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Abstract. The problem of decomposing a pixel grid into base-monotone
regions was first studied in the context of image segmentation. It is known
that for a given n ⇥ n pixel grid and baselines, one can compute in
O(n3) time a maximum-weight region that can be decomposed into dis-
joint base-monotone regions [Chun et al. ISAAC 2009]. To complement
this fact, we first show the NP-hardness of the problem of optimally
locating k baselines in a given pixel grid. Next we present an O(n3)-
time 2-approximation algorithm for this problem. We also study some
polynomial-time solvable cases, and variants of the problem.

1 Introduction

Let P be an n⇥n pixel grid. A pixel (i, j) of P is the unit square whose top-right
corner is the grid point (i, j) 2 Z2. For example the bottom-left cell of P is (1, 1)
and the top-right cell is (n, n). Each pixel p = (i, j), where 1  i, j  n, has its
weight w(p) 2 Z. Now we define the following general problem.

Problem: Maximum Weight Region Problem (MWRP)
Instance: An n⇥ n pixel grid P .
Objective: Find a region R 2 F maximizing the weight w(R) =

P

p2R w(p),

where F ✓ 2P be a fixed family of pixel regions.

The general problem MWRP has been studied for several families F that are
related to practical problems. Observe that if F = 2P , then R can be arbitrarily
chosen, and thus the answer is the set of all positive cells. On the other hand, if
F is the family of connected regions (in the usual 4-neighbor topology), then the

1

Yota Otachi




Fig. 1. Image segmentation via k baseline MWRP. In this example, the edges of the
picture is used as baselines (k = 4). For example, the red region in the third figure
(from left) uses the top edge as its baseline.

Fig. 2. A based x-monotone region (left) and a based y-monotone region (right).

problem becomes NP-hard [2]. For the complexity of MWRP for other families,
see the paper by Chun et al. [5, 4] and the references therein.

Motivated by the image segmentation problem, Chun et al. [5] studied more
complicated family of pixel regions for MWRP (see Fig. 1). A baseline of an n⇥n
pixel grid P is a vertical line x = b or horizontal line y = b, where 0  b  n. A
pixel region R is a based x-monotone region if there is a horizontal baseline y = b
such that (i, j) 2 R implies (i, j � 1) 2 R for j � b + 1, and (i, j) 2 R implies
(i, j + 1) 2 R for j < b (see Fig. 2). Based y-monotone regions are analogously
defined. Based x- and y-monotone regions are base-monotone regions. Given a
set of k baselines, a region R is base-monotone feasible if it can be decomposed
into pairwise disjoint base-monotone regions with respect to the baselines. The
k baseline MWRP is MWRP in which we are given k (vertical or horizontal)
baselines, and we find a maximum-weight base-monotone feasible region respect
to the baselines.

Chun et al. [5] observed that the complement of a maximum-weight base-
monotone feasible region represents an object in a picture nicely if the baselines
are located reasonably (see Fig. 3). They showed that the k baseline MWRP
can be solved in polynomial time. They also studied the k base-segment MWRP,
in which we are given k segments and find a region decomposable into base-
monotone regions respect to the given base-segments. (We will define this prob-
lem more precisely in the next section.) They showed some partial results on
this problem. For other formulations, as optimization problems, of the image
segmentation problem, see the recent work by Gibson et al. [8].

In the setting of the k baseline MWRP, we are given k baselines. Thus a
natural question would be “What if baselines are not given?” In other words,
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Fig. 3. The complement of a base-monotone feasible region may represent an object
in a picture nicely. By additional baselines, the result may be improved.

“How can we divide the pixel grid into subgrids with vertical and horizontal
lines?” We study this problem and show that the problem of optimally locating
k baselines is NP-hard but can be approximated within factor 2. Next we propose
another way to divide the pixel grid into subgrids, and show that this variant
can be solved in polynomial time. Finally, we study the k base-segment MWRP
and present sharp contrasts of its computational complexity.

Due to space limitation all proofs are omitted. (They are included in the
appendices in the submission version.)

2 Definitions of the three problems

2.1 Baseline Location

To complement the result by Chun et al. [5], who showed that the k baseline
MWRP can be solved in O(n3) time, we study the computational complexity of
the following problem.

Problem: Baseline Location
Instance: An n⇥ n pixel grid P and positive integers k and w.
Question: Is there k baselines in P such that a maximum-weight base-monotone

feasible region has weight at least w?

There are only
�2n+2

k

�

possible allocations of k baselines. Thus Baseline Loca-
tion can be solved in O(2knk+3) time. However, this is impractical if k is a part
of the input. We want to solve this problem in O(f(k) · poly(n)) time or even in
O(poly(k+ n)) time. Unfortunately, the latter case very unlikely happens as we
will prove the problem is NP-hard if k is a part of the input. The possibility of
the former case remains unsettled in this paper.

2.2 The k base-segment MWRP

Consider a segment s in a baseline `. If a monotone region R with baseline `
intersects ` only in s, then R has s as its base-segment. Chun et al. [5] also studied
k base-segment MWRP, in which k base-segments are given, and one wants
to find a region that can be decomposed into disjoint monotone regions with
respect to the given base-segments. They also studied two-directional version
of this problem in which the region can be built only on the right side of each
vertical base-segment and on the upper side of each horizontal base-segment.
They showed the following results.
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Fig. 4. Quad decompositions of depth 1, 2, and 3.

