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Chapter 1

Introduction

1.1 Background and Motivation

Word Sense Disambiguation (WSD) is a task to identify a sense of a word in a given con-
text when the word has multiple meanings. Unlike human brain which is quite proficient
at recognizing the correct meaning of a word in a sentence, the computer scientist faces a
serious problem to develop word sense disambiguation ability for computers that can in-
teract with human. To illustrate how WSD is performed, let’s consider an example below.

The word ‘bank’ in the dictionary1 has two senses:

1. A raised shelf or ridge of ground; a long, high mound with steeply sloping sides; one
side or slope of such a ridge or mound.

2. The shop, office, or place of business of a money changer or moneylender.

There are two example sentences containing the target word ‘bank’:

1. The boy leapt from the bank into the cold water.

2. I have money in the bank.

It is not difficult for human to realize the word “bank” in the first sentence has the first
sense and in the second sentence it has the second sense. WSD is a method to replicate
this incredible human ability into the computers.

WSD plays an important role in Natural Language Processing (NLP). It is one of the
fundamental techniques used for many NLP applications such as machine translation,
information retrieval, and opinion mining. It is also considered as one of the oldest
problems in the early day of machine translation formulated in the 1940s.

Therefore, many approaches have been proposed to solve this problem: a dictionary-
based method that uses lexical resources containing glosses or definition sentences of
the word senses, supervised machine learning based method that uses a manually sense

1http://www.oxfordlearnersdictionaries.com/
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tagged corpus as the training data, and an unsupervised learning based method that
trains a classifier of WSD from unannotated text. Recently, supervised machine learning
shows the best performance among various approaches for WSD.

However, supervised learning requires a considerable amount of training data, i.e. a
collection of texts annotated with the gold senses of the words. Since manual annotation
of the senses requires much cost and time, it is often difficult to prepare enough data
for training. This problem is known as “Knowledge Acquisition Bottleneck” problem or
“Data Sparseness” problem. Mihalcea and Chklovski estimated that it took 80 years for
a person to manually build labeled training data for 20,000 words in a common English
dictionary [15].

In the ordinary approaches of WSD, a classifier is trained for each target word, since
sense inventory is unique to the target word. It is necessary to train many WSD classifiers
to disambiguate the senses of all words in the text, however, it is difficult to prepare the
annotated training data for all words, especially for the low frequent word. On the other
hand, an alternative approach was proposed to tackle this problem. In this approach, a set
of semantic classes is used as a common sense inventory for all words. The semantic class
refers to an abstract concept of the words, such as ‘plant’, ‘shape’, and ‘time’. Instead
of training individual classifiers for the target words, the universal classifiers that can
determine the semantic class of any words including the low frequent word are trained.
It can alleviate knowledge acquisition bottleneck problem, since a small number of the
classifiers are required to train.

As the semantic class only expresses more general concept than the sense, semantic class
disambiguation (a coarse grained WSD in other words) is insufficient for some NLP appli-
cations such as machine translation. However, it is obviously useful for many applications,
such as information retrieval and acquisition of domain knowledge [18].

To understand how useful Semantic Class Disambiguation (SCD) is in information
retrieval, we can consider an example of the word ‘apple’ containing 3 senses: apple as
a fruit, apple as a tree and apple as a company. A correct disambiguation of the word
‘apple’ in the query sentence and the sentences in a document collection improves the
performance of information retrieval system. When a user want to search the information
about a product of Apple company, the semantic class disambiguation can prevent the
system from retrieving irrelevant documents about apple fruit and apple tree. Moreover,
SCD is successfully applied in CRYSTAL [22], which can surpass human intuition in
creating reliable information extraction rules.

1.2 Goal

This paper proposes a novel method to disambiguate the semantic classes of all words. In
the previous method of semantic class disambiguation, the training data often consists of
imbalanced positive and negative samples. The system trained from such data tends to
classify a new input into the majority class. It causes decline of performance of semantic
class disambiguation. Our new architecture enables us to train the classifiers from more
balanced training data.
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The dimension of feature vector in this method is very high. Using all of features might
not be good because some of them are noisy and decrease the performance. Various
techniques to choose the important features, called feature selection, was proposed to
improve the performance of supervised learning. In this research, 2 feature selection
techniques are used and empirically evaluated: frequency based method and Pearsons
chi-squared test.

1.3 Organization of the thesis

The rest of the thesis is organized as follows:

• Chapter 2 introduces related work and clarifies the originally of the proposed method.

• Chapter 3 describes our new method for semantic class disambiguation.

• Chapter 4 reports results of an experiment to evaluate our method.

• Finally, Chapter 5 concludes the paper and discusses future work.

3



Chapter 2

Related Work

In this chapter, we introduce essential knowledge of word sense disambiguation and some
previous approach on semantic class or coarse grained word sense disambiguation.

2.1 Word Sense Disambiguation

First, we explain more precise definition of word sense disambiguation (WSD). The senses
of a word is defined by a dictionary or lexical database. It is generally called ‘sense
inventory’. WSD is a task to choose the appropriate sense of a target word in a given
context from the senses of the target word in the sense inventory. Here ‘target word’ refers
to a word whose sense is aimed at being disambiguated. Obviously, the target word is
an ambiguous word that has two or more senses in the sense inventory. The input of the
WSD is the target word in a certain context (sentence, paragraph or document) as well
as the sense inventory, and the output is one of the senses of the target word in the sense
inventory. There are two major tasks in WSD: lexical sample task and all words task.

• Lexical sample: is a task to disambiguate a small sample of the target words.

• All words: is a task to disambiguate all the words in the text.

All words task is more difficult than the lexical sample task. When the supervised
learning is applied to the lexical sample task, a collection of the sentences that includes
the gold senses for a limited number of the target words is required. On the other hand,
a sense tagged corpus that contains the gold senses of all words is required for all words
task, which requires much costs to construct.

The difficulty and significance of WSD problem was recognized and understood by
machine translation researchers in late 1940s. After that, large-scale lexical database and
resources useful for WSD, such as the Oxford Advanced Learner’s Dictionary of Current
English (OALD) [7], were built. Several researchers investigated knowledge based and
dictionary based methods, which utilized the information derived from the lexical database
for word sense disambiguation. However, the performance of them is not actually as high
as expectation. Next, machine learning techniques are highlighted in the field of natural
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language processing. Because many tasks in NLP can be regarded as a classification
problem for which machine learning can be applicable. WSD is also a problem that
supervised learning has been successfully applied.

There are two major approaches for WSD: deep approach and shallow approach.

• Deep approach: assumes that we have comprehensive knowledge. For instance,
we suppose to have knowledge “you have money in place of business of a money
changer or moneylender, not in a long, high mound with steeply sloping sides.” We
can choose the appropriate sense of the target word ‘bank’ using this knowledge.
However, such common sense knowledge is very hard to describe in a computer
readable format. It is also hard to accumulate comprehensive knowledge in the
world. Therefore, the deep approach is not successful in real applications.

• Shallow approach: only considers surrounding words of the ambiguous word in-
stead of trying to understand the context precisely. In theory, the shallow approach
might not as powerful as the deep approach, but it performs much better in practice
due to the limitation of computational power. Hence, many researchers take shallow
approaches for WSD.

The most of conventional approaches for WSD can be categorized into the following
four methods [19].

• Dictionary-based and Knowledge-based methods : This technique explores
dictionary, thesauri, and lexical knowledge without using any corpus to disambiguate
the senses of the word. Banerjee and Pedersen presented a new measure of semantic
similarity between concepts that is based on the overlaps in their glosses in a dic-
tionary [2]. The research showed the new measure was effectively applied for word
sense disambiguation.

• Semi-supervised methods or minimal supervised methods: This utilizes
both label and unlabel data. Because the lack of labeled data, many previous
researches tend to use this approach. This approach uses a small annotated corpus as
a seed data in a boostrapping process. Mihalcea and Faruque introduced a minimal
supervised sense tagger, called SenseLearner, which can disambiguate all content
words in a text using WordNet [17]. This method used SemCor, a sense annotated
corpus, as the training data to learn a WSD model for the words in SemCor corpus,
while a memory based learner was applied to train another model for WSD of
unseen words in SemCor corpus by generalizing the words under syntactic relations
as training samples. The method achieved 64.6 % of an average accuracy.

• Supervised methods: Machine learning algorithms are used for training WSD
classifiers from sense tagged corpora.

