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ABSTRACT

We introduce a concept of intersection dimension of a graph
with respect to a graph class. This generalizes Ferrers di-
mension, boxicity, and poset dimension, and leads to inter-
esting new problems. We focus in particular on bipartite
graph classes defined as intersection graphs of two kinds of
geometric objects. We relate well-known graph classes such
as interval bigraphs, two-directional orthogonal ray graphs,
chain graphs, and (unit) grid intersection graphs with re-
spect to these dimensions. As an application of these graph-
theoretic results, we show that the recognition problems for
certain graph classes are NP-complete.

Keywords
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1. INTRODUCTION
Given a family F of sets, the intersection graph of F is the

graph in which each set in F is a vertex, and two vertices
are adjacent if and only if the corresponding sets intersect.
A typical example, when F is a family of intervals on a
line, yields the well-known class of interval graphs. Interval
graphs have linear time recognition algorithms [3, 11], and
nice forbidden structure characterizations. (For instance,
the theorem of Lekkerkerker and Boland [24] characterizes
interval graphs by the absence of induced cycles of length
four and five, and the absence of asteroidal triples.)
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It is natural to study a bipartite version of intersection
graphs: given two families F and F ′ of sets, the intersec-
tion bigraph of F ,F ′ is the bipartite graph in which each
set in F is a red vertex, each set in F ′ is a blue vertex,
and a red vertex is adjacent to a blue vertex if and only if
the corresponding sets intersect. When both F and F ′ are
families of intervals on a line, we obtain interval bigraphs
studied in [25, 31]. We denote the class of interval bigraphs
by IBG. While the recognition of interval bigraphs is poly-
nomial (in time O(n16) [25]), there is no efficient algorithm
known, and no characterization in terms of forbidden sub-
structures.1 It turns out that there are better bipartite ana-
logues of interval graphs. A two-directional orthogonal ray
graph, or 2DOR graph, is an intersection bigraph of a fam-
ily F of upward rays, and a family F ′ of rightward rays, in
the plane [33]. These graphs were introduced in connection
with defect tolerance schemes for nano-programmable logic
arrays [29, 37]. There are several reasons these 2DOR graphs
might be considered better bipartite analogues of interval
graphs, including an ordering characterization [33, 21], and
a Lekkerkerker-Boland type characterization [12], both anal-
ogous to the characterizations for interval graphs. Other
forbidden structure characterizations of the class of 2DOR

graphs can be found in [19, 20, 12].
Several other graph classes can be defined as intersection

bigraphs of two families F ,F ′. When both F and F ′ are
inclusion-free families of intervals on a line, we obtain the
class of proper interval bigraphs which turns out to be the
same as the better known class BPG of bipartite permutation
graphs [20], see below. When F is a family of points, and
F ′ a family of rightward rays, in a line, we obtain the class
CHAIN of chain graphs (cf. below). When F is a family of
vertical segments, and F ′ a family of horizontal segments,
in the plane, we obtain the class GIG of grid intersection
graphs. Several other examples are included in the paper.

We note that the following inclusions are well known or

1Recently, Rafiey [28] and Takaoka, Tayu, and Ueno [38]
have independently reported faster algorithms for recogniz-
ing interval bigraphs.



easy to derive

CHAIN ⊆ BPG ⊆ IBG ⊆ 2DOR ⊆ GIG.

We now introduce our concept of intersection dimension.
Let G = (V,E) and G′ = (V ′, E′) be two graphs. The
intersection G ∩ G′ of G and G′ is the graph (V ∩ V ′, E ∩
E′). For two graph classes C and C′, we define the pairwise
intersection of C and C′ as C ×∩ C′ = {G ∩ G′ : G ∈ C, G′ ∈
C′}. We also write Ck = {G1∩G2∩· · ·∩Gk : Gi ∈ C for 1 ≤
i ≤ k}. If both C and C′ are closed under taking induced
subgraphs, it is easy to check that C ×∩ C′ = {G ∩ G′ : G ∈
C, G′ ∈ C′, V (G) = V (G′)}. Since every graph class in this
paper is closed under taking induced subgraphs, we shall
from now on use the latter equality, and assume that the
vertex sets of the two graphs are the same, when defining
the pairwise intersection of graph classes.

The dimension of a graph G with respect to the graph
class C is the minimum k such that G ∈ Ck. In the discus-
sion below we shall point out how this definition generalizes
Ferrers dimension, boxicity, cubicity, and poset dimension.
We are particularly interested in expressing one graph class
as a power of another graph class.

It turns out that there are several natural statements of
this kind. Among other results we will show that 2DOR =
CHAIN2,GIG ⊆ CHAIN4, and UGIG = BPG2. We will also
show that several of these inclusions are proper. See Fig. 1
for the summary of our results.
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Figure 1: (Left) Known hierarchy. (Right) New hi-
erarchy based on intersection dimensions.

