service platforms is
given in the next section

1.5 Limitations of Current Home Service Plat-
forms - Conflicts Among Smart Services

The introduction of home service platforms lifts the limitations of traditional
automation systems. However, these platforms also remove the tightly con-
trolled and usually well-tested environment associated with automation sys-
tems which is responsible for their robustness. Automation systems operate
inside well-defined boundaries, with very specific tasks to complete.

In contrast, home service platforms offer an open-access device model;
given sufficient credentials, a smart service may access any device it needs, at

6

any given time. In this open-access device model the possibility for conflicts
among smart services emerges. It is the view of the author that in order to
create a functional and well-behaving home service platform, management of
conflicts among smart services is of utmost importance.

Before the overall scope of this research is introduced, it is necessary to
consider the nature of the conflicts which may occur among smart services
as well as their cause. In general, the cause of a conflict lies with the limited
availability of a given resource that is necessary to two or more entities at
the same time. In the context of smart home services, two major types of
conflicts have been identified:

• conflicts over the use of a device and,

• conflicts over the environmental properties of the home environment.

The first type of conflict is easy to grasp; two or more smart services
try to utilize the same device or home appliance in a contradictory fashion.
For example, two smart services may try to use the tv set at the same time,
one for entertainment purposes and another for streaming the latest news.
Another example would involve the use of a surveillance camera; a smart
security service uses the camera to detect break-ins or suspicious movement
whereas an indoor location system may use the camera to track the location
of the occupants of the house. Finally, an even simpler example is that of
two services trying to control directly an air condition unit, using different
temperature settings and/or operation modes.

The above examples are typical cases where it is necessary for a smart
service to operate a device in an exclusionary manner. This problem may also
be considered a parallel to the resource management that typical computer
operating systems perform, a field of research from which inspiration was
drawn.

The second type of conflict has a more complex nature. In this type of
conflict, two or more services operate devices that have conflicting effects
on the environment. A simple example is the following: a smart service is
operating an air condition unit in cooling mode and at the same time another
smart service operates a heater in the same room; although the smart services
do not conflict directly over the use of devices (as they operate different
devices) they do produce conflicting effects on the environment.

Unless there is specific support from the home service platform, these
two types of conflicts cannot be predicted ahead of time and user input is
necessary to resolve them. In turn, if user intervention is necessary to resolve
conflicts, the illusion of a ubiquitous intelligent home environment dissolves.

7

1.6 Targets and Scope of this Research
This research aims to advance the state of the art of home service plat-
forms by addressing conflicts of smart services through comprehensive re-
source management. A home service platform is designed from the ground
up with conflict detection and resolution as top priority.

The proposed home service platform addresses the two types of conflicts
introduced earlier with distinct approaches. For conflicts over environmental
properties, the proposed platform uses a novel approach where the properties
of the environment are treated as resources themselves. The environmental
properties targeted by the platform are

1. illumination,

2. temperature,

3. humidity and finally,

4. sound and noise levels.

By undertaking the responsibility to manage the environmental resources
itself, the proposed platform now has the ability to detect and even attempt
to resolve these conflicts. The management of environmental properties is dis-
cussed in detail in chapter 2, where its effectiveness is demonstrated through
various experiments.

Regarding device related conflicts, the platform draws inspiration from
computer operating systems and introduces a set of primitives to facilitate
exclusionary use of devices: device access rights, service and user priority, an
event notification mechanism and finally condition sets. The rationale and
effectiveness of these primitives are demonstrated in chapter 3.

Finally, the last piece that completes a home service platform that aspires
to be characterized as ubiquitous and intelligent is the availability of context
information. In the author’s view, information regarding the location of the
users inside the house is necessary to offer reactive smart services. Although
a variety of indoor location systems exist today, most of them are the result
of research efforts and there are hardly any commercially available solutions
that do not have an exorbitant price tag. For this reason, an experimental
indoor location system based on passive infrared sensors was developed. The
details regarding this indoor location system as well as its overall evaluation
can be found in chapter 4. Although this location system was proven to be of
limited usage, its design and availability affected the design of several APIs
regarding location information offered by the proposed platform.

8

To finish this introduction, the advantages of using the proposed platform
are introduced. Firstly, due to the comprehensive API for discovering and
controlling devices, development of smart services is simplified and services
can be executed on any instance of the proposed service platform, regardless
of the variations of deployed devices in a house.

Secondly, the proposed platform provides a predictable execution envi-
ronment for the smart services; any kind of change in the execution context
(such as losing access rights to a device) can be intercepted and services can
then react and take corrective measures, or even voluntarily suspend their
execution. This predictable behaviour is a key factor to designing resilient
services that behave consistently and in a predictable fashion.

Finally, by delegating the management of environmental resources to the
home service platform itself, it is now possible to detect and resolve conflicts
regarding environmental properties. Furthermore, the difficult task of con-
trolling environmental properties from a smart service by directly controlling
devices such as lights, curtains and others is simplified; the service only need
to specify the intensity of the property as well as the area over which the
desired intensity is to be enforced. The proposed platform then proceeds to
find the most appropriate combination of devices and device settings to fulfill
such request by services.

9

Chapter 2

Management of Environmental
Resources in the Home

2.1 Introduction
The use of home service platforms opens the way for new and highly sophis-
ticated services to be deployed in the home. As the sophistication level of
these smart services increase, the need to control aspects of the user’s sur-
rounding physical environment arises. Aspects of the environment such as
temperature, humidity, illumination as well as sound and noise levels can
be considered to be innate properties of the physical environment. These
properties or characteristics are readily perceptible to the occupants of the
house1, affecting them in many direct and sometimes more subtle ways.

The physical environment as perceived in terms of the four properties
identified earlier is for example tightly interlinked with a sense of comfort;
a room temperature that is too high or too low usually leads to discom-
fort. Furthermore, different illumination conditions may be more fitting for
specific tasks or time of the day, while also having an impact on the mood
of the occupant. Sound such as music may affect the mood of the listener
and stimulate his or her creativity, while on the other hand noise may be
irritating, especially when the occupant tries to relax or sleep.

With such a huge potential to affect an occupant’s every day life, it only
stands to reason that a smart service of high sophistication should be able to
affect these physical properties. Currently, smart services do have the ability
to manipulate these physical properties indirectly, by operating devices that
have an effect on these properties. For example, a smart service may turn
on and off a light to control illumination or operate an air conditioning unit

1Or any person in the house for that matter

10

in hopes of adjusting the temperature.
This model of indirect interaction with the physical properties of space

turns out to be less than ideal. First, it is very difficult for a smart service to
estimate the effect of the operation of a device on the surrounding environ-
ment. Thus, trying to control a physical property this way is rudimentary
at best, complicated in terms of programming and grossly unsatisfying for
user experience at worst. Secondly, the possibility of conflicts in regards
to physical properties arises; two or more services may try to affect physi-
cal properties in a contradictory way. For example, two services may try to
achieve both a bright and a dark illumination environment in the same room.
Such scenario is a common case of conflict over environmental resources. Fi-
nally, depending on the availability of devices in the home environment and
their variability, it becomes hard to develop smart services that are “write
once, run everywhere” without including specific logic for individual devices.

To address these issues, a different approach where the physical properties
of space are treated as environmental resources that are managed directly by
the service platform was pursued. In this approach, smart services can make
abstract requests for environmental resources, and then having the home
service platform decide the most appropriate combination of devices and
device settings that should be used to fulfill these requests. Furthermore, by
delegating the responsibility of management of environmental resources to
the home service platform, it is now possible to detect and resolve conflicts
regarding physical properties at least partially. Finally, by introducing a
more abstract API to facilitate requests regarding physical properties, smart
service development is simplified, reducing development time and making
services more easy to deploy in any home.

The work presented in this chapter was published in [58].

2.2 Related Works
To the best of the author’s knowledge, so far there has not been a home
service platform that integrates physical properties of the environment as
resources. Thus, the related works usually only focus on a single physical
property such as illumination. It is for this reason that related works in this
section will be presented in groups, depending on the physical property that
is to be controlled.

Illumination The work presented in [52] follows a similar approach with
the proposed system. In it, a set of constraints regarding illumination are
first formulated and then with the use of genetic algorithms an acceptable

11

solution is found. However, no discussion regarding the performance of the
system in terms of execution time is presented.

In [50], the problem of finding appropriate illumination settings for de-
vices is formulated as a binary satisfaction model and also as a continuous
satisfaction model. At its core, a binary search algorithm is used to derive
the appropriate settings for devices. The results show a good match between
the measured and estimated illumination intensity.

In [49], a closed-loop illumination control system is presented that in its
core uses stochastic hill climbing. Its convergence speed was reported to be
in the order of 5 minutes, thus making its use in real-time scenarios hard
to recommend. Nevertheless, power savings of up to 33% were reported in
comparison to an office environment that does not utilize this system.

Temperature and Humidity The management of temperature and hu-
midity in the proposed platform is currently not implemented. However,
related research in the field of Home Ventilation and Air Conditioning sys-
tems (HVAC) is plentiful and can serve as a source of inspiration.

A review of contemporary HVAC systems is presented in [44]. In it,
an HVAC system is described as a “complex, non-linear, multi-input multi-
output system”. A mathematical model that describes the operation process
of such systems is difficult to construct, therefore different intelligent control
methods utilizing for example neural networks, evolutionary algorithms and
fuzzy logic are proposed as the preferred modeling tools. Examples of HVAC
systems deploying fuzzy logic include [17], [18]. Furthermore, a method for
training such a fuzzy logic controller using genetic algorithms is presented in
[32]. A system that further utilizes past data to make accurate predictions
about the temperature can be found in [43].

To attempt to effectively control temperature and humidity, a simulation
model that is fast enough and produces reasonable accuracy results is needed.
In [56], a method for fast simulation of temperature based on proper orthogo-
nal decomposition (POD) is discussed. Such an approach can be appropriate
for the proposed system and would compare favourably to time-consuming
simulation methods based on computational fluid dynamics. A second work
that utilizes POD and finite volume method can be found in [41].

Sound In a similar fashion, a fast simulation method for sound sources
would be necessary for the correct estimation of sound and noise levels. A
very interesting work based on ray tracing is presented in [64]. The authors
proposed a guided ray tracing system which is able to compute the effects
of a sound source from a receiver’s position from 8 to 30 times per second.

12

As it is explained in section 2.3.6 a ray tracer for the proposed system has
already been developed. With slight modifications to account for diffraction,
it could potentially be used for the modeling of sound and noise in the home.

2.3 Design and Rationale
2.3.1 Design Principles and Advantages
The design of the proposed system comes as a direct answer as to how to
simplify the management of environmental resources in the home. Two simple
ideas that answer this question lead our design:

1. offer a high-level API to control physical properties to the smart ser-
vices and

2. delegate the management of the physical properties to the home service
platform.

The presence of a high-level API for controlling physical properties of
space is a unique feature of this platform. Using this API a smart service
may make a request regarding the intensity of a physical property over an
area of space. As an example, a service may request that the illumination
around the user be set to a specific amount of lux, or that the temperature
of a room be set at 25◦C.

The advantages of using such a high-level API is that service development
is simplified. Any complex and error-prone logic for identifying individual de-
vices and estimating their effects on the environment becomes unnecessary.
Eliminating this portion of software logic leads to decreased development
time and allows the service to be deployed in any instance of the home
service platform, regardless of the different devices that may be in use. Fur-
thermore, even if such a complex logic was developed successfully for a smart
service, this effort is an effort that would have to be duplicated for any other
service that would want to achieve similar results. This is a process that
is bound to introduce errors and produce corner cases that were not taken
into consideration during development, thus having a negative impact on the
user’s experience.

The advantages of delegating the management of physical properties to
the home service platform are also clear. This feature is complementary to
the high-level API for controlling physical resources and is the mechanism
that makes the most appropriate decisions regarding how to better fulfill
requests regarding physical properties. On top of the advantages described

13

above, the home service platform is also able to perform conflict detection
and resolution regarding physical properties, something that was previously
impossible. Conflicts over environmental resources can now be detected based
on the overall “Area of Effect” that a request has. Conflict resolution can
also be achieved by making a compromise among the conflicting requests.
The conflicting request can be compromised either in terms of the area that
they cover or the intensity of the physical property that they address.

2.3.2 Area of Effect and Compromising Techniques
The proposed platform supports conflict detection and conflict resolution for
environmental resources such as temperature, humidity, illumination, as well
as sound and noise levels. To achieve this, the concept of “Area of Effect”
was introduced.

The area of effect can be classified in two categories: the area of effect
of a device and the area of effect of a smart service. The area of effect of
a device is the physical space over which the device is able to affect one or
more properties of said space. The effect that the device has on the intensity
of a property of the physical space must exceed a certain threshold, or else
its effects can be deemed insignificant and thus ignored. As this threshold
value increases, it is usually the case that the area of effect decreases. For
example, the area that a light may illuminate at an intensity of 1000 lux
must be many times smaller than the area which could be illuminated at
only 100 lux.

The area of effect of a service is the physical space over which the service
enforces the intensity of a physical property over a certain threshold. The
area of effect of a service is the result of the combination of the area of effect
of the devices that are used to fulfill the needs of the service.

Depending on the physical property, some properties may be contained
successfully in smaller areas than other properties. Taking illumination as an
example, barring any windows or transparent surfaces, it is usually limited
in the confines of a single room. Conversely, sound and noise may penetrate
walls and be perceptible in other adjacent rooms or different floors of the
same building. Temperature and humidity can be reasonably contained and
controlled inside a room, but thermal loss to adjacent room is a fact that
should be accounted for.

The area of effect can now be used to check for conflicts. Should two or
more smart services try to achieve a different effect on the environment, their
respective areas of effect can now be examined for conflicts. A simple example
are two smart services that want to achieve different temperature settings in
the same room. The area of effect for these services becomes the room itself.

14

Assuming that these services want to achieve an exact intensity setting, these
services conflict. It is worth noting that, if these two services specified an
intensity of more than 25◦C and 28◦C respectively, without an upper bound,
these services do not conflict for they are pushing the intensity of the physical
property (in this case temperature) towards the same direction.

After a conflict has been detected, the next step is to attempt conflict
resolution. In stark contrast with device conflicts (which are the main topic
of chapter 3), physical properties may in essence be treated as shared envi-
ronmental resources, i.e. these resources can be used at the same time by
multiple services. However, the requests made by the smart services may be
only partially satisfied.

Two main compromising approaches for resolving conflicts over environ-
mental resources are proposed:

• space-based conflict resolution,

• intensity-based conflict resolution.

In the space-based conflict resolution approach, the system tries to min-
imize the overlapping area of effect of the services. This approach can be
used when the physical property that is to be controlled can be reasonably
contained over a given area. Illumination is the most representative case of
such a property. For example, in a reasonably sized room it is possible to
illuminate only part of it, keeping the rest of room substantially darkened.

In contrast, the intensity-based conflict resolution approach is used when
the physical property that is to be controlled has a tendency to become
homogeneous over an area. The most representative physical property of
this kind is temperature, which tends over time to spread evenly inside the
confines of a room. In the intensity-based conflict resolution approach, an
intermediate intensity that will partially satisfy the conflicting requests of
the smart services is applied. For example, given two services that want to
achieve 22◦C and 25◦C of temperature in a room, the system may choose to
apply any temperature in the [22◦C, 25◦C] range. The details for choosing
the most appropriate temperature in this range may vary depending on the
sophistication of the algorithm employed and may take into consideration
many parameters that affect the perceived temperature by the user.

2.3.3 Achieving an Optimal Solution: a Combinatorial
Problem

Having established that the home service platform is responsible for the man-
agement of environmental resources, it must now fulfill request regarding

15

these resources as optimally as possible. To satisfy these requests, the plat-
form must operate one or more devices with appropriate settings.

As the number of settings for each device and the number of devices
increases, the number of possible combinations explodes exponentially. For
n number of devices that have m possible settings, the number of possible
configurations C becomes:

C = mn (2.1)
In the experiments section, a room with 25 lights that have dim-switch

functionality (0% − 100% illumination intensity) is used. This particular
setup creates an immense search space (10025 possible configurations) that
has to be searched to find an appropriate solution. Although typical room
configurations and device deployments currently may seem unusual, this does
not detract from the fact that the problem of operating appropriate devices
with the most appropriate settings is in essence a combinatorial problem.

The reason that such configurations are unusual is due to the simple
fact that up until now they were difficult to operate by regular users. With
the presence of a home service platform, such rich configurations with many
devices are not only possible, but even desirable, as they enable more granular
control of the physical properties of the home.

There are several options to explore the search space of this problem.
One of the first approaches pursued was a heuristic method as described in
[57]. The problem with heuristic methods lies in the fact that such methods
may have implicit assumptions regarding the environment and may fail to
perform adequately well in other scenarios that differ significantly.

In light of such previous experience, local search algorithms that make no
hidden assumptions were pursued. A local search approach is flexible enough
to produce acceptable results even in the most unusual circumstances due to
their agnostic nature.

2.3.4 Local Search and Search Iterations
For each iteration during a local search, one solution candidate is selected
and is evaluated for its overall fitness. After the evaluation of the candidate
solution is complete, the local search meta-heuristic is used to guide the
search towards even better solutions.

Some well-known meta-heuristic strategies are the following: Hill Climb-
ing, Simulated Annealing, Tabu Search and Ant Colony Optimization. Fur-
thermore, Genetic Algorithms can also be used to tackle such combinatorial
problems. Each of these meta-heuristic (or classes of) strategies vary in op-
eration and in their handling of candidate solutions. A simple hill climbing

16

Figure 2.1: Local Search Engine Configuration

algorithm will for example, reject any solution that is strictly worse than the
currently best known solution. However, this kind of greedy approach may
lead to a local optimum point, failing to find better solutions that otherwise
exist in the search space. Random Restarts is a common strategy supple-
mentary to Hill Climbing which resets the search and starts off again from
a new random point in the search space. Tabu Search will not consider so-
lutions that have been visited before and so on. An exhaustive list of global
optimization algorithms and their details can be found in [68].

The configuration of the local search utilized in this platform can be seen
in Fig. 2.1. The proposed system utilizes a hill climbing meta-heuristic
strategy and, depending on the configuration, restarts may occur.

Before describing the steps performed in each search iteration, several key
concepts that pertain to global search algorithm must be briefly introduced.
These concepts are also prevalent in genetic algorithms, so the nomenclature
borrows heavily from the science field of biology.

The first two concepts are those of the Genome and Phenome. According
to [68], “the search space G (genome) of an optimization problem is the set
of all elements g which can be processed by the search operations”. In the
context of this research, given a set of devices D and a set of settings Si for
the i-th device di, a genotype g takes the form of:

g = (s1, s2, ..., sn) where si ∈ Si, n = number of devices (2.2)

The search space thus becomes

G = S1 × S2 × ...× Sn (2.3)

17

As it is, a genotype cannot be directly evaluated for its quality; it is just
a set of device settings. The next step is to evaluate what would be the effect
of these device settings on the environment. Here the notion of the Phenome
appears.

The phenome P (also known as the problem space) of an optimization
problem is the set containing all elements p which could be its solution. A
candidate solution p ∈ P is also known as a phenotype.

For a given problem there may be many representations of P. In the
context of this research, the effects that devices have on the environment
have to be quantified. Thus, given a set of n points, and Ii being the intensity
of the physical property at point i, a candidate solution p ∈ P takes the form:

p = (I1, I2, ..., In) (2.4)

Furthermore, since the intensity of a physical property can be measured
as non-negative real number, P is an n-dimensional R space.

P = R≥0
n (2.5)

It is clear now that there is a need for a specific function that can convert
from a given genotype to a phenotype in the problem space. Such functions
are known as Genome-to-Phenome mappings. This gpm function has the
following property:

∀g ∈ G∃p ∈ P : gpm(g) = p (2.6)
In other words, each possible genotype g can be mapped to a candidate

solution. An inverse function may exist in other problems, but in this research
the gpm maps from a discrete space of device settings into a continuous
space of physical property intensity. Thus, strictly speaking, such an inverse
function is not possible2.

Depending on the problem, the actual implementation of a gpm function
may vary significantly, from a simple function that completes in an instant
to multi-day complex simulations.

After a candidate solution has been found, it is time to be evaluated in
terms of its overall fitness. For this purpose, special objective functions that
map from a phenotype to R are used.