Theorem 2.1 ([5]). The k base-segment MWRP can be solved in O(nO(k))
time. The two-directional version can be solved in O(kO(k)n4) time.

It was not known whether the problem is NP-hard when k is a part of the input
and whether the two-directional version can be solved in polynomial time with
both n and k. We will present a�rmative answers to these questions.

2.3 Quad Decomposition

Chun et al. showed that solving the k baseline MWRP is equivalent to solving
the following problem for each subgrid obtained by the given baselines. They
actually showed that the following problem can be solved in O(mn2) time.

Problem: Room-Edge Problem
Instance: An m⇥ n pixel grid P .
Objective: Find a maximum-weight base-monotone feasible region with the

four baselines x = 0, x = m, y = 0, and y = n.

We solve the Room-Edge Problem for each subgrid, and then answer their
total weight as one for the baseline MWRP. From this point of view, we propose
another problem Quad Decomposition. For an n ⇥ m pixel grid P and a
point p = (i, j), we can divide P naturally into four subgrids (the bottom-left,
bottom-right, upper-left, and upper-right parts respect to the point p). We call
the resultant set of subgrids the quad decomposition of P at p. If we recursively
apply this decomposition d times (at arbitrarily chosen points), then we will
have 4d subgrids of P (see Fig. 4) We call the resultant set of subgrids a depth
d quad decomposition of P . Now our problem can be defined as follows.

Problem: Quad Decomposition
Instance: An n⇥ n pixel grid P and positive integers d and w.
Objective: Find a depth d quad decomposition of P that maximizes the total

sum of the weight of the optimum solution of Room-Edge Problem for
the subgrids in the decomposition.

Note that we can assume d 2 O(log n) since otherwise the problem becomes
trivial (we can take all positive cells). We will show that this problem can be
solved in polynomial time. In the context of image segmentation, we may expect
that the quad decomposition works well compared with k baseline decomposi-
tion. This is because, by using quad decompositions, we can place many bases
in complicated parts of the image.
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Fig. 5. A baseline forcer: forcing one baseline.

3 NP-hardness of Baseline Location

Here we prove the following theorem.

Theorem 3.1. Baseline Location is NP-complete in the strong sense.

The problem is clearly in NP. We prove its NP-hardness by reducing Inde-
pendent Set to this problem. An independent set of a graph is a set of pairwise
non-adjacent vertices. The following problem is known to be NP-complete [6].

Problem: Independent Set
Instance: A graph G and a positive integer s.
Question: Does G have an independent set of size at least s?

3.1 Gadgets

We first define two small gadgets for forcing baselines into restricted zones.
Throughout this paper, each red ⇥ in a pixel grid represents a huge negative
weight whose absolute value is equal to the sum of all the positive weights in
the grid. Also, each blue • represents a (not necessarily large) positive weight.
All the other cells have weight 0.

Our first gadget is the 3 ⇥ 3 grid depicted in Fig. 5. If we want to take the
positive cell at the center, we need one baseline as in the figure. Since we cannot
take any huge negative cell, the possible locations of the baselines are restricted
to the four positions in the figure. We call this gadget a baseline forcer. The
weight of a baseline forcer is the weight of the positive cell, and the position of
a baseline forcer is the position of its bottom-left cell.

Next we consider a similar gadget depicted in Fig. 6. To take all the positive
cells and not to take any negative cell, we need either one vertical baseline
or two horizontal baselines. Therefore, if we need to minimize the number of
baselines, then we have to use one vertical baseline. We call this gadget a vertical
baseline forcer. By rotating this gadget, we can also obtain a gadget for forcing
two vertical baselines or one horizontal baseline. We call it a horizontal baseline
forcer. Two positive cells in this gadget have the same weight, and their weight is
the weight of the vertical or horizontal baseline forcer. The position of a vertical
or horizontal baseline forcer is the position of its bottom-left cell.

Vertical and horizontal baseline forcers work even if we insert some space
between columns or rows as in Fig. 6. The location of the baseline is restricted
to the area depicted in the figure. We say that a vertical (horizontal) baseline
forcer intersects a vertical (horizontal resp.) baseline if the baseline is in the
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Fig. 6. (Left) A vertical baseline forcer: forcing one vertical baseline. (Right) Forced
baselines are restricted to the area indicated by double headed arrows.

restricted area; that is, a base monotone shape with the vertical or horizontal
baseline can contain the positive cells in the vertical or horizontal baseline forcer.
The number of the columns used by a vertical baseline forcer is its width, and the
number of rows used by a horizontal baseline forcer is its height. For example,
the original vertical baseline forcer in Fig. 6 is of width 3.

3.2 Reduction

Given an instance (G, s) of Independent Set, we construct an instance (P, k, w)
of Baseline Location as follows. It is easy to see that the reduction below can
be done in polynomial time, and the absolute values of the weights are bounded
by a polynomial of the input size.

