
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
On the Parameterized Complexity for Token Jumping

on Graphs

Author(s)

Ito, Takehiro; Kaminski, Marcin; Ono, Hirotaka;

Suzuki, Akira; Uehara, Ryuuhei; Yamanaka,

Katsuhisa

Citation Lecture Notes in Computer Science, 8402: 341-351

Issue Date 2014-04-11

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/13764

Rights

This is the author-created version of Springer,

Takehiro Ito, Marcin Kaminski, Hirotaka Ono,

Akira Suzuki, Ryuhei Uehara, and Katsuhisa

Yamanaka, Lecture Notes in Computer Science,

8402, 2014, 341-351. The original publication is

available at www.springerlink.com,

http://dx.doi.org/10.1007/978-3-319-06089-7_24

Description

Theory and Applications of Models of Computation,

11th Annual Conference, TAMC 2014, Chennai,

India, April 11-13, 2014. Proceedings

On the Parameterized Complexity for
Token Jumping on Graphs⋆

Takehiro Ito1, Marcin Kamiński2, Hirotaka Ono3,
Akira Suzuki1, Ryuhei Uehara4, and Katsuhisa Yamanaka5

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan.
{takehiro, a.suzuki}@ecei.tohoku.ac.jp

2 Dept. of Mathematics, Computer Science and Mechanics, University of Warsaw,
Banacha 2, 02-097, Warsaw, Poland.

mjk@mimuw.edu.pl
3 Faculty of Economics, Kyushu University,

Hakozaki 6-19-1, Higashi-ku, Fukuoka, 812-8581, Japan.
hirotaka@en.kyushu-u.ac.jp

4 School of Information Science, JAIST,
Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan.

uehara@jaist.ac.jp
5 Dept. of Electrical Engineering and Computer Science, Iwate University,

Ueda 4-3-5, Morioka, Iwate 020-8551, Japan.
yamanaka@cis.iwate-u.ac.jp

Abstract. Suppose that we are given two independent sets I0 and Ir
of a graph such that |I0| = |Ir|, and imagine that a token is placed on
each vertex in I0. Then, the token jumping problem is to determine
whether there exists a sequence of independent sets which transforms
I0 into Ir so that each independent set in the sequence results from the
previous one by moving exactly one token to another vertex. Therefore,
all independent sets in the sequence must be of the same cardinality. This
problem is PSPACE-complete even for planar graphs with maximum
degree three. In this paper, we first show that the problem is W[1]-hard
when parameterized only by the number of tokens. We then give an FPT
algorithm for general graphs when parameterized by both the number of
tokens and the maximum degree. Our FPT algorithm can be modified
so that it finds an actual sequence of independent sets between I0 and
Ir with the minimum number of token movements.

1 Introduction

The token jumping problem was introduced by Kamiński et al. [13], which can
be seen as a “dynamic” version of independent sets in a graph. Recall that an

⋆ This work is partially supported by JSPS KAKENHI Grant Numbers 25106504 (Ito),
25104521 (Ono), 24106004 (Ono and Uehara), 24.3660 (Suzuki) and 25106502
(Yamanaka).

(a) I0 (b) I1 (c) I2

(d) I3

u

(e) I4 (f) I5 = Ir

Fig. 1. A sequence ⟨I0, I1, . . . , I5⟩ of independent sets of the same graph, where
the vertices in independent sets are depicted by large black circles (tokens).

independent set of a graph G is a vertex-subset of G in which no two vertices
are adjacent. (See Fig. 1 which depicts six different independent sets of the same
graph.) Suppose that we are given two independent sets I0 and Ir of a graph
G = (V,E) such that |I0| = |Ir|, and imagine that a token (coin) is placed on
each vertex in I0. Then, the token jumping problem is to determine whether
there exists a sequence ⟨I0, I1, . . . , Iℓ⟩ of independent sets of G such that
(a) Iℓ = Ir, and |Ii| = |I0| = |Ir| for all i, 1 ≤ i ≤ ℓ; and
(b) for each index i, 1 ≤ i ≤ ℓ, Ii can be obtained from Ii−1 by moving exactly

one token on a vertex u ∈ Ii−1 to another vertex v ∈ V \ Ii−1, and hence
Ii−1 \ Ii = {u} and Ii \ Ii−1 = {v}.

