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Abstract

A base-monotone region with a base is a subset of the cells in a pixel grid such
that if a cell is contained in the region then so are the ones on a shortest path
from the cell to the base. The problem of decomposing a pixel grid into disjoint
base-monotone regions was first studied in the context of image segmentation.
It is known that for a given pixel grid and base-lines, one can compute in
polynomial time a maximum-weight region that can be decomposed into disjoint
base-monotone regions with respect to the given base-lines [Chun et al., Comput.
Vis. Image Und. (2012)]. We continue this line of research and show the NP-
hardness of the problem of optimally locating k base-lines in a given n × n
pixel grid. We then present an O(n3)-time 2-approximation algorithm for this
problem. We also study two related problems, the k base-segment problem and
the quad-decomposition problem, and present some complexity results for them.

Keywords: Base-monotone region, Room-Edge Problem, Computational
complexity, Image segmentation

1. Introduction

Let P be an n×n pixel grid. A pixel (i, j) of P is the unit square whose top-
right corner is the grid point (i, j) ∈ Z2. For example the bottom-left cell of P
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is (1, 1) and the top-right cell is (n, n). Each pixel p = (i, j), where 1 ≤ i, j ≤ n,
has its weight w(p) ∈ Z. Now we define the following general problem.

Problem: Maximum Weight Region Problem (MWRP)

Instance: An n× n pixel grid P .

Objective: Find a region R ∈ F maximizing the weight w(R) =
∑
p∈R w(p),

where F ⊆ 2P is a family of pixel regions.

The general problem MWRP has been studied for several families F that are
related to practical problems (see [2, 4] and the references therein). Observe
that if F = 2P , then R can be arbitrarily chosen, and thus the answer is the set
of all positive cells. On the other hand, if F is the family of connected regions
(in the usual 4-neighbor topology), then the problem becomes NP-hard [2]. For
the complexity of MWRP for other families, see the paper by Chun et al. [4]
and the references therein.

Motivated by the image segmentation problem, Chun et al. [4] studied a
more complicated family of pixel regions for MWRP (see Figure 1). A base-
line of an n × n pixel grid P is a vertical line x = b or horizontal line y = b,
where 0 ≤ b ≤ n. A pixel region R is a based x-monotone region if there is a
horizontal base-line y = b such that if a cell is contained in R, then so are the
ones on a shortest path (in the usual 4-neighborhood graph) from the cell to the
base. Based y-monotone regions are analogously defined. Based x-monotone
regions and based y-monotone regions are base-monotone regions. Given a set
of k base-lines, a region R is base-monotone feasible if it can be decomposed
into pairwise disjoint base-monotone regions with respect to the base-lines. The
k base-line MWRP is MWRP in which we are given k base-lines, and we find a
maximum-weight base-monotone feasible region with respect to the base-lines.

Chun et al. [4] observed that the complement of a maximum-weight base-
monotone feasible region represents an object in a picture nicely if the base-lines
are located reasonably (see Figs. 1 and 3). They showed that the k base-line
MWRP can be solved in polynomial time. In [5], they also studied the k base-
segment MWRP, in which we are given k segments and find a region decom-
posable into base-monotone regions with respect to the given base-segments.
(We define this problem more precisely in the next section.) They showed some
partial results on the complexity of this problem. For other approaches for
formulating image segmentation as optimization problems, see e.g. [6, 9].

In the setting of the k base-line MWRP, we are given k base-lines. Thus a
natural question would be “What if base-lines are not given?” In other words,
“How can we divide the pixel grid into subgrids with vertical and horizontal
lines?” We study this problem and show that the problem of optimally locat-
ing k base-lines is NP-hard but it can be approximated within factor 2. Next
we study the k base-segment MWRP and present sharp contrasts of its compu-
tational complexity. Finally, we propose another way for dividing the pixel grid
into subgrids, and show that this variant can be solved in polynomial time.
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Figure 1: Image segmentation via k base-line MWRP proposed in [4]. We first convert a
picture to a gray scale image. Next, with some suitable function, we construct a pixel grid in
which each dark pixel has positive weight and each light pixel has negative weight. Finally we
solve the k base-line MWRP to segment the background from the objects. In this example,
the boundary edges of the picture are used as base-lines (thus k = 4). For example, the red
region in the third figure has the top edge of the image as its base-line.

Figure 2: A based x-monotone region (left) and a based y-monotone region (right).

2. Definitions of the Problems and Our Results

In this paper we study three different but well related problems. This section
introduces these three problems, briefly explains our results, and then discusses
what do the results mean in the context of applications.