In the following, we assume |V (G)| = |E(G)| for notational convenience. (It
is easy to see that Independent Set is NP-hard even if |V (G)| = |E(G)|.)
Let V (G) = {v1, . . . , vm} and E(G) = {e1, . . . , em}. We set the number of
baselines k = 2m and the required weight w = 8m3+8m2+ s. The grid P is the
(20m+ 20)⇥ (20m+ 20) pixel grid with the following entries (see Fig. 7).

Vertex gadgets For each vertex vi, we put a vertical baseline forcer of width
5 and weight 2m2 + m, denoted VF i, at the position (10i, 5i). We also put a
baseline forcer of weight 1, denoted BF i, at the position (10i� 1, 20m+ 15).

Edge gadgets Let eh = {vi, vj} 2 E(G) be an edge with i < j. We put a
horizontal baseline forcer of height 10 and weight 2m2+m, denoted HFh, at the
position (10m+5h, 5m+15h). Next we put two horizontal baseline forcers HFh,i

and HFh,j of height 3 and weight m at the positions (10i � 3, 5m + 15h � 1)
and (10j � 3, 5m + 15h + 8), respectively. Also, we put two baseline forcers
BFh,i and BFh,j of weight m at the positions (10i + 3, 5m + 15h + 2) and
(10j + 3, 5m+ 15h+ 5), respectively.

The weight of negative cells We have the following positive cells in the grids:

– 4m cells of weight 2m2 +m,
– 6m cells of weight m, and
– m cells of weight 1.
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vi v j

eh = {vi, v j}

VFi

VF j

HFh

BFi BF j

BFh,i

BFh, j

HFh, j

HFh,i

Fig. 7. Gadgets for an edge {vi, vj}: black thick lines are the candidates of required
baselines, two vertical and one horizontal.

The total weight of the positive cells is W = 4m(2m2 + n) + 6m2 + n = 8m3 +
10m2 + m. We set the weight of the negative cells to �W so that these cells
cannot be taken in any solution with a positive total weight.

3.3 Equivalence

Lemma 3.2. (G, s) is a yes-instance of Independent Set if and only if (P, k, w)
is a yes-instance of Baseline Location.

4 A 2-approximation algorithm for Baseline Location

Our approximability result is based on the polynomial-time solvability of the
following problem.

Problem: Vertical Baseline Location
Instance: An n⇥ n pixel grid P and a positive integer k.
Objective: Find k vertical baselines in P that maximize the weight of an opti-

mal base-monotone feasible region respect to these baselines.

The problemHorizontal Baseline Location is defined analogously. We show
that these problems can be solved in O(n3) time.
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s s
0

range of s range of s
0 s

5 0 �5 2 4 1 3 �1 0 �54 4 2 3 0 �5

as(1) as(2) as(3) as(4) as(5)

Fig. 8. (Left) The ranges of vertical base-segments s and s0. (Right) Example of as(p).
The corresponding weights ws(1), . . . , ws(5) = 5, 1, 1, 3, 3.

Theorem 4.1. Vertical Baseline Location and Horizontal Baseline
Location can be solved in O(n3) time.

We solve Vertical Baseline Location with k vertical baselines and Hor-
izontal Baseline Location with k horizontal baselines in O(n3) time, inde-
pendently. We output the better one of these solutions. We can show that the
output is a 2-approximation solution.

Theorem 4.2. There is an O(n3)-time 2-approximation algorithm for locating
k baselines to maximize the weight of optimum base-monotone feasible region.

5 The k base-segment MWRP

We extend the results of Chun et al. [5] (Theorem 2.1). We first reduce the two-
directional version to Weighted Independent Set in bipartite graphs, which
can be solve in polynomial time [10]. We next reduce the Independent Set
in planar graphs to the original problem. This implies the NP-hardness of the
original problem, since Independent Set is NP-hard for planar graphs [7].

5.1 Two-directional version

We first divide each base-segment of length ` into ` unit base-segments. This re-
finement does not change the optimum value. Now we have O(kn) base-segments
of length 1. We identify a base-segment s with (i, j) if s is the left or bottom
edge of a pixel (i, j).

For each vertical base-segment s = (i, j), we define its range as follows: if
there is no vertical base-segment s0 = (i0, j) with i0 > i, then the range of
s is [i, n]; otherwise the range of s is [i, i0], where i0 is the smallest index for
which such a segment exists (see Fig. 8). We define the range of a horizontal
base-segment analogously.

Let s = (i, j) be a vertical base-segment with range [i, i0]. Let as(0) = i� 1,
and for p � 1, let as(p) be the minimum index h such that as(p�1) < h  i0 and
P

as(p�1)<qh w(q, j) is positive. If there is no such index, then as(p) is undefined.
If as(p) is defined for some p � 1, then let ws(p) =

P

as(p�1)<qas(p)
w(q, j). See

Fig. 8. For each horizontal base-segment s0, we also define the sequence as0(·)
analogously.
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Fig. 9. The bipartite graph construction. The vertices corresponding to the crossing
ranges of two base-segments induce the disjoint union of an independent set and a
complete bipartite graph.