• Unsupervised methods: This technique works mostly on a raw corpora with
assumption that similar senses appear in similar contexts. Hence, they can in-
duce word sense from unlabeled text by clustering word occurrences and classify
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the occurrences of a new word into the induced cluster. A novel approach was re-
cently proposed by Bordag which performed word sense induction based on word
triplets [3]. This method was based on “one sense per collocation” assumption and
clustered triplets of words instead of pairs using sentence co-occurrences as features.

The shallow approaches using supervised learning show the advantage; it surpasses
other approaches in performance. In recent research, Support Vector Machines [11] is the
most successful approaches because it may be able to handle high dimensionality of fea-
ture space which is usually huge in WSD. However, supervised method faces a knowledge
acquisition bottleneck because it depends on a large manually sense tagged corpora which
consume huge cost and time.

2.2 Semantic Class Disambiguation

As described above, the senses of the target word are defined by a dictionary. The
dictionary also defines granularity of the senses from a coarse to fine grained senses. The
coarse grained senses represent board meanings, while the fine grained senses distinguish
subtle difference of the meaning. In fact, the disambiguation of the coarse grained sense
is easier than the fine grained sense. Human is also better at WSD in coarse grained
level than fine grained level. Furthermore, even the coarse grained sense disambiguation
is useful for some NLP applications such as information retrieval. Hence, some research
tried coarse grained distinction for evaluation. Using broader distinction also helps to
alleviate the knowledge acquisition bottleneck problem in supervised learning techniques.

The semantic class or coarse grained word sense can be defined in various ways in
previous approaches. Resnik proposed a method to build a set of conceptual classes
for word senses using selectional preferences [21]. His method can automatically acquire
linguistic predicate constraints from a raw corpus. Although his method was evaluated on
fine-grained word disambiguation, coarse-grained WSD could apply his association scores
for conceptual classes.

Levin proposed a method for English verb classification [12]. Supposing that a meaning
of a verb influences its syntactic behavior, she defined a set of coherent verb classes and
their alternations based on their syntactic behavior. This classification of the English
verbs can be considered as a verb inventory.

Although Levin’s inventory is useful, it is based on syntactic properties unlike those in
WordNet [6]. Korhonen proposed a mapping method from WordNet entries into Levin’s
classes [10]. The accuracy of this method was 81% when automatically mapping 1,616
synsets arranged into hierarchy in WordNet to one of 32 Levin’s classes.

Although there are a lot of work on word sense disambiguation, disambiguation of the
semantic classes was not paid attention so much. Nevertheless, a few studies of semantic
class disambiguation have been devoted.

Izquierdo et al. presented a method to select Base Level Concepts (BLC) based on
basic structural properties of WordNet [8]. Two different sets of BLC were derived by
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considering 1) all types of relations in WordNet and 2) only the hyponymy relations. A
naive classifier that chose the most frequent concept could perform a semantic tagging
with 75% accuracy.

Kohomban and Lee proposed a method for WSD using general concepts [9]. Intuitively,
the coarse grained WSD is an easier task than the fine grained WSD. To improve the
performance, their method first performed the coarse grained WSD, then the chosen
coarse sense was mapped to the fine grained sense using simple heuristics. The classifier
was trained by memory-based learner using four useful features: local context, part-of-
speech, collocation, and syntactic relation. They reported the accuracy reached over 77%.

The most important related work of this thesis is Ariyakornwijit and Shirai’s method [1].
Using four features presented in [9] with some modification, they trained a binary classifier
for each semantic class that could judge if any given word in the context had the semantic
class or not. Note that the number of the trained classifiers is much less than in the
previous approach. In the ordinary WSD studies, one classifier is trained for each target
word, while one classifier is trained for each semantic class in Ariyakornwijit’s method.
Furthermore, they used the sentences including monosemous words, which has only one
semantic class, as the training data. It enabled us to prepare the training data without
manual annotation. Their method achieved 28.6% of exact match accuracy and 53.0%
of partial match accuracy, which far surpassed the baseline. The details of this work are
introduced in Section 3.2.

2.3 Discussion

Although Ariyakornwijit approach is promised to alleviate knowledge acquisition bottle-
neck since it requires much less trained classifiers than traditional WSD approach, the
performance of the semantic class disambiguation of this method is still insufficient. They
discussed that one of the reasons was imbalance of the positive and negative samples in the
training data. This paper proposes a new architecture for semantic class disambiguation
to tackle this problem.

Considering semantic class disambiguation, although many definitions of the coarse
grained senses or semantic classes of the words have been proposed, there seems no uni-
versal set of semantic classes for all words. The appropriate set of the semantic classes
may depend on the NLP applications. In this study, the semantic classes are defined
based on WordNet. However, any semantic classes can be applicable in our method.

Moreover, it is useful to apply additional techniques such as feature selection and pa-
rameter optimization for improving the performance of the system. Since the feature
space is huge and noisy, two feature selection methods, Pearsons chi-square test and fre-
quency based feature selection, are experimented to reduce feature dimension. Although
the feature selection is commonly used for various tasks in NLP, Ariyakornwijit and Shirai
did not use it for semantic class disambiguation. This thesis reports the first attempt to
investigate the effectiveness of the feature selection in the task of semantic class disam-
biguation.

7



Chapter 3

Proposed method

This chapter presents our proposed method and its advantages comparing to previous
approach.

3.1 Semantic Class

In this study, WordNet [6] is used as an inventory of the semantic classes. WordNet is
a famous lexical database for English, which is widely used as the sense repository in
many WSD researches. It groups 155,287 words into 117,659 sets of synonyms, called
synsets. The synsets composes a hierarchical structure where the synsets are connected
by hypernym or other semantic relations. At the top level, WordNet defines 45 unique
beginners of all synsets, which are considered as the coarsest senses. We define them as a
set of the semantic classes. It consists of 26 semantic classes for noun, 15 for verb, 3 for
adjective and 1 for adverb.

In this research, only nouns and verbs are considered for disambiguation of the target
word because semantic classes of adjectives and adverbs rarely appear in the training
corpus. A list of all semantic classes of the nouns and verbs with their identification
number, name and definition is shown in Table 3.1.

3.2 Ariyakornwijit’s method

This section describes more details of Ariyakornwijit’s method for semantic class disam-
biguation [1]. Fig. 3.1 and Fig. 3.2 show the traditional approaches and Ariyakornwijit’s
approach for WSD, respectively.

In most WSD studies, the sense inventory is peculiar to the target word. In Figure
3.1, the set of the senses {S11, · · ·S1n} of the target word w1 and the set of the senses
{S21, · · ·S2n} of the target word w2 are different. Therefore, a bulk of WSD classifiers
are trained, where each classifier selects one sense from the sense inventory for the target
word in the given context. On the other hand, in Ariyakornwijit’s approach, the only one
sense inventory {SC1, . . . , SCn} that is common to all target words is defined, where SCi

8



Table 3.1: List of Semantic Classes in WordNet

Id Name Definition
03 noun.Tops unique beginner for nouns
04 noun.act nouns denoting acts or actions
05 noun.animal nouns denoting animals
06 noun.artifact nouns denoting man-made objects
07 noun.attribute nouns denoting attribute of people and objects
08 noun.body nouns denoting body parts
09 noun.cognition nouns denoting cognitive processes and contents
10 noun.communication nouns denoting communicative processes and contents
11 noun.event nouns denoting natural events
12 noun.feeling nouns denoting feelings and emotions
13 noun.food nouns denoting foods and drinks
14 noun.group nouns denoting grouping of people or object
15 noun.location nouns denoting spatial position
16 noun.motive nouns denoting goals
17 noun.object nouns denoting natural object (not man-made)
18 noun.person nouns denoting people
19 noun.phenomenon nouns denoting natural phenomena
20 noun.plant nouns denoting plants
21 noun.possession nouns denoting possession and transfer of possession
22 noun.process nouns denoting natural processes
23 noun.quantity nouns denoting quantities and units of measure
24 noun.relation nouns denoting relations between people or things or

ideas
25 noun.shape nouns denoting two and three dimensional shapes
26 noun.state nouns denoting stable states of affairs
27 noun.substance nouns denoting substances
28 noun.time nouns denoting time and temporal relations
29 verb.body verbs of grooming, dressing and bodily care
30 verb.change verbs of size, temperature change, intensifying, etc.
31 verb.cognition verbs of thinking, judging, analyzing, doubting
32 verb.communication verbs of telling, asking, ordering, singing
33 verb.competition verbs of fighting, athletic activities
34 verb.consumption verbs of eating and drinking
35 verb.contact verbs of touching, hitting, tying, digging
36 verb.creation verbs of sewing, baking, painting, performing
37 verb.emotion verbs of feeling
38 verb.motion verbs of walking, flying, swimming
39 verb.perception verbs of seeing, hearing, feeling
40 verb.possession verbs of buying, selling, owning
41 verb.social verbs of political and social activities and events
42 verb.stative verbs of being, having, spatial relations
43 verb.weather verbs of raining, snowing, thawing, thundering

9



Figure 3.1: Traditional Approach of WSD

Figure 3.2: Ariyakornwijit’s Approach [1]

stands for the semantic class. For any words in the text, the appropriate semantic classes
are chosen from the common sense inventory.