2.1. Base-Line Location

To complement the result of Chun et al. [4], who showed that the k base-line
MWRP can be solved in O(n3) time, we study the computational complexity
of the following problem.

Problem: Base-Line Location

Instance: An n× n pixel grid P and positive integers k and w.

Question: Are there k base-lines in P such that a maximum-weight base-
monotone feasible region has weight at least w?

There are only
(
2n+2
k

)
possible allocations of k base-lines. Thus Base-Line

Location can be solved in O(2knk+3) time. However, this is impractical if k
is a part of the input. We want to solve this problem in O(poly(k + n)) time
or in O(f(k) · poly(n)) time, where f(k) is a computable function that depends
only on k. Unfortunately, the former, O(poly(k + n)) time, is very unlikely as
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Figure 3: The complement of a base-monotone feasible region may represent an object in a
picture nicely. By additional base-lines, the result may be improved.

we prove the problem to be NP-hard if k is a part of the input. The latter,
O(f(k) · poly(n)) time, remains unsettled in this paper. We also show that this
problem allows an O(n3)-time factor-2 approximation.

2.2. The k base-segment MWRP

Consider a segment s contained in a base-line `. If a base-monotone region
R with base-line ` intersects ` only in s, then R has s as its base-segment.
In [5], Chun et al. studied k base-segment MWRP, in which k base-segments
are given, and one wants to find a region that can be decomposed into disjoint
monotone regions with respect to the given base-segments. They also studied
two-directional version of this problem in which the region can be built only
on the right side of each vertical base-segment and on the upper side of each
horizontal base-segment. They showed the following results.

Theorem 2.1 ([5]). The k base-segment MWRP can be solved in O(nO(k))
time. The two-directional version can be solved in O(kO(k)n4) time.

The first statement says that the original problem can be solved in polynomial
time if k is not a part of the input. The second statement says that the two-
directional version is fixed parameter tractable when parameterized by k. We in
this paper complement the first result by showing that the problem is NP-hard
when k is a part of the input, and improve the second result by showing that
the two-directional version can be solved in polynomial time both in n and k.

2.3. Quad Decomposition

To show that k base-line MWRP can be solved in O(n3) time, Chun et al. [4]
showed that solving the k base-line MWRP is equivalent to solving the following
problem for each subgrid obtained by the given base-lines.

Problem: Room-Edge Problem

Instance: An m× n pixel grid P .

Objective: Find a maximum-weight base-monotone feasible region with the
four base-lines x = 0, x = m, y = 0, and y = n.

They presented an O(mn2)-time algorithm for the problem above [4]. They
solve the Room-Edge Problem for each subgrid, and then return the disjoint
union of the solutions as a solution for the k base-line MWRP. From this point
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Figure 4: Quad decompositions of depth 1, 2, and 3.

of view, we propose another problem Quad Decomposition. For an n × m
pixel grid P and a point p = (i, j), we can divide P naturally into four subgrids:
the bottom-left, bottom-right, upper-left, and upper-right parts with respect to
the point p. We call the resultant set of subgrids the quad decomposition of P
at p. If we recursively apply this decomposition d times (at arbitrarily chosen
points), then we will have 4d subgrids of P (see Figure 4). We call the resultant
set of subgrids a depth d quad decomposition of P . Now our problem is defined
as follows.

Problem: Quad Decomposition

Instance: An n× n pixel grid P and positive integers d.

Objective: Find a depth d quad decomposition of P that maximizes the total
sum of the weight of the optimum solution of Room-Edge Problem for
the subgrids in the decomposition.

Note that we can assume d ≤ log2 n since otherwise the problem becomes trivial
(we can take all the positive cells). We will show that this problem can be solved
in polynomial time.

2.4. Discussion about the Results

Following the work of Chun et al. [4, 5], we study the image segmenta-
tion problem formulated as combinatorial optimization problems. As explained
above, the complexity varies with each problem. For Quad Decomposition,
an optimal decomposition can be found in polynomial time. For Base-Line
Location, an optimal decomposition is hard to find, but given a decomposi-
tion, we can find optimal base-monotone regions in polynomial time. For the k
base-segment MWRP, even finding optimal base-monotone regions with given
base-segments is hard. Also, the hardness proof for Base-Line Location im-
plicitly implies the hardness of the k base-segment location. (We can just use
the same reduction.)