2. PRELIMINARIES
A graph G = (V,E) is a bipartite graph (or a bigraph for

short) with bipartition (X,Y ) if V is partitioned into X and
Y in such a way that each edge of G has one endpoint in X
and the other in Y . We denote such a bigraph by (X,Y ;E).
A biadjacency matrix MB of a bigraph B = (X,Y ;E) is a 0-
1 matrix with the rows indexed by the vertices of X and the
columns indexed by the vertices of Y such that {x, y} ∈ E
if and only if the corresponding entry of MB is 1. For m×n
0-1 matrices M ′ and M ′′, their intersection M = M ′ ∩M ′′

is the 0-1 matrix such that Mi,j = 1 if and only if M ′
i,j = 1

and M ′′
i,j = 1. The neighborhood of a vertex v in a graph G,

denoted NG(v), is the vertices adjacent to v in G.

2.1 Graph classes
Here we define the graph classes we deal with in this pa-

per. We also introduce some important properties of them.
For their inclusion relations and other known results for
them, the readers can refer to the standard textbooks in
this field [4, 15, 36].

For a graph class C, the recognition problem of C is the
problem deciding whether a given graph belongs to C.

2.1.1 Chain graphs and Ferrers diagrams

A bipartite graph B = (X,Y ;E) is a chain graph if there
is an ordering (x1, x2, . . . , xp) on X such that NB(x1) ⊇
NB(x2) ⊇ · · · ⊇ NB(xp). It is easy to see that if there
exists such an ordering on X, then there exists an ordering
(y1, y2, . . . , yq) on Y such that NB(y1) ⊇ NB(y2) ⊇ · · · ⊇
NB(yq). Chain graphs are also known as difference graphs
and Ferrers bigraphs. It is known that chain graphs are
exactly 2K2-free bigraphs [16]. The class of chain graphs is
denoted by CHAIN.

A 0-1 matrix has the Ferrers property if its rows and
columns can be reordered so that 1’s in each row and col-
umn appear consecutively with the rows left-justified and
the columns top-justified. The reorderd matrix is called a
Ferrers diagram. It is easy to see that a matrix has the Fer-
rers property if and only if it has none of the following 2× 2
matrices as a submatrix:(

0 1
1 0

)
,

(
1 0
0 1

)
. (1)

Since chain graphs are exactly the 2K2-free bigraphs, it is
easy to see that chain graphs are exactly the bigraphs whose
biadjacency matrices have the Ferrers property.

2.1.2 Bipartite permutation graphs, convex graphs,
biconvex graphs, interval bigraphs, and chordal
bipartite graphs

A graph G = (V,E) with V = {1, 2, . . . , n} is a permu-
tation graph if there is a permutation π over V such that
{i, j} ∈ E(G) if and only if (i − j)(π(i) − π(j)) < 0. A
graph is a bipartite permutation graph if it is bipartite and
a permutation graph. The class of bipartite permutation
graphs is denoted by BPG. Several equivalent definitions of
the class BPG are collected in [20].

An ordering < of X in a bipartite graph B = (X,Y ;E)
has the adjacency property if for every vertex y in Y , N(y)
consists of vertices that are consecutive in the ordering <
of X. A bipartite graph (X,Y ;E) is convex if there is an
ordering of X or Y that fulfills the adjacency property. A
bipartite graph (X,Y ;E) is biconvex if there are orderings
of X and Y that fulfill the adjacency property. We denote
the classes of convex bipartite graphs and biconvex bipartite
graphs by Convex and Biconvex, respectively.

A bi-interval representation of a bigraph B = (U, V ;E)
is a pair (IU , IV ) of sets of closed intervals such that IU =
{Iu = [�u, ru] : u ∈ U} and IV = {Iv = [�v, rv] : v ∈ V }, and
{u, v} ∈ E for u ∈ U and v ∈ V if and only if Iu∩ Iv �= ∅. A
bi-interval representation (IU , IV ) is unit if for each interval
[�, r] ∈ IU ∪ IV , r − � = 1.

A bigraph is a chordal bipartite graph if every induced
cycle is of length four. The class of chordal bipartite graphs
is denoted by CBG.

2.1.3 Orthogonal ray graphs



A bipartite graph B = (X,Y ;E) is an orthogonal ray
graph if there is a pair (RX ,RY ) of families of rays (or
half-lines) such that RX = {Rx : x ∈ X} is a family of pair-
wise non-intersecting horizontal rays, RY = {Ry : y ∈ Y }
is a family of pairwise non-intersecting vertical rays, and
{x, y} ∈ E if and only if Rx and Ry intersect. We call such
a pair (RX ,RY ) an orthogonal ray representation of B. We
denote the class of orthogonal ray graphs by OR.

Note that in a representation of an orthogonal ray graph
horizontal rays can go rightward and leftward and vertical
rays can go upward and downward. If we restrict horizontal
rays to be only rightwards, then we have 3-directional or-
thogonal ray graphs. Furthermore, if we restrict horizontal
rays to be only rightwards and vertical rays to be only up-
wards, then we have 2-directional orthogonal ray graphs. We
denote the classes of 3-directional orthogonal ray graphs and
2-directional orthogonal ray graphs by 3DOR and 2DOR, re-
spectively.