Obj(p)→ R (2.7)

These objective functions are specific to the problem domain, and usually
contain expert knowledge directly pertaining to the problem at hand. In

2Reduced accuracy inverse gpm functions may be possible by making the problem space
discrete, but actually creating such functions may still be impossible or extremely difficult.

18

there are multiple objectives that need to be optimized, the problem becomes
a multi-objective optimization problem. This is the case for the proposed
system when a conflict over physical resources occurs; two or more smart
services request conflicting properties on the environment and the system
performs a multi-objective optimization for these conflicting requests.

In multi-objective optimization, a fitness function Fit(p) can be used
to determine the overall fitness of a candidate solution. A fitness function
combines the results of all the objective functions currently present into a
single index, usually in R, that can be used for comparisons among candidate
solutions.

Fit(p) = f(Obj1(p), Obj2(p), ..., Objn(p))→ R (2.8)
As is also the case with objective functions, it cannot be stressed enough

that the quality of this fitness function is going to have a huge impact on
the results of the local search. There are many approaches to multi-objective
optimization such as Weighted Sums, Pareto Optimization, Constraint Han-
dling and others, each with its own advantages and disadvantages. Depend-
ing on the nature of the problem, some approaches may be more fitting for
certain classes of problems than others.

In the following sections the details for each discrete phase of a search
iteration step (exploration, simulation and evaluation) will be explained.

2.3.5 Exploration
The exploration step of each search iteration is responsible for generating
a new genome that will later be examined for its fitness. This generation
of a new genotype is achieved with the use of mutation operations (also
known as mutators). These mutation operations operate on a given number
of parent genotypes and produce a new offspring genotype by altering and/or
combining the characteristics of the parents.

In local search, the null operation and a unary operation are prevalent.
A null operation can generate a genotype without any external input. This
new genotype is usually created at random or, depending on the problem, be
a copy from a collection of initial genotypes that are deemed appropriate.

The unary mutation operation receives as an input a parent genotype.
This genotype will then be modified and a single offspring genotype will be
produced. The way that the parent genotype is modified is again problem-
specific.

In evolutionary algorithms, binary and even n-nary mutation operations
are more common. As their names imply, these mutation operations combine
2 or more genotypes to produce a new offspring genotype.

19

Regardless of the context of use, it must be stated that the quality of the
mutation operation will effect the overall results of the global search. This
is because the mutator operation dictates which neighbors of the current ac-
cepted solutions will be visited. This exploration needs to be versatile enough
to consider neighbors which have a good chance to escape local minima.

Mutation Operations Used For the needs of this system, two unary
mutation operations were developed: a random mutator and a binary-search
mutator. The null operation used in the system is again a random genotype
generator that picks initial values for the genotype.

The behaviour of the random unary mutator is as follows: provided with
an initial genotype g, the mutator will first select one “gene” (in this case,
the setting of one device) si and assign to it a random value from Si. This
random unary mutator is fair in terms of the probability of each device being
considered for mutation in each iteration. However, if a device i has a vast
number of possible settings compared to another device j (i.e. the cardinality
relation of the set for these two devices is |Si| >> |Sj|), the settings for the
device i will statistically have less chances to be examined. If the number
of all devices involved in the search have the same number of settings, then
this random unary mutator is completely fair. Furthermore, even in the case
where the number of settings for each device differs significantly, it is still
trivial to create a completely fair random mutator.

The second unary mutator that was developed for this system is a “binary
search” mutator. This mutator is stateful, i.e. it has a state that is retained
through consecutive calls to this mutator. This binary search mutator oper-
ates as seen in Algorithm 1. In essence, one device is picked at random, and
the range of possible settings are evaluated using binary search. When there
is no further improvement possible, the mutator will reset its state (associ-
ated with the gene index that is under investigation) and proceed to select
another gene in its next iteration.

It must be stated that this binary mutator operation has a hidden assump-
tion: if the last mutation operation is not present in the genome g that is
supplied as an initial argument, it means that the mutation produced strictly
worse results and thus was rejected by the meta-heuristic strategy. Although
this assumption is correct when the meta-heuristic strategy is a simple hill
climbing, this assumption does not hold true for all possible meta-heuristics.
For example, if a simulated annealing meta-heuristic search strategy is used,
it is possible that, although the mutation produced an overall less fit phe-
notype, it was adopted as the base for the new search iteration due to high

20

Algorithm 1 “Binary Search” Unary Mutator
1: geneIndex = −1, geneIndex, geneV alue
2: function Binary Mutator(g)
3: if geneIndex = −1 then
4: return initBinarySearch(g)
5: else
6: return performBinarySearch(g)
7: end if
8: end function
9:

10: function initBinarySearch(g)
11: geneIndex← Random(geneRange)
12: geneV alue← Random(min,max)
13: decide search direction
14: g′ = g
15: g′[geneIndex] = geneV alue
16: return g′

17: end function
18:
19: function performBinarySearch(g)
20: if g[geneIndex]! = geneV alue then
21: ▷ Previous gene modification did NOT survive
22: change search direction if necessary
23: end if
24: Update min,max search range
25: geneV alue← Random(min,max)
26: g′ = g
27: g′[geneIndex] = geneV alue
28: if min == max then
29: geneIndex = −1 ▷ Binary Search Finished
30: end if
31: return g′

32: end function

21

“temperature”3.
The two mutators will be compared in terms of result quality and speed

performance in the experiments section of this chapter.

2.3.6 Simulation
To estimate the effects that a given genotype has on the indoor environment,
a simulation step becomes necessary. This simulation acts as the gpm func-
tion of the local search, i.e it maps a set of device settings (the genotype)
to the estimated effects that these results would have on the environment if
they were to be applied (the phenotype).

The phenotype for the classes of conflicts that the proposed system han-
dles is the intensity of a physical property at a set of points in space. This
set of points is generated through information that was passed to the plat-
form as part of the physical resource requests that the smart services make.
For example, a service may request a specific amount of illumination at the
user’s current location; the user’s location will be used as such one point of
the phenotype. It is also possible that depending on the request, one request
may require multiple points in space to be evaluated.

Illumination Simulation In its current iteration, the system supports
only the management of illumination as a physical property. To estimate
the effects that devices have in regards to illumination, two simulation ap-
proaches were pursued:

• an approach based on ray-tracing,

• an approach based on interpolation.

Simulation Using a Ray-Tracer For the approach based on ray-tracing,
a custom ray-tracer was developed that utilizes attenuation fall-off informa-
tion from the light sources. This ray-tracer was based on the octree imple-
mentation that was used for the indoor location system described in chapter
4.

Performing ray-tracing in real time is a computationally intensive task.
Although it may be possible to perform real time ray-tracing with commod-
ity and specialized hardware that is available as of early 2016, it is still a
challenge. Furthermore, relying on real time ray-tracing would in turn mean

3A temperature setting is present in simulated annealing. Depending on this temper-
ature setting, worse solutions may be adopted as the base for a new search.

22

that the cost of deployment for the proposed home service platform would
rise, as specialized or expensive hardware would become necessary.

To tackle the above difficult points, a non real time ray-tracing approach
that needs an extra pre-computation step was pursued. A simple physical
fact makes this possible: illuminance (the intensity of light) from a point
source falls off according to the inverse square law.

I =
P

4πr2
(2.9)

For a given scene that involves illumination devices, assuming that the emit-
ted amount of power of the light sources is known, the amount of light that
reaches a specific point in the scene from each light source can be computed.

However, this model of a perfect point light source does not represent re-
ality very well. First, reflection from surfaces is not taken into consideration.
Secondly, the remaining geometry of the scene is also not taken into con-
sideration. This means that this simple model does not account for blocked
illumination, as is the case when a scene object blocks the direct line-of-sight
path from a light source to a point in space.

The ray-tracer used in the system models light sources as a set of rays.
The number of rays used for each light source is customizable and using
typical settings a light source is represented with as much as a few hundred
rays. The energy of the illumination source is split evenly among these rays.
These rays bounce freely in the scene and collide with objects. The rays re-
flect on surfaces that have an associated absorption coefficient. Furthermore,
each ray is intersected with the leaf nodes of the octree, and attenuation
information in the form of 1

4πr2
is recorded. By multiplying this attenuation

information with the energy that is carried by a ray and summing the contri-
butions of all the rays of a light source, it is possible to estimate the effects
that a light source has on the given octree node.

Another point that must be addressed is the quantization of space. Al-
though space as perceived by humans seems continuous and not quantized4,
the system must perform quantization of space, since otherwise the number
of points for which light attenuation information will have to be computed
would be infinite. The quantization of space is performed through the use
of an octree. For each leaf node of the octree, light attenuation information
from all the sources present in the scene is stored. Depending on the size
and the initial creation parameters of the octree, the granularity of space
quantization can be controlled. For example, during the experiment session
15cm3 leaf nodes were used.

4The physics regarding quantization of space has yet to reach a definitive conclusion.

23

Figure 2.2: Ray-Tracer Visualization for 2 Light sources. Left: Rays Visual-
ized. Center: Without Rays. Right: With Smoothing Pass

With this infrastructure in place, given a genotype g it is now possible to
estimate the illumination at a given point z as follows:

• find the bounding leaf node for the point z in the octree,

• retrieve the attenuation information for the light sources that illuminate
that node,

• depending on the settings of each light source in g, calculate the power
output of each light source that reaches that node,

• sum the amount of illumination reaching that leaf node.

A visualization of the results of the ray-tracer can be seen in Fig. 2.2.
Due to the relatively low number of rays used to model light sources,

discrepancies in the light reaching adjacent leaf nodes are apparent. In an
effort to mitigate these discrepancies, a special smoothing pass is performed
after the light attenuation information has been computed. In this smoothing
pass, leaf nodes exchange a small amount of energy with neighbouring nodes.
The results of the ray-tracing before and after the smoothing pass can be
seen in the middle and right pictures of Fig. 2.2. Clearly, the results after a
smoothing pass represent reality closer.

Interpolation Based Simulation Due to concerns regarding the accu-
racy of the ray-tracer, an alternative method for illumination simulation
based on interpolation was also developed. This interpolation based simula-
tion interpolates between three variables of the illumination device:

• brightness setting,

• distance from source and

• angle from source.

24

Figure 2.3: A Philips Hue Light with
its Accompanying Fixture.

Figure 2.4: Environment Used for
the Modeling of Philips Hue Lights.

These three variables are what ultimately dictate the amount of illu-
mination reaching a point in space from a light source. For experimental
purposes, the popular Philips Hue lamps were modeled. These lights were
used in combination with a light fixture as seen in Fig. 2.3. Illumination
measurements were taken at distances of 0.25m, 0.5m, 0.75m, 1m, 1.25m and
1.5m, at an angle of 0°, 30°, 45°, 60° and 90° and with brightness settings of
100%, 75%, 50% and 25%. The environment in which these measurements
where taken in a dark environment without any other illumination source.
This environment can be seen in Fig. 2.4.

During simulation, the brightness setting of the device is known (this
information is part of the genotype g) and the angle as well as the distance
from the point of interest is calculated. Using these three parameters, three
successive linear interpolations are performed sequentially; first in terms of
angle, then in terms of distance and finally in terms of brightness. ”

Through this interpolation procedure certain assumptions and limits are
in place. The first limit that is enforced is that if a point lies at an angle
that is greater than 90°, it is assumed that no significant amount of illumi-
nation reaches that point, thus the illumination for that point is set to zero.
Secondly, if a point lies at a distance that is greater than 1.5m away from
the light source, this distance is successively halved until the distance falls
into the

[
0m, 1.5m

]
range. The interpolation procedure is carried out with

this new shorter distance and an illumination estimation is computed. The
root of this estimation is then successively computed as many times as the

25

original distance had to be halved. For example, for a point that lies 4m
away from a light source, the interpolation estimation will use a distance of
1m (the original distance was split in half two times). Supposing that the
result of this interpolation is 625lx, the illumination that reaches the original
point which is 4m away is only 5lx. This approach is justifiable through the
inverse square law as explained in the previous section.

In the experiments section of this chapter, data obtained through the use
of both of these simulation methods will be compared and contrasted with
actual measured values.

2.3.7 Evaluation
The final step of a search iteration after the exploration and simulation steps
is the evaluation of the resulting phenotype p in terms of fitness. For this
step, a set of objective functions and an overall fitness function are used.
Their characteristics and the rationale behind their design is explained in
this section.

Objective Functions The requests regarding environmental resources re-
ceived from a smart service are translated into one or more objective func-
tions used to evaluate the fitness of a candidate solution. These requests are
interpreted as a set of upper and/or lower bound targets that have to be
achieved in order to fulfill them. The equation used for a target that has a
lower bound intensity that has to be fulfilled can be seen in Eq. 2.10. The
objective function Over computes the degree of satisfaction achieved by the
intensity of a physical property val for a given target target which is subject
to maximization.

Over(val, target) =

{
− (val−target)2

target
if val < target,

logtarget(
val

target
) if val >= target.

(2.10)

For this equation, assuming that val < target the result is going to be
negative, and it is the square difference of the current intensity and the
target, scaled by the actual target. The use of square difference ensures that
the more a target is being violated its satisfaction degree will further rapidly
decline. In contrast, if val >= target it means that the target is fulfilled. For
a fulfilled target the use of a logarithmic function gives diminishing returns.

For a target that has an upper bound, i.e. the intensity of the physical
property must be less than the provided target, a similar objective function
is used (Eq. 2.11).

26

Under(val, target) =

{
logtarget(−

val−2∗target
target

) if val <= target,

− (val−target)2

target
if val > target.

(2.11)

Finally, the objective functions scale their reported result appropriately
based on target. This allows for the direct comparison among different ob-
jective functions and gauge their degree of satisfaction in absolute terms.

Fitness Functions The final piece of the puzzle for the fitness evaluation
of a candidate solution is the fitness function used to aggregate the results
of the objective functions. These fitness functions are again subject to max-
imization.

Two fitness functions were implemented, with the first one being just a
simple summation of the objective functions:

Fit(Obj1, Obj2, ..., Objn) =
n∑

i=1

Obji (2.12)

Due to the way in which objective functions are designed, unsatisfied
targets will impact the overall fitness score in a very pronounced negative
fashion. This fact forces the search towards solutions that avoid heavily
violating any upper or lower bounds, thus emphasizing compromise among
conflicting objective functions.

The second fitness function improves upon the simple summation fitness
function by also taking into consideration the number of devices that are
used as part of the candidate solution. If the calculated sum of all objectives
is positive it is a very good indication that all objectives are either met or
if unmet objectives do exist they are violated only slightly. For such cases
the overall fitness receives a bonus score depending on the number of devices
it does not use and a configurable factor a. For cases where the sum of the
objective scores is negative, the fitness is penalized depending on the number
of devices that are being used and the same factor a. The equation for this
new fitness function can be seen below (Eq. 2.13).

Setting S =
n∑

i=1

Obji

the new fitness function becomes:

Fit(Obj1, Obj2, ..., Objn) =

{
a ∗ S ∗ (used+ 1) if S < 0

a ∗ S ∗ (unused+ 1) if S >= 0

(2.13)

27

This fitness function allows for potentially worse solutions in absolute
terms to be evaluated more favourably to better quality solutions which use
more devices. For example assuming a currently optimal solution with objec-
tive sum S and fitness F that utilizes n devices and a new candidate solution
with objective sum S ′, fitness F ′ that uses n − 1 devices, for the new can-
didate solution to be registered as the new best solution then F ′ > F must
hold true, which leads to s ∗ a (n+1)

n
< S ′ (with S, S ′ < 0). This means that

the objective scores of the new candidate solution may be at most a ∗ 1/nth

worse than those of the current best solution. Similar logic applies where
S, S ′ > 0. This margin where a worse solution that uses fewer devices will
be preferred over the current best solution can be adjusted with the scaling
factor a.

The current fitness function assumes that all devices involved in the sim-
ulation consume the same amount of power. Thus, a reduction of the number
of used devices will lead to a direct reduction in power consumption. How-
ever, scenarios where all devices have the same power consumption are quite
uncommon. Should power consumption information be available, a fitness
function that combines illumination estimation and power consumption can
be constructed in a similar fashion. Such a fitness function can act as the
building element for a system-wide energy saving policy.

2.3.8 Meta-Heuristic Search Strategies
Having explained the procedures taking place during each search iteration
(exploration, simulation, evaluation), the search metaheuristics used in the
current iteration of the platform are explained.

Currently two variations of multi-objective hill climbing have been im-
plemented: one with restarts and one without restarts. The algorithm for
these two variations can be seen in Alg. 2 with the only distinction that
the shouldRestart() check always returns false for the hill climbing variant
without restarts.

The hill climbing algorithm as seen in Alg. 2 holds the current genome in
variable g and performs a mutation on it which results into a new genome g′.
The phenome p is produced through the use of a gpm function and its fitness
is stored in variable fit′. If this new fitness is the best fitness encountered so
far, the genome is stored in variable bestg. Also if this new fitness is better
than the current fitness fit, the current genome g is replaced by g′, ready
to be used as the base of new mutations in the next iterations. For the hill
climbing algorithm without restarts fit = bestfit is always true.

With a variety of mutation operations, simulation methods (gpm func-
tions) as well as a set of objective and fitness functions, even a simple meta-

28

Algorithm 2 Hill Climbing with Restarts
1: function HillClimbing
2: g, p, g′, f it, fit′, bestfit, bestg ← init()
3: while terminate() == false do
4: if shouldRestart() then
5: g′ ← Randomize(g)
6: fit← −∞
7: else
8: g′ ←Mutate(g)
9: end if

10: p← gpm(g′), f it′ ← evaluate(p)
11: if fit′ > bestfit then
12: Bestg ← g′, bestfit← fit′

13: end if
14: if fit′ > fit then
15: g ← g′, f it← fit′

16: end if
17: end while
18: return bestG
19: end function

heuristic search strategy such as hill climbing can produce results of high
quality if configured properly. This will be demonstrated in the experiments
section of this chapter.

2.4 Environmental Resource Request API
In a similar fashion to the API used for the control of devices in chapter 3,
smart services have access to a higher level API with which they can make
requests regarding environmental resources. The use of this API simplifies
service development and frees the developer from the error prone task of indi-
rectly trying to control physical properties of space by haphazardly operating
devices in the home.

In order to fully specify the desired features for a physical property, the
following pieces of information are necessary: the physical property type
(illumination etc.), the area over which the request is to be enforced upon,
and finally the intensity of the physical property. With this information
available, the home services can make requests such as “set the illumination
to 300 lx at the position of the user”, “set the temperature of the room at

29

@Override
public void run() {

Illumination illumination = (Illumination) platform.getPhysicalResource(
↪→ ResourceType.ILLUMINATION);

illumination.set(this, new AreaDynamic(theUser, 3), IntensityType.
↪→ getLowerboundIntensityType(300));

goToSleep();
}

Figure 2.5: Controlling Physical Properties With Two Lines of Code

25 ° ◦C ” etc.
The getPhysicalResource(ResourceType type) method call can be

used to get a reference object for the given type of environmental resource.
Each resource exposes appropriate methods for controlling the physical prop-
erty or getting an estimation of its intensity at a given point in space.

The set(...) method for controlling a physical property requires exactly
three arguments: a reference to the service that is making the request, a
specification of the area where the setting is to be enforced upon, as well as
the desired intensity.

To express an area, an instance of the Area class is necessary. To create
such an instance, the coordinates of a point in space (an “anchor” point) as
well as a distance specifier are necessary. In its simplest form, an area is
specified as static, i.e. an area that never changes over the lifetime of the
request.

The AreaDynamic subclass of Area can be used to express information
for areas that can change dynamically. To create an instance of this class, a
reference to an object that generates motion events as well as a distance spec-
ifier is necessary. Instances of the User class generate such motion events.
With this combination, an “area changed” event is generated for each user
motion event, which are then in turn used by the platform to update its
calculations. The user thus acts as a moving anchor point.

To express the desired intensity there are several options: request a lower
bound, an upper bound, a range of acceptable intensity or finally an ex-
act intensity setting. This information is captured by an instance of the
IntensityType class. For each bounded or exact intensity setting, the il-
lumination subsystem internally generates two competing objectives which
will take part in the simulation that will follow.

Putting this all together, it is now possible for a home service to make
requests regarding environmental resources using only two lines of code, as
shown in Fig. 2.5. This code generates a physical resource request that will
be handled by the illumination subsystem. Note that there is no guarantee

30

Figure 2.6: Top View of Experiment
Room and Lamp Placement

Figure 2.7: A View of the Experiment
Room

that the intensity specification will be honored, especially if this physical
request conflicts with requests made by other services.