Figure 1 illustrates a sequence ⟨I0, I1, . . . , I5⟩ of independent sets which trans-
forms I0 into Ir = I5.

Recently, this type of problems have been studied extensively in the frame-
work of reconfiguration problems [8], which arise when we wish to find a step-
by-step transformation between two feasible solutions of a problem such that
all intermediate solutions are also feasible and each step abides by a prescribed
reconfiguration rule (i.e., an adjacency relation defined on feasible solutions of
the original problem). For example, the token jumping problem can be seen
as a reconfiguration problem for the (ordinary) independent set problem: fea-
sible solutions are defined to be all independent sets of the same cardinality in a
graph; and the reconfiguration rule is defined to be the condition (b) above. This
reconfiguration framework has been applied to several well-known problems, in-
cluding independent set [5, 6, 8, 13, 15], satisfiability [4, 14], set cover,
clique, matching [8], vertex-coloring [1–3], list edge-coloring [9, 11],
list L(2, 1)-labeling [10], subset sum [7], shortest path [12], etc.

1.1 Reconfiguration rules and related results

The original reconfiguration problem for independent set was introduced by
Hearn and Demaine [5], which employs another reconfiguration rule. Indeed,

there are three reconfiguration problems for independent set (ISReconf, for
short) under different reconfiguration rules, as follows.

• Token Sliding (TS) [2, 5, 6, 13]: We can slide a single token only along
an edge of a graph. In other words, each token can be moved only to its
adjacent vertex. This rule corresponds to the original one introduced by
Hearn and Demaine [5].

• Token Jumping (TJ) [13]: This rule corresponds to token jumping,
that is, we can move a single token to any vertex.

• Token Addition and Removal (TAR) [8, 13, 15]: We can either add
or remove a single token at a time if it results in an independent set of
cardinality at least a given threshold. Therefore, independent sets in the
sequence do not have the same cardinality.

We remark that the existence of a desired sequence depends deeply on the re-
configuration rules. For example, Fig. 1 is an yes-instance for token jumping,
but it is a no-instance for ISReconf under the TS rule.

We here explain only the results which are strongly related to token jump-
ing; see the references above for the other results.

Hearn and Demaine [5], [6, Sec. 9.5] proved that ISReconf under the TS rule
is PSPACE-complete for planar graphs of maximum degree three. Then, Bonsma
and Cereceda [2] showed that this problem remains PSPACE-complete even for
very restricted instances. Indeed, their result implies that token jumping is
PSPACE-complete for planar graphs with maximum degree three. (Details will
be given in Section 2.3.)

Kamiński et al. [13] proved that ISReconf is PSPACE-complete for perfect
graphs under any of the three reconfiguration rules. As the positive results for
token jumping, they gave a linear-time algorithm for even-hole-free graphs.
Furthermore, their algorithm can find an actual sequence of independent sets
with the minimum number of token movements.

1.2 Our contributions

In this paper, we investigate the parameterized complexity of the token jump-
ing problem.

We first show that the problem is W[1]-hard when parameterized only by
the number t of tokens. Therefore, the problem admits no FPT algorithm when
parameterized only by t unless FPT = W[1].

We thus consider the problem with two parameters, and give an FPT algo-
rithm for general graphs when parameterized by both the number of tokens and
the maximum degree. Recall that the problem remains PSPACE-complete even
if the maximum degree is three. (See Section 2.3.) Therefore, it is very unlikely
that the problem can be solved in polynomial time even for graphs with bounded
maximum degree.

Finally, we show that our FPT algorithm for general graphs can be modified
so that it finds an actual sequence of independent sets between I0 and Ir with

the minimum number of token movements. We remark that the sequence of
independent sets in Fig. 1 has the minimum length. It is interesting that the
token on the vertex u in Fig. 1(a) must be moved twice even though u ∈ I0 ∩ Ir.

2 Preliminaries

In this section, we first introduce some basic terms and notations which will be
used throughout the paper. We then formally show the PSPACE-completeness
of token jumping in Section 2.3.

2.1 Graph notations

In token jumping, we may assume without loss of generality that graphs are
simple. For a graph G, we sometimes denote by V (G) and E(G) the vertex set
and the edge set of G, respectively. Let n(G) = |V (G)| and m(G) = |E(G)|. We
denote by ∆(G) the maximum degree of G.