For the class 2DOR, several nice characterizations are known
(see e.g. [21, 12, 30, 31, 32, 19, 33]). Among those charac-
terizations, the followings are useful for our purpose. In
this language they appear in [32, 33], in an equivalent graph
theoretic form they are given in [21, 19].

Theorem 2.1. For a bigraph B, the following conditions
are equivalent:

1. B is a 2-directional orthogonal ray graph;

2. B is γ-freeable; that is, the rows and columns of a bi-
adjacency matrix of B can be independently permuted
so that no 0 has a 1 both below it and to its right;

3. B is of Ferrers dimension at most 2. (The Ferrers
dimension of a bigraph is defined in Section 2.1.10.)

There are other equivalent characterizations of the class
2DOR, as suggested in the introduction, in terms of absence
of induced cycles and bipartite versions of asteroids, in terms
of invertible pairs, etc. [21, 12, 19].

It is known that the recognition of 2DOR can be done in
polynomial time [12, 33], while it is open for 3DOR and OR.
Recently, Felsner, Mertzios, and Mustaţǎ [14] have shown
that if the direction (right, left, up, or down) for each vertex
is given, then it can be decided in polynomial time whether
a given graph has an orthogonal ray representation in which
each vertex has the given direction.

2.1.4 Grid intersection graphs

A bipartite graph B = (X,Y ;E) is a grid intersection
graph if there is a pair (SX ,SY ) of families of segments
such that SX = {Sx : x ∈ X} is a family of pairwise non-
intersecting horizontal segments, SY = {Sy : y ∈ Y } is a
family of pairwise non-intersecting vertical segments, and
{x, y} ∈ E if and only if Sx and Sy intersect. We call such
a pair (SX ,SY ) a grid intersection representation of B. A
bipartite graph is a unit grid intersection graph if it has a
grid intersection representation in which each segment if of
length 1. We denote the classes of grid intersection graphs
and unit grid intersection graphs by GIG and UGIG, respec-
tively.

2.1.5 Segment-ray graphs

A bipartite graph B = (X,Y ;E) is a segment-ray graph
if there is a pair (SX ,RY ) of families of segments and rays

such that SX = {Sx : x ∈ X} is a family of pairwise non-
intersecting horizontal segments, RY = {Ry : y ∈ Y } is
a family of pairwise non-intersecting vertical upward rays,
and {x, y} ∈ E if and only if Sx and Ry intersect. We call
such a pair (SX ,RY ) a segment-ray representation of B. We
denote the class of segment-ray graphs by SR.

2.1.6 Recognition problems and inclusion relations

For the graph classes introduced above, the following re-
lations are known [4, 27, 33]:

CHAIN � BPG � Biconvex � Convex � IBG � 2DOR �

3DOR � OR � UGIG � GIG.
Also it is known that 2DOR � CBG [33], and that CBG is
incomparable to 3DOR and GIG [27].

It is known that the recognition problems of CHAIN [18],
BPG [34], Biconvex [36], Convex [36], IBG [25], 2DOR [33],
and CBG [35] can be solved in polynomial time. On the other
hand, it is known that the recognition problems of GIG [23]
and UGIG [26, 39] are NP-complete. The complexity of the
recognition problems of 3DOR, OR, and SR is not known.

Note that even if three graph classes A, B, and C satisfy
A ⊆ B ⊆ C and the recognition problems of A and C are both
polynomial-time solvable (NP-hard), it does not mean the
recognition problem of B is polynomial-time solvable (NP-
hard, resp.).

2.1.7 Other graphs

The d-dimensional hypercube Hd is the graph with 2d ver-
tices in which the vertices corresponds to the subsets of
{1, . . . , d} and two vertices are adjacent if and only if the
symmetric difference of the corresponding sets is of size 1.

Let Ka,b denote the complete bipartite graph having a
vertices in one side and b vertices in the other side. We
denote by Kn,n − nK2 the graph obtained by removing a
perfect matching from the complete bipartite graph Kn,n.

2.1.8 Boxicity and cubicity

An interval graph is the intersection graph of closed inter-
vals on the real line. A unit interval graph is the intersection
graph of closed unit intervals on the real line. We denote
the classes of interval graphs and unit interval graphs by
INT and UINT, respectively.

The boxicity of a graph G is the minimum integer k such
that G ∈ INTk, and the cubicity of G is the minimum integer
k such that G ∈ UINTk. It is known that given a graph,
deciding whether its boxicity (or cubicity) is at most 2 is
NP-complete [23, 5].

2.1.9 Bigraph intersection dimension

For bipartite graph classes, if one of them is addition-
ally closed under disjoint union, we may assume that the
bipartitions of G and G′ are the same when taking their
intersection. More precisely, we have the following lemma.

Lemma 2.2. Let B and B′ be bipartite graph classes. If at
least one of them is closed under disjoint union and taking
induced subgraphs, then B ×∩ B′ = {(X,Y ;E) ∩ (X,Y ;E′) :
(X,Y ;E) ∈ B, (X,Y ;E′) ∈ B′}.