2.5 Experiments
2.5.1 Experiment Setup
The experiments of this section were conducted in a room with 25 Philips
Hue lamps installed. A top view of the room can be seen in Fig. 2.6 and
the actual room can be seen in Fig. 2.7. The room size 4m by 5m, with a
closet space taking up space and the entrance located at the top right. The
25 Philips Hue lamps were affixed close to the ceiling at a height of 2.3m
above ground.

Starting from the leftmost column and going down, the lights are sequen-
tially assigned numbers. The lights of the first column are assigned numbers
from 1 to 5, the lights of the second column are assigned the numbers 6 to
10, all the way to the rightmost column where the lights are assigned the
numbers 21 to 25. This index assignment uniquely identifies a light in the
scene.

2.5.2 Illumination Conflict Among Multiple Services
Scenario and Configuration

For the first experiment of this section, a case where 3 services make conflict-
ing requests regarding the illumination of a room at the same time. Three
services A,B,C make requests for more than 300lx, less than 20lx and more

31

than 300lx at points XA, XB and XC respectively. The placement of these
points can be seen in Fig. 2.6.

As a possible story that would justify a scenario like this, it is easy to
imagine that a person at point XA is performing some task that requires illu-
mination, another person that moves through the room is currently at point
XC (thus again requiring illumination in order to navigate the room safely)
and finally a third person at point XB that wants to rest, thus requiring a
very low amount of illumination. Although the requests from services A and
C do not directly conflict with each other (since both services require a lower
bound for illumination intensity), both of these requests conflict with request
of service B that requires a very low upper bound for the illumination at the
vicinity of its user.

For this scenario, four different configurations of the local search engine
were tested:

1. Hill Climbing and Optimized Binary-Search Mutator (NO),

2. Hill Climbing and Random Mutator (NR),

3. Hill Climbing with Restarts and Optimized Binary-Search Mutator
(RO).

4. Hill Climbing with Restarts and Random Mutator (RR),

The termination criteria for all of the above cases were either the com-
pletion of fifty thousand search iterations or a total execution time of one
second, whichever comes first. The restart strategy used for the variants with
restart was the lapse of a thousand iterations without improvement on the
current solution.

As the gpm function, the simulation approach based on the ray-tracer
was used, and the sum of the scores produced by the objective functions was
used as the overall fitness function.

Comparison With Reality

The four configurations were tested using the same random seed and they
produced the solutions seen in Fig. 2.8. The numbers in these images rep-
resent the brightness setting for the hue light that is located at the current
position. The brightness settings have a range from 0% to 100%.

Looking at the solutions produced by the four search configurations, it
becomes immediately apparent that three of the four search configurations
converged. The “NR”, “RO” and “RR” search configurations converged in
the sense that their solutions use the same devices (the lights numbered 1, 2,

32

Figure 2.8: Solutions for the Four Configurations. Top Left: No restarts,
Optimized mutator. Top Right: No restarts, Random mutator. Bottom Left:
Restarts, Optimized mutator. Bottom Right: Restarts, Random mutator.

6, 16, 17, 21, 22 and 23). Furthermore, the “NR” and “RR” configurations
reached what practically is the same solution; only the brightness setting
for light no. 17 is different (77% to 76%). The lights used in these three
solutions are lights that are very close to points XA and XC , where a lower
bound of illumination is necessary to fulfill the requests of services A and C.
All other lights are turned off, in order to accommodate for service B that
requested a dark environment.

The solutions proposed by the four search configurations were then com-
pared to the actual illumination measured at the scene. The results can be
seen in Tab. 2.1. The estimated illumination for points XA, XB, XC had a
tendency to be higher than the actual measured illumination. This discrep-
ancy can be attributed to the limitations of the ray tracer.

Regardless of the accuracy of the ray tracer, the four search configurations
lead to sensible solutions that demonstrate the viability of conflict resolution
for environmental resources. Using the estimated lux intensity as an indica-
tion, none of the actual requests were able to be fulfilled. However, neither of
these requests were violated to an extreme degree and are in fact just barely
violated; the dark setting for service B is estimated to be barely above 20lx
(and in reality it was just 14lx) whereas the bright settings of services A

33

Table 2.1: Showcase Results per Search Configuration
Search Strategy Measured Lux Estimated Lux Fitness

NO 186, 14, 218 296, 20.1, 258 -0.01974
NR 194, 14, 226 291, 20.5, 279.5 -0.0062
RO 187, 14, 222 286, 20.7, 281 -0.00685
RR 195, 14, 227 291, 20.5, 279 -0.00622

and C where estimated to reach approximately 90% of the required 300lx
intensity.

Solution Quality and Performance Considerations

In order to evaluate performance and the quality of solutions produced by
the four search engine configurations, the experiments of the previous section
were repeated 200 times using the same starting seed for the random number
generator.

Performance Considerations The results from these repeated experi-
ments can be seen in Fig. 2.9 and Fig. 2.10. These figures show the best,
worst, average and median iteration count and time (in milliseconds) of when
the best solution was reported. This is not the execution time of the four
configurations; the search configurations executed until one of the two ter-
mination criteria was met (one second of execution time or 50000 search
iterations).

In terms of absolute speed, the “NO” search configuration (no restarts,
optimized binary-search algorithm) produced the fastest results. With the
best solution reported at just 79ms into a run, and with a worst case scenario
of only 339ms, it surpasses the other three search configurations easily.

In stark contrast, the “NR” search configuration (no restarts, random
mutator) took on average 302 seconds to report its best solution, with a
worst case scenario of 714ms. This can be attributed to the unpredictable
behaviour of the random mutator.

Regarding the search configuration variants that used restarts(“RO”,
“RR”) , the average time of reporting their best solutions was higher than
the search configurations without restarts (“NO”, “NR”). The “RO” and
“RN” search configurations had an average time of 490ms and 542ms respec-
tively. Furthermore, in their worst case scenarios, both search configurations
exhausted the upper limit of execution time of 1 second.

The higher best, average and worst times of the reported solution for the
search configuration variants with restarts show the impact of the restart

34

Figure 2.9: Performance Evaluation -
Iteration Count

Figure 2.10: Performance Evaluation -
Execution Time

Figure 2.11: Solution Quality of the Four Search Configurations

component in terms of execution time. However, these higher times also
indicate that it is a common occurrence for a better solution to be found
after one or more restarts.

Solution Quality The results of these 200 runs in terms of absolute fitness
can be seen in Fig. 2.11. The first perhaps initially surprising observation
is that the search configuration variants with the random mutator perform
significantly better than the variants that use the optimized binary-search
mutator. It might be natural to assume that binary-search should outperform
randomness but this result demonstrates the power of randomness in local
search algorithms: the ability of the search to escape local maxima and find
solutions with better fitness.

More specifically, the worst case and average fitness reported by the “NO”
configuration was−0.0796 and−0.0172 respectively, values that are far worse
than even the worst case fitness produced by the configurations with random

35

Table 2.2: Unique Solutions and Standard Deviation
Algorithm Unique Solutions Standard Deviation

NO 162 0.012 012
NR 3 0.000 002
RO 71 0.001 237
RR 78 0.000 054

mutators. Using restarts, the “RO” configuration improves over the “NO”
results (−0.0179 worst case and −0.0068 average), but still cannot match the
configurations that use the random mutator.

The absolute best performance in terms of fitness solution was observed
by the “NR” (no restarts, random mutator) search configuration, whose best,
average and worst performance are practically indistinguishable at −0.0062,
with differences appearing in the sixth decimal digit. In fact, the “NR”
configuration even outperformed the “RR” configuration.

Although the worst, average and best case scenario can give a quite ac-
curate picture of the way these four configurations behave, the number of
unique solutions reported in these 200 runs and their standard deviation in
terms of fitness were also calculated. These results can be seen in Tab. 2.2.

Astonishingly enough, in 200 runs the “NR” configuration only produced
3 unique solutions, that differed by one percentage of illumination in one or
two genes, thus being overall the most consistent search configuration over-
all. The tendency of the “NO” configuration to get stuck at local minima
is readily apparent, as it produced 162 unique solutions with relatively high
standard deviation among these solutions. Finally, although the “RO” con-
figuration produced fewer unique solutions than “RR” (71 against 78), the
standard deviation of the latter is far smaller, thus being more consistent.

Remarks From the results presented in the previous sections, two points
worth noting arise.

The first point is the accuracy of the ray tracer used as a gpm func-
tion. As explained in Sect. 2.5.2, the ray tracer currently overestimates
the illumination at given points. Although more accurate predictions would
be preferable, its current behaviour is better than an alternative where un-
derestimation would occur. The human vision has great adaptability, and
variations in bright environments tend to go unnoticed by the user. In con-
trast, small variations in illumination in darker environments are far more
pronounced and immediately perceived by the user.

The second point is about the proper selection of a search configuration.

36

Table 2.3: Illumination Request Details

Case Intensity Type Illumination
Estimated Measured

1 200 < 463.8 419
2 100 < 408 382
3 [200, 300] 300 281
4 [20, 30] 30.7 23

For our purposes, the case for selecting the NR algorithm can be made, based
on the simple fact that it produced the most consistent results in terms of
solution quality, with an exceptionally low standard deviation. Nevertheless,
the average execution time for this algorithm is close to 500 milliseconds.
Should a faster response time be of utmost importance, the use of the NO
search configuration is advised.

2.5.3 Evaluation of Optimized Fitness Function for Sin-
gle Requests

To evaluate the performance of the optimized fitness function, an experiment
where a single service would submit a physical resource request with various
intensity bounds was set up. Four unique cases were considered, the details of
which can be seen in Tab. 2.3. The center of the area requested was located
at point XC . During the local search, the optimized fitness function was
used. The search configuration used was an “RR” configuration (restarts,
random mutator). Finally, the estimated illuminations calculated by the
gpm function were compared to measurements taken at the actual scene.
Doubts about the accuracy of the ray tracer based gpm approach led to the
development of the interpolation-based gpm function, as introduced in Sect.
2.3.6.

Cases 1 and 2 demonstrate the effectiveness of the new fitness function.
Since the intensity type for these two cases only has a lower bound, to max-
imize the illumination objective functions it would be enough to switch all
lights present in the room to maximum brightness. However, such a setting
would be wasteful in terms of power consumption and would illuminate spot
XC with far more intensity than requested.

With the use of the new fitness function, the local search algorithm was
guided to a high quality solution that utilizes only 8 and 6 out of the 25
available lights for case 1 and 2 respectively. Furthermore, the illumination
was measured at 419 lx and 382 lx, an illumination level that handily fulfills

37

Table 2.4: Performance and Solution Quality Characteristics

Case Avg. lx Reported Time in ms
(Average / Worst) Unique Solutions

1 463 215.6 / 892 58
2 409 217 / 783 59
3 299 385 / 1000 491
4 30.6 441 / 1000 500

the requested illumination.
In cases 3 and 4, the platform still produced solutions that satisfied the

bounded illumination conditions requested. For a bounded illumination con-
dition it is enough to generate two competing objective functions that take
part in the simulation. However, due to the way the objective functions are
designed, the objective function representing the lower bound (20 lx in case
4) slightly overpowers the objective function of the upper bound (30 lx in case
4). Thus, the platform always generates solutions that hover slightly above
the upper bound of a bounded condition. This behaviour can be exploited
to achieve very specific illumination conditions.

Finally, the use of the optimized fitness function as gpm led to results
that matched the reality better than the ray-tracer based gpm. For illumina-
tion intensities of a few hundred lux, the interpolation based gpm function
produced estimations that were very close to the actual measured values.
The only significant deviation appeared at lower intensities (case 4), where
the illumination was estimated at 30.7lx contrary to an actual measurement
of 23lx at the scene.

Overall, the subject of an effective gpm function for illumination simula-
tion is still open to further improvements.

The solutions of the cases introduced above can be seen in Fig. 2.12, 2.13,
2.14, and 2.15.

Solution Quality and Execution Performance

In order to evaluate the consistency and robust performance of optimized
fitness function as well as the interpolation-based gpm function, the exper-
iments of the previous section were repeated 500 times. The aggregated
results for each case were compared in terms of estimated illumination, av-
erage execution time as well as number of unique solutions. The aggregate
results of these 500 runs can be seen in Tab. 2.4. Moreover, the average
solution for each case can be seen in Fig. 2.16 with the average solution for
case 1 on the top left.

38

Figure 2.12: Sample Solution
(Case 1)

Figure 2.13: Sample Solution
(Case 2)

Figure 2.14: Sample Solution
(Case 3)

Figure 2.15: Sample Solution
(Case 4)

39

First, for cases 1 and 2, the minimum illumination conditions of 200 lx
and 100 lx respectively are fulfilled. Of particular interest are the number of
unique solutions generated; 58 and 59 unique solutions respectively. What
this table fails to convey is that, in case 1, the top 11 solutions amounted for
446 runs out of the 500 runs, with these 11 solutions using the exact same set
of devices, with negligible variations in settings (for example, the brightness
of a device might be set at 99 or 98 instead of 100). Furthermore, the top
solution was reported 342 times out of 500 runs, which incidentally is the
solution depicted in Fig.2.12. From these observations, it can be said that
the search produced the same output roughly 90% of the time. Similarly, in
case 2 the top 6 solutions where reported a total number of 413 times out of
500 runs, with the top solution reported 346 times.

The average solutions for cases 1 and 2 as seen in the top row of Fig.
2.16 show the consistency with which the illumination subsystem identified
the most appropriate devices to use. In both cases, the closest devices to
the point of interest C were selected consistently as part of the most promis-
ing solution, and their brightness setting was set to the highest brightness
possible to maximize their illumination contribution. This “core area” is
highlighted with a green dashed line.

The situation changes for cases 3 and 4, as reflected by the high number of
unique solutions reported. Starting with case 3, the top solution was reported
only 4 times and utilized only 4 lights. 90% of the solutions reported made
use of 5 or 6 lights, with the remaining solutions using 7 lights or more. A
more detailed look at the average solution revealed some patterns: the lights
of the first, second (with the exception of the fourth light) and last column
where switched off for the majority of the time. The lights of the third and
fourth column had the most diverse range settings, actively contributing to
the solutions. However, with the presence of an upper illumination bound of
300 lx not all lights were set to their maximum brightness; as demonstrated
in cases 1 and 2 that would lead to illumination of approximately 400 lx.
Case 3 still exhibited a “core” of commonly used devices in the solutions
it reported. However, in contrast to cases 1 and 2, the average brightness
setting was significantly lower than 100%.

Case 4 was by far the most idiosyncratic case, with no solution reported
more than once. The solutions utilized anywhere from 4 to 8 devices to
fulfill the request, but this time almost any device in the room was used,
with no discernible pattern for more commonly used devices. However, the
farther a light was located from the point of interest the higher its brightness
settings tended to be. Specifically, almost all the lights that contributed the
most in the solutions for cases 1,2 and 3 have an average illumination setting
of less than 10. Conversely, lights that are farther away tend to average

40

Figure 2.16: Average Solutions for Cases 1-4 (500 Runs)

to a brightness setting of 14 and upwards, as can be seen from the average
solution. This is expressed in the lower right image of Fig. 2.16 with an inner
yellow circle of devices that have consistently lower brightness settings than
the devices marked with the outer red circle, that tend to have considerably
higher brightness settings the farther away they are located from point XC .

The variation in results suggests that, even with a fitness function that
suppresses the number of devices used, this type of request is not heavily
constrained. If the fitness function had power consumption data available
for use, it would be expected that, due to their higher power consumption,
lights located farther away with high brightness settings would be evaluated
unfavourably compared with lights closer to the point of interest with lower
brightness settings. Such a fitness function would again drive the search with
better focus, reducing the variability of the results.

In terms of computational performance, the best solutions for all four
cases were reported on average in less than 500 ms of execution time. These
results are in line with the results of the previous section, suggesting that
an upper bound of execution time set at 1 second is enough to enable the
system to produce good quality solutions.

41

2.5.4 Illumination Conflict for Moving Target
In this last experiment section, the following scenario was considered: a user
starting from point XA in the room moves slowly towards point XB with a
speed of 0.5m/s. At the same time, another user is resting at location XC .
Due to the lack of an operational location system at the moment, the motion
of the user was simulated.

For the user in motion, a request for a lower bound of 300 lx is made.
For the user at rest a request for an upper bound of only 30 lx is made.
Every second the position of the moving user is updated. This new location
information is used to update the calculations for this room.

A frame-by-frame development of the results produced by the system for
this experiment can be seen in Fig. 2.17. Each frame represents a solution
that corresponded to a change of the location of the moving user (denoted
by ‘X’ in the frames).

With the exception of a very strange first frame, the results depicted
in the remaining frames are of very good quality. Only the closest lights
to the user are utilized, with every other illumination source turned off.
In the fifth frame, the second light of the third column of lights is only
partially lit (brightness set to 65), a very interesting decision on the part of
the illumination subsystem. This light is too close to the user who is resting;
further increase in the intensity of that light source would have adverse effects
for that user. The estimated illuminations for this frame are 264 lx and
30.7 lx for the moving and resting user respectively. For all other frames, the
illumination estimation for the user at rest where hovering around the 25 lx
mark, whereas for the moving user a typical illumination value was at 250 lx,
with frames 6 and 7 dipping as low as 200 lx and 212 lx respectively.

This experiment was repeated, this time with a much slower speed of
0.1 m/s. The same first frame persisted, leading us to believe that some
implementation detail regarding the initialization of the simulation is amiss.
Nevertheless, after the first position update, the algorithm produced again
very smooth transitions as the user traveled from point A to B. 45 frames
were produced as a result, with solution characteristics similar to the first,
faster run.

The results of this experiment are a demonstration that, as long as ap-
propriate objective and fitness functions are used to guide the search, using a
random mutator at the core of the search algorithm can produce high quality
results in practically real time.

42

S S S

S S S

S S S

Figure 2.17: Frame-By-Frame Results for the User in Motion

2.6 Conclusions and Future Work
In this section the topic of managing environmental resources was discussed.
The proposed home service platform takes the novel approach of integrating
the management of such resources as part of its functionality. Through a
high-level API, smart services can now make direct requests regarding phys-
ical properties of space, leaving the platform to decide the best combinations
of devices and settings that are necessary to fulfill them.

The proposed approach of delegating environmental resource manage-
ment to the home service platform has two advantages. First, it simplifies
smart service development. Smart services no longer have to do any guess-
work and try to operate devices whose effects on the environment are hard to
estimate. This becomes a task for the service platform itself. Moreover, the
services can now make complex requests regarding moving targets very easily,
provided that data from an indoor location system is available. Secondly,
conflicts over environmental resources can now be detected and resolved,
using space-based or intensity-based conflict resolution.

The proposed home service platform is designed with support for illu-
mination, temperature, humidity as well as sound and noise levels as en-
vironmental resources. However, in its current state, only management of
illumination as a resource has been implemented.

As the number of devices present in the house rises, the problem of decid-
ing appropriate settings for devices in order to fulfill environmental resource

43

requests becomes a combinatorial optimization problem. This research pro-
poses the novel idea of utilizing global search algorithms in combination with
simulation of devices as a solution to this problem. As demonstrated in the
experiments section, the illumination subsystem is capable of producing very
good quality solutions within a second of execution time, a time-span that is
short enough to be considered real time for our purposes.

As future work, focusing on the rest of the physical properties of space
should be a priority. For each property, a suitable device simulation method
becomes necessary, but the simulation of device effects on the environment
is a balancing act between performance and accuracy. Although a more
accurate simulation is desirable, the simulation should be very fast, as it is
expected to be executed thousands of times in a second. Furthermore, in
cases where the search space is limited, more accurate simulations and an
exhaustive search could yield comparatively more favourable results.

Sensor feedback is another desirable feature that should be introduced
into the system. Using sensor feedback, the system should be able to fur-
ther refine the quality of the solutions it produces. The difference between a
projected intensity value of a physical property and the simulated expected
intensity can act as a bias factor during subsequent search iterations. Af-
ter a given solution has been applied, should this bias value exceed certain
thresholds the system should trigger a new search instance and adjust so-
lution evaluation based on this newly discovered bias that was the result of
sensor feedback.

The objective and fitness functions could be another area of improve-
ment. Objective functions currently do not take into consideration how users
perceive illumination. An objective function that mimics human perception
could help discover even more desirable solutions for users. Alternative fitness
functions that combine heterogeneous information from multiple objectives
can also be pursued, with the most apparent candidate a fitness function
that takes into consideration device power consumption.