For a vertex v of a graph G, we denote by N(G; v) the set of all neighbors of
v in G (which does not include v itself), that is, N(G; v) = {w ∈ V (G) | (v, w) ∈
E(G)}. Let N [G; v] = N(G; v) ∪ {v}, and let N [G;V ′] =

∪
v∈V ′ N [G; v] for a

vertex-subset V ′ ⊆ V (G).

2.2 Definitions for token jumping

Let Ii and Ij be two independent sets of the same cardinality in a graph G =
(V,E). We say that Ii and Ij are adjacent if there exists exactly one pair of
vertices u and v such that Ii \ Ij = {u} and Ij \ Ii = {v}, that is Ij can be
obtained from Ii by moving the token on a vertex u ∈ Ii to another vertex
v ∈ V \ Ii. We remark that the tokens are unlabeled, while the vertices in a
graph are labeled.

A reconfiguration sequence between two independent sets I and I ′ of G is a
sequence ⟨I1, I2, . . . , Iℓ⟩ of independent sets of G such that I1 = I, Iℓ = I ′, and
Ii−1 and Ii are adjacent for i = 2, 3, . . . , ℓ. We say that two independent sets
I and I ′ are reconfigurable each other if there exists a reconfiguration sequence
between I and I ′. Clearly, any two adjacent independent sets are reconfigurable
each other. The length of a reconfiguration sequence S is defined as the number of
independent sets contained in S. For example, the length of the reconfiguration
sequence in Fig. 1 is 6.

The token jumping problem is to determine whether two given independent
sets I0 and Ir of a graphG are reconfigurable each other. We may assume without
loss of generality that |I0| = |Ir|; otherwise the answer is clearly “no.” Note that
token jumping is a decision problem asking the existence of a reconfiguration
sequence between I0 and Ir, and hence it does not ask an actual reconfiguration
sequence. We always denote by I0 and Ir the initial and target independent sets
of G, respectively, as an instance of token jumping.

Fig. 2. Graph consisting of token triangles and token edges, where link edges
are depicted by thin dotted lines and the vertices in a standard independent set
(namely, with tokens) are surrounded by circles.

2.3 PSPACE-completeness

As we have mentioned in Introduction, Bonsma and Cereceda [2] showed that
ISReconf under the TS rule is PSPACE-complete, and their result indeed im-
plies the PSPACE-completeness of token jumping. We here formally explain
this fact, as in the following theorem.

Theorem 1. The token jumping problem is PSPACE-complete for planar
graphs with maximum degree three.

Proof. The problem is clearly in PSPACE, and hence we show that token
jumping is PSPACE-hard for planar graphs with maximum degree three.

Bonsma and Cereceda [2] showed that ISReconf under the TS rule is
PSPACE-complete even for very restricted instances, defined as follows. Every
vertex of a graph G is a part of exactly one of token triangles (i.e., copies of K3)
and token edges (i.e., copies of K2), as illustrated in Fig. 2. Token triangles and
token edges are all mutually disjoint, and joined together by edges called link
edges. Moreover, ∆(G) = 3 and G has a planar embedding such that every token
triangle forms a face. We say that an independent set I of G is standard if each
of token triangles and token edges contains exactly one token (vertex) in I. The
ISReconf problem under the TS rule remains PSPACE-complete even if G is
such a restricted graph and both I0 and Ir are standard independent sets [2].

Note that a standard independent set of G is a maximal independent set.
Then, even under the TJ rule (i.e., in token jumping), each token can jump
only to its adjacent vertex. Therefore, I0 and Ir are reconfigurable each other
under the TS rule if and only if they are reconfigurable each other under the TJ
rule. Thus, the result follows. ⊓⊔

3 W[1]-hardness

In this section, we give the hardness result as in the following theorem.

Theorem 2. The token jumping problem is W[1]-hard when parameterized
by the number of tokens.

(a) I0

G

U W

(b) Ir

U W

’ G’

Fig. 3. Image of our reduction, where the vertices in independent sets are de-
picted by large black circles (tokens).