The procedures to disambiguate the semantic class of the word are as follows. First,
for each semantic class SCi, the classifier CLi is learned from the training data. CLi is a
binary classifier that judges if the target word in the given context has the semantic class
SCi or not. Monosemous words, which have only one semantic class, in a large corpus
are used as the training data. To train CLi, the monosemous words of SCi are used as
positive samples, while the monosemous words of the other semantic classes are used as
negative samples. Then, for a given text, the semantic classes of the target words are
determined in the following three steps. These steps are illustrated in Fig. 3.3.

• The input text is preprocessed. First, part-of-speech (POS) tagging is performed to
determine POSs of the target word and the words in the context. Next, lemmatiza-
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tion is performed to convert the inflected word to base form 1. We use NLTK POS
tagger and NLTK WordNet Lemmatizer [13].

• By looking up WordNet, all possible candidates of the semantic classes of the target
word are obtained. In the example of Figure 3.3, three semantic classes SC1, SC2

and SC3 are chosen. In general, it is a subset of all semantic classes.

• For each candidate of the semantic class SCi, the binary classifier is applied to judge
if SCi is appropriate for the target word in the given text. For classification, the
features are derived from the context of the target word.

• Finally, the system chooses a set of semantic classes whose corresponding classifiers
judge as ‘yes’. Note that the system selects one or more semantic classes for one
target word.

Figure 3.3: Ariyakornwijit’s Architecture [1] (OVR-SCD)

Figure 3.4 is an example of how the system works to disambiguate a target word “treat”
in a context. Five candidate semantic classes of “treat” are verb.body, verb.change,
verb.cognition, verb.communication and verb.social. The classifier for verb.body will
judge if the target word has this semantic class. The classifer for other semantic classes
will be also applied. These classifiers make a decision with respect to features extracted
from the context of the target word. Finally, the system will output all of the seman-
tic classes judged as ‘yes’ by the classifiers. When the classifier of verb.communication
judges as ‘yes’ and other classifiers judge as ‘no’, only verb.communication is chosen as
the semantic class of “treat”.

The number of classifiers in Ariyakornwijit’s method is equal to the total number of
the semantic classes, which is much less than the traditional WSD approach where the
classifiers are trained for every word. It can alleviate the data sparseness problem. Fur-
thermore, the use of monosemous words as the training data is a promising way to create
a large amount of the training data, since no manual annotation is required. However, it

1In [1], lemmatization is not applied as preprocessing. In our implementation of Ariyakornwijit’s
method in the experiment in Chapter 4, lemmatization is also applied.
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Context: Is it criticism ? There is a massive amount of writing about art ,
only some of which can immediately be identified by a reader as criticism
. Writing by the art critic of a newspaper is self - evidently criticism , in
parallel with the writing of music and theatre critics ; an exhibition can be
treated almost in the same way as a performance . Articles in magazines
are less certainly described as criticism , for their main topics may be person-
alities or history , and art may be only a small part of the writers ’ account .
Books and catalogues may contain criticism ; but their writers may think of
themselves as art historians , philosophers , aestheticians , anthropologists
, historians or biographers , and there are many other possibilities ; their
books may never be identified as art criticism .

Figure 3.4: Example of Target Word and Its Context(1)

is rather uncertain that the monosemous words are useful for classification of ambiguous
words. Because the words in the training data (monosemous word) are totally different
from the target word (polysemous or ambiguous word). Such gaps may cause negative
influence on semantic class disambiguation.

Hereafter, we call Ariyakornwijit’s method as One-versus-rest Semantic Class Disam-
biguation or OVR-SCD.

3.3 Proposed Architecture

In OVR-SCD, the monosemous words of one semantic class are used as the positive
samples, and the monosemous words of all other semantic classes are used as the negative
samples. It causes serious imbalance between the positive and negative samples, i.e. the
number of negative samples is much greater than that of the positive samples. Such
imbalance may cause decline of the performance of semantic class disambiguation, since
the trained classifiers tend to almost always classify the target word as negative.

To overcome this problem, we proposed a new architecture shown in Figure. 3.5. In our
approach, a binary classifier is trained for each pair of the semantic class SCi and SCj. It
chooses one of two semantic classes for the given target word. If the target word has three
or more potential semantic classes, the classifiers of all possible pairs are applied. The
detail procedures to disambiguate the semantic class of the target word are as follows:

• Part-of-speech (POS) Tagging and lemmatization are performed as preprocessing.

• By looking up WordNet, all possible candidates of the semantic classes of the target
word are obtained.

• For all pairs of the possible semantic classes, the classifiers are applied to judge if
the target word has either semantic class. When SC1, SC2 and SC3 are obtained
as the potential semantic classes in Figure 3.5, pairs of (SC1,SC2), (SC2,SC3) and
(SC1,SC3) are considered.
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• Finally, from the results of these classifiers, the final output is chosen by a simple
weighted majority voting. The detail of the majority voting will be explained in
Section 3.6.

Figure 3.5: Proposed Architecture (PW-SCD)

Let us review the example in Figure 3.4. The target word “treat” has 5 semantic
classes: verb.body, verb.change, verb.cognition, verb.communication and verb.social. In
our method, a classifier is trained for each pair of the semantic classes. The possible pairs
of the semantic classes are shown below2.

(body,change), (body,cognition), (body,communication), (body,social),
(change,cognition), (change,communication), (change,social),
(cognition,communication), (cognition, social), (communication,social)

Therefore, 10 classifiers are trained. The classifiers choose either of two semantic classes.
The final output is chosen from the results of these 10 classifiers by the majority voting,
which will be described later.

The advantage of this approach is that the positive and negative samples in the training
data can be well balanced. For the pair of SCi and SCj, the positive and negative samples
are the monosemous words of SCi and SCj, respectively. The number of the monosemous
words of two semantic classes is expected to be comparable. The disadvantage is that
the number of the classifiers is more than OVR-SCD. However, it is much less than the
traditional WSD where the classifiers should be trained for all target words. Hereafter,
we call this architecture Pair-wise Semantic Class Disambiguation (PW-SCD).

Table 3.2 and 3.3 show statistics of OVR-SCD and PW-SCD, respectively. They show
an average of the number of each positive and negative sample for the semantic class
disambiguation classifiers, in terms of each noun and verb. The statistics are obtained
from the Daily Yomiuri corpus [5], which is used in the experiment in Chapter 4. In
statistics of PW-SCD, the fewer semantic class is regarded as the positive class in each
pair-wise classifier. We can find excessive imbalance in OVR-SCD in Table 3.2. On the
other hand, seeing Table 3.3, the number of two kinds of the training samples can be
balanced better in our PW-SCD.

2The prefix ‘verb.’ is omitted.
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Table 3.2: Average Number of Samples in OVR-SCD

POS Positive Negative

Noun 126,595 1,250,593

Verb 61,833 865,669

Table 3.3: Average Number of Samples in PW-SCD

POS Positive Negative

Noun 69,833 172,860

Verb 27,728 70,113

The procedures to train the semantic class disambiguation classifiers are shown in Fig-
ure 3.6. It consists of the following 5 steps.

(1) For each semantic class SCi, a list of the monosemous word (mwij) of SCi is retrieved
from WordNet.

(2) From a large raw corpus, the sentences (sij) including the monosemous word of SCi

are retrieved. For each monosemous word in the sentences, SCi is annotated as the
gold semantic class.

(3) Preprocessing is performed on the retrieved sentences. It consists of POS tagging
and lemmatization. We use NLTK POS tagger and NLTK WordNet Lemmatizer
[13].

(4) From each monosemous word and its context, the features for machine learning
are extracted. Thus we can obtain the instances of SCi represented as the feature
vectors (fij).