In the context of image segmentation, we may expect that quad decompo-
sitions work well compared to k base-line decompositions. This is because, by
using quad decompositions, we can place many bases in complicated parts of the
image. However, the running time of our algorithm for Quad Decomposition
is O(n7), which is quite high. Therefore, in some setting, using approximations
or heuristics for Base-Line Location would be much more practical. Indeed,
in a sister paper [3], we proposed some heuristic algorithms which run much
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faster in practice. See [3, 4] for some experimental experiments. Finally, the
hardness of the k base-segment MWRP would imply that formulating the image
segmentation as this general problem is not a good idea, unless we can do it in
the two-directional setting.

3. NP-Hardness of Base-Line Location

Here we prove the following theorem.

Theorem 3.1. Base-Line Location is NP-complete in the strong sense.

The problem is clearly in NP. We prove its strong NP-hardness by reducing
Independent Set to this problem. An independent set of a graph is a set
of pairwise non-adjacent vertices. The following problem is known to be NP-
complete [7].

Problem: Independent Set

Instance: A graph G and a positive integer s.

Question: Does G have an independent set of size at least s?

Note that Independent Set is NP-complete even if |V (G)| = |E(G)|. If
|V (G)| > |E(G)|, then we increment s by 1 and add a sufficiently large com-
plete component to G to make |V (G)| ≤ |E(G)|. If |V (G)| < |E(G)|, then we
increment s by |E(G)| − |V (G)| and add |E(G)| − |V (G)| new isolated vertices
to G to make |V (G)| = |E(G)|. It is easy to see that the obtained instance is
equivalent to the original one.

Proposition 3.2. Independent Set is NP-complete even if |V (G)| = |E(G)|.

3.1. Gadgets

We first define two small gadgets for forcing base-lines into restricted zones.
Throughout this paper, each black • represents a positive weight. Also, each
orange × in a pixel grid represents a huge (but polynomially bounded) negative
weight whose absolute value is equal to the sum of all the positive weights in the
grid. All the other cells have weight 0. Therefore, we cannot take any orange
× into our solution.

Our first gadget is the 3 × 3 grid depicted in Figure 5. If we want to take
the positive cell at the center into base-monotone regions, we need one base-line
as in the figure. Since we cannot take any huge negative cell into solutions, the
possible locations of the base-lines are restricted to the four positions in the
figure. We call this gadget a base-line forcer. The weight of a base-line forcer
is the weight of the positive cell, and the position of a base-line forcer is the
position of its bottom-left cell.

Next we consider a similar gadget depicted in Figure 6. In order to take all
the positive cells and not to take any negative cell into base-monotone regions,
we need either one vertical base-line or two horizontal base-lines. Therefore, if
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Figure 5: A base-line forcer: forcing one base-line.

Figure 6: (Left) A vertical base-line forcer: forcing one vertical base-line or two horizontal
base-lines. (Right) A generalized vertical base-line forcer and a generalized horizontal base-
line forcer: to take the positive cells into a solution, we have to put a base-line in the area
depicted in the figure.

we need to minimize the number of base-lines, then we have to use one vertical
base-line. We call this gadget a vertical base-line forcer. By rotating this gadget,
we can also obtain a gadget for forcing two vertical base-lines or one horizontal
base-line. We call it a horizontal base-line forcer. The two positive cells in this
gadget have the same weight, and their weight is the weight of the vertical or
horizontal base-line forcer. The position of a vertical or horizontal base-line
forcer is the position of its bottom-left cell.

Vertical and horizontal base-line forcers work even if we insert some space
between columns or rows as in Figure 6. The location of the base-line is re-
stricted to the area depicted in the figure. We say that a vertical (horizontal)
base-line forcer intersects a vertical (horizontal resp.) base-line if the base-line
is in the restricted area; that is, a base monotone shape with the vertical or
horizontal base-line can contain the positive cells in the vertical or horizontal
base-line forcer. The number of the columns used by a vertical base-line forcer
is its width, and the number of rows used by a horizontal base-line forcer is its
height. For example, the original vertical base-line forcer in Figure 6 is of width
3.

3.2. Reduction

Given an instance (G, s) of Independent Set, we construct an instance
(P, k, w) of Base-Line Location as follows. It is easy to see that the reduction
below can be done in polynomial time, and the absolute values of the weights
are bounded by a polynomial of the input size.