Proof. We give an FPT-reduction from independent set parameterized by the
solution size to token jumping parameterized by the number of tokens. Given
a graph G′ and a parameter t′, the independent set problem parameterized
by the solution size is to determine whether there is an independent set I of G′

such that |I| ≥ t′. This problem is known to be W[1]-hard [16, p. 213].
We now construct the corresponding instance of token jumping. (See also

Fig. 3.) Let G be the graph which consists of G′ and a complete bipartite graph
Kt′+1,t′+1. Therefore, G consists of two connected components. Let {U,W} be
the bipartition of V (Kt′+1,t′+1). Let I0 = U and Ir = W , then |I0| = |Ir| = |U | =
|W | = t′ + 1. Therefore, the parameter (i.e., the number of tokens) for token
jumping is t = t′ +1. Clearly, the corresponding instance can be constructed in
time O

(
n(G′) + t′2

)
.

To complete the FPT-reduction, we now show that G′ has an independent
set I with |I| ≥ t′ if and only if I0 and Ir are reconfigurable each other.

Suppose that G′ has an independent set I with |I| ≥ t′. Then, there is a
reconfiguration sequence between I0 and Ir, as follows: first move t′ (= t − 1)
tokens from U to the vertices in I one by one; then move the last token on the
vertex in U to any vertex in W ; and move t′ tokens from I to W one by one.
Therefore, I0 and Ir are reconfigurable each other.

Conversely, suppose that I0 and Ir are reconfigurable each other, and hence
there is a reconfiguration sequence S between I0 and Ir. Since Kt′+1,t′+1 is a
complete bipartite graph, G has no independent set I ′ such that both I ′∩U ̸= ∅
and I ′ ∩ W ̸= ∅ hold. Therefore, since we can move only one token at a time,
S must contain an independent set Iq of G such that both Iq ∩ U = {u} and
Iq∩W = ∅ hold. Then, all vertices in Iq \{u} are contained in the component G′

of G, and they must form an independent set of G′. Since |Iq \ {u}| = t− 1 = t′,
there exists an independent set I = Iq \ {u} of G′ such that |I| = t′. ⊓⊔

4 FPT algorithms

Theorem 2 implies that token jumping admits no FPT algorithm when pa-
rameterized only by the number of tokens unless FPT = W[1]. Therefore, in this

section, we give an FPT algorithm for general graphs when parameterized by
both the number of tokens and the maximum degree. Recall that token jump-
ing remains PSPACE-complete even for planar graphs with bounded maximum
degree.

In Section 4.1, we first give an FPT algorithm which simply solves token
jumping for general graphs. We then show in Section 4.2 that our FPT algorithm
can be modified so that it finds an actual reconfiguration sequence with the
minimum length.

4.1 Token jumping

The main result of this subsection is the following theorem.

Theorem 3. Let G be a graph whose maximum degree is bounded by a fixed
constant d. Let I0 and Ir be two independent sets of G such that |I0| = |Ir| ≤ t for
a fixed constant t. Then, one can determine whether I0 and Ir are reconfigurable
each other in time O

(
(3td)2t

)
.

In this subsection, we give such an algorithm as a proof of Theorem 3. We
first show in Lemma 1 that, if a graph G has at least 3t(d+ 1) vertices, then I0
and Ir are always reconfigurable each other. Therefore, one can know that the
answer is always “yes” if n(G) ≥ 3t(d + 1), and hence it suffices to deal with
a graph having less than 3t(d + 1) vertices. For such a graph, we then show in
Lemma 2 that there is an O

(
(3td)2t

)
-time algorithm that determines whether

I0 and Ir are reconfigurable each other.

We first show that any two independent sets are reconfigurable each other if
the graph has a sufficiently large number of vertices, as in the following lemma.

Lemma 1. Let G be a graph with ∆(G) ≤ d, and let Ii and Ij be an arbitrary
pair of independent sets of G such that |Ii| = |Ij | ≤ t. Then, Ii and Ij are
reconfigurable each other if n(G) ≥ 3t(d+ 1).

Proof. Suppose that n(G) ≥ 3t(d+1). To prove the lemma, we show that there
exists a reconfiguration sequence between Ii and Ij .