Now we construct a bipartite graph G = (U, V ;E). Let s = (i, j) be a
vertical base-segment. Assume that r is the largest index such that as(r) is
defined. Now all as(0), . . . , as(r) are defined by the definition. If r = 0, then this
segment s is useless and ignored. Otherwise, we put vertices us(p), 1  p  r,
with weight ws(p) into U . For each horizontal base-segment s0 = (i0, j0), we
put vertices vs0(p0) into V in the same way. Next we define the edge set E.
Two vertices us(p) 2 U and vs0(p0) 2 V are adjacent if and only if two base-
monotone regions with base-segments s and s0 have nonzero area intersection if
they contain (as(p), j) and (i0, as0(p0)), respectively. More precisely, this can be
stated as: i  i0  as(p) and j0  j  as0(p0). See Fig. 9 for example.

Lemma 5.1. An optimum solution of an instance of the two-directional k base-
segment MWRP has weight at least W if and only if the corresponding bipartite
graph G has an independent set of weight at least W .

Theorem 5.2. The two-directional k base-segment MWRP can be solved in
O(k3n6 log kn) time.

5.2 NP-hardness of the k base-segment MWRP

We now show the following theorem.

Theorem 5.3. The k base-segment MWRP is NP-complete in the strong sense.

The problem is clearly in NP, and thus it su�ces to show the NP-hardness.
We reduce Independent Set for planar graphs to the k base-segment MWRP.
A graph is planar if it can be drawn in the plane without edge crossings. It is
known that Independent Set is NP-hard even for planar graphs [7].

Nice visibility representations A w⇥h grid is the subset {1, 2, . . . , w}⇥{1, 2, . . . , h}
of the plane. A visibility representation of a planar graph G maps each vertex
of G to a horizontal segment with endpoints in a grid and each edge of G to a
vertical segment with endpoints in a grid such that

9
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Fig. 10. A planar graph. Its visibility and nice visibility representations.

1. no segments of two distinct vertices intersect,
2. segments of two distinct edges intersect only at their endpoints, and
3. the segment of an edge {u, v} touches the segments of u and v.

See Fig. 10 for example. Otten and van Wijk [11] showed that every planar
graph has a visibility representation. It is known that a visibility representation
of a planar graph in an O(n) ⇥ O(n) grid can be found in linear time [12–14].
Additionally, we need the following conditions for representations:

4. no two vertical segments have the same x-coordinate,
5. no two horizontal segments have the same y-coordinate, and
6. no two endpoints of segments have the same position.

We call a visibility representation satisfying the three additional conditions a
nice visibility representation. Given a visibility representation of a planar graph,
we can obtain a nice visibility representation of the graph in polynomial time by
refining each cell of the grid to an O(n)⇥O(n) subgrid, slightly extending each
horizontal segment, and slightly shifting each vertical segment.

Reduction Let (G, s) be an instance of Independent Set, where G is a planar
graph with n vertices and m edges. Note that we do not assume n = m here.
We first construct a nice visibility representation R = (A,B) of G in polynomial
time, where A is the set of horizontal segments and B is the set of vertical
segments. We construct a pixel grid P from R as follows (see Fig. 11).

For each vertex u 2 V with the corresponding horizontal segment au =
[x1, x2] ⇥ {y} 2 A, we put a vertical base-segment (x1, y) and set the weight 1
to the cell (x2, y). For each edge e = {v, w} 2 E with the corresponding vertical
segment bu = {x} ⇥ [y1, y2] 2 B, we put horizontal base-segments (x, y1) and
(x, y2 + 1) and set the weight n to the cell (x, ye), where the y-coordinate ye is
not used by any vertical base-segment and y1 < ye < y2. Such a coordinate can
be chosen by the refinement of the grid. Note that the weight of a cell is at most
n and there is no negative-weight cell.

Equivalence We now show that (G, s) is a yes-instance if and only if the optimum
value of k base-segment MWRP on P is at least mn+ s. (The proof is omitted.)
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Fig. 11. Each green thick segment is a base-segment. In the right figure S = {b, d}.

The three-directional version In the reduction above, we may assume without
loss of generality that the region can be built only on the right side of each
vertical base-segment, on the upper sides of some horizontal base-segments, and
on the lower sides of the remaining horizontal base-segments. We call this version
the three-directional k base-segment MWRP.

Corollary 5.4. The three-directional k base-segment MWRP is NP-complete in
the strong sense.

6 Polynomial-time algorithm for Quad Decomposition

Recall that Quad Decomposition is the problem of finding a depth d quad
decomposition of P that maximizes the total sum of the weight of the optimum
solution of Room-Edge Problem for the subgrids in the decomposition.

A dynamic programming approach allows us to have the following result.

Theorem 6.1. Quad Decomposition can be solved in O(n7) time.

The bottleneck of the running time above is the first phase of solving Room-
Edge Problem for all the possible O(n4) subgrids. Using techniques used in
the study of the all-pairs shortest path problem, we can slightly improve the
running time of the first phase.

Given s⇥t and t⇥r real matrices A = (ai,j) and B = (bi,j), the funny matrix
product A�B is the s⇥ r matrix C = (ci,j) with ci,j = max1kn(ai,k + bk,j).
It is known that the computational complexity of funny matrix multiplication is
equivalent to that of all-pairs shortest path problem in weighted directed graphs
(see [1, Section 5.9]). We can show that the first phase involves funny matrix
multiplication. Using the current best algorithm for funny matrix multiplication
by Han and Takaoka [9], we have the following result.