By Proposition 3.2, we may assume |V (G)| = |E(G)| to simplify the proof.
Let V (G) = {v1, . . . , vm} and E(G) = {e1, . . . , em}. We set the number of
base-lines k = 2m and the required weight w = 8m3 + 8m2 + s. The grid P is
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the (20m+ 20)× (20m+ 20) pixel grid with the following entries (see Figure 7).
Note that we put the following gadgets in such a way that they do not intersect
each other, since otherwise they do not work.

Vertex gadgets. For each vertex vi, we put a vertical base-line forcer of width
5 and weight 2m2 + m, denoted VF i, at the position (10i, 5i). We also put a
base-line forcer of weight 1, denoted BF i, at the position (10i− 1, 20m+ 15).

Edge gadgets. Let eh = {vi, vj} ∈ E(G) be an edge with i < j. We put a
horizontal base-line forcer of height 10 and weight 2m2 + m, denoted HFh, at
the position (10m+ 5h, 5m+ 15h). Next we put two horizontal base-line forcers
HFh,i and HFh,j of height 3 and weight m at the positions (10i−3, 5m+15h−1)
and (10j − 3, 5m + 15h + 8), respectively. Also, we put two base-line forcers
BFh,i and BFh,j of weight m at the positions (10i + 3, 5m + 15h + 2) and
(10j + 3, 5m+ 15h+ 5), respectively.

The weight of negative cells. We have the following positive cells in the grid:

• 4m cells of weight 2m2 +m,

• 6m cells of weight m, and

• m cells of weight 1.

The total weight of the positive cells is W = 4m(2m2 + m) + 6m2 + m =
8m3 + 10m2 +m. We set the weight of the negative cells to −W so that these
cells cannot be taken in any solution with a positive total weight.

3.3. Equivalence

Now we show the equivalence between (G, s) and (P, k, w) constructed above.
That is, we show that (G, s) is a yes-instance of Independent Set if and only
if (P, k, w) is a yes-instance of Base-Line Location. This shows the NP-
hardness of Base-Line Location. Moreover, since the weight of each cell is
polynomially bounded, the problem is NP-hard in the strong sense.

Lemma 3.3. If (G, s) is a yes-instance of Independent Set, then (P, k, w)
is a yes-instance of Base-Line Location.

Proof. Let S be an independent set of G with |S| ≥ s. We use m vertical
base-lines for vertices and m horizontal base-lines for edges.

For each vertex vi ∈ S, we set a vertical base-line at x = 10i. For each vertex
vi ∈ V (G) \ S, we set a vertical base-line at x = 10i + 3. Let eh = {vi, vj} ∈
E(G) be an edge with i < j. If vi ∈ S, then we set a horizontal base-line at
y = 5m + 15h + 8. Otherwise, we set a horizontal base-line at y = 5m + 15h.
For example, see Figure 8 for the case of eh = {vi, vj} ∈ E(G) and vi ∈ S. Note
that these facts imply vj /∈ S from the definition of independent sets.

Each vertical base-line corresponding to a vertex vi can take two cells of
weight 2m2 + m in VF i and degG(vi) cells of weight m in {HFh,i | vi ∈ eh} if
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vi v j

eh = {vi, v j}

HFh

BFh, j

HFh, j

HFh,i

BFh,i

BF jBFi

VFi

VF j

Figure 7: Gadgets for an edge {vi, vj}: black thick lines are the candidates of required base-
lines, two vertical and one horizontal.

vi ∈ S, or {BFh,i | vi ∈ eh} if vi /∈ S. Also, if vi ∈ S, then the vertical base-line
can take one cell of weight 1 in BF i.

Let eh = {vi, vj} and assume vj /∈ S without loss of generality. The hor-
izontal base-line corresponding to eh can take two cells of weight 2m2 + m in
HFh. If vi ∈ S, then we have the base-line at y = 5m+ 15h+ 8. Since vj /∈ S,
the positive cells of weight m in HFh,j are not taken by any vertical base-line,
and hence they can be taken by the horizontal base-line. If vi /∈ S, then we
have the horizontal base-line at y = 5m + 15h. The positive cells of weight
m in HFh,i are not taken by any vertical base-line, and can be taken by the
horizontal base-line.

From the above observation, we can take 4m cells of weight 2m2 +m, 2m+
2|E| = 4m cells of weight m, and |S| cells of weight 1. The total weight of these
cells is 4m(2m2 +m) + 4m2 + |S| = 8m3 + 8m2 + |S| ≥ w. This completes the
proof. �

Lemma 3.4. If (P, k, w) is a yes-instance of Base-Line Location, then (G, s)
is a yes-instance of Independent Set.