On the topic of objective and fitness functions, more elaborate multi-
objective optimization approaches for heterogeneous objectives should be
considered. In future revisions of the system, information such as power
consumption, user and service priority and others may be taken into con-
sideration during the evaluation of a solution in order to produce even more
sophisticated results. However, such a task should be undertaken with the
greatest of caution: there are no clear-cut answers for automatically evalu-
ating a solution based on heterogeneous objectives, and it is possible that
expert knowledge bias may be introduced in the system.

Lastly, a qualitative evaluation of the system in terms of user satisfaction
may yield significant insights for future improvement or reveal shortcomings

44

of the current implementation.

45

Chapter 3

Managing Devices as Resources
of the Home Environment

In this chapter, the details and inner workings of the proposed home service
platform are presented. More specifically, related research, platform archi-
tecture, device modeling, primitives used during smart service development,
API design and example usage, an experimental section as well as conclusions
are introduced, in that order. This work was published in [60].

3.1 Related Research
In this section, related research regarding home service platforms is pre-
sented. Special attention is given to the problems of conflict detection, con-
flict resolution, device modeling, interconnectivity, as well as overall platform
design. Before any other related works are presented, a literature review of
the state of the art for embedded middleware platforms in the smart home
can be found in [67].

3.1.1 Consumer Oriented Platforms
The first step regarding related research is to examine the characteristics of
home service platforms that are soon to be released to the market such as
Apple’s Homekit[2] and Home OS[20],[19] from Microsoft’s research division.

Regarding the logical representation of home appliances, both of these
platforms model devices in terms of their functionality. In Microsoft’s so-
lution, there is a clean separation between device connectivity and device
functionality. The device connectivity layer addresses concerns regarding
the actual network communication protocols such as searching for devices

46

and device availability, whereas the device functionality layer is responsible
for creating APIs describing the functionality of a device, suitable for use by
the home services. Device functionality is aggregated into roles with a de-
vice possibly exposing multiple roles. Similarly, in Apple’s homekit, a device
is referred to as an accessory and each such accessory offers services, with
each service representing a concrete functionality of a device. Despite the
disparity in terminology and nomenclature among these platforms, the core
idea is the same: expose device functionality through APIs and abstract the
underlying network communication details. Although there are differences
in the way these APIs are employed and used, the proposed system follows
this same approach.

The approach of these two platforms in regards to conflict detection and
resolution differ significantly. The simplicity of Apple’s homekit is staggering:
the user is responsible for everything. Should a conflict among services occur,
it is the responsibility of the user to resolve it, usually by terminating one
or more of the conflicting services. The design philosophy of homekit seems
to be closer to a remote control: trust the user to do the right thing. In
contrast, Microsoft’s HomeOS utilizes “Datalog” rules. These datalog rules
combine a wealth of context information, such as location, time, service, user
and others to define a context. Then, given this context access to certain
devices can be granted, denied, or even ask the user to explicitly allow or
deny the access to a device. A major drawback of this approach is that these
rules must be created a priori. The burden of generating these rules falls on
the user. Specific tools that are relatively easy to use even by inexperienced
users have been created to facilitate this task. However, the behaviour of
services in case of a conflict during runtime is not sufficiently addressed.
In case of conflicts that somehow were permitted to occur by the datalog
rules, a service running on HomeOS may be unexpectedly terminated at any
time. This is a significant drawback that can severely harm the user’s overall
experience. A discussion regarding the state of the art of access control in
the home can be found in [65].

Finally, the problem of obtaining and deploying new services is sufficiently
addressed by both platforms with the introduction of a market place[19], a
model that is similar to the way smart phone applications are distributed.
However, due to the potential variety of smart services and the variations in
users’ houses, the task of verifying the correct operation of smart services is a
daunting task. Furthermore, checking the compatibility of a service with the
user’s home environment is another task which should be further addressed.
Simply comparing the devices present in the house with the devices that a
service is expected to use may lead to an underwhelming experience.

47

3.1.2 Conflict Detection and Conflict Resolution
A significant body of work regarding conflict detection and conflict resolution
already exists, and is also known under the name of “feature interaction”[16].
In this work, the two main methods for detecting and resolving feature in-
teractions are pointed out: off-line techniques (or design-time) and on-line
techniques (or run-time). Furthermore, hybrid approaches are also possible.

The related work that is perhaps the closest to the proposed system can
be found in [38] and [69], where a system for the detection of conflicts on
a device layer and an environmental layer is presented. This work correctly
points out the significance of environmental conflicts.

A work regarding conflict detection based on ontology and semantic web
can be found in [33]. Furthermore, formal verification approaches based on
Linear Temporal Logic can be found in [73] and [39]. A common theme in
these works is the representation of services as a script or a scenario, with
clearly defined steps in a description language. This necessary precondition
to apply linear temporal logic can be limiting when trying to implement
smart services. The model checker used to detect and resolve these conflicts
is Spin[10].

Depsys [46] is another contemporary home service platform that attempts
conflict detection and resolution. This system provides install-time detection
of conflicts by explicitly specifying the dependencies of each service. De-
pendency types include requirement dependency, name dependency, control
dependency for the sensors, control dependency for the actuators, missing
dependency and app interdependency. A device control request in this sys-
tem includes information about the intended effect, an “emphasis” factor and
a condition. The emphasis is used to denote operations of higher or lower
importance, information that is used during conflict resolution.

Physicalnet[66] introduces the concept of access control for individual
states and events. These access rights can be either read or write, also
associated with a unique priority.

A classification of different feature interactions possible in the home envi-
ronment can be found in [40]. In the same work, various methods for conflict
resolution are also proposed but not implemented. These conflict resolu-
tion approaches are:inquiry to the user, priority of service, priority of user,
priority of interface, priority of timing and meta priority.

Feature interaction for health care in the domestic environment is dis-
cussed in [62], where a graph-based approach for detection and resolution of
feature interactions has been proposed.

Finally, a framework for describing feature interaction in ubiquitous com-
puting environments can be found in [45].

48

3.1.3 Interconnectivity and Home Automation
A vast body of work regarding connectivity and interoperation in home au-
tomation exists.

One of the pioneering platforms for the home was Jini[27]. In jini, devices
could register themselves as a form of service, which could then be utilized
by other client software.

Regarding wireless technology, in [54] an evaluation of wireless home au-
tomation technologies is presented. Furthermore, in [25] a survey of archi-
tectures and technologies for wireless home automation is presented.

A large number of home automation systems that were the result of re-
search efforts focuse on a single aspect of the system. Such examples are
[24] which focuses on a home automation system utilizing the Zigbee proto-
col, [28] where a home automation solution based on android is introduced,
[36] presents a home automation based on UPnP, and [35] an energy-aware
platform that introduces very specific features focused on energy efficiency.

To facilitate the connectivity among devices, the concept of overlay net-
works has been proposed in [47]. Such an example P2P network based on
SOAP can also be found in [53].

Finally, home automation platforms that are currently available and gain-
ing traction in the marketplace are Nest[8], Insteon[6], Philips Hue[9] and
IFTTT[5] among others. Some of these platforms such as insteon utilize
their own communication protocols where others are using industry stan-
dards such as ZigBee[13], Z-Wave[12], KNX[7] and Bluetooth[3]. An older
protocol that exists from the late ’70s mostly targeted towards remote oper-
ation of devices as switches is X10[11]. In closing, a network protocol for the
control of devices that is gaining popularity in Japan is ECHONET Lite[4].

3.1.4 Home Service Platform Architecture
A number of home service platforms such as [51],[70] and [34] leverage the
power and modularity of the OSGi framework. OSGi provides a number
of desirable features such as modularity of software with its use of bundles,
discoverability of OSGi services as well as fine control over the lifecycle of
software. However, the use of OSGi as the core framework for a middleware
platform usually results in a consolidated platform, with an inability to dis-
tribute services to other potential processing nodes. Another platform that
utilizes R-OSGi that can overcome this problem can be found in [71]. Other
platforms such as [55] and [15] utilize REST as their communication protocol
of choice, which can lead to systems that are more loosely coupled.

The modeling of devices in terms of functionality is again discussed in

49

[37], where a functional description of devices is achieved using SOAP. The
extensibility of a home service platform is further discussed in [26],

A discussion regarding middleware architecture for ambient intelligence
in the home can be found in [23], addressing major considerations such as
service discovery and communication interoperability, a model for syntactic
and semantic service specification and matching of service capabilities.

In closing, a showcase for an ambient intelligence environment can be
seen in [74].

3.2 Platform Architecture and Smart Services
The proposed system is implemented as a middleware platform on top of
which smart services can be executed in the form of modules. As stated in
the introduction chapter, a smart service is any program that encapsulated
specific logic used to complete a target task, utilizing devices that are present
in the home environment.

In its current iteration, the proposed system is implemented as a cen-
tralized system, designed to be deployed on commodity hardware. The pro-
gramming language of choice is Java, with the services spawning threads for
their data processing needs as necessary.

A conceptual architecture model of the proposed platform can be seen in
Fig. 3.1.

In this model, smart services interact with the home service platform
through a well-defined resource request API. The requests made through
this API are then processed by the appropriate management layer; requests
for direct use of a device are handled by the device resource management
layer, whereas request regarding environmental properties are handled by
the environmental resource management layer. Of particular interest in this
design is that the environmental resource management layer relies on the
device resource management layer; the device settings necessary to fulfill an
environmental resource request are decided by the environmental resource
layer but their actual enforcement is achieved through the device resource
management layer.

An especially important role in the system is fulfilled by ”bridges”. These
bridges are the necessary software that allows the platform to interact with
network-enabled devices of various protocols. A bridge is responsible for map-
ping logical commands such as “turn on” or“set temperature to 30 ◦C” into
actual network protocol commands, appropriate for each device. A bridge
may be responsible for the operation of multiple devices at a time. In the
proposed platform, a single bridge is responsible for the operation of all

50

Figure 3.1: Platform Architecture

ECHONET Lite devices, whereas a different bridge is responsible for the
communication with the popular Philips HUE illumination lightbulbs. By
adding new bridges to the platform, support for new devices and communica-
tion protocols can be achieved. Finally, it is the role of the bridge to expose
a network-enabled device as a logical device connected to the platform and
furthermore map its functionality to already existing device models present
in the platform. The device modeling and implementation is explained in
the next section.

3.3 Device Modeling
3.3.1 Operations
In the proposed platform, device functionality is expressed in terms of unique
operations. The Operation class and its subclasses are used to encompass
device functionality as a logical abstraction. This class has appropriate mem-
bers and getter-setter methods for passing in the necessary arguments for the
operation as well as extracting the result of the operation. For example, the
source code for the SetOperationState operation can be seen in figure 3.2.
Using this operation, a smart service may turn off or on a device.

51

public class SetOperationState extends Operation{

private OperationState requestedState = OperationState.UNKNOWNERROR;
OperationState resultingState = OperationState.UNKNOWNERROR;

public SetOperationState(OperationState newState) {
this.requestedState = newState;

}

public OperationState getOperationState(){
return this.resultingState;

}

public void setOperationState(OperationState newState){
this.resultingState = newState;

}

@Override
public SetOperationState applyToDevice(DeviceInterface aDevice) {

aDevice.doOperation(this);
return this;

}

public OperationState getRequestedState() {
return requestedState;

}
}

Figure 3.2: Operation Example

The passing of appropriate arguments for this operation can be achieved
during the creation of an instance of this operation i.e. pass the desired opera-
tion state as an argument to the constructor. Then, when the device processes
this operation, it can extract the desired state using the getRequestedState()
method. After this operation has been processed, the resulting state is stored
using the setOperationState() method and can be later retrieved by the
application using the getOperationState() method.

For each function provided by the device an appropriate subclass of the
Operation must be created. However, since these operations are used to
describe the functionality of devices, great care must be taken in their design
and usage. Each operation subclass must express a unique and well-defined
functionality of a device. Device implementers have to select the appropriate
set of operations to express the functionality of their devices and be careful
not to misinterpret the meaning of an operation.

3.3.2 Device Implementation
A device that is part of the home service platform is associated with sev-
eral pieces of information such as location, position and others. However,

52

public interface DeviceInterface {
public void doOperation(Operation operation);
Access getNeededPermissions(Operation operation);
Collection<Class<? extends Operation>> getSupportedOperations();

}

Figure 3.3: Device Interface and its main methods.

the main implementation of a device relies heavily on the three methods 1

presented in Fig. 3.3.
These three functions constitute the core of the implementation for a

device. A smart service may interact with a device by:

1. performing an operation,

2. getting the required access rights necessary to perform an operation,

3. getting a list of all the currently supported operations for this device.

The generic doOperation() method is the main method through which
a device performs a given Operation. This method may throw exceptions
in case the following cases:

1. the device does not support the requested operation,

2. insufficient access rights for the requested operation,

3. network communication failure,

4. operation timed out.

Internally, each device implementation registers operation handlers for the
types of operation it supports. If present, the appropriate operation handler
will be invoked for the requested operation. If such a handler does not exist,
an UnsupportedDeviceOperation exception will be thrown. With this
modeling approach, to implement a new device it is enough to implement and
register the appropriate operation handlers to a subclass of DeviceImpl, an
abstract class used as the base for all device implementations.

The getNeededPermissions() method is a way to inquire about the
necessary access rights in order to perform an operation. It is used internally
by the platform in order to ensure that the smart service which invoked an
operation on a device has sufficient access rights to perform it. Furthermore,

1The interface presented here is actually spread into several interfaces and the excep-
tions that can be thrown have been removed.

53

public class PowerStateAdapter extends DeviceAdapter{

public PowerStateAdapter(){
requiredOperations.add(GetOperationState.class);
requiredOperations.add(SetOperationState.class);

}

public void turnOff(){
this.doOperation(new SetOperationState(OperationState.OFF));

}

public void turnOn(){
this.doOperation(new SetOperationState(OperationState.ON));

}

public OperationState getOperationState(){
return new GetOperationState().applyToDevice(this).getOperationState();

}
}

Figure 3.4: Adapter Interface Example - Power State Adapter

it can also be used by smart services to find out if there is a need to elevate
their access rights before invoking that specific operation.

Finally, the getSupportedOperations() method is used to inquire a
device about the operations it supports. This information can be used as
criteria by a smart service to select appropriate devices for use or filter un-
wanted devices during search.

3.3.3 Adapter Interfaces
Although the API offered for interacting with devices is simple, invoking an
operation on a device requires several steps: create an instance of the opera-
tion, set the appropriate arguments, perform the actual invocation, check the
results and handle any exception that might have occurred. All the above
steps are, although necessary, a tedious and sometimes error prone task. Fur-
thermore, due to the fact that a large number of operation subclasses exist,
it is easy to invoke an unsupported operation on a device if due diligence is
not exercised.

To simplify interaction with devices, a special set of adapter interface
classes have been introduced. The platform provides a number of typical
adapter interfaces. If an appropriate adapter interface is not offered by the
platform, a smart service is free to implement and use its own adapter in-
terfaces. A simple example for a service that is interested in controlling the
power state of a device can be seen in Fig. 3.4.

This power state adapter interface offers three methods intended to be

54

used by a service: a turnOff() method, a turnOn() method and finally a
method to get the current operation state, named getOperationState().
Before it can be used, a device must be set as the “backing device” for the
adapter interface. After this step is complete, the smart service is free to
invoke any of the method provided by the adapter. Adapters are reusable
and the backing device can be changed at will, at any time.

The major bulk of the implementation of adapter interfaces happens in-
side the DeviceAdapter class. This class is responsible for the error han-
dling. The programmer has a choice regarding the handling of exceptions:
either handle them through traditional try/catch blocks as it is common
in Java, or perform “C style” error checking with the help of adapter inter-
face. Even a mixed approach is possible; have only specific exceptions be
“silenced” and let important exceptions propagate through the stack until
handled.

Finally, another important aspect of an adapter interface is that it main-
tains a list of the necessary operations that a device must support in order to
be usable by the adapter interface. This supported operation list can also be
used as a search criteria; a smart service can query the platform for a list of
devices that can potentially be used through the specified adapter interface.

Although the use of adapters is, strictly speaking, not necessary, their
use is highly encouraged as they simplify smart service development sub-
stantially. More details regarding the usage of the adapter interface APIs
will be introduced in section 3.5.

3.4 Primitives for Conflict Resolution
In this section the four main primitives provided by the platform for con-
flict resolution are introduced. The four primitives are: device access rights,
service and user priorities, an event notification mechanism and finally con-
dition sets. These primitives play an important part in the development of
smart services. The rationale is explained over the following sections.

3.4.1 Device Access Rights
There are three access rights present in the proposed platform:

1. “no access”,

2. “read-only” access and

3. “read-write” access.

55

When a smart service obtains a reference to a device object, the initial
access rights for that device are set to “no access”. With these access rights,
the smart service cannot interact with the actual device directly. However,
these access rights are enough to query the home service platform about
general properties of the device that are already known to the platform.
Such information includes the name, the location as well as the supported
operations of the device. No communication to the actual device will be
generated as a result of querying the above characteristics.

The next access right present in the platform is the “read-only” access
right. This access right can be used to retrieve information about the current
state and operation of a device. Designed with information gathering in mind,
multiple smart services may hold read-only rights for a given device and
enable concurrent access to such data. For example, multiple smart services
may be interested in the sensing data of a temperature sensor. In such a
case, each smart service uses read-only access rights to access the data of the
sensor. Network communication with the device may happen multiple times
or, depending on the bridge implementation, data can be temporarily cached
and accessed multiple times. In either case, all smart services can access the
necessary data, in a concurrent, non-exclusionary fashion. A smart service
may hold the read-only rights for a device indefinitely, since in practice it
does not affect the operation of other services in any way.

The final access right is a “read-write” access right. As the name implies,
on top of the “read-only” access right a smart service can also hold a “write”
access right. The “write” access right is associated with actuation. The
“read-write” access right is necessary for any operation that results in an
action or a change of state of a device.

It is by design that only a single smart service may hold the “read-write”
access rights for a given device. The rationale behind this design decision is
simple: if more than two smart services could invoke operations that result
in an action or a change of state for the same device, conflicts would occur.
The “read-write” access right facilitates the exclusionary use of devices by
services, which ensures that, on an individual device basis, no operation
conflicts can occur.

A smart service must explicitly obtain the read-write access rights of a
device through an API call. In contrast to the read-only rights, the service
must again voluntarily release the read-write access rights of a device be-
fore it becomes usable again from other services. Using this explicit locking
mechanism, a service can enforce its exclusive use of a device for its desired
time period.

However, the new problem now transforms into which smart service should
be the sole owner of the “read-write” access rights of a device. To address

56

this problem, the service and user priority primitives that are described in
the following section are used.

3.4.2 Service and User Priority
Smart services designed for this platform are associated with a numeric ser-
vice priority. When comparing service priorities, the service with the higher
numeric priority is the service with the higher priority overall. In its cur-
rent iteration, the numeric priority range is [1, 10], with 1 being the lowest
possible priority and 10 being the highest possible priority.

Priorities are used mainly to decide which service will be granted the
read-write access of a device. If there are multiple smart services interested
in these rights, they will be granted to the service with the highest priority.
Furthermore, a service with a higher priority will obtain the read-write access
rights of a device even if it is currently used by a service of lower priority.
The service of lower priority in turn will be notified for the change of its
access rights which will be downgraded to read-only access rights through
the notification mechanism described in the next section.

Each service is also associated with a user, usually an occupant of the
house. This user is either the user who actually initiated and/or scheduled
the service, or the user on which the service is focused on and tries to satisfy.
User priority can be used as a tie-breaker during the assignment of read-write
access rights to services with equal priority. Furthermore, depending on his
or her priority, a user may voluntarily lower any service associated with him,
or try to raise the priority of one of his service up to his user priority level.

Services come with a suggested priority, a priority level deemed appropri-
ate by the developer of the service. As a general rule of thumb, services that
interact with a multitude of devices should hold lower priorities. In contrast,
services that have a well defined goal (for example, a home theater service)
can be assigned higher priority.

The reasoning for the above rule of thumb is simple. Services that access
many different types of devices have a higher risk of interfering with other
services compared to services that use only a few devices. Furthermore,
services with a clear goal that use only a few select devices either tend to
be interactive services that the user is currently paying attention to, or their
importance may be high, thus a higher priority level can be justified.