Let G− be the graph obtained from G by deleting all vertices in N [G; Ii] ∪
N [G; Ij]. Since all neighbors of the vertices in Ii ∪ Ij have been deleted from
G, no vertex in G− is adjacent with any vertex in Ii ∪ Ij . Therefore, if G

− has
an independent set Ik with |Ik| ≥ t, then there is a reconfiguration sequence
between Ii and Ij , as follows: move all tokens on the vertices in Ii to the vertices
in Ik one by one; and move all tokens on the vertices in Ik to the vertices in Ij
one by one.

To complete the proof, we thus show that G− has an independent set Ik with
|Ik| ≥ t if n(G) ≥ 3t(d+ 1). Since ∆(G) ≤ d, we clearly have

∣∣N [G; v]
∣∣ ≤ d+ 1

for every vertex v in G. Since |Ii| ≤ t, we thus have∣∣N [G; Ii]
∣∣ ≤ ∑

v∈Ii

∣∣N [G; v]
∣∣ ≤ t(d+ 1).

Similarly, we have
∣∣N [G; Ij]

∣∣ ≤ t(d+ 1). Therefore,

n(G−) ≥ n(G)−
∣∣N [G; Ii]

∣∣− ∣∣N [G; Ij]
∣∣ ≥ t(d+ 1). (1)

We now suppose for a contradiction that |Imax| < t holds for a maximum inde-
pendent set Imax of G−. Then, we have∣∣N [G−; Imax]

∣∣ ≤ ∑
v∈Imax

∣∣N [G; v]
∣∣ < t(d+ 1),

and hence by Eq. (1)

n(G−)−
∣∣N [G−; Imax]

∣∣ ≥ 1.

Therefore, the graph obtained from G− by deleting all vertices in N [G−; Imax] is
non-empty, and hence we can add at least one vertex to Imax. This contradicts
the assumption that Imax is a maximum independent set of G−. Therefore,
|Imax| ≥ t, and hence G− has an independent set Ik with |Ik| ≥ t. ⊓⊔

We then give an FPT algorithm for the case where a given graph G has only
a constant number of vertices, as in the following lemma.

Lemma 2. Suppose that n(G) < 3t(d + 1). Then, there is an O
(
(3td)2t

)
-time

algorithm which determines whether I0 and Ir are reconfigurable each other.

Proof. We give such an algorithm. For a graph G and a constant t′ = |I0| = |Ir|
(≤ t), we construct a configuration graph C = (V, E), as follows:

(i) each node in C corresponds to an independent set of G with cardinality
exactly t′; and

(ii) two nodes in C are joined by an edge if and only if the corresponding two
independent sets are adjacent.

For an independent set I of G with |I| = t′, we always denote by wI the node of
C corresponding to I. Clearly, two independent sets I0 and Ir are reconfigurable
each other if and only if there is a path in C between wI0 and wIr .

Notice that G has at most the number
(
n(G)
t′

)
of distinct independent sets

with cardinality exactly t′. Since t′ ≤ t, we thus have

|V| ≤
(
n(G)

t′

)
<

(
3t(d+ 1)

t′

)
= O

(
(3td)t

)
.

The configuration graph C above can be constructed in time O(|V|2). Further-
more, by the breadth-first search on C starting from the node wI0 , one can
determine whether C has a path from wI0 to wIr in time O(|V|+ |E|) = O(|V|2).
In this way, our algorithm runs in time O(|V|2) = O

(
(3td)2t

)
in total. ⊓⊔

Lemmas 1 and 2 complete the proof of Theorem 3. ⊓⊔

4.2 Shortest reconfiguration sequence

We now give an FPT algorithm which finds an actual reconfiguration sequence
with the minimum length.

Theorem 4. Let G be a graph whose maximum degree is bounded by a fixed
constant d. Let I0 and Ir be two independent sets of G such that |I0| = |Ir| ≤ t
for a fixed constant t. Then, one can find a shortest reconfiguration sequence
between I0 and Ir in time O

(
(4td)2t + n(G) +m(G)

)
if there exists.

We give such an algorithm as a proof of Theorem 4. Let t′ = |I0| = |Ir| ≤ t.
Although our algorithm is based on the proofs in Section 4.1, the number of
vertices for the graph classification is slightly changed from 3t(d+1) to 4t(d+1);
this yields that the base of the running time becomes 4 in Theorem 4.

We first consider the case where n(G) < 4t(d+ 1).