(5) For each pair of the semantic class SCi and SCj, the classifier CLij, which judges if
the word has either SCi or SCj, is trained from the feature vectors of SCi and SCj.

3.4 Features

We use the exactly same features in Ariyakornwijit’s method [1]. It consists of four
features. These features are widely used for WSD task.

3.4.1 Local Context

Local context is represented by the words around the target word. It is so called Bag-
of-words feature. The words in a context window whose size is Nc are extracted as the
features, i.e. Nc words to the left and Nc words to the right of the target word. Precisely,
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Figure 3.6: Training Procedures

lemmatized form of the content words are extracted in the context window as the local
context feature. Note that the local context features are extracted from the sentence
including the target word, that is, not extracted beyond the sentence boundary. Function
words, punctuation and number are not extracted. An parameter of this feature is the
size of the context window Nc. In the experiment, Nc was set as 5 since it worked fairly
well with a small sample of data in a preliminary experiment.

Let us consider an example in Figure 3.4 where the target word is “immunisation” to
explain how to extract the local context feature.

Context: After immunisation you must wait at least one month before
becoming pregnant. Eat properly Eating well before and during pregnancy
is very important. It keeps you fit and helps you to have a healthy baby.
You don’t need a special diet and eating for two could mean you put on too
much weight.

Figure 3.7: Example of Target Word and Its Context (2)

The local features when the window size Nc = 5 are ‘after’, ‘must’, ‘wait’, ‘least’, ‘one’
and ‘month’.

Let us consider another example in Figure 3.8 where the target word is “add”.
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Context: Very often they are pleased to invite ACET in as a church - based
agency . Our educators present a personal message , each one having had
experience of caring for those dying with AIDS at home . Furthermore our
work in Uganda and Romania adds a wider perspective . The content of each
lesson is agreed beforehand in consultation with teachers so it can be tailored
to the priorities and individual needs of the school or class . Prejudices are
challenged and myths exposed for example that only homosexual men and
drug users are at risk .

Figure 3.8: Example of Target Word and Its Context (3)

In this example, the local features when the window size Nc = 5 are ‘romania’, ‘wider’,
‘Uganda’, ‘perspective’, ‘work’, ‘furthermore’, ‘content’, ‘home’, ‘lesson’, and ‘agreed’

3.4.2 Part of Speech

POS feature is 2-gram, 3-gram and 4-gram of the parts-of-speech including the target
word. Since the monosemous words are used, the target words that have the semantic
class SCi are different in the training samples. Thus POSs of the target words are also
different. Therefore, the POS of the target instance is always represented by the special
character ‘T’, which refers to a wildcard matching any target instance. POS features can
be represented as Figure 3.9.

2-gram: {p−1 T}, {T p−1}

3-gram: {p−2 p−1 T}, {p−1 T p1}, {T p1 p2}

4-gram: {p−3 p−2 p−1 T}, {p−2 p−1 T p1}, {p−1 T p1 p2} {T p1 p2 p3}

Figure 3.9: POS feature

In this figure, p1, p2, and p3 are POSs of 1,2,3 words after the target word respectively.
Similarly, p−1, p−2, and p−3 are POSs of 1,2,3 words before the target word. When there
are not enough words to either side of the target word, the value ‘NULL’ is used to fill
the vacancies.

To illustrate how POS features are extracted, we consider the example of Figure 3.7.
Figure 3.10 shows POSs of all words in the context of the target word ‘immunisation’.
Note that each word is separated by ‘/’, where the left is the word and the right is its
POS. Then POS features are extracted as Figure 3.11.

3.4.3 Collocations

Collocation is a sequence of the words consisting of the target word and its surrounding
words. In this research, 2-gram, 3-gram, and 4-gram of the words including the target
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After/IN immunisation/NN you/PRP must/MD wait/VB at/IN least/JJS 1/CD
month/NN before/RB becoming/VBG pregnant/JJ ./. Eat/NNP properly/RB Eat-
ing/NNP well/RB before/IN and/CC during/IN pregnancy/NN is/VBZ very/RB impor-
tant/JJ ./. It/PRP keeps/VBZ you/PRP fit/VBP and/CC helps/NNS you/PRP to/TO
have/VB a/DT healthy/JJ baby/NN ./. You/PRP do/VBP n‘t/RB need/VB a/DT spe-
cial/JJ diet/NN and/CC eating/VBG for/IN two/CD could/MD mean/VB you/PRP
put/VB on/RP too/RB much/JJ weight/NN ./.

Figure 3.10: Part of Speech of “immunisation” in the Context

2-gram: {IN T}, {T PRP}

3-gram: {NULL IN T}, {IN T PRP}, {T PRP MD }

4-gram: {NULL NULL IN T}, {NULL IN T PRP}, {IN T PRP MD} {T PRP MD VB}

Figure 3.11: An example of POS feature

instance itself are extracted as the collocation feature. Similar to the POS feature, the
target instance is replaced with the wildcard symbol ‘T’. The collocation feature can be
represented as Figure 3.12. w0 is the target word. w1, w2, and w3 are 1,2,3 words after the
target word respectively. Similarly, w−1, w−2, and w−3 are 1,2,3 words before the target
word. Similar to Part of Speech feature, symbol “NULL” will be filled the vacancies if
there is not enough words on each side.

2-gram: {w−1 T}, {T w−1}

3-gram: {w−2 w−1 T}, {w−1 T w1}, {T w1 w2}

4-gram: {w−3 w−2 w−1 T}, {w−2 w−1 T w1}, {w−1 T w1 w2} {T w1 w2 w3}

Figure 3.12: Collocation Feature

From the example shown in Figure 3.7, 2-gram, 3-gram and 4-gram of collocation fea-
ture are extracted as shown in Figure 3.13.

2-gram: {after T}, {T you}

3-gram: {null after T}, {after T you}, {T you must}

4-gram: {null null after T}, {null after T you}, {after T you must}, {T you must wait}

Figure 3.13: Example of Collocation Feature
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To illustrate how the wildcard ‘T’ works, we show another example in Figure 3.14. Let
us suppose there are two sentences S1 and S2 in the training data. Both ‘diet’ and ‘public’
are monosemous words that have only one semantic class ‘noun.act’. Thus these sentences
can be used for training the classifier that judges if the target word has ‘noun.act’ or the
other semantic class. Collocation features are extracted from S1 and S2 as shown in the
bottom table in Figure 3.14. Note that several same features are extracted from these
sentences, such as ‘the-T-of-the’ and ‘the-T-of’ and so on. The feature ‘the-T-of-the’
indicates that the semantic class ‘noun.act’ can be appeared in the context where the
preceding word is “the” and the succeeding words are “of the”. If the target word is
not represented by ‘T’, the different features will be extracted, failing to capture the
similarity between these two training samples. By replacing the target word with the
common symbol ‘T’, the exactly same features can be extracted from S1 and S2.

S1 The three species survived the winter and experts fear they
might eat indigenous fish and the smaller fish that form the
diet(SC =noun.act) of the local species.

S2 After the mayor collapsed from angina, several other officials held
a press conference and informed the public(SC =noun.act) of the
incident.

S1 S2
2-gram the-T, T-of the-T, T-of
3-gram form-the-T, the-T-of, T-of-the informed-the-T, the-T-of, T-of-the
4-gram that-form-the-T, form-the-T-of,

the-T-of-the, T-of-the-local
and-informed-the-T,
informed-the-T-of,
the-T-of-the, T-of-the-incident

Figure 3.14: Example of Extraction of Collocation Feature from Different Target Words

3.4.4 Syntactic Features

Syntactic feature is direct grammatical relation between the target word and its surround-
ing word, such as subject-verb, object-verb and noun-adjective. It is well known that the
words connected to the target words via syntactic relation are useful for WSD. Thus
syntactic relation is one of the conventional feature for WSD.

First, the sentence is parsed by Stanford Parser [14]. Only the sentence containing
the target word is analyzed. Stanford Parser offers two kinds of dependencies: typed
dependencies and collapsed typed dependencies.

• Typed Dependencies: are representation where each word in the sentence (except
the head of the sentence) is independently treated to the other word.
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• Collapsed Typed Dependencies: are constructed by collapsing a pair of typed
dependencies into a single typed dependency, whose name is abbreviated based on
the word between two dependencies.

Table 3.4 shows the types dependencies and collapsed typed dependency from the sen-
tence

After immunisation you must wait at least 1 month before becoming preg-
nant.