To prove this lemma, we need the following propositions.
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vi ∈ S v j < S

eh = {vi, v j}

HFh

BFh, j

HFh, j

HFh,i

BFh,i

BF jBFi

VFi

VF j

x = 10i x = 10 j + 3

y = 5m + 15h + 8

Figure 8: The case of {vi, vj} ∈ E(G) and vi ∈ S. Black thick lines are the selected base-lines.

Proposition 3.5. To take the total weight at least w = 8m3+8m2+s, we must
take all the 4m cells of weight 2m2 +m and at least 4m cells of weight m.

Proof. Recall that the sum of the weights of all positive cells is W = 8m3 +
10m2+m. If we do not take all the cells of weight 2m2+m, then the total weight
of taken cells will be at most W − (2m2 + m) = 8m3 + 8m2 < w. Similarly, if
we do not take at least 4m cells out of the 6m cells of weight m, then the total
weight of taken cells will be at most W − (2m+ 1)m = 8m3 + 8m2 < w. �

Corollary 3.6. If (P, k, w) is a yes-instance, then each VF i intersects exactly
one vertical base-line, and each HFh intersects exactly one horizontal base-line.

Proof. Otherwise, we cannot take all 4m cells of weight 2m2 +m. �

Note that, from the construction, no vertical (horizontal) base-line can inter-
sect two or more vertical (horizontal, resp.) base-line forcers of weight 2m2 +m.
Thus we denote the vertical base-line that intersects VF i by VLi, and the hor-
izontal base-line that intersects HFh by HLh.

Proposition 3.7. If (P, k, w) is a yes-instance, then for each eh = {vi, vj} ∈
E(G),
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• HLh must take the two positive cells in either HFh,i or HFh,j,

• VLi must take one positive cell in HFh,i or BFh,i, and

• VLj must take one positive cell in HFh,j or BFh,j.

Proof. By Corollary 3.6, only HLh, VLi, and VLj can take cells of weight m
in HFh,i, HFh,j , BFh,i, and BFh,j . It is easy to see that VLi can take only
one positive cell in HFh,i or BFh,i and VLi can take only one positive cell in
HFh,j or BFh,j . Also, it is not difficult to see that HLh can take either two
positive cells in HFh,i or two positive cells in HFh,j . On the other hand, by
Proposition 3.5, we must take at least four cells of weight m in HFh,i, HFh,j ,
BFh,i, and BFh,j . This completes the proof. �

A vertex vi is left if VLi is a vertical base-line x = 10i, and vi is right if
VLi is a vertical base-line x = 10i+ 3. An edge eh is top if HLh is a horizontal
base-line y = 5m + 15h + 8, and eh is bottom if HLh is a horizontal base-line
y = 5m + 15h. It is easy to see that if (P, k, w) is a yes-instance, then each
vertex is left or right, and each edge is top or bottom, by Proposition 3.7 (see
Figure 7 and Figure 8).

The following proposition relates Base-Line Location to Independent
Set.

Proposition 3.8. If (P, k, w) is a yes-instance, then the set of left vertices is
an independent set of G.

Proof. It suffices to show that for each eh = {vi, vj} ∈ E(G) with i < j, at
least one of vi and vj must be a right vertex.

Suppose that both vi and vj are left. In this case, VLi can take only one
cell of weight m in HFh,i, and VLj can take only one cell of weight m in HFh,j .
Also HLh can take only two cell of weight m in either HFh,i or HFh,j , but one
of them is already taken by VLi or VLj . By Proposition 3.7, (P, k, w) is not a
yes-instance. �

Now we are ready to prove Lemma 3.4.

Proof (Lemma 3.4). Let (P, k, w) be a yes-instance of Base-Line Location.
By the discussion in this section, each vertex is left or right, and each edge is
top or bottom. That is, there is a vertical base-line x = 10i or x = 10i + 3
for each vertex vi, and there is a horizontal base-line y = 5m + 15h + 8 or
y = 5m+ 15h for each edge eh. These base-lines take all the 4m cells of weight
2m2 +m and exactly 4m cells of weight m. Additionally for each left vertex vi,
the corresponding vertical base-line x = 10i can take the positive cell of weight
1 in BF i. No other positive cells can be taken.

Let L be the set of left vertices. Then the total weight of the positive cells
taken is

4m(2m2 +m) + 4m2 + |L| = 8m3 + 8m2 + |L|.
Since this value is at least w = 8m3 + 8m2 + s, it follows that |L| ≥ s. By
Proposition 3.8, (G, s) is a yes-instance of Independent Set. �
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4. A 2-Approximation Algorithm for Base-Line Location

Our approximability result is based on the polynomial-time solvability of the
following problem.