Proof. Let C = {(X,Y ;E) ∩ (X,Y ;E′) : (X,Y ;E) ∈
B, (X,Y ;E′) ∈ B′}. Clearly, C ⊆ B ×∩ B′. In the following,
we show that B ×∩ B′ ⊆ C. By symmetry, we may assume
that B′ is closed under disjoint union and taking induced
subgraphs.



Let H = (X,Y ;E) ∈ B and H ′ = (X ′, Y ′;E′) ∈ B′. Now
let H ′′ = (X,Y ;E′ ∩ {{x, y} : x ∈ X, y ∈ Y }). It is easy to
see that H ∩H ′ = H ∩H ′′. Observe that H ′′ is the disjoint
union of two induced subgraphs of H ′, where one is induced
by (X ∩ X ′, Y ∩ Y ′) and the other by (X ∩ Y ′, X ∩ Y ′).
Since B′ is closed under disjoint union and taking induced
subgraphs, it follows that H ′′ ∈ B′. Since H∩H ′ = H∩H ′′,
we have H ∩H ′ ∈ C.

Unfortunately, CHAIN is not closed under disjoint union. For
example, K2 is a chain graph but 2K2 is not. It is the only
exception in this paper. Fortunately, we have the following
lemma for chain graphs.

Lemma 2.3. CHAIN2 = {(X,Y ;E)∩(X,Y ;E′) : (X,Y ;E),
(X,Y ;E′) ∈ CHAIN}.

Proof. Let C = {(X,Y ;E) ∩ (X,Y ;E′) : (X,Y ;E),
(X,Y ;E′) ∈ CHAIN}. Clearly, C ⊆ CHAIN2. In the follow-
ing, we show that CHAIN2 ⊆ C.

Let H1 = (X1, Y1;E1) ∈ CHAIN and H2 = (X2, Y2;E2) ∈
CHAIN. Now let H ′

1 = (X1, Y1;E
′
1) and H ′

2 = (X1, Y1;E
′
2),

where

E′
1 = E1 ∪ {{x, y} : x ∈ X1 ∩X2, y ∈ Y1 ∩X2}

\ {{x, y} : x ∈ X1 ∩ Y2, y ∈ Y1 ∩ Y2},

E′
2 = E2 ∪ {{x, y} : x ∈ X1 ∩ Y2, y ∈ Y1 ∩ Y2},

\ {{x, y} : x ∈ X1 ∩X2, y ∈ Y1 ∩X2}.

See Fig. 2. It is not difficult to see that H1 ∩H2 = H ′
1 ∩H ′

2.
Observe that both H ′

1 and H ′
2 are chain graphs. Therefore,

H1 ∩H2 = H ′
1 ∩H ′

2 ∈ C.

X1 ∩ X2

H′1 H′2

Y1 ∩ Y2

X1 ∩ Y2

Y1 ∩ X2

X1 ∩ X2

Y1 ∩ Y2

X1 ∩ Y2

Y1 ∩ X2

Figure 2: Intersection of two chain graphs.

By Lemmas 2.2 and 2.3, we can assume that the biparti-
tions of two graphs are the same when we are defining the
pairwise intersection of two graph classes, since, in this pa-
per, either one of them is closed under disjoint union or both
of them are the class of chain graphs.

2.1.10 Ferrers dimension

The Ferrers dimension fd(B) of a bigraph B is the small-
est number of Ferrers bigraphs whose intersection is B. That
is, fd(B) is the minimum integer k such that B ∈ CHAINk.
If B = (X,Y ;E) and fd(B) = k, then there are Ferrers
bigraphs Bi = (X,Y ;Ei) for 1 ≤ i ≤ k such that B =⋂

1≤i≤k
Bi. That is, we can assume all the graphs B and

Bi, 1 ≤ i ≤ k have the same bipartition.
A Ferrers digraph D = (V,A) is a digraph whose adja-

cency matrix has the Ferrers property. The Ferrers dimen-
sion fd(D) of a digraph D is the smallest number of Ferrers
digraphs whose intersection is D.

2.1.11 Poset dimension

The poset dimension pd(P ) of a poset P is the minimum
integer k such that there exist k linear extensions of P such
that for any two elements x, y of P , x < y in P if and only
if x < y in all the linear extensions. The Ferrers dimension
fd(P ) of a poset P is the Ferrers dimension of the digraph
defined in such way that the vertices are the elements of P
and there is an arc (u, v) if and only if u < v. Cogis [10]
showed that for any poset P , fd(P ) = pd(P ).

A poset is of height 2 if every element is either a minimal
element or a maximal element. The underlying graph of
a height-2 poset is the bigraph B = (X,Y ;E) such that
X is the set of minimal elements, Y is the set of maximal
elements, and {x, y} ∈ E if and only if x < y. It is easy to
see that any bigraph is the underlying graph of some poset
of height 2.