Theorem 6.2. Quad Decomposition can be solved in O(n7 log log n/ log2 n)
time.
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7 Concluding remarks

Baseline Location and related problems are introduced as formulations of
image segmentation problems. However, in this paper, we focused on their the-
oretical aspects and studied their computational complexity. We believe that
these problems can be arisen in practical settings. Experimental results of using
k-baseline MWRP for image segmentation can be found in [3, 4].

It would be interesting to ask the fixed parameter tractability of Baseline
Location with parameter k, the number of baselines.
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A Omitted proofs

A.1 Proofs in Section 3

Here we provide the proof of Lemma 3.2. See Fig. 16 for an example of the
reduction.

Lemma A.1. If (G, s) is a yes-instance of Independent Set, then (P, k, w)
is a yes-instance of Baseline Location.

Proof. Let S be an independent set ofG with |S| � s. We usem vertical baselines
for vertices and m horizontal baselines for edges.

For each vertex vi 2 S, we set a vertical baseline at x = 10i. For each vertex
vi 2 V (G) \ S, we set a vertical baseline at x = 10i + 3. Let eh = {vi, vj} 2
E(G) be an edge with i < j. If vi 2 S, then we set a horizontal baseline at
y = 5m+15h+8. Otherwise, we set a horizontal baseline at y = 5m+15h. For
example, see Fig. 12 for the case of eh = {vi, vj} 2 E(G) and vi 2 S. Note that
these facts imply vj /2 S from the definition of independent sets.

Each vertical baseline corresponding to a vertex vi can take two cells of weight
2m2 +m in VF i and degG(vi) cells of weight m in {HFh,i | vi 2 eh} if vi 2 S,
or {BFh,i | vi 2 eh} if vi /2 S. If vi 2 S, then the vertical baseline can take one
cell of weight 1 in BF i also.

Let eh = {vi, vj} and assume vj /2 S without loss of generality. The horizontal
baseline corresponding to eh can take two cells of weight 2m2+m in HFh. Since
vj /2 S, the positive cells of weight m in HFh,j are not taken by any vertical
baseline. Hence these two cells can be taken by the horizontal baseline.

From the above observation, we can take 4m cells of weight 2m2 +m, 2m+
2|E| = 4m cells of weight m, and |S| cells of weight 1. The total weight of these
cells is 4m(2m2 +m) + 4m2 + |S| = 8m3 + 8m2 + |S| � w. This completes the
proof. ut

Lemma A.2. If (P, k, w) is a yes-instance of Baseline Location, then (G, s)
is a yes-instance of Independent Set.

To prove this lemma, we need to prove the following propositions.

Proposition A.3. To take the total weight at least w = 8m3 + 8m2 + s, we
must take all the 4m cells of weight 2m2 +m and at least 4m cells of weight m.

Proof. Recall that the sum of the weights of all positive cells is W = 8m3 +
10m2 + m. If we take at most 4m � 1 cells of weight 2m2 + m or at most
4m � 1 cells of weight m, then we miss one cell of weight 2m2 + m or 2m + 1
cells of weight m. Thus the sum of the weights of the cells taken is at most
W � (2m2 +m) = 8m3 + 8m2 < w. ut

Corollary A.4. If (P, k, w) is a yes-instance, then each VF i intersects exactly
one vertical baseline, and each HF i intersects exactly one horizontal baseline.

Proof. Otherwise, we cannot take all 4m cells of weight 2m2 +m. ut
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v j < Svi 2 S

x = 10i x = 10 j + 3

eh = {vi, v j}

VFi

VF j

HFh

BFi BF j

BFh,i

BFh, j

HFh, j

HFh,i

y = 5m + 10h + 8

Fig. 12. The case of {vi, vj} 2 E(G) and vi 2 S: black thick lines are the selected
baselines. Yellow cells are taken by the vertical baselines, and green cells are taken by
the horizontal baseline.

Note that, from the construction, no vertical (horizontal) baseline can inter-
sect two or more vertical (horizontal, resp.) baseline forcers of weight 2m2 +m.
Thus we denote the vertical baseline that intersects VF i by VLi, and the hori-
zontal baseline that intersects HFh by HLh.

Proposition A.5. If (P, k, w) is a yes-instance, then for each eh = {vi, vj} 2
E(G),

– HLh must take the two positive cells in either HFh,i or HFh,j,
– VLi must take one positive cell in HFh,i or BFh,i, and
– VLj must take one positive cell in HFh,j or BFh,j.

Proof. By Corollary A.4, only HLh, VLi, and VLj can take cells of weight m in
HFh,i, HFh,j , BFh,i, and BFh,j . It is easy to see that VLi can take only one
positive cell in HFh,i or BFh,i, and VLj can take only one positive cell in HFh,j

or BFh,j . Also, it is not di�cult to see that HLh can take either two positive cells
in HFh,i or two positive cells in HFh,j . On the other hand, by Proposition A.3,
we must take at least four cells of weight m in HFh,i, HFh,j , BFh,i, and BFh,j .
This completes the proof. ut
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A vertex vi is left if VLi is a vertical baseline x = 10i, and vi is right if VLi is
a vertical baseline x = 10i+ 3. An edge eh is top if HLh is a horizontal baseline
y = 5m+15h+8, and eh is bottom if HLh is a horizontal baseline y = 5m+15h.
It is easy to see that if (P, k, w) is a yes-instance, then each vertex is left or right,
and each edge is top or bottom, by Proposition A.5 (see Fig. 7 and Fig. 12).