Lemma 3. Suppose that n(G) < 4t(d+1). Then, one can find a shortest recon-
figuration sequence between I0 and Ir in time O

(
(4td)2t

)
if there exists.

Proof. As in the proof of Lemma 2, we construct the configuration graph C =
(V, E) for G and t′ in time

O(|V|2) = O

((
4t(d+ 1)

t′

)2
)

= O
(
(4td)2t

)
.

Recall that the node set of C corresponds to all independent sets in G of car-
dinality exactly t′. Therefore, a shortest reconfiguration sequence between two
independent sets I0 and Ir corresponds to a shortest path in C between the two
nodes wI0 and wIr . By the breadth-first search on C starting from wI0 , one can
find a shortest path in C in time O(|V| + |E|) = O(|V|2) if there exists. There-
fore, if n(G) < 4t(d+1), one can find a shortest reconfiguration sequence in time
O(|V|2) = O

(
(4td)2t

)
. ⊓⊔

We then consider the case where n(G) ≥ 4t(d+1). Notice that, since n(G) is
not bounded by a fixed constant, we cannot directly construct the configuration
graph C for G and t′ in this case. However, we will prove that only a subgraph of C
having a constant number of nodes is sufficient to find a shortest reconfiguration
sequence.

Lemma 1 ensures that there always exists a reconfiguration sequence between
I0 and Ir in this case. Furthermore, in the proof of Lemma 1, we proposed a
reconfiguration sequence S ′ between I0 and Ir such that every token is moved
exactly twice. Although this is not always a shortest reconfiguration sequence,
the minimum length of a reconfiguration sequence between I0 and Ir can be
bounded by the length of S ′, that is, 2t′.

Let G− be the graph obtained from G by deleting all vertices in N [G; I0] ∪
N [G; Ir]. Then, by the counterpart of Eq. (1) we have n(G−) ≥ 2t(d + 1), and
hence G− has an independent set I ′k such that |I ′k| = 2t′ (≤ 2t). We now give
the following lemma.

Lemma 4. There exists a shortest reconfiguration sequence S between I0 and
Ir such that I ⊆ I0 ∪ I ′k ∪ Ir for all independent sets I in S.

Proof. Let S∗ = ⟨I∗0 , I∗1 , . . . , I∗ℓ ⟩ be an arbitrary shortest reconfiguration se-
quence between I0 = I∗0 and Ir = I∗ℓ . Then, the proof of Lemma 1 implies
that ℓ ≤ 2t′, as we have mentioned above. Note that some independent sets in
S∗ may contain vertices in V (G) \

(
I0 ∪ I ′k ∪ Ir

)
. Let

V (I0, Ir;S∗) =
∪

1≤i≤ℓ−1

(
I∗i \

(
I0 ∪ Ir

))
,

that is, V (I0, Ir;S∗) is the set of all vertices that are not in I0 ∪ Ir but appear
in the reconfiguration sequence S∗. Since ℓ ≤ 2t′ and |I∗i+1 \ I∗i | = 1 for all i,
0 ≤ i ≤ ℓ− 1, we have |V (I0, Ir;S∗)| < ℓ ≤ 2t′.

Therefore, since |I ′k| = 2t′, one can replace all vertices in V (I0, Ir;S∗) with
distinct vertices in I ′k; let S be the resulting sequence. Recall that I ′k is an
independent set of G−, and hence no vertex in I ′k is adjacent with any vertex in
I0 ∪ Ir. Therefore, S is a reconfiguration sequence between I0 and Ir. Note that
any independent set I in S satisfies I ⊆ I0 ∪ I ′k ∪ Ir. Furthermore, the length of
S is equal to that of S∗, and hence S is a shortest reconfiguration sequence. ⊓⊔

We now give the following lemma, which completes the proof of Theorem 4.

Lemma 5. Suppose that n(G) ≥ 4t(d+1). Then, one can find a shortest recon-
figuration sequence between I0 and Ir in time O

(
(4t)2t + n(G) +m(G)

)
.