, which is the sentence including the target word in the example of Figure 3.7. Note
that two relations of “prep(wait-5,After-1)” and “pobj(After-1,immunisation-2)” in types
dependencies are merged into one relation “prep after(wait-5,immunisation-2)” in col-
lapsed typed dependencies. The relations “prep(wait-5,before-10)” and “pcomp(before-
10,becoming-11)” are collapsed as “prep before(wait-5,becoming-11)”, too.

Table 3.4: Type Dependencies and Collapsed Typed Dependencies Extracted by Stanford
Parser

Stanford Sparser
Typed Dependencies Collapsed Typed Dependencies
prep(wait-5, After-1) prep after (wait-5, immunisation-2)
pobj(After-1, immunisation-2) nsubj(wait-5, you-3)
nsubj(wait-5, you-3) aux(wait-5, must-4)
aux(wait-5, must-4) root(ROOT-0,wait-5)
root(ROOT-0, wait-5) quantmod(1-8, at-6)
quantmod(1-8, at-6) mwe(at-6, least-7)
mwe(at-6, least-7) dobj(wait-5, 1-8)
dobj(wait-5, 1-8) tmod(wait-5, month-9)
tmod(wait-5, month-9) prep before(wait-5, becoming-11)
prep(wait-5, before-10) acomp(becoming-11, pregnant-12)
pcomp(before-10, becoming-11)
acomp(becoming-11, pregnant-12)

In this research, we use collapsed typed dependencies to represent syntactic feature.
Stanford Parser produces a set of collapsed typed dependency in the form of ‘rel(w1, w2)’
or ‘abbreviated relation name(governor, dependent)’, where w1 is governor and w2 is de-
pendent under the relation ‘rel’. When the dependency including the target instance is
extracted, it is replaced by the wildcard symbol ‘T’. That is, rel(w1, T ) and rel(T,w2)
are extracted as the syntactic feature. All of word indices in governor and dependent are
removed.

Finally, Figure 3.15 shows all the syntactic features extracted from the example of Table
3.4.
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prep after(wait, T), nsubj(wait,you), aux(wait, must),root(ROOT, wait), quant-mod(1,
at), mwe(at, least), dobj(wait, 1), tmod(wait, month), prep before(wait, becoming),
acomp(becoming, pregnant)

Figure 3.15: Example of Syntactic Feature

3.5 Learning Algorithm

In this research, Support Vector Machine (SVM) [4] is chosen as an algorithm for classi-
fication. SVM is a supervised learning which effectively analyzes and classifies patterns
on high-dimensional feature space.

SVM is a binary classifier, that is, the number of the classes are two. They are often
called as positive and negative classes. In classification, SVM makes a good separation by
constructing a hyperlane that separates the positive and negative samples in the training
data and has the largest distance between to the nearest training data points (also called
functional margin). The points that are closest to the separating hyperplane are called
as support vectors. The idea is based on the fact that the larger the margin is, less
classification errors is found.

Figure 3.16 3 illustrates how the largest functional margin can optimize the classifica-
tion. The black and white points stand for the positive and negative samples, respectively.
As we can see, the separator H1 cannot separate the data of two classes. H2 can separate
the positive and negative samples, but it is not very good since the margin is small. If
an unknown positive (or negative) data point is located near the positive (or negative)
support vector, its position is likely to be in the area of negative (or positive) side, causing
classification error. H3 shows the best separation with the largest margin. Because an
unknown data near the support vector is more likely to be located in the area of the same
orientation side.

In this research, the classifier will work as follows:

(1) First, the training data for each semantic class is prepared.

(2) Then, the model will be built using the SVM algorithm.

(3) The test data will be classified by the trained model.

(4) The semantic class which is the most likely for the target word will be chosen as the
output.

In the experiment, Sklearn library [20] is used to train SVM classifiers. SVM in Sklearn
uses a kernel function to transform data in raw representation to feature vector represen-
tation. The kernel we use is the Gaussian radial basis function.

There are two parameters in Sklearn library: gamma and C. In this research, they are
set as the default setting, i.e. gamma = 0.0001 and C=1000. The parameter C controls a

3By User:ZackWeinberg, based on PNG version by User:Cyc - This file was derived from: Svm sepa-
rating hyperplanes.png, CC BY-SA 3.0, https:commons.wikimedia.orgwindex.php?curid=22877598
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Figure 3.16: Support Vector Machine separators

trade-off between misclassification of training examples and the simplicity of the decision
surface.

Sklearn library can output the probability of each class when it is applied for the
classification of unknown data or test data. The probability is used to choose one semantic
class as the final output as will be explained in the next section.

3.6 Selection of Semantic Class

The system chooses the only one semantic class for the given target word. The final
step of the proposed method is to choose the most appropriate one from the results of
several classifiers. A simple majority voting is introduced. Each classifier chooses one of
two semantic classes. If the target word has two semantic classes and only one binary
classifier is applied, the semantic class chosen by the classifier is the final output. When
the target word has more than two semantic classes and two or more classifiers are applied,
the semantic class that is most frequently selected by the classifiers is chosen as the final
output. If two or more semantic classes are selected most frequently, a simple tie-break
rule is applied. We choose the semantic class with the highest score, where the score is
defined as the sum of the probabilities of the classification given by Sklearn library.

Here is an example of how majority voting system works. Suppose that we have a target
work “add” which belongs to three semantic classes: verb.communication, verb.change,
and verb.cognition. Three classifiers are required: Classifier 1 selects either verb.communication
or verb.change, Classifier 2 selects either verb.communication or verb.cognition, and Clas-
sifier 3 selects either verb.change and verb.cognition. Table 3.5 shows the probabilities of
the semantic classes produced by three classifiers.

In the example of Table 3.5, each semantic class is chosen once. Verb.communication is
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Table 3.5: Example of Majority Voting

Classifier 1 Classifier 2 Classifier 3 Score
verb.communication 0.4 0.9 – 1.3
verb.change 0.6 – 0.3 0.9
verb.cognition – 0.1 0.7 0.8

chosen by Classifier 2, verb.change is chosen by Classifier 1, and verb.cognition is chosen
by Classifier 3. So the tie break rule is applied. The score of three semantic classes are
shown in the last column in Table 3.5. Since the score is the highest, verb.communication
is chosen as the final output.

3.7 Feature Selection

Feature selection is a technique to automatically remove ineffective features to improve
the performance of machine learning. It especially works well when the number of features
is quite large, or the data samples are represented by high-dimensional feature vectors
in other words. In this section, we present two methods for feature selection. One is a
term-frequency based method, the other is Pearson’s Chi-squared Test.

3.7.1 Frequency Based Feature Selection

Term-frequency is the number of times each term occurs in a corpus. Term-frequency
based feature selection [23] is an effective method for reducing high-dimensional feature
vectors in text classification.

A term usually means a word in a text, but in this research, terms refer to the features
in the training process. After counting the frequency of all terms (features), the method
simply chooses the most frequent n features.

3.7.2 Pearson’s chi-squared Test

Pearson’s chi-squared test (χ2 test) is a statistical test and is also a popular feature
selection method that is widely applied for categorical data. This method evaluates the
difference between the observed frequencies of the features and the expected frequencies
under the null hypothesis H0 that assumes the feature and category (semantic class in this
study) are independent. If the difference is large, then we can reject the null hypothesis
H0 . It means that the feature is highly correlate with the category, implying the feature
is effective for classification.

In chi-squared test, the contingency table of the feature and category is constructed.
In this research, the table of the feature and semantic class is built as shown in Table 3.6.

In Table 3.6, O11 is the number of the data where the feature f appears in the context
of the semantic class SC, O12 is the number of the data where the feature f appears in
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Table 3.6: Contingency Table of Feature and Semantic Class

SC 6= SC

f O11 O12

6= f O21 O22

the context of the other semantic classes, O21 is the number of the data where the feature
f does not appear in the context of the semantic class SC, and O22 is the number of the
data where the feature f does not appear in the context of the other semantic classes.
Then, χ2 value is calculated from statistical data in Table 3.6 as Equation (3.1):

χ2 =
N(O11O12 −O12O21)

2

(O11 +O12)(O11 +O21)(O12 +O22)(O21 +O22)
(3.1)

where N is the total number of the data, or N = O11 +O12 +O21 +O22.
For all extracted features, χ2 values are calculated. Then the top n features with the

highest χ2 value are selected.
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Chapter 4

Evaluation

In this chapter, we describe an experiment to evaluate our proposed method. First,
the experimental setup including the preparation of the test and training data will be
explained. Then, the results of the experiments will be reported and discussed.