3.4.3 Event Notification Mechanism
An event notification mechanism has been designed and used extensively
throughout the proposed platform. Many objects as exposed by the platform

57

have provisions for a subscriber-publisher model for notification events.
The most prominent event is that of a change in the access rights of a

device, currently held by a service. It is through this notification mechanism
that a smart service can react to a change in the access rights of a device.
A service may at any point have its read-write access rights downgraded
to read-only rights due to the sudden appearance of a service with higher
priority. In similar fashion, a service of lower priority may request read-write
access rights that currently cannot be satisfied. In this case, that service now
has the option to wait until read-write access rights can be granted in a future
point in time; it will be notified through the event notification mechanism.

Another type of event is user location events. When a user moves inside
the house, the new location information is communicated to the smart ser-
vices through notification events. A service may subscribe to these events
and alter its operation. For example, when the user enters a new room a
service that subscribes to location notification gets notified of the new posi-
tion and may choose to use some of the devices present in the room and/or
release devices that were used in the previous room.

This event notification mechanism is the core element of the platform that
provides the services with a chance to react to context changes. The loca-
tion of a user is treated as such a change of context of high importance. It is
expected that non-intrusive and affordable indoor location systems will ma-
terialize within the next few years, thus the proposed platform was designed
with such an indoor location subsystem already in mind. The details of an
indoor location system as pursued by the author can be found in chapter 4.

3.4.4 Condition Sets
The last primitive that the home service platform provides is the condition
set. The condition set captivates a very simple idea: have the smart service
perform its main task only when a certain set of conditions hold true.

There are two types of conditions useful to a service:

• context conditions

• device access conditions.

Context conditions include conditions that directly pertain to the physical
environment inside the house. Conditions such as date, time, user location
and others are considered as context conditions, whereas the devices that are
necessary for the correct operation of a service are expressed as device access
conditions.

58

Figure 3.5: Behaviour of Condition Sets

59

Condition sets have two states: unsatisfied and satisfied. When a transi-
tion from unsatisfied to satisfied state occurs, all the necessary device access
rights are secured automatically on behalf of the service. In a transition to
the opposite direction (satisfied to unsatisfied), the device access rights that
the service held are downgraded to “read-only” access rights.

The behaviour of condition sets can be seen in Fig. 3.5. First, a condition
set is initialized. Then the context conditions are checked: if the context con-
ditions do not hold, the condition set remains unsatisfied and await further
notification events.

Upon the arrival of notification events, the context conditions are evalu-
ated once again. Should all the context conditions hold, the platform pro-
ceeds to check the device access conditions.

To evaluate whether the set of device access conditions can be satisfied or
not, the platform performs internal checks to determine whether the service
with its current priority can acquire all the necessary access rights. Should
the system be unable to assign the necessary access rights for even a single
device, the condition set remains unsatisfiable and awaits for further device
access notification events.

If the platform is able to grant all the necessary device access rights
that the service requires, then the condition set finally becomes satisfied,
the access rights are secured and the main task of the service may begin its
operation.

Should at any point during the task’s execution a condition becomes un-
satisfied, the device access rights are released automatically and the whole
condition set becomes unsatisfied, awaiting again for any number of notifi-
cation events.

3.5 API and Examples
There are certain operations that are common to all smart services targeting
the proposed platform. Such common operations are searching for devices,
acquiring the necessary access rights, operating devices, receiving notifica-
tions and setting up condition sets if necessary. The details for these com-
mon operations are introduced in this chapter, demonstrating the use of the
programming API available to smart service developers.

In many of these operations, the use of a DeviceAdapter instance is
strongly recommended. The design of a device adapter and its relation to
other classes present in the system can be seen in Fig. 3.6. The DeviceAdapter
class is an abstract class that implements base functionality relating to error
handling. Its subclasses are used to simplify interactions with devices, as

60

<<Interface>>

HasOperations

+getSupportedOperations(): Collection<Class<? extends Operation>>

<<Interface>>

DeviceInterface

+doOperation(operation:Operation)

+getNeededPermissions(operation:Operation): Access

DeviceAdapter

+setExceptionBehavior(exceptionBehavior:int)

+setRealDevice(realDevice:DeviceInterface): boolean

+getRealDevice(): DeviceInterface

+getLastError(): int

+getLastException(): RuntimeException

LightAdapter

+getBrightness(): int

+setBrightness(brightness:int)

+turnOn()

+turnOff()

+getLightState(): OperationState

Figure 3.6: Device Adapter Class Diagram

explained in section 3.3.3.

3.5.1 Searching For Devices
The API methods used to search for a device can be seen in Fig. 3.7. The
selectDeviceWithOperations() method returns a list with all the devices
that support a given set of operations as expressed by the HasOperations
object, which is usually an instance of a DeviceAdapter subclass. Using
the SelectDeviceByName() method a service may look up a device by its
name, provided that the service already knows the name of that device.

61

public class HomePlatform{
/* ... code snip ... */
public List<DeviceInterface> selectDeviceWithOperations(
Service aService, HasOperations operations){...};

public DeviceInterface selectDeviceByName(
Service aService, String deviceName){...};

}

Figure 3.7: API for Searching Devices

3.5.2 Acquiring Access Rights
A service can acquire and release appropriate access rights for a device using
the methods seen in Fig. 3.8.

First, using the requestAccess() method, a service may request read-
only or read-write access rights for a specific device. In the case that read-
write access rights are requested, the request will be placed at the appropriate
queue for the services that are waiting for read-write access rights for that
device. The return result of this method is the currently assigned access
rights. The service can then check and see if the appropriate access rights
were obtained by checking this result. Furthermore, if read-write access
rights were requested but not granted immediately, the service may wait for
notification events until the device becomes available again some time in the
near future.

The requestAccessTemporary() method is used the same way as the
requestAccess() method, with the sole difference that, if read-write ac-
cess rights cannot be obtained instantly, this access request is not enqueued,
thus the service will not receive any notifications in the future if the device
becomes available.

With the getCurrentAccess() method, a service may check the device
access rights it holds for a specific device.

Finally, using the canGrantAccess method a service may make an in-
quiry to the platform to check if the requested access rights can be granted
instantly. Should that be the case, the service may proceed and acquire the
access rights for that device using one of the previously mentioned methods.

When a service no longer requires read-write access rights, it has the
option to downgrade these access rights to read-only or no-access rights using
the requestAccess() method again. Common to all the above methods is
that the service that makes the request must provide itself and the target
device as arguments. Also, in three of these four methods, the desired access
rights must be passed as a parameter to the method. Finally, all of the above
methods return the access right that would be the result of the invocation of

62

public class HomePlatform{
/* ... code snip ... */
public RWAccess.TYPE requestAccess(
Service aService, DeviceInterface proxy,
RWAccess.TYPE privType) {...}

public RWAccess.TYPE requestAccessTemporary(
Service aService, DeviceInterface proxy,
RWAccess.TYPE privType) {...}

public RWAccess.TYPE getCurrentAccess(
Service aService, DeviceInterface proxy) {...}

public RWAccess.TYPE canGrantAccess(
Service aService, DeviceInterface proxy,
RWAccess.TYPE type) {...}

}

Figure 3.8: API for Acquiring Access Rights

that method.

3.5.3 Using Devices
Although not an absolute necessity, it is strongly advised to use any of the
preexisting DeviceAdapter subclasses to interact with a device. If such an
appropriate class is not present or its functionality is not adequate, a service
developer is free to introduce and use new DeviceAdapter implementations
as necessary.

Two preparatory steps must take place before a device can be used through
a device adapter:

• instantiate the device adapter and

• set the backing device for the adapter.

The instantiation of a device adapter usually takes place during the dis-
covery of appropriate devices; the device adapter implements the HasOperations
interface and thus can be used to search for devices that implement the nec-
essary functionality.

After instantiation is complete and the appropriate access rights for a
device have been secured, that device must be set as the “backing device”
of the adapter using the setRealDevice() method. When this step is
complete, any of the methods provided by the adapter class may be invoked
on the device. Furthermore, it is possible to change the backing device of an
adapter at any time.

63

D
ev

ic
eA

d
ap

te
r

+
d
o
O
p
e
r
a
t
i
o
n
(
o
p
e
r
a
t
i
o
n
:
O
p
e
r
a
t
i
o
n
)

+
s
e
t
E
x
c
e
p
t
i
o
n
B
e
h
a
v
i
o
r
(
e
x
c
e
p
t
i
o
n
B
e
h
a
v
i
o
r
:
i
n
t
)

+
s
e
t
R
e
a
l
D
e
v
i
c
e
(
r
e
a
l
D
e
v
i
c
e
:
D
e
v
i
c
e
I
n
t
e
r
f
a
c
e
)
:

b
o
o
l
e
a
n

+
g
e
t
R
e
a
l
D
e
v
i
c
e
(
)
:

D
e
v
i
c
e
I
n
t
e
r
f
a
c
e

+
g
e
t
L
a
s
t
E
r
r
o
r
(
)
:

i
n
t

+
g
e
t
L
a
s
t
E
x
c
e
p
t
i
o
n
(
)
:

R
u
n
t
i
m
e
E
x
c
e
p
t
i
o
n

A
ir

C
o

n
d

it
io

n
A

d
ap

te
r

+
g
e
t
A
i
r
c
o
n
d
i
t
i
o
n
i
n
g
M
o
d
e
(
)
:

A
i
r
c
o
n
d
i
t
i
o
n
M
o
d
e

+
s
e
t
A
i
r
c
o
n
d
i
t
i
o
n
i
n
g
M
o
d
e
(
m
o
d
e
:
A
i
r
c
o
n
d
i
t
i
o
n
i
n
g
M
o
d
e
)

+
t
u
r
n
O
n
(
)

+
t
u
r
n
O
f
f
(
)

+
g
e
t
T
e
m
e
p
r
a
t
u
r
e
(
)
:

i
n
t

+
s
e
t
T
e
m
p
e
r
a
t
u
r
e
(
t
e
m
p
e
r
a
t
u
r
e
:
i
n
t
)

+
g
e
t
O
p
e
r
a
t
i
o
n
S
t
a
t
e
(
)
:

O
p
e
r
a
t
i
o
n
S
t
a
t
e

+
s
e
t
A
i
r
f
l
o
w
I
n
t
e
n
s
i
t
y
(
i
n
t
e
n
s
i
t
y
:
L
M
H
)

+
g
e
t
A
i
r
f
l
o
w
I
n
t
e
n
s
i
t
y
(
)
:

L
M
H

D
o

o
rA

d
ap

te
r

+
c
l
o
s
e
D
o
o
r
(
)

+
o
p
e
n
D
o
o
r
(
)

+
g
e
t
D
o
o
r
S
t
a
t
e
(
)
:

D
o
o
r
S
t
a
t
e

F
o

o
d

D
is

p
en

se
rA

d
ap

te
r

+
d
i
s
p
e
n
s
e
F
o
o
d
(
f
o
o
d
Q
u
a
n
t
i
t
y
:
i
n
t
)

+
d
i
s
p
e
n
s
e
W
a
t
e
r
(
w
a
t
e
r
Q
u
a
n
t
i
t
y
:
i
n
t
)

+
g
e
t
F
o
o
d
I
I
n
T
r
a
y
(
)
:

i
n
t

+
g
e
t
W
a
t
e
r
I
n
T
r
a
y
(
)
:

i
n
t

+
g
e
t
R
e
m
a
i
n
i
n
g
F
o
o
d
(
)
:

i
n
t

+
g
e
t
R
e
m
a
i
n
i
n
g
W
a
t
e
r
(
)
:

i
n
t

L
ig

h
tA

d
ap

te
r

+
g
e
t
B
r
i
g
h
t
n
e
s
s
(
)
:

i
n
t

+
s
e
t
B
r
i
g
h
t
n
e
s
s
(
b
r
i
g
h
t
n
e
s
s
:
i
n
t
)

+
t
u
r
n
O
n
(
)

+
t
u
r
n
O
f
f
(
)

+
g
e
t
L
i
g
h
t
S
t
a
t
e
(
)
:

O
p
e
r
a
t
i
o
n
S
t
a
t
e

L
ig

h
tA

d
ap

te
rW

it
h

C
o

lo
r

+
g
e
t
C
o
l
o
r
(
)
:

C
o
l
o
r
R
G
B

+
s
e
t
C
o
l
o
r
(
c
o
l
o
r
:
C
o
l
o
r
R
G
B
)

L
o

ck
A

d
ap

te
r

+
l
o
c
k
(
)
:

b
o
o
l
e
a
n

+
u
n
l
o
c
k
(
)
:

b
o
o
l
e
a
n

+
g
e
t
L
o
c
k
S
t
a
t
e
(
)
:

L
o
c
k
S
t
a
t
e

P
o

w
er

S
ta

te
A

d
ap

te
r

+
t
u
r
n
O
n
(
)

+
t
u
r
n
O
f
f
(
)

+
g
e
t
O
p
e
r
a
t
i
o
n
S
t
a
t
e
(
)
:

O
p
e
r
a
t
i
o
n
S
t
a
t
e

S
cr

ee
n

A
d

ap
te

r

+
i
s
P
l
a
y
i
n
g
S
t
r
e
a
m
(
)
:

b
o
o
l
e
a
n

+
g
e
t
C
u
r
r
e
n
t
P
l
a
y
i
n
g
S
t
r
e
a
m
(
)
:

V
i
d
e
o
S
t
r
e
a
m

+
p
l
a
y
S
t
r
e
a
m
(
s
t
r
e
a
m
:
V
i
d
e
o
S
t
r
e
a
m
)

+
s
t
o
p
P
l
a
y
b
a
c
k
(
)

+
g
e
t
O
p
e
r
a
t
i
o
n
S
t
a
t
e
(
)
:

O
p
e
r
a
t
i
o
n
S
t
a
t
e

+
s
e
t
O
p
e
r
a
t
i
o
n
S
t
a
t
e
(
)
:

O
p
e
r
a
t
i
o
n
S
t
a
t
e

S
p

ea
ke

rA
d

ap
te

r

+
g
e
t
C
u
r
r
e
n
t
P
l
a
y
i
n
g
S
t
r
e
a
m
(
)
:

A
u
d
i
o
S
t
r
e
a
m

+
i
s
P
l
a
y
i
n
g
S
t
r
e
a
m
(
)
:

b
o
o
l
e
a
n

+
p
l
a
y
S
t
r
e
a
m
(
s
t
r
e
a
m
:
A
u
d
i
o
S
t
r
e
a
m
)

+
s
t
o
p
P
l
a
y
b
a
c
k
(
)

+
g
e
t
O
p
e
r
a
t
i
o
n
S
t
a
t
e
(
)
:

O
p
e
r
a
t
i
o
n
S
t
a
t
e

+
s
e
t
O
p
e
r
a
t
i
o
n
S
t
a
t
e
(
s
t
a
t
e
:
O
p
e
r
a
t
i
o
n
S
t
a
t
e
)

Figure 3.9: Device Adapter subclasses and their functionality

64

RuntimeException

UnsupportedDeviceOperation

InvalidCredentialException

NetworkCommunicationException

UncheckedTimeoutException

Figure 3.10: Defined Runtime Exceptions

An overview of the available adapter classes currently present in the sys-
tem can be seen in Fig. 3.9. Each adapter interface has been designed with
a specific device in mind and offers method calls with simple and easy to
understand names such as turnOn(), setBrightness() and others.

An alternative method is to invoke operations on devices directly, using
the doOperation() method with the desired Operation subclass instance.
In this case, the developer must instantiate an appropriate operation object,
set its parameters and pass it to the device. This method may throw four
types of runtime exceptions that must be handled by the application to ensure
its correct operation.

After an adapter method has been invoked, there are two ways in which
error checking can be performed:

• “C style” error checking and

• exception handling.

Using the setExceptionBehavior() method, individual types of exception
may be silenced. The “C style” error checking can be achieved using the
getLastError() method to determine the type of error that occurred. If an
error occurred, the exception that would have been thrown can be retrieved
using the getLastException() method, which returns the exception as it
was caught by the adapter. This can be used to further investigate the cause
of the error.

If “C style” error checking is not preferred, the application must have
an appropriate catch block for the classes of runtime exceptions defined
by the platform. Runtime exceptions were preferred over checked exceptions
because the alternative would riddle the developer’s code with a vast amount
of try/catch blocks that would reduce the readability of the code. The type
of runtime exceptions currently present in the system can be seen in Fig. 3.10.

65

<<Interface>>

EventGenerator

+addListener(aListener:EventListener)

+removeListener(aListener:EventListener)

+notifyListener(aListener:EventListener)

+doNotify()

:EVENT

<<Interface>>

EventListener

+post(event:EVENT)

:EVENT

EventProcessor

+consume(event:EVENT)

:EVENT

 Notifies

*

 Listens

1

EventListenerThreaded
:EVENT

UtilizesEventGeneratorBase
:EVENT

Figure 3.11: Notifications

3.5.4 Receiving Notifications
Notifications are used as the mechanism for sharing information regarding
context changes and changes in the access rights of devices. The notification
mechanism is based on the Observer design pattern as introduced in [22].

Observers in the platform implement the EventListener interface whereas
the subjects that emit events must implement the EventGenerator inter-
face. The EventGeneratorBase class implements the basic functionality
of an observed subject, able to register, de-register and notify observers.
This class can be used directly, usually as a“mix-in” class2. Furthermore, for
the implementation of an event listener, the EventListenerThreaded class
generates a thread that waits for the specified type of event. The actual pro-
cessing of the events is then relegated to an instance of the EventProcessor
class. The relations of the above mentioned classes can be seen in Fig. 3.11.

All the notification related classes and interfaces are parametrized in
terms of the event type that they handle. In Java this templating func-
tionality is achieved through the use of “Generics”.

Currently, the two most important events present in the system are user
motion events and device access rights changes. For user motion events, a
service may directly register a listener with an instance of the User class. To
listen for device access changes, a service must register appropriate listeners
for each device individually. Such a listener registration can be achieved
using the following method from the HousePlatform class.
public void registerForAccessChange(

Service aService,
DeviceInterface aProxy,
EventListener<AccessChangedEvent> listener);

The events provide methods to retrieve the relevant information. In the
case of a motion event, an instance of the User class representing the user

2Since Java does not support multiple inheritance directly, this class can be used in a
composite object.

66

who moved is returned as a result. The new position of the user can be
retrieved through this instance. In the case of an access rights change, the
AccessChangedEvent carries information regarding the device for which
the access rights were changed as well as the new access rights assigned.

3.5.5 Using Condition Sets
The final primitive that services utilize directly is the condition set. A
service initializes a condition set using its constructor. Next, the various
necessary conditions are created, initialized and finally registered as part
of the condition set. Finally an instance of the ConditionTask calls the
waitOnConditions method of the condition set, ready to be notified when
the condition set is satisfied. An example of these steps can be seen below.
ConditionSet conditions = new ConditionSet(

this, this.platform);
long start = ...
long end = ...
conditions.register(new TimeCondition(start, end));
conditions.register(new UserLocationCondition(serviceUser, theaterRoom));
conditions.register(new DeviceAccessCondition(

this, speaker, RWAccess.TYPE.READWRITE, platform));
conditions.register(new DeviceAccessCondition(

this, screen, RWAccess.TYPE.READWRITE, platform));
platform.acceptConditionSet(conditions);
conditions.waitOnConditions(this);

This code is part of a sample home theater service that utilizes condition
sets. The search for devices step has already been concluded and the most
appropriate devices (a speaker and a screen) have already been discovered.

In the above example, two context conditions are initialized and regis-
tered. The first condition is a time condition with a start and end time. The
second condition is a user location condition, which requires that the service
of the user is in the room designated as the theater room.

Moving on, two device access conditions are also registered; the first con-
dition requires that read-write access rights are necessary for the device desig-
nated as “speaker” and the second condition requires read-write access rights
for the device designated as a “screen”.

As the last two steps, the condition set is registered with the main home
platform instance, and the service calls the waitOnConditions method it-
self, as it implements the ConditionTask interface.

The condition set will call the performTask() method on the condition
task when the set is satisfied. Also, whenever the condition set becomes
unsatisfied it will call the corresponding suspendTask() method of that
task.