3. (P,Q;D)-BIGRAPHS
We introduce the notion of (P,Q;D)-bigraphs, where a

bigraph B = (U, V,E) is said to be an (P,Q;D)-bigraph if
and only if for some domain D (e.g., the real number line R)
each vertex in u ∈ U can be represented as a type P subset
Pu of D and each vertex v ∈ V can be represented as a type
Q subset Qv of D such that for every u ∈ U, v ∈ V, uv ∈ E
if and only if Pu ∩ Qv �= ∅. For example, in this setting,
interval bigraphs are (interval, interval, R)-bigraphs. We
will use (P,Q;D) to denote the class of (P,Q;D)-bigraphs.

Our discussion will focus on the cases when P,Q are the
following subsets of R: points, rays, unit-intervals, and in-
tervals; and the following axis-aligned subsets of R2: points,
rays, unit-segments, segments, squares, and rectangles. Note:
for rays, we will use →, ↓,←, and ↑ to denote the rightward,
downward, leftward, and upward rays respectively. More-
over, when we refer to a ray r (rather than using a specific
arrow), r can be any axis-aligned ray from the domain.

3.1 (P,Q;R)-Bigraphs
We begin with some easy observations characterizing CHAIN,

Convex, and Biconvex bigraphs as (P,Q;D)-bigraphs (see
Proposition 3.1). This is followed by a couple essential lem-
mas that we will use to relate (P,Q,R)-bigraphs to (P ′, Q′,R2)-
bigraphs.

Proposition 3.1. For a bigraph B = (X,Y,E):

1. B is CHAIN if and only if B is (point, →; R).

2. B is Convex if and only if B is (point, interval; R).

3. B is Biconvex if and only if B is both (point, interval;
R) and (interval, point; R).

Proof. These follow easily by definition.

It is also known that a bigraph is a bipartite permutation
graph (BPG) if and only if it is a unit-interval bigraph [20];
i.e., BPG = (unit-interval, unit-interval; R). Interestingly,
we observe that (unit-interval, unit-interval; R)-bigraphs ac-
tually have a simpler representation. Specifically, (unit-
interval, unit-interval; R) = (point, unit-interval; R) and
we prove this via the following more general lemma.

Lemma 3.2. For a bigraph B = (U, V ;E) and any Q ∈
{→, ray, unit-interval, interval}, B ∈ (unit-interval, Q; R)
if and only if B ∈ (point, Q; R).
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Figure 3: The path on seven vertices (P7) and a
(point, ray;R) representation of it. Note: P7 is
not both (point, ray;R) and (ray, point;R) since the
neighborhoods of a, b, and c are pairwise incompa-
rable.

Proof. Notice that for any choice of Q each element of
V is represented as an interval. Let (IU , IV ) be a (unit-
interval, Q;R) representation of B. Let Iu = [�u, �u+1] ∈ IU

and Iv = [�v, rv] ∈ IV be intervals corresponding to u ∈ U
and v ∈ V , respectively. It is easy to see that Iu and Iv
intersect if and only if either �u ∈ Iv or �v − �u ∈ [0, 1].

We define the following (point,Q;R) representation (I′
U , I

′
V )

as:

I′
U = {{�u} : [�u, �u + 1] ∈ IU},

I′
V = {[�v − 1, rv] : [�v, rv] ∈ IV}.

Obviously (I′
U , I

′
V ) represents B, since �u ∈ [�v − 1, rv] if

and only if either �u ∈ Iv or �v − �u ∈ [0, 1]. It is easy to see
that we now have a (point,Q;R) representation of B.

Lemma 3.2 allows us to equate several (P,Q;R) classes.
These are given in the following two corollaries.

Corollary 3.3. For each Q ∈{→, ray, unit-interval, in-
terval}, the following classes of bigraphs are the same: (point,
Q; R), (→, Q; R), (ray, Q; R), (unit-interval, Q; R).

Corollary 3.4. For each P,Q ∈{point, →, ←, unit-
interval}, a bigraph B is (P , Q; R) if and only if B is (Q,
P ; R).

Notice that the statement of Corollary 3.4 does not al-
low either of P or Q to be ray-type sets. This is because
Lemma 3.2 cannot be used to give us the desired biconvexity-
like when rays are allowed for a given set. However, by
Lemma 3.2, we can transform any (ray, ray;R) representa-
tion into a (point, ray;R) representation. Thus, (ray,ray;R)
is a subset of the bigraphs which are both (point,ray;R) and
(ray,point;R). One open question would be whether these
are the same

Moreover, the graph (P7) given in Figure 3 is (point, ray;
R) but not both (point, ray; R) and (ray, point; R). This is
easy to see since no three vertices in the same partition (say,
X) can have pairwise incomparable neighborhoods; i.e., two
of the three must be represented by rays in the same direc-
tion and thus must have nested neighborhoods. Moreover,
the graph in Figure 3 has a, b, c ∈ X such that their neigh-
borhoods are pairwise incomparable. This is formalized in
the following proposition.