4.1 Test Data

For the test data of the experiments, we used the training data of Senseval-3 English
lexical sample task [16]1. It is a collection of the sense tagged text for 57 target words.
This data set contains only nouns, verbs, and adjectives as the target words. For each
instance of the target word, the gold sense was mapped to the semantic class (the unique
beginners in WordNet). However, only nouns and verbs were ambiguous in the semantic
class level. Due to heavy computational costs for training SVM from a large data, it
was difficult to conduct experiments for too many target words. Therefore, the nouns
were not used in the experiment, either. In sum, the proposed method was evaluated for
semantic class disambiguation of only verbs. However, this method can be applicable for
any parts-of-speech.

1Although both test and training data in this task were available, we chose the training data since it
is larger than the test data.
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<instance id=“difference.n.bnc.00044017” docsrc=“BNC”>
<answer instance=“difference.n.bnc.00044017” senseid=“difference%1:07:00::”>
<answer instance=“difference.n.bnc.00044017” senseid=“difference%1:11:00::”>
<context>
Thoughts will be referred to as cognisant acts. The simplest and most fundamental aspect
of cognisance ( fundamental philosophically and developmentally ) is what is usually
referred to as self - world dualism : the knowledge that there is a physical world out there
of which I am an experiencer and that is distinct from me . Mental development , on the
constructivist view , consists in the elaboration of this knowledge ; so that if there is one
central <head>difference<head> between the mental processes of the baby , the child ,
and of the adult it is in terms of how self - world dualism is manifest in ( and to ) the
subject . The representational theory of mind treats the explanation of mental life as a
kind of engineering problem ; it starts from the inside , from the representational state ,
and asks how mental states interact with one another to produce something that we would
call knowledge ; the representational theorist proceeds like a sceptical philosopher who
thinks that what figures in our mental life is not reality but our mental representations
of it (recall my saying the Fodor described his position as methodological solipsism ) .
The constructivist starting - point could not be more different , and might be said to be
biological where the representational theory is engineering or machinological .
</context>
</instance>

Figure 4.1: An Sample of Target Word ‘difference’ in Test Data

We will show several examples of the instances in Senseval-3 data and explain how to
prepare the test data in detail. Figure 4.12 and 4.2 show the examples of the instances
of the target noun ‘difference’ and verb ‘begin’, respectively. In these figures, 〈instance〉
marks up an target instance, 〈answer〉marks up a gold sense, 〈context〉marks up a context
of a target instance and 〈head〉 marks up a target instance itself. The ID of the target
instance is represented in ‘id’ attribute of the 〈instance〉 tag or ‘instance’ attribute of the
〈answer〉 tag. The character ‘n’, ‘v’ or ‘a’ after the first period is an abbreviation for
noun, verb or adjective.

In most cases, the 〈answer〉 tag appears once in a target instance as in Figure 4.2, but
in some cases there are two or more 〈answer〉 tags as in Figure 4.1. It means that there
are two or more gold senses per target instance. The annotators were allowed to assign
multiple senses if they thought the target instance has two or more appropriate senses.

2Although the nouns were not used as the target word, we have completed preparation of the experi-
ment for the nouns such as extraction of the monosemous words, construction of the feature vectors and
so on. Therefore, we show the example of the noun here.
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<instance id=“begin.v.bnc.00008477” docsrc=“BNC”>
<answer instance=“begin.v.bnc.00008477” senseid=“369202”>
<context>
They are thus not simply a mentality derived from popular religion but from a traditional
Roman catholicism which held sway in catholic Europe from the post - Reformation
period and remained unchallenged until the 1960s . As will be seen in Chapter 5 ,
understanding this religious social consciousness requires some grasp of the traditional
catholic teaching on the natural order and the good society , and how the nation is to
respect the divine order established by God. An example of this can be taken from the
recent contraception controversy in the Republic , which <head>began<head> in the
1960s . At that time , the Roman catholic archbishop of Dublin intervened in a pastoral
letter in the following revealing terms : If they who are elected to legislate for our society
should unfortunately decide to pass a disastrous measure of legislation that will allow
the public promotion of contraception and an access hitherto unlawful to the means of
contraception , they ought to know clearly the meaning of their action , when it is judged
by the norms of objective morality and the certain consequences of such a law
</context>
</instance>

Figure 4.2: An Sample of Target Word ‘begin’ in Test Data

The gold sense is marked up at ‘senseid’ attribute in 〈answer〉 tag. The different sense
IDs are used for nouns and verbs. The sense ID of the noun such as ‘difference%1:07:00’
or ‘difference:%1:11:00’ stands for an ID of WordNet synset. The list of the senses of the
word ‘difference’ in WordNet are shown in Table 4.1. The table shows the sense ID, its
corresponding synset and gloss in WordNet. The WordNet synset ID can be formatted
as ‘WORD:%X:Y:Z’, where two digit number ‘Y’ stands for the semantic class ID shown
in Table 3.1. Thus the sense can be easily mapped to its corresponding semantic class.

On the other hand, the sense ID of the verb is not WordNet synset ID. It is represented
as 6-digit numbers like ‘369202’ in Figure 4.2. In the Senseval-3 data, there is a table that
defines the correspondence between the sense ID in Senseval-3 data and WordNet synset
ID, as shown in Table 4.2. Using this table, the sense of the verb can be easily mapped
to the WordNet synset ID and also its semantic class.

The target instance was removed from the test data if two or more gold senses were
assinged for it and these senses were mapped to the different semantic classes. Because
our proposed system is designed to choose only one semantic class for one target in-
stance. For example, in Figure 4.1, since two senses were mapped to the semantic class
07 (noun.attribute) and 11 (noun.event), this instance was discarded.

Although there were 57 target words in Senseval-3 data set, not all of them were used
in our experiment. As explained earlier, the adjectives and nouns were removed from the
target word. Furthermore, if all instances of the target word has only one semantic class,
it was not used for the evaluation. Because such target words were unambiguous in the
semantic class level. In this way, 17 verbs remained as the target word in the experiment.
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Table 4.1: Lexical Entry of the Noun ‘different’

sense ID synset gloss
difference%1:07:00:: difference (the quality of being unlike or dissim-

ilar: ”there are many differences be-
tween jazz and rock”)

difference%1:10:00:: dispute, difference,
difference of opinion,
conflict

(a disagreement or argument about
something important; “he had a dis-
pute with his wife”; “there were ir-
reconcilable differences”; “the famil-
iar conflict between Republicans and
Democrats”)

difference%1:11:00:: deviation, diver-
gence, departure,
difference

(a variation that deviates from the
standard or norm; “the deviation from
the mean”)

difference%1:23:00:: remainder, differ-
ence

(the number that remains after sub-
traction; the number that when added
to the subtrahend gives the minuend)

difference%1:24:00:: difference (a significant change; “the difference in
her is amazing”; “his support made a
real difference”)

Table 4.2: Lexical Entry of the Verb ‘begin’

sense ID synset ID synset gloss
369201 begin%2:30:00:: begin, commence,

set about, start
to perform the first step in a pro-
cess; start.

369202 begin%2:42:00:: begin, commence,
originate, start

to come into being.

369203 begin%2:30:01:: begin, commence,
kick off, lead, open,
set about, start

to perform the first step of (some-
thing); start.

369204 begin%2:30:01:: begin, inaugurate,
initiate, start, un-
dertake

to cause to come into being.

The table 4.3 shows a list of the target word as well as its potential semantic classes and
number of samples in test data.
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Table 4.3: List of Target Word

Target Semantic Classes Test

activate change, creation 170

add communication, change, cognition 181

ask communication, stative 95

eat change, consumption 144

begin change, stative 68

climb change, motion 112

lose competition, emotion, possession 36

treat body, change, cognition, communi-
cation, social

107

receive communication, perception, posses-
sion

48

encounter competition, stative 61

hear cognition, perception, social 24

remain change, stative 135

rule communication, social, stative 57

suspend change, contact, social 116

watch perception, social 92

win competition, possession 42

write communication, creation 30

4.2 Training Data

In this section, we present how we prepared training data for our proposed method. In this
experiment, we only used monosemous words as the training data. Monosemous words
are words which have only one semantic class in WordNet. Let us review the advantages
and disadvantages to use monosemous words as the training data. The advantage of it
is that we can use a raw text as the training data. Since the unique semantic class of
the monosemous word can be regarded as the gold semantic class, no manual annotation
is required for preparing labeled data. Therefore, it is easy to prepare a large amount
of training data. The disadvantage is that the different words are used as the training
samples of a certain semantic class. For example, as the samples of the semantic class
‘noun.act’, any words that have noun.act as its unique semantic class, such as ‘diet’ and
‘public’ , are used. However, the effective features for semantic class disambiguation may
be different for different words. In other words, the features intrinsic to the words are lost
in the monosemous word data. Anyway, we utilized a collection of monosemous words as
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the training data.
The Daily Yomiuri corpus [5] is used to construct the training data. It is a collection of

English newspaper articles published in 2003. In the preparation process, all of monose-
mous words were extracted to separated files corresponding to one semantic class. In the
files, each line represents a list of features extracted from a context of one target instance.