67

ConditionSet

+waitOnConditions(task:ConditionTask)

+register(condition:Condition)

<<Interface>>

Condition

+canFulfill(): boolean

+doRegister(set:ConditionSet)

DeviceAccessCondition

TimeConditionUserLocationCondition<<Interface>>

ConditionTask

+performTask()

+isFinished(): boolean

+suspendTask()

+getDescription(): String

notify

register

HousePlatform

+acceptConditionSet(): ConditionSet

register

Figure 3.12: Condition Set Related Class Diagram

Error handling in the ConditionTask also becomes simplified; as soon
as the necessary access rights are lost, if the task tries to invoke a command
that requires these access rights, the exception will be caught and the task
will be suspended again. The same is also true for other exceptions, if there
is no exception handler present.

An overall class diagram with all the classes that are related to the con-
dition set can be seen in Fig. 3.12.

3.6 System Demonstration
Two scenarios that demonstrate the effectiveness of the primitives present in
the system will be explained in the following sections. In these two scenarios,
a total of four sample smart services were developed. The details of these
four services are explained in the next section.

3.6.1 Sample Smart Services
Four sample services were developed for the purposes of demonstration:

1. Energy Saving Service,

2. Smart Listening Service,

3. Home Theater Service,

68

4. User Scheduled Task.

For each service, the user of the service and his user priority as well as
the service priority were defined. The details of the four services follow.

Energy Saving Service The energy saving service is a simple service
with only a single task: turn off any device which is currently not in use.
This service can potentially turn off any device in the house and has the
potential to interfere with the normal operation of other services. Therefore,
its priority is set to the lowest level possible.

This service registers notification handlers for all the devices present in
the house. As soon as the service obtains read-write access rights for a device,
that device is turned off. Due to the low priority of this service, any other
service with priority higher than the energy saving service is able to obtain
the read-write access rights if it so wishes to.

The service priority is set to “1” and the user for this service is the fictional
user “Dad”.

Smart Listening Service The smart listening service is a service that
plays back an audio stream such as a podcast or a song playlist using the
available speakers in the home. This service chooses the most appropriate set
of speakers depending on the user’s location; should the user of this service
move to a different room, the smart listening service will try to use another
pair of speakers located in the new room (if available) and stop using the
speakers located in the previous room. Should no speakers be available in
the new room, the service continues to use the speakers it already uses.

A user is associated with each instance of this service. For this target user,
the service receives user location notification events and adjusts its operation
as described above. For demonstration purposes, the priority for this service
is set to a mid level priority of “5”, with the user of this service set to the
fictional user “Mom”.

Home Theater Service The home theater service is responsible for play-
ing back movies in the house. The necessary devices for this service are a
screen device and a set of speakers. The movies themselves are thought to
be streams, either from some local or cloud storage.

The priority for this service is set to a fairly high priority setting of “7”,
with the rationale behind this decision being simple; watching a movie is
an interactive process that the user usually dedicates his full attention to
it. Furthermore, this service uses a very specific and limited set of devices,
limiting the chances of conflicts with other services. By assigning a high

69

priority to this process we ensure that the user of this service will not be
interrupted during the playback of the movie.

This service utilizes a condition set. One of the conditions in this set is
that the user is located inside the room. Should the user move outside the
move at any point the service will suspend itself, awaiting the return of the
user back to the room.

For demonstration purposes, the user of this service is set to the fictional
character “Kid2”.

User Scheduled Task The final service developed is a simple user sched-
uled task that plays back a short reminder audio message. Since this service
acts as a simple reminder, its priority is set to the highest level of “9”. The
reminder message is played back using a speaker device. The intended recip-
ient of the message is the user “Kid2”, and the user who set up the service
is the user “Mom”.

The rationale for assigning the highest priority level for this task is as
follows:

1. the reminder notification is of high importance, so it should be unob-
structed by other services that happen to be using the available speak-
ers in the house,

2. the reminder message is short, so any interruption that may occur to
other services will also be short. Therefore, even by assigning a high
priority, this priority is not miss-used and interruption to other services
is still kept to a minimum.

3.6.2 Simple Device Conflict
In the first scenario a simple device conflict is demonstrated. The conflict
occurs over the use of speakers, between the smart listening service and the
energy saving service. In this scenario, the energy saving service is holding
the read-write access rights for device “speaker4” and the smart listening
service is holding the read-write access rights for device “speaker3”.

The event that triggers the conflict is the user’s movement to a new room
in the house. The interaction unfolds as follows:

1. user “Mom” moves to a new room,

2. the middleware platform generates a user motion notification event,
that is received by the smart listening service,

70

3. the smart listening service requests a list with all the available speakers
in the home, and identifies “speaker4” as the most appropriate speaker
to use inside the new room,

4. the smart listening service requests read-write access rights for “speaker4”,

5. the access rights for device “speaker4” of the energy saving service are
downgraded to read-only rights,

6. the smart listening service is granted the read-write access rights for
“speaker4”,

7. the smart listening service starts playback on “speaker4” and relin-
quishes the read-write access rights of the previously used speaker,
“speaker3”,

8. the middleware platform notifies the energy saving service of an up-
grade in its access rights for device “speaker3”,

9. finally, the energy saving service receives the notification and turns off
the device “speaker3”.

A timeline showing the events explained above can be seen in Fig. 3.13.
The raw output produced by the services can be seen in Fig. 3.14. The
output is slightly reordered due to scheduling of threads, but this is only a
cosmetic issue, and operation steps described above can be clearly traced.

In this demonstration, the two services end up switching read-write access
rights for two devices (“speaker3” and “speaker4”). Both services are able to
continue their operation uninterrupted, also adjusting their operation to con-
text changes. This is a common scenario that is expected to frequently occur
during the operation of this middleware platform. A service may lose read-
write access rights to a device and may adapt to this change or, in a worst
case scenario where no appropriate substitute device is found, voluntarily
suspend its operation.

3.6.3 Condition Set Demonstration
For the second demonstration of the platform, a scenario which involves the
home theater service, the user scheduled task and the energy saving service
was set up. In this scenario the home theater service and the user scheduled
task are using condition sets and their effectiveness is demonstrated.

The scenario unfolds as follows: the user “Kid2” has activated the home
theater service at the living room. During the playback of the movie, the user

71

Figure 3.13: Timeline

Figure 3.14: Raw Output from the Simple Device Conflcit Demonstration

72

scheduled task activates, playing a reminder audio message intended for user
“Kid2”. After the playback of the reminder message is over, the playback of
the movie continues. The interactions among the services occur at two spots:
when the user scheduled task activates and when it ends.

First Half The first half of the interaction unfolds as follows:

1. the time condition of the user scheduled task is fulfilled, which triggers
a test for the satisfiability of the condition set of this task.

2. The device access condition set by the user scheduled task can be ful-
filled, due to the task’s higher priority. Its condition set becomes ful-
filled.

3. The platform downgrades the read-write access rights of the home the-
ater service for the speaker to read-only rights and grants read-write
access to the user scheduled task.

4. Having lost read-write access rights to the speaker, the condition set
of the home theater service becomes unsatisfied and the service tem-
porarily suspends its operation.

5. The read-write access rights of the screen that was used by the home
theater service are automatically downgraded to read-only rights.

6. The user scheduled task plays back the reminder audio message, using
the speaker.

7. Finally, the energy saving service can now use the screen device. Its
access rights for the screen are upgraded to read-write access rights and
the screen is turned off.

The raw output of the system for the above steps can be seen in Fig.
3.15. Again, the output of the various services is interleaved due to thread
scheduling, without any effect on the handling of the resources.

In this first half of the interaction, the home theater service and the
user scheduled task conflict over the use of the device “speaker1”. Also, the
energy saving service and the home theater service interact over the use of
the device “TV1”. Since the home theater service suspends its operation, the
energy saving service has a small window to use (and turn off) the TV.

73

Figure 3.15: Raw Output from the Condition Set Demonstration (First Half)

Figure 3.16: Raw Output from the Condition Set Demonstration (Second
Half)

Second Half The second half of the interaction occurs when the user
scheduled task finishes the play back of the reminder message. The scenario
proceeds as follows:

1. the user scheduled task finishes execution and releases the speaker.

2. With the release of the speaker, the condition set for the home theater
service is checked for satisfiability:

(a) the context conditions are satisfied (user location, time),
(b) the device access conditions can be satisfied (TV is held by a ser-

vice of lower priority, the speaker was just released and triggered
the check).

3. The condition set is satisfiable and the access rights for the TV and
the speaker are upgraded to read-write access rights, while the energy
saving service has its TV access rights downgraded to read-only.

4. The home theater service resumes its operation (continue the playback
of the movie).

74

The raw output of the above steps can be seen in Fig. 3.16. In this
second half of the interaction, the home service continues its operation after
the user scheduled task is over. There was no extra application logic that
had to be implemented due to the use of condition sets, overall simplifying
service development.

3.7 Conclusions and Future Work
In this chapter the topic of managing devices as resources of the home en-
vironment is discussed. To represent the devices in the home, the proposed
system models devices in terms of their functionality. With this approach,
common tasks such as searching for a device, acquiring appropriate access
rights and operating a device are simplified, as the network communication
protocol details are abstracted and hidden from the smart service developer,
leading to easier and faster development of smart services.

To tackle the problem of runtime conflicts among services over device
resources, a set of design primitives for conflict resolution are introduced.
Drawing inspiration from the field of operating systems, device access rights,
service and user priorities, an event notification mechanism as well as con-
dition sets were designed and implemented as core features of the proposed
platform. These primitives have well-defined semantics and are easy to use.
With the use of these primitives, a service is now able to react in the face
of context changes; it can adapt by searching for alternative devices (should
the access rights for a device be lost), it can react to user location events and
in a worst case scenario willfully suspend its operation until its prerequisite
execution conditions are fulfilled some time in the near future. Regardless
of which option a service is going to pursue, its operation now becomes pre-
dictable leading to more resilient services in the home.

In the demonstration section of this chapter, the effectiveness of the above
proposed primitives were demonstrated in some typical device resource con-
flict scenarios. The services were able to continue their operation successfully,
recovering gracefully to device access rights downgrade events and also re-
acting to user location changes whilst exhibiting predictable and dependable
behaviour throughout their execution.

Overall, with the modeling of devices in terms of their functionality and
the introduction of primitives for conflict resolution, the difficult task of de-
veloping sophisticated but resilient smart services for the home environment
now becomes easier and more manageable. These characteristics of the pro-
posed platform are very compelling and should be part of every future home
service platform that strives for wide-spread adoption by consumers.

75

As possible future works, an offline rule based system for access control
similar to what HomeOS currently provides is a desirable feature. Another
meaningful extension of this work would be the introduction of contextual
service priority modifiers. For example, certain services may be able to use
elevated priority in different times of the day as well in different rooms. In
the latter case, services associated with a user would have elevated priority
inside that user’s sleeping quarters, making them more resilient to disruption
from other services. Finally another area of interest would be to provide the
functionality of the proposed platform as a service oriented architecture, a
step that would allow the creation of smart services in any programming
language.

Another topic that should be addressed as a future extension of the cur-
rent system is safety considerations. Smart services deployed on the pro-
posed platform have the ability to alter and control the physical environ-
ment around the user. However, a malicious service has the potential to
cause discomfort or even attempt to physically harm a user. To avoid such
possible scenarios, a safety module that can reason whether the operation of
a device may be harmful or not should be present. Such a safety module can
operate based on explicit conditions formed as rules; should the invocation
of a device operation lead to a broken rule, the invocation is suspended.

Regarding the technical aspects of the system, a standardized smart ser-
vice module description must be pursued. This module description format
must capture information regarding the possible requirements that a service
has. Using this information, a service may be checked for compatibility issues
with a given instance of the proposed platform; should the necessary devices
for this service not be present in the house it would make little sense to in-
stall that service. A similar approach from which inspiration can be drawn is
the Android operating system[1] for smartphones, where the requirements of
an application are clearly stated in its manifest file. Furthermore, should a
smart service be provided by a third party provider, further information re-
garding the service level agreement must be present and be readily accessible
by the user.

Another improvement on the system may be the addition of non-preemptive
device operations. There may be many meaningful cases in which, after the
operation of a specific device has started, a preemption of the given oper-
ation (by a change in the read-write access rights of the device) may lead
to undesirable results. A solution for this would be to mark certain device
operations as non-preemptible and forbid any device access rights changes
for this device until the non-preemptible operation has finished.

76

Chapter 4

A User Indoor Location System

4.1 Introduction
A critical component of a home service platform is a user indoor location sub-
system. In order to provide sophisticated services to the users, user location
information is one piece of context information that is absolutely critical.

In contrast to outdoor location information where the Global Position-
ing System (GPS) is a defacto standard and upcoming technologies such as
Galileo planned for the near future, there is no de facto standard for indoor
location systems. Although it may seem initially surprising, the reason for
the non-existence of such a de-facto standard becomes readily apparent when
the requirements of such an indoor location system are considered. Simply
put, the reason behind the existence of multiple indoor location systems lies
in the fact that each such system prioritizes different operational aspects of
the system, aspects mainly such as location accuracy, ease of use, ease of
deployment, privacy and cost considerations.

In the next section a brief introduction into related indoor location sys-
tems is presented and in section 4.3 the design and rationale behind the pro-
posed indoor location system is presented, along with a comparison to other
systems. The rest of this chapter also deals with implementation details, an
experiments section and the final concluding remarks.

The work presented in this chapter was published in [59].

4.2 Related Research
Compared to outdoor location systems where GPS is the de facto standard,
there is no such standard for user indoor location systems. In the past many
solutions have been proposed, based on technologies such as active RFID[48],

77

cameras [42](survey), ultrasound[30], passive infrared sensors (most notably
ThiLo[31]) as well as a number of solutions based on the Received Signal
Strength Indication of different wireless systems (Wi-Fi[72], Bluetooth[21],
ZigBee[63]). Furthermore, a work that deals with the detection of moving
devices is presented in [61]. A system targeting bigger indoor spaces and
based on radio-frequency and base stations is presented in [14].

It is the authors conviction that such indoor location systems will be
an indispensable part of a platform on which other smart services can be
developed and assist the user in his everyday activities.

4.3 Design Approach and Rationale
The design of the proposed indoor location system is based on the use of
passive infrared motion detection sensors. This decision was made on the
basis of making the location system easy to use; with passive infrared sensors,
a user does not have to use or carry any extra equipment, such as an RFID
tag, active badge, a mobile phone or anything else. The presence and motion
of the user inside the space where the indoor location system is deployed is
enough to obtain data regarding the location of the user.

Having decided on the use of passive infrared sensors as the core for our
system, the next challenge was to obtain location information with reasonable
accuracy. For the scope of this project, an accuracy of 50cm or less is deemed
ideal. As each passive infrared sensor only provides binary information, i.e.
the user is present in the sensor’s detection area or not, and the sensor’s
conical detection area can span quite a few cubic meters, a challenge arises:
find a method to obtain higher resolution location data from these passive
sensors with coarse detection features.

The answer to this challenge lies in overlapping detection areas and space
subdivision. A simple example can be seen in Fig 4.1. Intuitively, in this
figure, if both the conical detection sensor and the spherical detection sensor
are “active” (i.e. both sensors report that a user is present in their detection
areas) it logically follows that the user must be located at their overlapping
detection area, colored red in this figure. For different combination of sensor
states, similar deductions can be made. For example, should the spherical
detection sensor report no presence and the conical detection sensor reporting
user presence, it is logical to assume that the user is located somewhere inside
the conical area, excluding though the overlapping part with the spherical
sensor.

Taking this idea to its logical extreme, by increasing the number of sensors
used in our system an adequate number of areas that are covered by a unique

78

Figure 4.1: Overlapping Area Example

79

Figure 4.2: Sensor Pod Design and Actual Pod

set of sensors may be generated. To maximize the number of overlapping
areas among the sensors, the sensor pod seen in Fig. 4.2 was designed and
created with the use of 3D printing technology.

Certain characteristics for the design of this pod must be highlighted.
First, the pod is designed to be mounted on the ceiling of a room. Second, a
set of 17 sensor inlets have been designed, allowing the pod to be customizable
to the needs of a room; should for whatever reason the pod be mounted close
to the corner of a room, certain inlets lose their value due to their wall-facing
positions. In our experiments, all sensor pods where equipped with a total
of seven sensors, laid out as seen in the lower right part of Fig. 4.2. The
inner inlet circle is designed with a 30° angle with respect to the vertical
axis, whereas the outer inlet circle is designed with a 45° angle respectively.
A different combination of inlets may be used to cover an area according to
the needs present.

The subdivision of space achieved with a single pod that utilizes the outer
45° inlet ring can be seen in Fig. 4.3. In this figure, areas depicted as grey,
yellow, red and finally, black are covered by 1, 2, 3 and 4 sensors respectively.
Using the inner inlet ring, even more unique areas are generated, covered by
as many as 6 sensors at a time.

To effectively cover the area of a medium sized room, 3 or 4 sensor pods
should be used to provide adequate coverage. For smaller rooms of less than
10m2 in size, two pods with customized sensor placement should be sufficient.

80

Figure 4.3: Coverage Area of a Sensor Pod, Using the Outer Inlet Ring

The coverage achieved by three pods in a room used for the experiments of
this chapter can be seen in Fig. 4.4. With colours starting from light gray
all the way to green, black and white, areas are being covered by a unique
combination of 5 sensors all the way to 11, 12 and even 13 sensors at a
time. Furthermore the size of these unique areas is quite small, appropri-
ate enough to differentiate among different positions with accuracy of 15cm
among neighbouring areas.

4.3.1 Subdivision of Space
The unique areas generated by the subdivision of space are expressed as a set
of nodes in an octree. The root node of the octree as used for experimental
purposes is configured as a 5x5x5meter cube and has 6 levels. The nodes in
the deepest level are thus 15x15x15cm in size.

The conical coverage area of a sensor can be calculated by performing a
set of intersection tests for that area and the nodes of the octree. The result
of this operation is a set of nodes (not necessary leaf level nodes) that express
the coverage area of the sensor. Such an example can be seen in Fig. 4.5.
It is quite clear (especially in the bottom right corner) that nodes of lower

81

Figure 4.4: Room Coverage of the Experiment Room

Figure 4.5: Sensor Coverage Area Figure 4.6: Pod Coverage Area

depth are used to express areas of higher volume wherever possible. Leaf
nodes (nodes with the highest depth) are used near the edges of the conical
coverage area.

The algorithm for computing the unique areas can be seen in Alg. 3. The
function ColorNodes is the first step of the algorithm. Here, each conical
sensor area is calculated in three parts: expand, extend and suppress, the
details of which will be presented later. In this first step, each node is assigned
a “color” with the color representing the unique id of the sensor it is covered
by.

In the next step, represented by the SpreadPaint function, the colors of
the nodes are spread from parent nodes to child nodes and consolidation of
child octree nodes to parent nodes is performed wherever possible. This helps
reduce the amount of used nodes in the octree and improve performance.

82

In the final step of the algorithm, the nodes of the octree are traversed in
an in-order fashion, adding the nodes to the appropriate list of a hashmap,
with the set of colors a node is painted by acting as a key. In simple terms,
all nodes that are painted by exactly the same colors are aggregated to lists.
This hashmap holds all the unique areas (list of nodes) as values in the
hashmap, and their unique color combinations as key values.

The first step of the algorithm is executed in three phases per conical
sensor area. Their visualization on a quadtree can be seen in Fig. 4.7. These
three phases are:

1. expand,

2. extend,

3. suppress.

In the expand phase, starting from an appropriate position inside the
coverage area (usually close to the center) a starting node of the deepest
level is selected. This node should be completely covered by the conical area
of the sensor. Then, its parent nodes are checked in succession until a node
of lower depth is found that is partially covered by the sensor’s detection
area. This node is depicted as red in the left image in Fig. 4.7. As soon as
this bootstrap node is found, the second phase begins.

In the extend phase, the neighbouring octree nodes of the bootstrap node
are checked for collisions with the sensor’s detection area. For neighbouring
nodes that overlap the check continues recursively; their neighbouring nodes
are also check and so on, until no other such nodes that overlap with the
sensor area can be found. As soon as the set of overlapping nodes (depicted
in red in the center image of Fig. 4.7 is computed, the third phase begins.

In the third and final phase (suppress), each node found in the second set
is checked against the coverage area of the sensor. Should the node be wholly
included in the area, the node is added to the result set. The check continues
recursively for the child nodes that are also partially covered. Finally if a leaf
node is also covered, even partially this time, it will be added in the result
set. This result set is depicted in yellow in the right picture of Fig. 4.7.

The area calculation algorithm performs thousands of intersection tests.
It is for this reason that it should be computed ahead of time. Using our
equipment (a 2013 MacBook Air) the algorithm finishes in thirty to forty
seconds.