The following proposition relates Baseline Location to Independent
Set.

Proposition A.6. If (P, k, w) is a yes-instance, then the set of left vertices is
an independent set of G.

Proof. It su�ces to show that for each eh = {vi, vj} 2 E(G) with i < j, at least
one of vi and vj must be a right vertex.

Suppose that both vi and vj are left. In this case, VLi can take only one cell
of weight m in HFh,i, and VLj can take only one cell of weight m in HFh,j .
Also HLh can take only two cell of weight m in either HFh,i or HFh,j , but one
of them is already taken by VLi or VLj . By Proposition A.5, (P, k, w) is not a
yes-instance. ut

Now we are ready to prove Lemma A.2.

Proof (Lemma A.2). Let (P, k, w) is a yes-instance of Baseline Location. By
the discussion in this section, each vertex is left or right, and each edge is top or
bottom. That is, there is a vertical baseline x = 10i or x = 10i+3 for each vertex
vi, and there is a horizontal baseline y = 5m+15h+8 or y = 5m+15h for each
edge eh. These baselines take all the 4m cells of weight 2m2+m and exactly 4m
cells of weight m. Additionally for each left vertex vi, the corresponding vertical
baseline x = 10i can take the positive cell of weight 1 in BF i. No other positive
cells can be taken.

Let L be the set of left vertices. Then the total weight of the positive cells
taken is

4m(2m2 +m) + 4m2 + |L| = 8m3 + 8m2 + |L|.

Since this value is at least w = 8m3 + 8m2 + s, it follows that |L| � s. By
Proposition A.6, (G, s) is a yes-instance of Independent Set. ut

A.2 Proofs in Section 4

Theorem A.7. Vertical Baseline Location and Horizontal Baseline
Location can be solved in O(n3) time.

Proof (Theorem 4.1). By symmetry, it su�ces to show the result only for Ver-
tical Baseline Location. To simplify the presentation, we assume that we
can use the vertical lines x = 0 and x = n as baselines for free. This can be
justified by adding the new first and last columns to the grid and setting huge
negative values to the new entries.

For 1  r  n and 0  i  j  n, let P r
i,j be the subgrid [i, j] ⇥ [r, r + 1] of

P . Let Ar
i,j be the maximum weight of base-monotone regions in P r

i,j with the
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baselines x = i and x = j. Similarly, let Br
i,j be the maximum weight of base-

monotone regions in P r
i,j with the baseline x = i only. Clearly Ar

i,i = Br
i,i = 0.

For i < j, we have

Ar
i,j = max

�

Br
i,j�1, A

r
i,j + w(r, j)

 

and

Br
i,j = max

8

<

:

Br
i,j�1,

j
X

j0=i+1

w(r, j0)

9

=

;

.

These facts imply that for fixed r and i, we can compute Ar
i,j and Br

i,j for
i  j  n in O(n) time. Therefore, we can compute all entries of A in O(n3)
time.

For 0  i  j  n, let Pi,j be the subgrid [i, j]⇥ [0, n] of P . Let Ci,j be the
maximum weight of base-monotone regions in Pi,j with the baselines x = i and
x = j. It is easy to see that Ci,j =

Pn
r=1 A

r
i,j . Hence we can compute all entries

of C in O(n3) time.
Let Dh,j be the optimal value of the h baseline MWRP in P0,j with respect

to the vertical baseline y = j, and other h� 1 baselines in P0,j . It is easy to see
that D1,j = C0,j and that for h � 2,

Dh,j = max
h�2i<j

(Dh�1,i + Ci,j) .

Using the table C and the entries of D with smaller indices, we can compute
Dh,j in O(n) time. Thus we can compute all entries of D in O(n3) time. Now
clearly

max
k�1jn

(Dk,j +Aj,n)

is the optimal value. Furthermore, by slightly modifying the algorithm, we can
easily compute the actual positions of k vertical baselines in the same running
time. ut

Theorem A.8. There is an O(n3)-time 2-approximation algorithm for locating
k baselines to maximize the weight of optimum base-monotone feasible region.

Proof (Theorem 4.2). We optimally solve Vertical Baseline Location with
k vertical baselines and Horizontal Baseline Location with k horizontal
baselines in O(n3) time, independently. We output the better one of these solu-
tions. We now show that one of these two solutions has weight at least the half
of the best solution of Baseline Location with k baselines.

Assume that an optimal solution of Baseline Location is attained with
kv vertical and kh horizontal baselines, where kv + kh = k. Let Pv and Ph

be the sets of cells taken by vertical and horizontal lines, respectively, in the
optimal solution of Baseline Location. Note that partition into Pv and Ph

is not unique. We just select one partition arbitrarily. Let Wv =
P

p2Pv
w(p)

and Wh =
P

p2Ph
w(p). Now Wv + Wh is the maximum weight for Baseline

Location. Assume without loss of generality that Wv � Wh.
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· · ·

Fig. 13. A generalized horizontal baseline forcer. A generalized vertical baseline forcer
can be obtained by rotating this gadget.