Proof. We first remark that an independent set I ′k of G− with |I ′k| = 2t′ (≤ 2t)
can be found in time O

(
n(G)+m(G)

)
by the following simple greedy algorithm:

initially, let I ′k = ∅; choose an arbitrary vertex v in G−, and add v to I ′k; delete
all vertices in N [G−; v] from G−, and repeat. Recall that n(G−) ≥ 2t(d+1) and∣∣N [G−; v]

∣∣ ≤ d + 1 for every vertex v in G−. Therefore, this greedy algorithm
always finds an independent set I ′k with |I ′k| = 2t′.

Let G0kr be the subgraph of G induced by the vertex-subset I0∪I ′k∪Ir. Notice
that n(G0kr) = |I0 ∪ I ′k ∪ Ir| ≤ 4t′. Let C0kr be the configuration graph for G0kr

and the constant t′. Since G0kr is an induced subgraph of G, any independent
set I of G0kr is an independent set of G. Then, Lemma 4 ensures that there
exists a shortest reconfiguration sequence S between I0 and Ir such that every
independent set I in S is an independent set of G0kr. Therefore, such a shortest
reconfiguration sequence S between I0 and Ir can be found as a shortest path
in C0kr between the two nodes wI0 and wIr . This can be done in time O

(
(4t)2t

)
,

because the number of nodes in C0kr can be bounded by
(
n(G0kr)

t′

)
= O

(
(4t)t

)
.

In this way, if n(G) ≥ 4t(d + 1), one can find a shortest reconfiguration
sequence between I0 and Ir in time O

(
(4t)2t + n(G) +m(G)

)
in total. ⊓⊔

5 Concluding Remarks

In this paper, we mainly gave three results for the parameterized complexity of
token jumping. We remark that the running time of each of our FPT algo-
rithms is just a single exponential with respect to the number of tokens; further-
more, the parameter d of maximum degree does not appear in the exponent.

We also remark that the problem parameterized only by the number of tokens
is in the class XP, that is, the problem can be solved in polynomial time if
the number t of tokens is a fixed constant. To see this, consider the following
algorithm: construct the configuration graph C for a given graph G and the fixed
constant t; and find a (shortest) path in C. Since the number of nodes in C can
be bounded by

(
n
t

)
, the problem can be solved in time O(n2t), where n = n(G).

Therefore, the problem for a fixed number of tokens can be solved in polynomial
time, while the problem remains PSPACE-complete for a fixed maximum degree.

References

1. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: On the di-
ameter of reconfiguration graphs for vertex colourings. Electronic Notes in
Discrete Mathematics 38, pp. 161–166 (2011)

2. Bonsma, P., Cereceda, L.: Finding paths between graph colourings:
PSPACE-completeness and superpolynomial distances. Theoretical Com-
puter Science 410, pp. 5215–5226 (2009)

3. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-
colourings. J. Graph Theory 67, pp. 69–82 (2011)

4. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The con-
nectivity of Boolean satisfiability: computational and structural dichotomies.
SIAM J. Computing 38, pp. 2330–2355 (2009)

5. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of
computation. Theoretical Computer Science 343, pp. 72–96 (2005)

6. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters
(2009)

7. Ito, T., Demaine, E.D.: Approximability of the subset sum reconfiguration
problem. To appear in J. Combinatorial Optimization, DOI 10.1007/s10878-
012-9562-z

8. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M.,
Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theo-
retical Computer Science 412, pp. 1054–1065 (2011)

9. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings
in a graph. Discrete Applied Mathematics 160, pp. 2199–2207 (2012)

10. Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list L(2, 1)-
labelings in a graph. In: Proc. of ISAAC 2012, Lecture Notes in Computer
Science vol. 7676, pp. 34–43 (2012)

11. Ito, T., Kawamura, K., Zhou, X.: An improved sufficient condition for re-
configuration of list edge-colorings in a tree. IEICE Trans. on Information
and Systems E95-D, pp. 737–745 (2012)

12. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest
paths. Theoretical Computer Science 412, pp. 5205–5210 (2011)

13. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set re-
configurability problems. Theoretical Computer Science 439, pp. 9–15 (2012)

14. Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the
Boolean connectivity problem for k-CNF. Theoretical Computer Science 412,
pp. 4613–4618 (2011)

15. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On
the parameterized complexity of reconfiguration problems. In Proc. of IPEC
2013, Lecture Notes in Computer Science vol. 8246, pp. 281–294 (2013)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press (2006)