83

Algorithm 3 Area Computation Algorithm
1: function GenerateAreas
2: ColorNodes
3: SpreadPaint(rootNode)
4: CalculateAreas(rootNode)
5: end function
6:
7: function ColorNodes
8: for each DetectionCone in DetectionCones do
9: bootstrapNode← expand()

10: nodeSet← extend(bootstrapnode,DetectionCone)
11: result← suppress(NodeSet)
12: for each node in result do
13: node.addColor(DetectionCone.color)
14: end for
15: end for
16: end function
17:
18: function SpreadPaint(Node root)
19: for each node in root.traversePreOrder() do
20: color children with node’s color
21: end for
22: for each node in root.traversePostOrder() do
23: if all child nodes have the same colors then
24: color the parent node with their colors
25: remove children nodes
26: end if
27: end for
28: end function
29:
30: function CalculateAreas(Node root)
31: hashMap(colorSet, nodes)← ∅
32: for each node in root.traverseInOrder() do
33: nodeSet← hashMap.get(node.getColors)
34: if nodeSet == ∅ then
35: nodeSet← init()
36: hashMap.put(node.getColors, nodeSet)
37: end if
38: nodeSet.add(node)
39: end for
40: end function

84

Figure 4.7: Expand, Extend, Suppress on a Quadtree.

4.3.2 Sensor Behaviour
The next topic regarding the proposed indoor location system that must be
addressed is the behaviour of the passive infrared motion sensors.

A passive infrared sensor provides no information regarding the distance
of the subject from the position of the sensor. These sensors operate in binary
mode, offering information about the presence or absence of a subject in their
detection area. These two states of the passive infrared sensor will be referred
to as “active” and “inactive” or “high” and “low” output correspondingly
throughout this chapter.

Before the actual behaviour of the employed sensors is explained, the
behaviour of an “ideal” motion sensor is presented. Such an ideal motion
sensor has the following properties:

• switches to a “high” state as soon as a user enters its detection area,

• retains the “high” state for as long as the user resides in its detection
area,

• switches to “low” output state as soon as the user exits its detection
area.

Experiments conducted with such simulated ideal motion sensors pro-
vided great accuracy results that verified the overall space subdivision ap-
proach proposed for this system.

However, in contrast to this ideal motion sensor behaviour, the AMN31111
passive infrared motion sensor from Panasonic exhibited the following be-
haviour:

85

• tardiness to switch to “high” output when the user entered the outer
region of the detection area,

• tardiness to switch to “low” output when the user exited the detection
area of the sensor,

• the output state would switch to “low” after a few seconds if the user
was stationary but still located inside the detection area.

This difference in behaviour between the ideal motion sensor and the ac-
tual sensor used in the proposed system produced significant side effects that
had to be taken into consideration during the development of this system.
The effects of this behaviour as well as how it was reflected in the results
obtained in the experimental section will be discussed in depth in Sec. 4.5.3.

4.3.3 Area Evaluation Algorithm
To find the most probable area in which a user is located at, a simple area
evaluation algorithm was devised. This algorithm depends on the state of
the sensors at a specific time. Each sensor is assigned a score depending on
its state. For an ideal sensor, a state of “high” output would be associated
with a positive value whereas a “low” output state would be associated with
a negative value. For the deployed sensor, more nuanced states where used
and their scores will be introduced later. The assigning of scores to a sensor
state is the sensor-depended part of the area evaluation algorithm.

To assign an overall score that evaluates an area, the algorithm seen in
Alg. 4 is used. Simply put, if a sensor covers an area, its score is added to
the current sum that acts as the score of the area. Conversely, if a sensor
does not cover an area, its score will be subtracted from the current sum.
The area with the highest sum is the area that the user is most likely to be
located at.

The reasoning behind subtracting the score of a sensor from an area it
does not cover is simple. Should a sensor in active state not cover an area,
this area is less likely to be the one that the user is located at and thus has
to be penalized. Furthermore, if an inactive sensor does not cover an area,
that area has a higher chance to be near the actual vicinity of the user, thus
it should be rewarded.

Returning to the sensor dependent part of the algorithm, the states and
the scores used to express the behaviour of the AMN31111 sensor can be
seen in Tab. 4.3.3.

To deduce the state of the sensor, only the data collected in the last
one second are taken into consideration. Any data acquired previously is

86

Algorithm 4 Area Evaluation Algorithm
1: function EvaluateAreas
2: for each Area in Areas do
3: EvaluateArea(Area, Sensors)
4: end for
5: end function
6:
7: function EvaluateArea(Area, Sensors)
8: Sum← 0
9: for each Sensor in Sensors do

10: if Area.coloredBy(Sensor) == true then
11: Sum+ = Sensor.getScore()
12: else
13: Sum− = Sensor.getScore()
14: end if
15: end for
16: Area.setScore(Sum)
17: end function

Table 4.1: Sensor States and Associated Scores for the AMN31111 Sensor
State Rising Uptrigger Up Flux Falling Downtrigger Down
Score 30 100 50 5 -30 -100 -50

87

considered to be stale. To classify the sensor state as “Up” or “Down”, all the
sensor data received in the past second must be “high” or “low” respectively.
The absolute score for these two states is 50 points, the second highest score
among the sensor states present.

To classify the sensor state as “Uptrigger”, the sensor data produced in
the last second must have a transition from “low” state to “high” state, with
the “high” state being in place for more than 300ms. The reasoning for
this is, that the passing of 300ms in the new “high” state ensures that the
sensor indeed transitioned from a previously “inactive” state ton an “active”
one, indicating user presence. The 300ms window is adjustable, but after
experimentation with the sensors it was deemed to perform better than other
settings. To classify the sensor state as “Downtrigger” the same rules apply,
but the transition must be from “high” to ”low” state. The “Uptrigger”
and “Downtrigger” states represent the most recent and reliable information
present in the system that should be highly valued. For this reason, their
absolute scores are the largest among the sensor states present in the system.

Should the transition be not as old as 300ms, the sensor state will be
characterized as “Rising” and “Falling” accordingly. This state indicates
some activity in regards to the sensor. However, since the transition event
happened very recently, it might still be just a spurious event or a fringe
activation of the sensor. For this reason, the absolute scores for these values
is comparatively lower to the “Up”,“Down”,“Uptrigger” and “Downtrigger”
states.

The final sensor state is a state of “Flux”, where three or more events
occurred in the past second. This state can occur during the entrance of a
user in the detection area under an unusual approach angle, or when the user
leaves a detection area. With the lowest absolute score (5) among the other
states, it indicates that the user is at the fringes of the detection area of the
sensor, an information that is unreliable by its nature, but should still be
taken into consideration.

The above seven states were introduced in order to account for the be-
haviour of the sensor used in the system. The state classification procedure
acts as a “debounce” mechanism for the sensor’s output, whereas also try-
ing to identify the absolute newest and reliable information regarding sensor
state change, codifying it in terms of “Uptrigger” and “Downtrigger” events.

88

Figure 4.8: Extension Board Schematic

4.4 Implementation Details And Cost
4.4.1 Implementation Details
For the creation of the sensor pod, the popular Arduino embedded platform
was utilized. More specifically, the Arduino Fio ver. 3 is the microcontroller
unit used in this project. To transmit data, the popular XBee low power
wireless ZigBee modules were used. To sample the output sensors, a special
extension board was designed that utilizes an 8-channel digital multiplexer,
part number 74HC151 of the 7400 transistor-to-transistor integrated circuit
series. The layout of the extension board can be seen in 4.8.

The three sensor pods communicate over ZigBee with the base station,
which is another Arduino MCU with the XBee module. The overall setup
can be seen in 4.9. This base station is connected to a PC via a usb serial
connection. This PC is responsible to process the incoming data from the
sensors and perform the area evaluation algorithm presented in the previous
section, implemented in Java. Furthermore, this PC is also responsible for
visualization of the data.

The visualization of data was achieved using Java and an the JOGL
library that offers Java bindings for OpenGL. Regarding the room, the wall
where the entrance is located, its storage space as well as the two beds present
in the room are visualized. Moreover, two special rendering modes exist: one
that renders all the unique coverage areas, colored by the number of sensors
that cover them (as seen in Fig. 4.4) and another that shows the individual
coverage of a pod/sensor (as seen in Fig. 4.6 and Fig. 4.5).

89

Figure 4.9: Fruitbowl construction

The last visualization mode is responsible for visualizing the most prob-
able area that the user is located at. Such examples will be presented in the
experimental section.

Regarding the sensor data acquisition process, each sensor is successively
polled three times, for a total polling duration of 21ms. Should there be any
change to any of the seven sensors, the pod will send a 1-byte character to the
base station, describing the state of each sensor in the pod. Starting from the
lower bit, a “zero” value indicates that the sensor number zero is inactive,
whereas a “one” value indicates that the sensor is active. The eighth bit
remains unused. If there is no change in the state of the sensors, the sensor
pod continues polling and does not contact the base station.

The sensor output timeline for one of the experiments presented in the
next section can be seen in Fig. 4.10. In this figure, events denoted with a
red color indicate that the sensor was reported to be inactive, whereas events
marked with green color signify that the corresponding sensor was active at
that given time. The three wide bands of clustered events represent the three
pods that were used. The lower band of seven sensors with ID from 10 to 16
represent the first pod, the sensors with ID 20 to 26 represent the second pod,
and finally the sensors with ID from 30 to 36 represent the third pod. The
sensor with a zero unit digit in their ID represent the sensor facing directly
downward, and starting with sensors that have a 1 in their unit digit ID are
marked with an arrow (see the right lower image of Fig. 4.2), with the rest
of the sensors following clockwise.

4.4.2 Cost
A cost breakdown for the deployment in a room using three sensor pods can
be seen in Tab. 4.2. The prices reported were those during the finalization
of the project (2nd quarter of 2014). Of these, the most notable cost is the
custom 3D printed casing, costing $110 in raw filament material. Further-
more, a set of seven IR sensors costs as much as $70. Finally, an Arduino

90

Figure 4.10: Sensor Output Timeline

Fio with an XBee module also costs approximately $68, bringing the total
cost of a pod to about $250.

Since the project’s finalization, the 3D printing technology has progressed,
and filament prices have dropped quite dramatically. It is estimated that the
custom 3D pod can now be printed with as few as $15, a huge improvement
over the first attempt. The IR sensor pricing has not changed much, and
now alternative MCUs to Arduino are widely available and could be used
instead, in order to further reduce costs. All in all, a realistic price for a new
pod would come down to as low as $120 if it was built today.

4.5 Experiments
4.5.1 Room Setup
The experiments presented in this chapter were conducted in a 5mx4mx2.4m
room, as seen in Fig. 4.11. On the ceiling, three sensor pods were installed
in the locations depicted as red dots. Major furniture as well as the closet
space were taken into consideration and accounted for, properly taking up
space in the octree.

Four different experiment runs were conducted. The path of each run can
also be seen in Fig. 4.11. In each of these runs, when the user had to perform
a turn or reverse his course, the user would also stay in place momentarily,
for up to 3 or 4 seconds. The runs were chosen as typical paths that the
user would follow inside a room. Moreover, a substantial part of the routes

91

Table 4.2: Deployment Cost Breakdown
Part Name Price Qty. Total

Sensor Pod (x1)

AMN31111 ~$10 7 $70

Arduino Fio ~$25 1 $25

XBEE pro S1 ~$38 1 $38

Custom 3D printed pod ~$110 1 $110

Custom multiplexer PCB ~$6 1 $6

Cables and connectors ~$3 1 $3

Subtotal ~$252

Base Station (x1)

Arduino Fio ~$25 1 $25

XBEE pro S1 ~$38 1 $38

Subtotal ~$68

Deployment Cost in Room

Sensor Pod ~$252 3 $756

Base Station ~$68 1 $68

TOTAL $824

92

Figure 4.11: Top View of Experimental Room and Run Paths

selected also focus on pathways at the edges of the room, areas that are more
challenging for accurate detection due to their lower coverage by sensors.

Finally, for each run, the user would start his movement inside the room
after all the sensors have been verified to be in an “inactive” state in order
to avoid affecting the results of the experiment.

4.5.2 Evaluation Approach
To evaluate the accuracy of the system, a number of still frames for each
run where obtained as follows. First, the runs where recorded using a video
camera. Second, the output of the visualization subsystem would also be
recorded, with its background removed and its rendering angle matching
that of the camera recording. The top 2% of the areas is visualized, with
red areass the most probable, with the color decaying towards yellow for
slightly less probable areas. Finally, after superimposing the output of the
visualization on to the recorded run, a number of still frames were extracted
for each run. For the first run, 10 frames per second where evaluated. This
proved to be excessive and thus, for the remaining 3 runs, only 3 frames per
second where evaluated.

93

Table 4.3: Frame Evaluation Results
Route Total Frames Avg. Score Bad Poor Fair Good Excellent

Route 1 497 3.62 22 90 107 112 166
Route 2 57 3.07 3 17 17 13 7
Route 3 88 3.11 13 11 31 19 14
Route 4 74 3.20 6 11 32 12 13

After obtaining the still frames from the run, the system was evaluated
using a qualitative method. Each frame was evaluated using a scale of 1 to
5 (bad, poor, fair, good, excellent) in regards to the reported location. The
definitions for each level of the scale where the following:

1. Bad - Wide scattered and/or fragmented area, completely unrelated to
the user’s position.

2. Poor - Distance error of more than 50cm.

3. Fair - Focused area with distance error of less than 50cm, or wide
detection area with the user residing inside it.

4. Good - Focused detection area around the user, with small extensions
and protrusions.

5. Excellent - Tight detection around the user.

Example frames for each of the above categories can be seen in Fig. 4.12.

4.5.3 Run Result Analysis
Overall Evaluation The frame evaluation results for each run can be seen
in Tab. 4.3. In summary, the average score of these runs varies from the
lowest score of 3.07 up to the highest score which was 3.62. Thus, the re-
sults indicate that the system produced “fair” to “good” location estimation,
usually within 50cm of error for these runs. Since the four routes that were
selected are thought to be representative, the system performance should not
significantly differ in most other cases.

The aggregate frame evaluation paints the system performance in a broad
stroke. However, by examining the data of the first run more closely, further
nuances of the system are readily perceptible.

94

Figure 4.12: Examples of evaluation frames. Top left: a bad frame. Top
right: a poor frame. Middle left: a fair frame (near miss). Middle right:
a fair frame (large area). Bottom left: a good frame. Bottom right: an
excellent frame.

95

Figure 4.13: Frame Evaluation Timeline for Route 1

Bad Frames and Loss/Lack of Information In Fig. 4.13 the frame
evaluation results for the first route are presented in a time line. The first
observation that is readily apparent is the tendency of bad frames to appear
at the beginning and the end of the run. Out of the 22 frames classified
as “bad”, only 4 frames appear in the middle of the run. The reason for
this behaviour is the starting condition of these experiments; before the user
starts to move, all sensors start from an “inactive” state, needing a couple of
seconds to respond to the initial movement of the user. During this “start-
up” time, location detection is unreliable.

A similar phenomenon also appears at the end of the run, where the user
sits still at his final position, for a period of 3 to 5 seconds. In this “wind-
down” period, sensors gradually move to an “inactive” state and the location
detection again becomes unreliable.

This sort of behaviour is consistent with either lack or loss of meaningful
information currently in the system; should all (or at least most) of the
sensors be inactive, it is impossible to deduce the location of the user with
any accuracy. During start-up, this lack of information is slowly overcome
after the first couple of seconds where new information from the sensors
is entering the system. During the wind-down, the system gradually loses
information, as more and more sensors tend to transition to an “inactive”
state.

Lagging Detection and “Strong Gravitational Effect” Another ob-
servation from Fig. 4.13 is that there are two bands where “poor” frames
are prevalent: from frame 190 to frame 235, and from frame 330 to frame
410. In these two time periods, the reported location from the system would
consistently be behind the actual location, giving the impression that it was
“lagging” behind, trying to catch up with the user’s actual location. Two
representative frames of these periods can be seen in Fig. 4.14.

96

Figure 4.14: Lagging User Location Detection

This readily apparent discrepancy can be explained. The user just hap-
pened to pass through an area that is heavily covered by multiple sensors,
thus setting most of the sensors present in the system to an “active” state.
However, after the user continues his movement through the room, sensors
that should no longer detect the user need time to revert back to an “inac-
tive” state. Until these sensors become inactive, the reported location will
heavily gravitate towards the areas with coverage by a greater number of
sensors (perceived as a “strong gravitational effect”), usually lagging behind
the user’s current position.

Prospective Countermeasures The phenomena exhibited in the two
previous paragraphs are a direct result of the sensor’s operational behaviour.
Apart from changing the sensor to some other model that has behaviour
more closely aligned to the ideal behaviour as described in Sect. 4.3.2, there
are a few prospective solutions that could be employed, but have yet to be
implemented.

To combat the loss of information resulting from the user not moving, a
cut-off point where further sensor transitions to inactive state are ignored,
and the user’s last position is retained. Deciding this cut-off point may have a
relation to the average number of sensors covering the unique areas generated
in the space subdivision step. During detection, a greater number of active
sensors at a given moment should lead to location predictions with higher
confidence, so the cut-off point may be alternatively related to the degree of
confidence or accuracy necessary for the occasion.

To combat the “strong gravitational effect” where the predicted user lo-
cation would gravitate towards areas covered by a greater number of sensors,
further prioritizing newly incoming sensor information could lead to an escape
from the heavily covered area. Although in the area evaluation algorithm pre-
sented in Sect. 4.3.3, newer information (encoded as uptrigger/downtrigger
states) is valued with a greater score, the problem still persists. Another ap-

97

proach would be to have a “supersede” mechanism, where sensors that have
very small overlapping areas are treated as exclusive sets. In such a set, the
sensor that most recently switches to an active state supersedes the other
sensors; its score is the only one considered during the area evaluation step
and the score of all other conflicting sensors is reduced to zero. Additionally,
it may prove beneficial to remove very small but highly covered areas from
the octree itself; such areas seem to be at the core of the “strong gravita-
tional effect”, thus by removing such areas the effect may be less pronounced.
Finally, it may be interesting to formulate alternative designs of the sensor
pods and pod positions as a cobinatorial problem on which local search and
genetic algorithms may try to find solutions in terms of optimal coverage and
evenness of space subdivision, avoiding areas that could be a hot-spot and
thus avoiding the strong gravitational effect by design.

4.6 Conclusions and Future Work
In this chapter, a user indoor location system based on infrared motion sen-
sors and space subdivision was presented. Its main operation principle is the
subdivision of space into areas covered by a unique combination of infrared
sensors. By examining the state of the sensors in the scene, it is now possible
to identify the most probable area in which the user is located at.

As a system which is based on passive infrared sensors, there are several
inherent advantages, such as minimum intrusiveness and ease of use. Fur-
thermore, due to the design of the sensor pod, the system is extendable and
can be adapted for use in many different types of rooms. Finally, a single
sensor pod could be built with a price as low as $120, making the system
relatively inexpensive.

In its current state, the proposed indoor location system has the following
limitations. First, the system cannot identify and distinguish between indi-
viduals, it can only report their location. Furthermore, the system currently
cannot detect and report the locations of multiple individuals in a room at
the same time. Finally, the system exhibits “loss of information” and “strong
gravitational fields” as explained in Sect. 4.5.3.

Except from the first limitation (the inability to identify users), the rest
of the limitations are associated closely with the behaviour of the AMN31111
sensor used in the system. Although certain countermeasures can be taken
(such as identifying unique sensor states for this sensors and assigning dif-
ferent weights to them), this sensor exhibits behaviour that is significantly
different from that of the “ideal sensor” described in Sect. 4.3.2.

Even with these limitations, the system was able to detect the user’s

98

location within 50 cm, thus validating the core idea of space subdivision.
As future work, the use of a different sensor that exhibits behaviour closer

to that of an ideal sensor should be pursued. This would solve (or at least
mitigate) the “strong gravitational field” effect. Next, simultaneous location
information for multiple users in a room should be implemented. A possible
approach for this would be to modify the area evaluation algorithm as follows:
after the most probable area is found, examine if there is a set of sensors that
although report user presence were not in the initial most probable area.
Should such a sensor set exist, re-run the area evaluation algorithm but with
elevated scores for these sensors. This should be sufficient to identify the
next most probable area, and so on, until all sensors reporting presence have
been used. Finally, by integrating information from other external systems
or different types of sensors (pressure pads, ultrasonic sensors, etc.), non-
intrusive user identification with reasonable accuracy may be possible.