Proposition 3.5. If a bigraph B = (X,Y ;E) is (ray,point;R)
where each x ∈ X is a ray then for every {x, x′, x′′} ⊆ X
and every y ∈ Y , there exists x∗ ∈ {x, x′, x′′} and x∗∗ ∈
{x, x′, x′′} \ {x∗} such that N(x∗) ⊆ N(x∗∗) or N(x) ⊆
N(x′′).

3.2 (P,Q;R2)-Bigraphs
In this subsection we consider the domain R2 and describe

several classes of bigraphs as the intersection of one dimen-
sional bigraph classes (i.e., as (P,Q;R) ×∩ (P ′, Q′;R)). No-
tice that, for P,Q ∈ {point, unit-interval, interval} (P,Q;R)
is hereditary and closed under disjoint union. Thus, by
Lemma 2.2, for P,Q ∈ {point, unit-interval, interval} and
any choices of P ′ and Q′, B = (X,Y ;E) is (P,Q;R) ×∩
(P ′, Q′;R) if and only if B = (X,Y ;E ∩E′) for (X,Y ;E) ∈
(P,Q;R) and (X,Y ;E′′) ∈ (P ′, Q′;R).

Theorem 3.6. UGIG = BPG2 =(point, unit-interval;R)2.

Proof. First we show that UGIG ⊆ BPG2. Let G =
(U, V ;E) ∈ UGIG and R = (U ,V) be a unit grid represen-
tation of G, where the horizontal segments U represent the
vertices in U and the vertical segments V represent the ver-
tices in V . That is, U = {{yu} × [xu, xu + 1] : u ∈ U},
V = {[yv, yv + 1] × {xv} : v ∈ V }, and E = {{u, v} : u ∈
U, v ∈ V, yu ∈ [yv, yv + 1], xv ∈ [xu, xu + 1]}. From U , we
construct two point-unit bi-interval representations R′ and
R′′ as follows:

R′ = ({yu : u ∈ U}, {[yv, yv + 1] : v ∈ V }),

R′′ = ({xv : v ∈ V }, {[xu, xu + 1] : u ∈ U}).

By Lemma 3.2, R′ and R′′ represent the bipartite permu-
tation graphs G′ = (U, V ;E′) and G′′ = (U, V ;E′′), respec-
tively, where

E′ = {{u, v} : u ∈ U, v ∈ V, yu ∈ [yv, yv + 1]}, and

E′′ = {{u, v} : u ∈ U, v ∈ V, xv ∈ [xu, xu + 1]}.

Since {u, v} ∈ E′ ∩ E′′ for u ∈ U and v ∈ V if and only if
yu ∈ [yv, yv +1] and xv ∈ [xu, xu+1], we have E = E′∩E′′.
Therefore, G = G′ ∩G′′.

Next we show that BPG2 ⊇ UGIG. Let G′ = (U, V ;E′)
and G′′ = (U, V ;E′′) be bipartite permutation graphs. Let
R′ and R′′ be point-unit bi-interval representations of G′

and G′′, respectively, such that U is the point set of R′ and
the unit interval set of R′′. Such representations exist by
Corollary 3.3. Let u ∈ U , and let pu and [�u, �u + 1] be
the point in R′ and the unit interval in R′′ representing
the vertex u. We assign the unit horizontal segment {pu}×
[�u, �u + 1] to u. Similarly, for a vertex v ∈ V with the
unit interval [�v, �v + 1] in R′ and the point pv in R′′, we
assign the unit vertical segment [�v , �v + 1] × {pv}. The
obtained unit grid representation represents G = G′ ∩ G′′,
since {pu} × [�u, �u + 1] and [�v, �v + 1] × {pv} intersect if
and only if pu ∈ [�v, �v + 1] and pv ∈ [�u, �u + 1].

Using Theorem 3.6 and Corollary 3.4 the following is im-
mediate.

Corollary 3.7. (unit-square, unit-square;R2) = (point,unit-
interval;R)2 = UGIG.

The corollary above implies that a bipartite graph of cubicity-
2 is UGIG. It is easy to see that the star K1,5 is UGIG,
but its cubicity is more than 2. Therefore, we have the
following corollary, which is a nice complement to the fact
Boxicity-2 ∩ Bipartite = GIG [2].

Corollary 3.8. Cubicity-2 ∩ Bipartite � UGIG.

The proof of the following theorem is an easy modification
of the proof of Theorem 3.6. The relation GIG �= Convex2 is
shown by Fig. 5.
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Figure 4: UGIG = BPG2.

Figure 5: A (point, interval)2 representation of the
full subdivision H of K3,3; i.e., H ∈ Convex2. On the
other hand, H /∈ GIG, since it is the full subdivision
of a non-planar graph, and thus not a string graph.

Theorem 3.9. Biconvex2 ⊆ (Biconvex ×∩ Convex) ⊆ GIG �

Convex2.

Since Convex ⊂ 2DOR, it holds that GIG ⊆ 2DOR2 =
CHAIN4. Therefore, every grid intersection graph has Fer-
rers dimension at most 4.