Observe that Pv is also a feasible solution of Vertical Baseline Location
with k vertical baselines. This is because, additions of baselines never violate the
feasibility of base-monotone regions. Therefore, the optimum value of Vertical
Baseline Location is at least Wv � (Wv +Wh)/2. This completes the proof.

ut

Now we show the tightness of the analysis of the approximation ratio. To
this end, we use generalized horizontal (vertical) baseline forcers depicted in
Fig. 13. The length of a generalized (horizontal or vertical) baseline forcer is
the number of positive cells in it. To take all the positive cells in a generalized
horizontal baseline forcer of length ` (and not to take any negative cell), we
need either one horizontal baseline or ` vertical baselines. We construct a tight
example by putting one generalized horizontal baseline forcer of length ` and
one generalized vertical baseline forcer of length ` so that no row nor column
intersects the baseline forcers. We set the weight 1 to every positive cell. Clearly,
we can take all positive cells with one horizontal and one vertical baselines, and
thus the optimal solution is of weight 2`. On the other hand, if we use only
horizontal baselines (or only vertical baselines), then we can take only ` + 1
positive cells. Therefore, the approximation ratio is (`+ 1)/(2`) = 1/2 + o(1).

The tight example above can be beaten by a heuristic idea: if we guess the
number of horizontal baselines (and thus the number of vertical ones), then we
can obtain the optimal solution for the example.

A.3 Proofs in Section 5.1

To prove Lemma 5.1 and Theorem 5.2, we need the following discussion.
From the definition of as(p) and ws(p), the following fact follows.

Remark A.9. In each minimal optimal solution, the base-monotone region with
the vertical base-segment s = (i, j) is either empty or the consecutive cells
(i, j), . . . , (as(p), j) for some p � 1. In the latter case, the weight of the base-
monotone region with s is

P

1qp ws(q).

The horizontal counterpart of the above remark also holds.
From the conditions i  i0  as(p) and j0  j  as0(p0), it is easy to see that

if as(p+1) is defined and {us(p), vs0(p0)} 2 E, then {us(p+1), vs0(p0)} 2 E also
holds. Thus we have NG(us(1)) ✓ NG(us(2)) ✓ · · · for any vertical base-segment
s, and NG(vs0(1)) ✓ NG(vs0(2)) ✓ · · · for any horizontal base-segment s0. Thus
we have the following lemma.

17



Lemma A.10. Each maximal independent set of G is of the form

[

s2C

{us(1), . . . , us(ps)} [
[

s02C0

{vs0(1), . . . , vs0(p0s0)},

where C and C 0 are sets of vertical and horizontal base-segments, respectively.

Proof. Let s be a vertical base-segment and I be a maximal independent set
of G. Assume us(p) 2 I for some p > 1. Now the neighborhood NG(us(p)) of
us(p) cannot be in I. Thus we remove NG(us(p)) from G. In the obtained graph,
each us(p0) with p0 < p is an isolated vertex since NG(us(p0)) ✓ NG(us(p)). This
implies that {us(1), . . . , us(p)} ✓ I. The proof for horizontal base-segments is
almost the same. ut

Now we prove Lemma 5.1 and Theorem 5.2.

Lemma A.11. An optimum solution of an instance of the two-directional k
base-segment MWRP has weight at least W if and only if the corresponding
bipartite graph G has an independent set of weight at least W .

Proof (Lemma 5.1). For the only-if part, let R be a minimal maximum-weight
base-monotone region. Let W =

P

(i,j)2R w(i, j). We shall find an independent
set I of G with weight W . For each vertical base-segment s = (i, j), either R
has empty intersection with the range of s or R contains the consecutive cells
(i, j), . . . , (as(p), j) for some p � 1 (see Remark A.9). In the latter case, we
put the vertices vs(1), . . . , vs(p) into I. We do the same thing for each horizontal
base-segment. Clearly, I is of weightW . Furthermore, I is indeed an independent
set from the construction of G.

For the if part, let I be a maximum-weight independent set of G. Assume that
the weight of I is W . Let s = (i, j) be a vertical base-segment. By Lemma A.10,
either I contains no vertex us(·) or I contains consecutive vertices us(1), . . . , us(p)
for some p � 1. In the latter case, we take the consecutive cells (i, j), . . . , (as(p), j)
as the base-monotone region with the base-segment s. We do the same thing for
each horizontal base-segment. The total weight of the taken cells is W . Since I
is an independent set of G, the base-monotone regions taken are pairwise dis-
joint. ut

Theorem A.12. The two-directional k base-segment MWRP can be solved in
O(k3n6 log kn) time.

Proof (Theorem 5.2). Given an instance of the two-directional k base-segment
MWRP, we first refine each base-segment and construct the corresponding bi-
partite graph G as described in this section. Clearly, |U [ V | = O(kn2), and
thus the construction can be done in O(k2n4) time. Next we find the maximum-
weight independent set I in G. Since G is bipartite, I can be found in O(|U [
V | · |E| log |U [V |) = O(k3n6 log kn) time [10]. From the set I, we can construct
a maximum-weight base-monotone feasible region with respect to the given k
base-segments in O(kn2) time. See the if-part proof of Lemma 5.1. ut
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A.4 Proofs in Section 5.2

Remark A.13. For each base-segment in the construction, there is only one cell
with positive weight that can be taken by the base-segment.