99

Chapter 5

In Conclusion

5.1 Summary of this Research
This research effort led to the development of a modern home service plat-
form. This platform boasts a number of features that should be part of
any advanced home service platform, especially those that aspire to achieve
widespread use by consumers.

In chapter 2 the management of environmental resources is discussed.
To the author’s knowledge, the proposed platform is the first home service
platform that attempts to handle physical characteristics of space such as
illumination as a first-class resource. Other contemporary platforms do not
attempt to handle these resources and forfeit control of them to services.
However, in comparison to the proposed system, the fact that smart services
can only have incomplete knowledge regarding the effects that a device has
on its environment makes it significantly more difficult to effectively control
environmental resources. Furthermore, although there have been mentions
of conflict detection in the physical domain in other works, effective conflict
resolution schemes have yet to be proposed. This research addresses this
major point.

In chapter 3 the conflict detection and resolution features of the plat-
form in regards to device conflicts were introduced. With primitives such
as device access rights, service and user priority, a notification mechanism
and condition sets, the development of reactive smart services now becomes
simpler, giving the developers the tools necessary to create ubiquitous smart
services for the home environment. These services are well behaved and
exhibit predictable behaviour. With the use of these primitives, run-time
conflict resolution is addressed thoroughly, putting the proposed platform at
the cutting edge of this research field.

100

In chapter 4 an indoor location system based on passive infrared sensors
was presented. The system can provide the location of a user with reason-
able accuracy, in most cases with a margin of error of only 50 cm. Due to its
construction, the location system is extensible, non-intrusive and of compar-
atively low cost, especially as the prices of 3D printers tend to fall over time.
However, in its current iteration it has a few significant drawbacks, namely
its inherent inability to concurrently report the position of more than one
user at a time as well as to differentiate among different users. Neverthe-
less, its core idea is simple and demonstrably effective, a solid foundation on
which more feature-rich location systems may be built.

5.2 The Importance and Impact of this Re-
search

This research represents the author’s vision for a modern, sophisticated home
service platform as a vehicle to achieve ubiquitous and pervasive intelligence
in the home. Although in each chapter a different facet of the system is
introduced, it is the whole picture that is created by these parts that is
important; should any of these parts be missing, the value proposition of the
home service platform as a whole becomes far less impressive.

It is imperative that any reasonably advanced home service platform ad-
dresses the three topics discussed in the chapters of this thesis:

• detection and resolution of device conflicts,

• detection and resolution of environmental conflicts,

• a functional user indoor location system.

Perhaps it may be easier to understand the importance of these three
critical components of the platform by conducting a simple thought experi-
ment: imagine what would happen if any of these components were absent.
Should run-time conflict detection and resolution be unavailable, user ex-
perience will suffer. Unpredictable operation of devices, lights turning on
and off and non-deterministic behaviour of services is going to be the result,
leading to the frustration of the user at best, or as a worst case scenario
creating disillusionment, leading the user to believe that the whole premise
of an intelligent home is untenable and a waste of money, time and effort.

The lack of a functional user indoor location system will again signifi-
cantly hamper the ability of the home service platform to adapt to the user’s
actions. To the author’s opinion, the user’s location is possibly the single

101

most important piece of context information, based on which smart services
can react and exhibit intelligence. Furthermore, the lack of user location
information would further hinder the ability of the system to perform en-
vironmental conflict resolution, which is a major feature of this platform.
Although the solution described in chapter 4 is far from perfect, it values the
user’s privacy above all and does not require active participation from the
user. Such a non-intrusive user location system is a perfect fit for the future
smart home.

Finally, the last piece of the puzzle towards the home service platform
of the future is the management of environmental resources. Conflict over
environmental resources again has an adverse effect on the user’s experience,
but current home service platforms fail to propose a resolution scheme. Fur-
thermore, trusting the services to operate devices appropriately makes the
design and implementation of smart services a daunting task. The proposed
platform provides a method of handling environmental resources with in-
herent conflict resolution capabilities which is fast and produces reasonable
results as demonstrated in the case of illumination.

As a whole, the proposed service platform becomes more than the sum of
its parts. For the first time, the platform provides all the necessary abstrac-
tions to program and develop new reactive smart services easily and with
relatively little effort. Its feature list is comprehensive and addresses the
problem of service conflicts in regards to device and environmental resources
adequately.

In closing, this research pushes the boundaries of what is possible with
the use of a sophisticated home service platform and advances the state of
smart homes. Future service platforms will inevitably have to provide similar
or equivalent features or face obsolescence.

102

Bibliography

[1] Android Operating System. http://www.android.com/.

[2] Apple HomeKit. Accessed: 2015-05-28. [Online]. Available: https:
//developer.apple.com/homekit/

[3] Bluetooth. https://www.bluetooth.com/.

[4] ECHONET Lite Protocol Specifications. http://www.echonet.gr.jp/
english/spec/index.htm.

[5] IFTTT. https://ifttt.com/.

[6] INSTEON. http://www.insteon.com/.

[7] Knx. https://www.knx.org/.

[8] nest. https://nest.com/.

[9] Philips Hue. http://www2.meethue.com/en-US/.

[10] Spin. http://spinroot.com.

[11] X10. http://www.x10.com/about-us/.

[12] Z-Wave. http://z-wavealliance.org/.

[13] ZigBee. http://www.zigbee.org/.

[14] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based user
location and tracking system,” in INFOCOM 2000. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2, 2000, pp. 775–784 vol.2.

[15] P. Belimpasakis and S. Moloney, “A platform for proving family oriented
restful services hosted at home,” IEEE Transactions on Consumer Elec-
tronics, vol. 55, no. 2, pp. 690–698, May 2009.

103

[16] L. Blair, G. Blair, J. Pang, and C. Efstratiou, “Feature’ interactions
outside a telecom domain,” in Workshop on Feature Interaction in Com-
posed Systems, 2001.

[17] F. Calvino, M. L. Gennusa, G. Rizzo, and G. Scaccianoce, “The control
of indoor thermal comfort conditions: introducing a fuzzy adaptive
controller,” Energy and Buildings, vol. 36, no. 2, pp. 97 – 102, 2004.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0378778803001312

[18] B. Chang and X. Zhang, “Design of indoor temperature and hu-
midity monitoring system based on cc2430 and fuzzy-pid,” in Cross
Strait Quad-Regional Radio Science and Wireless Technology Confer-
ence (CSQRWC), 2011, vol. 2, July 2011, pp. 980–984.

[19] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and
P. Bahl, “The home needs an operating system (and an app store),” in
HotNets IX. ACM, October 2010.

[20] ——, “An operating system for the home,” in NSDI. USENIX, April
2012.

[21] S. Feldmann, K. Kyamakya, A. Zapater, and Z. Lue, “An indoor
bluetooth-based positioning system: Concept, implementation and ex-
perimental evaluation,” in International Conference on Wireless Net-
works, W. Zhuang, C.-H. Yeh, O. Droegehorn, C.-T. Toh, and H. R.
Arabnia, Eds. CSREA Press, 2003, pp. 109–113.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[23] N. Georgantas, V. Issarny, S. B. Mokhtar, Y.-D. Bromberg, S. Bianco,
G. Thomson, P.-G. Raverdy, A. Urbieta, and R. S. Cardoso,
Handbook of Ambient Intelligence and Smart Environments. Boston,
MA: Springer US, 2010, ch. Middleware Architecture for Ambient
Intelligence in the Networked Home, pp. 1139–1169. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-93808-0_42

[24] K. Gill, S. H. Yang, F. Yao, and X. Lu, “A zigbee-based home au-
tomation system,” IEEE Transactions on Consumer Electronics, vol. 55,
no. 2, pp. 422–430, May 2009.

104

[25] C. Gomez and J. Paradells, “Wireless home automation networks: A
survey of architectures and technologies,” Communications Magazine,
IEEE, vol. 48, no. 6, pp. 92–101, June 2010.

[26] M. Gotze, W. Kattanek, and R. Peukert, “An extensible platform for
smart home services,” in Systems, Signals and Devices (SSD), 2012 9th
International Multi-Conference on, March 2012, pp. 1–6.

[27] R. Gupta, S. Talwar, and D. P. Agrawal, “Jini home networking: a step
toward pervasive computing,” Computer, vol. 35, no. 8, pp. 34–40, Aug
2002.

[28] A. Gurek, C. Gur, C. Gurakin, M. Akdeniz, S. K. Metin, and I. Kork-
maz, “An android based home automation system,” in High Capacity
Optical Networks and Enabling Technologies (HONET-CNS), 2013 10th
International Conference on, Dec 2013, pp. 121–125.

[29] R. Harper, Inside the Smart House. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2003.

[30] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The
anatomy of a context-aware application,” in Proceedings of the 5th
Annual ACM/IEEE International Conference on Mobile Computing and
Networking, ser. MobiCom ’99. New York, NY, USA: ACM, 1999, pp.
59–68. [Online]. Available: http://doi.acm.org/10.1145/313451.313476

[31] D. Hauschildt and N. Kirchhof, “Advances in thermal infrared local-
ization: Challenges and solutions,” in Indoor Positioning and Indoor
Navigation (IPIN), 2010 International Conference on, Sept 2010, pp.
1–8.

[32] F. Herrera, M. Lozano, and J. Verdegay, “Tuning fuzzy logic
controllers by genetic algorithms,” International Journal of Approximate
Reasoning, vol. 12, no. 3–4, pp. 299 – 315, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0888613X9400033Y

[33] H. Hu, D. Yang, C. Fu, and W. Fang, “Towards a semantic web based
approach for feature interaction detection,” in Software Technology and
Engineering (ICSTE), 2010 2nd International Conference on, vol. 2,
Oct 2010, pp. V2–330–V2–334.

[34] H. Ishikawa, Y. Ogata, K. Adachi, and T. Nakajima, “Building smart
appliance integration middleware on the osgi framework,” in Object-
Oriented Real-Time Distributed Computing, 2004. Proceedings. Seventh
IEEE International Symposium on, May 2004, pp. 139–146.

105

[35] M. Jahn, M. Jentsch, C. R. Prause, F. Pramudianto, A. Al-Akkad, and
R. Reiners, “The energy aware smart home,” in Future Information
Technology (FutureTech), 2010 5th International Conference on, May
2010, pp. 1–8.

[36] D.-S. Kim, J.-M. Lee, W. H. Kwon, and I. K. Yuh, “Design and
implementation of home network systems using upnp middleware for
networked appliances,” IEEE Transactions on Consumer Electronics,
vol. 48, no. 4, pp. 963–972, Nov 2002.

[37] J. E. Kim, G. Boulos, J. Yackovich, T. Barth, C. Beckel, and D. Mosse,
“Seamless integration of heterogeneous devices and access control in
smart homes,” in Intelligent Environments (IE), 2012 8th International
Conference on, June 2012, pp. 206–213.

[38] M. Kolberg, E. Magill, and M. Wilson, “Compatibility issues between
services supporting networked appliances,” Communications Magazine,
IEEE, vol. 41, no. 11, pp. 136–147, Nov 2003.

[39] P. Leelaprute, T. Matsuo, T. Tsuchiya, and T. Kikuno, “Detecting fea-
ture interactions in home appliance networks,” in Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing,
2008. SNPD ’08. Ninth ACIS International Conference on, Aug 2008,
pp. 895–903.

[40] P. Leelaprute, “Resolution of feature interactions in integrated services
of home network system,” in Communications, 2007. APCC 2007. Asia-
Pacific Conference on, Oct 2007, pp. 363–366.

[41] K. Li, H. Su, and J. Chu, “Nonlinear model reduction for simulation and
control of temperature distribution in air conditioned rooms,” in Control
Conference (CCC), 2012 31st Chinese, July 2012, pp. 1301–1306.

[42] R. Mautz and S. Tilch, “Survey of optical indoor positioning systems,”
in Indoor Positioning and Indoor Navigation (IPIN), 2011 International
Conference on, Sept 2011, pp. 1–7.

[43] M. Minakais, S. Mishra, and J. T. Wen, “Groundhog day: Iterative
learning for building temperature control,” in Automation Science and
Engineering (CASE), 2014 IEEE International Conference on, Aug
2014, pp. 948–953.

106

[44] H. Mirinejad, K. C. Welch, and L. Spicer, “A review of intelligent control
techniques in hvac systems,” in Energytech, 2012 IEEE, May 2012, pp.
1–5.

[45] R. Morla and N. Davies, “A framework for describing interference
in ubiquitous computing environments,” in Pervasive Computing and
Communications Workshops, 2006. PerCom Workshops 2006. Fourth
Annual IEEE International Conference on, March 2006, pp. 4 pp.–635.

[46] S. Munir and J. A. Stankovic, “Depsys: Dependency aware integration
of cyber-physical systems for smart homes,” in Cyber-Physical Systems
(ICCPS), 2014 ACM/IEEE International Conference on, April 2014,
pp. 127–138.

[47] T. Nakajima and I. Satoh, “A virtual overlay network for integrat-
ing home appliances,” in Applications and the Internet, 2002. (SAINT
2002). Proceedings. 2002 Symposium on, 2002, pp. 246–253.

[48] L. Ni, Y. Liu, Y. C. Lau, and A. Patil, “Landmarc: indoor location
sensing using active rfid,” in Pervasive Computing and Communications,
2003. (PerCom 2003). Proceedings of the First IEEE International Con-
ference on, March 2003, pp. 407–415.

[49] M. Okada, H. Aida, H. Ichikawa, and M. Miki, “Design and implemen-
tation of an energy-efficient lighting system driven by wireless sensor
networks,” in Mobile Computing and Ubiquitous Networking (ICMU),
2015 Eighth International Conference on, Jan 2015, pp. 114–119.

[50] M. S. Pan, L. W. Yeh, Y. A. Chen, Y. H. Lin, and Y. C. Tseng, “A
wsn-based intelligent light control system considering user activities and
profiles,” IEEE Sensors Journal, vol. 8, no. 10, pp. 1710–1721, Oct 2008.

[51] N. Papadopoulos, A. Meliones, D. Economou, I. Karras, and I. Liv-
erezas, “A connected home platform and development framework for
smart home control applications,” in Industrial Informatics, 2009. IN-
DIN 2009. 7th IEEE International Conference on, June 2009, pp. 402–
409.

[52] H. Park, J. Burke, and M. B. Srivastava, “Design and implementation
of a wireless sensor network for intelligent light control,” in Informa-
tion Processing in Sensor Networks, 2007. IPSN 2007. 6th International
Symposium on, April 2007, pp. 370–379.

107

[53] T. Perumal, A. R. Ramli, and C. Y. Leong, “Interoperability framework
for smart home systems,” IEEE Transactions on Consumer Electronics,
vol. 57, no. 4, pp. 1607–1611, November 2011.

[54] A. Rathnayaka, V. Potdar, and S. Kuruppu, “Evaluation of wireless
home automation technologies,” in Digital Ecosystems and Technologies
Conference (DEST), 2011 Proceedings of the 5th IEEE International
Conference on, May 2011, pp. 76–81.

[55] D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa, R. Rouvoy, and
F. Eliassen, “Restful integration of heterogeneous devices in pervasive
environments,” in Distributed Applications and Interoperable Systems,
ser. Lecture Notes in Computer Science, F. Eliassen and R. Kapitza,
Eds. Springer Berlin Heidelberg, 2010, vol. 6115, pp. 1–14. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-13645-0_1

[56] A. Sempey, C. Inard, C. Ghiaus, and C. Allery, “Fast simulation
of temperature distribution in air conditioned rooms by using proper
orthogonal decomposition,” Building and Environment, vol. 44, no. 2,
pp. 280 – 289, 2009. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0360132308000413

[57] M. Sioutis, J. Kim, A. Lim, and Y. Tan, “A home service deployment
platform with support for detection and resolution of physical resource
conflicts,” in Consumer Electronics (GCCE), 2012 IEEE 1st Global Con-
ference on, Oct 2012, pp. 333–336.

[58] M. Sioutis, Y. Lim, and Y. Tan, “Achieving optimal illumination condi-
tions using local search,” in Consumer Electronics (GCCE), 2015 IEEE
4th Global Conference on, Oct 2015, pp. 168–172.

[59] M. Sioutis and Y. Tan, Distributed, Ambient, and Pervasive
Interactions: Second International Conference, DAPI 2014, Held
as Part of HCI Interational 2014, Heraklion, Crete, Greece, June
22-27, 2014. Proceedings. Cham: Springer International Publishing,
2014, ch. User Indoor Location System with Passive Infrared Motion
Sensors and Space Subdivision, pp. 486–497. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-07788-8_45

[60] M. Sioutis, K. Tanaka, Y. Lim, and Y. Tan, Ambient Assisted
Living. ICT-based Solutions in Real Life Situations: 7th International
Work-Conference, IWAAL 2015, Puerto Varas, Chile, December 1-4,
2015, Proceedings. Cham: Springer International Publishing, 2015,

108

ch. Towards Resilient Services in the Home, pp. 113–124. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-26410-3_11

[61] A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha, “Tracking
moving devices with the cricket location system,” in Proceedings of the
2Nd International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’04. New York, NY, USA: ACM, 2004, pp. 190–
202. [Online]. Available: http://doi.acm.org/10.1145/990064.990088

[62] C. Soares, R. S. Moreira, R. Moria, J. Torres, and P. Sobral, “Prognos-
tic of feature interactions between independently developed pervasive
systems,” in Prognostics and Health Management (PHM), 2012 IEEE
Conference on, June 2012, pp. 1–8.

[63] M. Sugano, T. Kawazoe, Y. Ohta, and M. Murata, “Indoor localiza-
tion system using rssi measurement of wireless sensor network based
on zigbee standard,” in Wireless and Optical Communications, A. O.
Fapojuwo and B. Kaminska, Eds. IASTED/ACTA Press, 2006.

[64] M. Taylor, A. Chandak, Q. Mo, C. Lauterbach, C. Schissler, and
D. Manocha, “Guided multiview ray tracing for fast auralization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 11,
pp. 1797–1810, Nov 2012.

[65] B. Ur, J. Jung, and S. Schechter, “The current state of access control
for smart devices in homes,” in Workshop on Home Usable Privacy and
Security (HUPS). HUPS 2014, July 2013.

[66] P. A. Vicaire, Z. Xie, E. Hoque, and J. A. Stankovic, “Physicalnet: A
generic framework for managing and programming across pervasive com-
puting networks,” in Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), 2010 16th IEEE. IEEE, 2010, pp. 269–278.

[67] E. U. Warriach, “State of the art: embedded middleware platform for a
smart home,” Int. J. Smart Home, vol. 7, pp. 275–294, 2013.

[68] T. Weise, Global Optimization Algorithms – Theory Application, 2nd ed.
Thomas Weise, 2008, Accessed: 2015-08-30. [Online]. Available:
http://www.it-weise.de/projects/book.pdf

[69] M. Wilson, E. Magill, and M. Kolberg, “An online approach for the
service interaction problem in home automation,” in Consumer Com-
munications and Networking Conference, 2005. CCNC. 2005 Second
IEEE, Jan 2005, pp. 251–256.

109

[70] C.-L. Wu, C.-F. Liao, and L.-C. Fu, “Service-oriented smart-home ar-
chitecture based on osgi and mobile-agent technology,” Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, vol. 37, no. 2, pp. 193–205, March 2007.

[71] J. Wu, L. Huang, D. Wang, and F. Shen, “R-osgi-based architecture
of distributed smart home system,” IEEE Transactions on Consumer
Electronics, vol. 54, no. 3, pp. 1166–1172, August 2008.

[72] J. Xiao, K. Wu, Y. Yi, and L. Ni, “Fifs: Fine-grained indoor fingerprint-
ing system,” in Computer Communications and Networks (ICCCN),
2012 21st International Conference on, July 2012, pp. 1–7.

[73] M. Yagita, F. Ishikawa, and S. Honiden, “An application conflict detec-
tion and resolution system for smart homes,” in Software Engineering
for Smart Cyber-Physical Systems (SEsCPS), 2015 IEEE/ACM 1st In-
ternational Workshop on, May 2015, pp. 33–39.

[74] M. A. Zamora-Izquierdo, J. Santa, and A. F. Gomez-Skarmeta, “An
integral and networked home automation solution for indoor ambient
intelligence,” IEEE Pervasive Computing, vol. 9, no. 4, pp. 66–77, Oc-
tober 2010.

110