Corollary 3.10. The recognition problems of BPG2,
Biconvex2, and Biconvex ×∩ Convex are NP-complete.

Proof. The problems are in NP since the recognition
problems of BPG and Biconvex are polynomial-time solvable
and the intersection of two graphs can be computed in poly-
nomial time.

Mustaţǎ and Pergel [26] showed that the recognition prob-
lem is NP-hard for any graph class C satisfying UGIG ⊆ C ⊆
GIG. By Theorems 3.6 and 3.9 and the fact that BPG ⊂
Biconvex, it follows that UGIG = BPG2 ⊆ Biconvex2 ⊆ GIG.
Therefore, the recognition problems are NP-hard for BPG2

and Biconvex2.

4. SEGMENT-RAY GRAPHS
Let F be a matrix with entries 0, 1, ∗, where ∗means“don’t

care.” A matrix M is F-free if M does not have F as a

submatrix ignoring ∗-entries. A bipartite graph is F-freeable
if it has a F-free biadjacency matrix.

It is known that a bipartite graph is a chordal bipartite
graph if and only if it is Γ-freeable (see [22]), a 2-directional
orthogonal ray graph if and only if it is γ-freeable [33], and a
grid intersection graph if and only if it is cross-freeable [17],
where the forbidden matrices are defined as follows:

Γ =

(
1 0
1 1

)
, γ =

(
1 0
∗ 1

)
, cross =

⎛
⎝∗ 1 ∗
1 0 1
∗ 1 ∗

⎞
⎠ .

In this section, using the following matrix V, we charac-
terize segment-ray graphs:

V =

(
1 0 1
∗ 1 ∗

)
.

Obviously, a matrix is cross-free if it is V-free, and V-free if
it is γ-free.

The proof of the following proof is similar to the proofs
of the cross-free characterization of GIG [17] and the γ-free
characterization of 2DOR [33].

Theorem 4.1. A bipartite graph is a segment-ray graph
if and only if it is V-freeable.

Proof. For the only-if part, let B = (U, V ;E) be a segment-
ray graph and R be its segment-ray representation such that
each vertex in U corresponds to a horizontal segment in R,
and each vertex in V corresponds to a vertical upward ray in
R. Let M be the bipartite adjacency matrix of B with the
rows indexed by U and the columns indexed by V . Let Su

be the segment corresponding to u ∈ U with y-coordinate b,
and Rv be the ray corresponding to v ∈ V with x-coordinate
a. If Su intersects with rays on both sides of x = a and Rv

intersects with a segment below y = b, then Su and Rv must
intersect at (a, b). Thus we can makeM V-free by permuting
the columns in nondecreasing order of the x-coordinates of
the corresponding rays and the rows in nonincreasing order
of the y-coordinates of the corresponding segments.

For the if part, let B = (U,V ;E) be a bipartite graph
and M be its V-free bipartite adjacency matrix with the
rows indexed by U and the columns indexed by V . For each
u ∈ U , we put the horizontal segment with end points (i, j1)
and (i, j2), where i is the row index of u and j1, j2 are the
smallest and largest indices such that Mi,j = 1. For each
v ∈ V , we put the vertical upward ray from the starting
point (i, j), where j is the column index of v and i is the
largest index such that Mi,j = 1. For any two vertices u ∈ U
and v ∈ V , it is clear that the corresponding segment and
ray intersect if the vertices are adjacent. Conversely, if u
and v are not adjacent, then the corresponding segment and
ray cannot intersect since M is V-free.

Now we show that every segment-ray graph has Ferrers
dimension at most 3. To this end, we need the following
simple fact.

Lemma 4.2. An m × n 0-1 matrix M is V-free if and
only if for each entry (i, j) with Mi,j = 0 at least one of the
following holds:

1. Mi,k = 0 for all 1 ≤ k ≤ j;

2. Mi,k = 0 for all j ≤ k ≤ n;

3. Mk,j = 0 for all i ≤ k ≤ m.



Theorem 4.3. Every segment-ray graph has Ferrers di-
mension at most 3.

Proof. Let B be a segment-ray graph and M be its V-
free bipartite adjacency matrix. Let M (1), M (2), M (3) be
the following 0-1 matrices of the same size with M :

• M
(1)
i,j = 0 if and only if Mi,k = 0 for all 1 ≤ k ≤ j;

• M
(2)
i,j = 0 if and only if Mi,k = 0 for all j ≤ k ≤ n;

• M
(3)
i,j = 0 if and only if Mk,j = 0 for all i ≤ k ≤ m.

It is easy to see that M (1), M (2), M (3) have the Ferrers
property. By Lemma 4.2, it holds that M (1)∩M (2)∩M (3) =
M . This completes the proof.

Note that the upper bounds of the Ferrers dimension for
GIG (≤ 4) and 2DOR (≤ 2) can be shown in similar ways by
using the forbidden submatrix characterizations.

Corollary 4.4. OR is incomparable to both CHAIN3 and
SR.