We conducted two different experiments to evaluate our proposed method, which will
be described in the following two subsections in details.

4.2.1 Experiment I

Since it takes too long time to train the classifiers, we adopted the following three proce-
dures to reduce the computational cost in this experiment.

The number of the training samples were reduced to 10,000 per semantic class. These
training samples were randomly chosen. Therefore, 10,000 × 2 = 20,000 training samples
were used to train the classifier for one pair of the semantic classes. Table 4.4 shows the
statistics of the training data in Experiment I. The column ‘SC’ indicates the number of
potential semantic classes of the target word. In OVR-SCD, each one-versus-rest classifier
is trained from 10,000 × 15 = 15,000 samples, since there are 15 semantic classes of the
verb. The total number of the training sample shown in Table 4.4 is 15,000 multiplied
by the number of classifiers or potential semantic classes. In PW-SCD, each pair-wise
classifier is trained from 20,000 samples as denoted above. The number of the pair-wise
classifiers is equal to the number of pairs of the potential semantic classes. If SC are 2, 3
and 5, 2C2 = 2, 3C2 = 3 and 5C2 = 10 are the number of classifiers, respectively. The total
number of the training samples shown in Table 4.4 is 20,000 multiplied by the number of
the classifiers.
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Table 4.4: Statistics of Training Data in Experiment I

Target SC OVR-SCD PW-SCD

activate 2 300,000 20,000

add 3 450,000 60,000

ask 2 300,000 20,000

eat 2 300,000 20,000

begin 2 300,000 20,000

climb 2 300,000 20,000

lose 3 450,000 60,000

treat 5 750,000 200,000

receive 3 450,000 60,000

encounter 2 300,000 20,000

hear 3 450,000 60,000

remain 2 300,000 20,000

rule 3 450,000 60,000

suspend 3 450,000 60,000

watch 2 300,000 20,000

win 2 300,000 20,000

write 2 300,000 20,000

Second, since the dimension of the feature vector was huge, the number of the features
was limited. Frequency based feature selection, which was explained in Subsection 3.7.1,
was applied. That is, the n most frequent features were selected, where n stands for the
number of the features. We evaluated the baseline (Ariyakornwijit’s method) and our
method with n = 5000, n = 7, 000 and n = 10, 000 in a preliminary experiment. Since
the case of n = 7, 000 was the best, we will show the results of the methods with 7,000
features in the Section 4.3.

Finally, since Sklearn library can control the maximum number of iteration in the
training of SVM, we limit the iteration times. At first, SVM classifiers were trained by
the maximum of 1,000 iteration, and the performance of the baseline and our method
was compared. Then, for only our method, the classifiers were trained with an unlimited
number of iteration to improve the performance. In this case, the iterative learning of
SVM was continued until it converged.

4.2.2 Experiment II

In Experiment I, the number of the training samples per semantic class was fixed. How-
ever, such a setting is inappropriate to evaluate the proposed method. The motivation
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of our method is to correct the imbalance of the positive and negative samples. In the
training data constructed in Experiment I, the ratio of the positive and negative samples
was not naturally but artificially determined. Therefore, we reconsidered the way how to
reduce the computational costs. Experiment II was carried out as follows.

First, the size of the Daily Yomiuri corpus was reduced to 20,000 lines, where each line
roughly corresponded to each sentence. The first 20,000 lines in the file of Daily Yomiuri
were simply extracted to construct a reduced sized corpus. Then, the monosemous words
were extracted as the training samples from it. Although the size was decreased, the
distribution of the semantic classes in the whole corpus might be kept in the reduced
sized corpus. The Table 4.5 shows the statistics of the training data in experiment II.

Table 4.5: Statistics of Training Data in Experiment II

Target SC OVR-SCD PW-SCD

activate 2 531,346 16,366

add 3 797,019 29,219

ask 2 531,346 53,483

eat 2 531,346 19,512

begin 2 531,346 55,131

climb 2 531,346 12,822

lose 3 797,019 74,168

treat 5 1,328,365 70,010

receive 3 797,019 68,147

encounter 2 531,346 59,812

hear 3 797,019 78,705

remain 2 531,346 55,131

rule 3 797,019 97,979

suspend 3 797,019 30,715

watch 2 531,346 69,721

win 2 531,346 49,260

write 2 531,346 14,718

Next, the dimension of feature vector was limited to 7, 000. For feature selection, Pear-
son’s chi-squared test based feature selection presented in Subsection 3.7.2 was applied.

Finally, the maximum number of iteration controlled by Sklearn library was increased
to 5,000 iterations. Comparing to Experiment I, this experiment took more computational
cost and time since the dimension of feature vector was the same but the training data
and the maximum number of iterations was larger.
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4.3 Results

An evaluation criterion is accuracy of prediction of the semantic classes. This is a tradi-
tional measurement widely used in most of the classification tasks. It is measured by the
ratio of the number of correctly predicted instances to the total number of target instances.

Accuracy =
Number of correctly classified samples

Total number of test samples
(4.1)

A baseline system is the Ariyakornwijit’s method (OVR-SCD) [1]. Their system origi-
nally chooses two or more semantic classes for each target instance. On the other hand,
our system always chooses only one semantic class. To compare the baseline and our
system, Ariyakornwijit’s method is revised to select one semantic class per instance in
our implementation. If two or more classifiers judge as ‘yes’, the semantic class of the
highest probability provided by Sklearn library is chosen. Since this revision is required
for comparison with our system, we implemented Ariyakornwijit’s method as the baseline
by ourselves.

4.3.1 Results of Experiment I

Table 4.6 reveals the accuracy of the baseline (OVR-SCD) and our method (PW-SCD)
with the maximum 1,000 iteration training, and our method with no limit of iteration
times (PW-SCD+). The last row indicates the micro average of the accuracy for 17 target
words.

The overall performance of our proposed pair-wise semantic class disambiguation was
better than the previous one-versus-rest approach. The micro average of PW-SCD was
improved by 1.4 % comparing with OVR-SCD. The accuracy was quite high for several
target words, for example, 87% for the target word ‘write’. For the other several words,
however, the accuracy was low, e.g. 0.7% for ‘eat’and 2.7% for ‘climb’. PW-SCD always
chose the semantic class “change” for these two target words, but there were only 1 and
3 instances of “change” in the test data of ‘eat’ and ‘climb’, respectively. It might be
caused by the limitation of training iteration, since the accuracy of PW-SCD+ was much
improved.

Furthermore, the improvement by our method also highly depended on the target word.
For the target word ‘begin’, ‘receive’, ‘encounter’, ‘suspend’, ‘watch’, and ‘write’, PW-SCD
remarkably outperformed OVR-SCD by 15-65%. On the other hand, the accuracy greatly
decreased for ‘ask’, ‘eat’, ‘remain’, and ‘rule’. These results indicate that the appropriate
architecture of the semantic class disambiguation, one-versus-rest or pair-wise, might be
different for the target word. If we could guess more appropriate method for the target
word and apply it for disambiguation, the overall performance would be improved much.
Investigation of this direction is our important future work.

Let us compare PW-SCD and PW-SCD+. When the number of iteration in SVM
training was unlimited, the micro average was improved by 10% and reached around 50%.
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Although the performance dropped for some target words (‘add’, ‘lose’, and ‘encounter’)
due to maybe overfitting, the accuracy was drastically improved for some target words
such as ‘ask’, ‘eat’, ‘climb’, and ‘win’. Therefore, it is important to continue the iterative
training of SVM until it converges. On the other hand, the accuracy was same for several
target words, because the training converged before 1,000 iteration.