We now show that (G, s) is a yes-instance if and only if the optimum value
of k base-segment MWRP on P is at least mn+ s.

For the only-if part, let S be an independent set of G with |S| � s. We first
take |S| positive cells of weight 1 by the vertical base-segments of vertices in S.
For each edge e = {u, v} 2 E, P contains two horizontal base-segments. Since S
is an independent set, at least one of them can be used to take the corresponding
positive cell of weight n (see Fig. 11). Therefore, we can take the cell of total
weight at least mn+ |S| � mn+ s.

For the if part, first observe that we must take all positive cells of weight n
since otherwise the total some is at mostmn < mn+s. Thus we use one of the two
horizontal base-segments for each edge. This implies that for each edge {u, v},
we can take at most one positive cell of weight 1 using the corresponding vertical
base-segment of u or v. Let S be the set of vertices such that the corresponding
vertical base-segment are used to take their positive cells of weight 1. By the
observation above, S is an independent set of size at least s. This completes the
proof.

A.5 Proofs in Section 6

Theorem A.14. Quad Decomposition can be solved in O(n7) time.

Proof (Theorem 6.1). For 0  i  j  n and 0  s  t  n, let P(i,s),(j,t) be the
submatrix of P with the bottom-left point (i, s) and the top-right point (j, t).

Let A(0)
(i,s),(j,t) be the weight of an optimum solution of Room-Edge Problem

in P(i,s),(j,t). All O(n4) entries of A(0) can be computed in O(n7) time by using
the O(n3)-time algorithm in [5].

For � � 1, let A(�)
(i,s),(j,t) be the weight of an optimum solution of the depth �

Quad Decomposition in P(i,s),(j,t). It is not di�cult to see that

A
(�)
(i,s),(j,t) = max

i<p<j, s<q<t

⇣

A
(��1)
(i,s),(p,q) +A

(��1)
(p,s),(j,q) +A

(��1)
(i,q),(p,t) +A

(��1)
(p,q),(j,t)

⌘

.

See Fig. 14. Hence each entry of A(�) can be computed in O(n2) time with
precomputed matrix A(��1), and thus all entries of A(�) can be computed in
O(n6) time in total. Clearly, the weight of an optimal solution for the depth d

Quad Decomposition is A
(d)
(0,n),(0,n). This entry will be computed in O(n7 +

d · n6) time. Since d 2 O(log n), the theorem holds. ut

The bottleneck of the running time above is the first phase of solving Room-
Edge Problem for all the possible O(n4) subgrids. Using techniques used in
the study of the all-pairs shortest path problem, we can slightly improve the
running time of the first phase.
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Fig. 14. Computing A
(�)
(i,s),(j,t) from the entries of A(��1).

Theorem A.15. Quad Decomposition can be solved in O(n7 log log n/ log2 n)
time.

Proof (Theorem 6.2). To solve Room-Edge Problem, Chun et al. [5] compute
optimal 3-colorings for all L-shaped regions (see Fig. 15), where a 3-coloring
consists of base-monotone regions using only three boundaries. They showed
that any optimal solution of Room-Edge Problem consists of two optimal
3-colorings of L-shaped regions. In an n⇥n pixel grid, there are O(n6) L-shaped
regions. By the dynamic programming algorithm presented by Chun et al. [5],
we can compute optimal solutions for all L-shaped regions in O(n6) total time.

Let L
(s,t)
i,(a,b,c) be the value of an optimal 3-coloring of the L-shape region

depicted in Fig. 15, and let Rs,t
(a,b,c),j be the value of an optimal 3-coloring of

the (rotated) L-shape region depicted in Fig. 15. Note that these six parameters

determine the regions. Using these expression, A(0)
(i,s),(j,t) can be described as

follows [5]:

A
(0)
(i,s),(j,t) = max

(a,b,c)

n

L
(s,t)
i,(a,b,c) +R

(s,t)
(a,b,c),j

o

. (1)

If we fix the indices s and t, then the right-hand side of Eq. (1) can be seen
as the funny product (or the distance product) of n ⇥ n3 and n3 ⇥ n matri-
ces. The current fastest algorithm for funny matrix multiplication by Han and
Takaoka [9], which runs in O(N3 log logN/ log2 N) for two N ⇥ N matrices,
implies that the funny product of M ⇥ N and N ⇥ M matrices can be com-
puted in O(NM2 log logM/ log2 M) time. In our case M = n and N = n3,

thus we can compute A
(0)
(i,s),(j,t) in O(n5 log log n/ log2 n) time for a fixed pair

(s, t) and for all pairs (i, j). Hence we can compute all entries of A(0)
(i,s),(j,t) in

O(n7 log log n/ log2 n) time for all pairs (s, t) and (i, j). ut
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Fig. 15. (Left) A 3-coloring of a L-shaped region. (Right) Combining two L-shaped
regions.
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Fig. 16. The reduction for a graph with five vertices {v1, . . . , v5} and five edges {e1 =
{v1, v2}, e2 = {v1, v4}, e3 = {v1, v5}, e4 = {v2, v4}, e5 = {v3, v5}}. Orange gadgets have
weight 2m2 +m, green gadgets have weight m, and gray gadgets have weight 1.
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