Proof. By Theorem 4.3, it holds that SR ⊆ CHAIN3.
Hence it suffices to show that OR �⊆ CHAIN3 and SR �⊆ OR.
Fig. 6(a) shows that H3 ∈ OR. From the definitions, it holds
that H3 = K4,4 − 4K2. It is known that fd(Kn,n − nK2) =
n [40, 41], and thus fd(H3) = 4. Thus OR �⊆ CHAIN3. It is
known that C2n /∈ OR if n > 6 [33]. On the other hand, it
is easy to see that C2n ∈ SR for any n (see Fig. 6(b)). Thus
SR �⊆ OR.

Corollary 4.5. SR is a proper subset of GIG.

Proof. From the definition, SR is a subset of GIG. Since
H3 ∈ OR ⊂ GIG and H3 /∈ CHAIN3 ⊇ SR, it holds that
SR �= GIG.

(a) H3 ∈ OR.

(b) C2n ∈ SR.

Figure 6: Examples showing incomparabilities.

5. BOXICITY AND FERRERS DIMENSION
Chatterjee and Ghosh [9] presented some relations be-

tween the boxicity of undirected graphs and the Ferrers di-
mension of the directed graphs obtained somehow from the
undirected graphs. Here we present a similar but more di-
rect relation between the boxicity and the Ferrers dimension
of bigraphs.

If fd(B) = 1, then box(B) ≤ 2. This is because, fd(B) =
1 implies that B is a chain graph, and thus B is a grid
intersection graph [27]. This bound is tight since fd(Kn,n) =
1 and box(Kn,n) = 2 for every n ≥ 2.

Theorem 5.1. Let B be a bigraph with fd(B) ≥ 2. It
holds that

box(B) ≤ fd(B) ≤ 2box(B).

Proof. Adiga, Bhowmick, and Chandran [1] showed that
for a poset Q of height 2 and its underlying graph H it holds
that box(H) ≤ pd(Q) ≤ 2box(H) if pd(Q) ≥ 2. (Recently
Felsner [13] has shown a more general result.) Since fd(Q) =
pd(Q) [10], it holds that box(H) ≤ fd(Q) ≤ 2box(H) if
fd(Q) ≥ 2.

Let P be a poset that has B as the underlying graph.
From the argument above, it follows that box(B) ≤ fd(P ) ≤
2box(B) if fd(P ) ≥ 2. Hence it suffices to show that fd(P ) =
fd(B).

Let MB is a bipartite adjacency matrix of B. Then, an
adjacency matrix MP of the digraph corresponding to P can
be represented by the following form:

MP =

(
MB 0
0 0

)
.

Thus it is easy to see that fd(P ) ≥ fd(B) as MB is a sub-
matrix of MP . On the other hand, let B1, . . . , Bfd(B) be
Ferrers bigraphs that satisfy B =

⋂
1≤i≤fd(B) Bi. Let MBi

is the bipartite adjacency matrix of Bi in which the rows
and columns are ordered as in MB . Now we define MPi

as
follows:

MPi
=

(
MBi

0
0 0

)
.

Clearly MP =
⋂

1≤i≤fd(B) MPi
, and eachMPi

has the Ferrers

property.. This implies that fd(P ) ≤ fd(B).

The upper bound in Theorem 5.1 is tight. It is known that
box(Kn,n − nK2) = �n/2� [6] and fd(Kn,n − nK2) = n [40,
41].

Bellatoni, Hartman, Przytycka, and Whitesides [2] showed
that the grid intersection graphs are exactly the bigraphs of
boxicity at most 2. This implies that the Ferrers dimension
of a grid intersection graph is at most 4. We show that the
converse is not true.

Theorem 5.2. GIG � CHAIN4.

Proof. We show that H4 ∈ CHAIN4 \ GIG. Chang and
West [8] showed that H4 cannot be represented as the inter-
section graph of axis-parallel rectangles in the plane. This
implies that H4 /∈ GIG. Let M and M ′ be the following



matrices:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 1 1 1 1 a a a
1 b 1 1 b 1 b b
1 1 c 1 c c 1 c
1 1 1 d d d d 1

1 b c d d 1 1 1
a 1 c d 1 c 1 1
a b 1 d 1 1 b 1
a b c 1 1 1 1 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix M is a biadjacency matrix of H4, and M ′ has
the same 1-entries as M but has one of a, b, c, and d for each
0-entry of M . For x ∈ {a, b, c, d}, let Mx be the 0-1 matrix
obtained from M ′ by replacing all x with 0 and replacing
all other non-numeric entries with 1. It is easy to see that
Mx, for all x ∈ {a, b, c, d}, has none of the forbidden 2 × 2
matrices in (1) as a submatrix, and thus has the Ferrers
property. Since M = Ma ∩ Mb ∩ Mc ∩ Md, it holds that
H4 ∈ CHAIN4.

Chandran, Francis, and Mathew [7] showed that boxicity
is unbounded for chordal bipartite graphs. Thus we have
the following.

Corollary 5.3. Ferrers dimension is unbounded for chordal
bipartite graphs.
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