Table 4.6: Accuracy of Semantic Class Disambiguation in Experiment I

Target OVR-SCD PW-SCD PW-SCD+

activate 0.77 0.77 0.77

add 0.33 0.49 0.42

ask 0.89 0.22 0.57

eat 0.21 0.007 0.35

begin 0.53 0.78 0.78

climb 0.93 0.027 0.37

lose 0.25 0.29 0.21

treat 0.22 0.33 0.14

receive 0.042 0.27 0.27

encounter 0.016 0.67 0.64

hear 0.52 0.48 0.48

remain 0.71 0.14 0.47

rule 0.47 0.21 0.26

suspend 0.20 0.35 0.35

watch 0.065 0.60 0.60

win 0.36 0.54 0.64

write 0.37 0.87 0.87

Micro Average 0.398 0.412 0.484

4.3.2 Results of Experiment II

Table 4.7 reveals the accuracy of the baseline and our method with the maximum 5,000
iteration training and feature selection by Pearson’s chi-squared test using the size limited
corpus. The last row indicates the micro average of the accuracy for 17 target words. Let
us call OVR-SCD2 and PS-SCD2 as One-versus-rest Semantic Class Disambiguation and
Pair-wise Semantic Class Disambiguation respectively in the second experiment.

In this experiment, the overall performance of our proposed pair-wise semantic class
disambiguation was still better than the previous one-versus-rest approach. The micro
average of PW-SCD2 was improved by 7.3% comparing with OVR-SCD2 However, it
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had the same problem of instability of the accuracy in Experiment I. The accuracy was
quite high for several target words, for example, 98% for the target word ‘encounter’ and
‘watch’. On the other hand, the performance for some target words was quite low such
as 0.7% for ‘eat’.

Our method requires no manual annotated training corpus because it can extract the
features from a raw text using the monosemous words as the gold semantic class. In this
approach, various domains with different topics in training corpus might cause the noise
of the model. This such noise might cause the dependence of the system on target words
since some words by chance has training and test samples in a similar domain. Therefore,
a minor step which builds a classifier worked as a topic filter should be proposed to apply
for both training and test processes. In this way, training and test samples can be filtered
in a similar domain using an unsupervised algorithm.

Table 4.7: Accuracy of Semantic Class Disambiguation

Target OVR-SCD2 PW-SCD2

activate 0.45 0.55

add 0.18 0.30

ask 0.26 0.15

eat 0.51 0.007

begin 0.40 0.78

climb 0.28 0.75

lose 0.33 0.72

treat 0.49 0.11

receive 0.46 0.73

encounter 0.59 0.98

hear 0.26 0.48

remain 0.32 0.14

rule 0.39 0.26

suspend 0.30 0.45

watch 0.35 0.98

win 0.50 0.38

write 0.60 0.13

Micro Average 0.392 0.465
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4.3.3 Discussion

The average accuracy of our proposed method was better than the previous work in both
experiments. However, the performance of our method was still not high. Although the
training data of the monosemous words can be constructed with no human intervention,
we guess that the gap of the contexts of the semantic class between the training and
test data is the major causes of the errors. In other words, the contexts of the semantic
class may be very different for the words even when the words have the same and unique
semantic class. Since our method as well as previous approaches of WSD rely on the
assumption that the same semantic class or sense will be appeared in the similar contexts,
the difference of the contexts in the test and training data is serious problem. Therefore,
a method to narrow such a gap should be investigated. For example, we expect that
the contexts of the semantic class would be similar in the documents of the same topic.
Therefore, if the system can identify the topics of the text in the test and training data,
for example by Latent Dirichlet Allocation (LDA), then filter the training samples so that
the training data consists of the texts of the same topic in the test data, it can utilize the
samples similar to the test data for training. This approach can contribute to improve
the performance of semantic class disambiguation.

Next, we compare the results of Experiment I and II. The micro average of the accuracy
of PW-SCD2 was 1.9% worse than PW-SCD+, but 5.3% better than PW-SCD. This might
be mainly caused by changing the maximum number of iterations in two experiments.
In addition, comparing two feature selection methods, Pearson’s chi-squared test seems
better than the frequency based feature selection. Because the accuracy of PW-SCD2 and
PW-SCD+ were comparable even though PW-SCD+ took much more time for training
than PW-SCD2.

In Experiment I, PW-SCD+ achieved relatively high accuracy (more than 70%) for
three words, ‘activate’, ‘begin’ and ‘write’. In PW-SCD2 in Experiment II, there were
more target words (six words ‘begin’, ‘climb’, ‘lose’, ‘receive’, ‘encounter’ and ‘watch’)
of which the accuracy was better than 70%. In contrast, PW-SCD2 poorly performed
for more target words than PW-SCD+. The accuracy of only one target word (‘treat’)
was less than 20% in PW-SCD+, while there were five target words (‘ask’, ‘eat’, ‘treat’,
‘remain’ and ‘write’) in PW-SCD2. Among these 5 words, we found that the accuracy
of three words, i.e. ‘ask’, ‘eat’ and ‘remain’, was greatly improved by increasing the
maximum number of iteration by comparing PW-SCD and PW-SCD+. We can expect
that the performance of PW-SCD2 for these target words will be also improved by taking
more time for training SVM.

On the other hand, the accuracy of OVR-SCD2 was better than 50% for only a few
target words (‘eat’, ‘encounter’, ‘win’ and ‘write’). There were more target words of
which the accuracy was higher than 50% in OVR-SCD, however, OVR-SCD was slightly
outperformed OVR-SCD2 by 0.6% of the micro average of the accuracy.
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Chapter 5

Conclusion and Future Work

In this chapter, we summarize our contribution in this research and mention several plans
to improve our work in the future.

5.1 Conclusion

In this research, we have proposed a new method to build semantic class disambiguation
system that can be applicable to all words. Our architecture is based on the classifiers
selecting one of two semantic classes, instead of the binary classifiers for each individual
semantic class in the previous approach. For a given target instance, the several classifiers
that chose one of the two semantic classes for any pairs of the potential semantic classes of
the target word were applied. Finally, the most appropriate semantic class was chosen by
the weighted majority voting of the outputs of these classifiers. Our proposed approach
could alleviate imbalance of the positive and negative samples, which was considered as
a reason for low performance in the previous method.

In addition, we also applied two feature selection methods: frequency based method
and Pearson’s chi-squared test based method. Two different procedures were also applied
to reduce the computational cost and time.

The proposed method shows an improvement for the previous approach. In the exper-
iment I, the proposed method (PW-SCD) outperformed Ariyakornwijits method (OVR-
SCD) 1.4 % of accuracy. In the experiment II, the proposed method (PW-SCD2) improved
8% of accuracy comparing with Ariyakornwijits method (OVR-SCD2).

From the results of the experiments, we can conclude that:

(1) The proposed method of the semantic class disambiguation outperformed the pre-
vious method. In Experiment II where 17 verbs were used for the evaluation, PW-
SCD2 achieved 7.3% better accuracy than OVR-SCD2.

(2) The proposed method were requires to train more classifiers. However the com-
putational cost and time spent for each was much less than the previous method,
since the size of the training data was much reduced comparing to the extremely
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imbalanced the training data. Therefore, the proposed method was more likely to
be practical and the reasonable for semantic class disambiguation.

(3) The performance of the semantic class disambiguation highly depended on the target
word. For some words, our method achieved better accuracy than the previous
method, but not for other words. On average, our method outperformed the previous
approach.

(4) Due to the use of the monosemous words as the training data, the classifiers were
trained from the training samples of the words that were different with the target
word. Such a gap still remained as an important factor of low performance.

The research showed a promising method to alleviate knowledge acquisition bottleneck,
although it still has much room for improvement.

5.2 Future Work

Although a little improvement was found, there is much room to improve our method
since the accuracy was still not high. This section discusses some future direction to
improve our method.

As discussed earlier, the low performance may be caused by the fact that not the
instances of the target word itself but the instances of the different monosemous words
are used as the training data. Therefore, we will explore a lightly supervised learning
approach that utilizes both a small amount of the data annotated with the gold semantic
classes and a large amount of unlabeled data (i.e. the monosemous words).

Second, the advantages and disadvantages of one versus rest approach and pair-wise
approach should be investigated. If we can choose more appropriate approach for indi-
vidual target words, we can expect that the overall performance of the semantic class
disambiguation will be much improved.

Since the numbers of the training samples and features are limited in our experiment
due to the computational cost, more powerful server or super computer will be used for
further improvement. The use of deep learning technique instead of SVM is our another
research interest.
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