Problem: Vertical Base-Line Location

Instance: An n× n pixel grid P and a positive integer k.

Objective: Find k vertical base-lines in P that maximize the weight of an
optimal base-monotone feasible region with respect to these base-lines.

The problem Horizontal Base-Line Location is defined analogously. We
show that these problems can be solved in O(n3) time.

Theorem 4.1. Vertical Base-Line Location and Horizontal Base-Line
Location can be solved in O(n3) time.

Proof. By symmetry, it suffices to show the result only for Vertical Base-
Line Location. Without loss of generality, we assume that we can use the
vertical lines x = 0 and x = n as base-lines for free by adding new first and last
columns to the grid and setting huge negative weights to the new cells.

For 1 ≤ r ≤ n and 0 ≤ i ≤ j ≤ n, let P ri,j be the subgrid of P consisting of
the pixels (c, r) for i < c ≤ j. Let Ari,j be the maximum weight of base-monotone
regions in P ri,j with the base-lines x = i and x = j. Similarly, let Bri,j be the
maximum weight of base-monotone regions in P ri,j with the base-line x = i only.
Clearly Ari,i = Bri,i = 0. For i < j, we have

Ari,j = max
{
Bri,j−1, A

r
i,j−1 + w(j, r)

}
and

Bri,j = max

Bri,j−1,
j∑

j′=i+1

w(j′, r)

 .

These facts imply that for fixed r and i, we can compute Ari,j and Bri,j for

i ≤ j ≤ n in O(n) time. Therefore, we can compute Ari,j for all r, i, j in O(n3)
time.

For 0 ≤ i ≤ j ≤ n, let Pi,j be the subgrid [i, j]× [0, n] of P . Let Ci,j be the
maximum weight of base-monotone regions in Pi,j with the base-lines x = i and
x = j. It is easy to see that Ci,j =

∑n
r=1A

r
i,j . Hence we can compute Ci,j for

all i, j in O(n3) time by using the entries Ari,j , 1 ≤ r ≤ n.
Let Dh,j be the optimal value of the h base-line MWRP in P0,j with respect

to the vertical base-line y = j, and other h − 1 base-lines in P0,j . It is easy to
see that D1,j = C0,j and that for h ≥ 2,

Dh,j = max
h−1<i<j

(Dh−1,i + Ci,j) .

Using the entries Dh−1,i and Ci,j for h − 1 < i < j, we can compute Dh,j in
O(n) time. Thus we can compute Dh,j for all h, j in O(n3) time. Now clearly

max
k<i<n

(Dk,i + Ci,n)
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is the optimal value. Furthermore, by slightly modifying the algorithm, we can
output the positions of k vertical base-lines in the same running time. �

We solve Vertical Base-Line Location with k vertical base-lines and
Horizontal Base-Line Location with k horizontal base-lines in O(n3) time,
independently. We output the better one of these solutions. We can show that
the output is a 2-approximation solution.

Theorem 4.2. There is an O(n3)-time 2-approximation algorithm for locating
k base-lines to maximize the weight of optimum base-monotone feasible region.

Proof. We first solve Vertical Base-Line Location with k vertical base-
lines and Horizontal Base-Line Location with k horizontal base-lines in
O(n3) time, independently. We output the better one of these solutions. We
now show that one of these two solutions has weight at least half of the best
solution of Base-Line Location with k base-lines.

Assume that an optimal solution of Base-Line Location is attained with
kv vertical and kh horizontal base-lines, where kv + kh = k. Let Pv and Ph
be the sets of cells taken by vertical and horizontal lines, respectively, in the
optimal solution of Base-Line Location. Note that partition into Pv and Ph
is not unique. We just select one partition arbitrarily. Let Wv =

∑
p∈Pv

w(p)
and Wh =

∑
p∈Ph

w(p). Now Wv +Wh is the maximum weight for Base-Line
Location. Assume without loss of generality that Wv ≥W/2.

Observe that Pv can be taken by k vertical base-lines. This is because,
additions of base-lines never violate the feasibility of base-monotone regions.
Therefore, the optimum value of Vertical Base-Line Location is at least
Wv ≥W/2. �

Now we show the tightness of the analysis of the approximation ratio. To
this end, we use generalized horizontal (vertical) base-line forcers depicted in
Figure 9. The length of a generalized (horizontal or vertical) base-line forcer is
the number of positive cells in it. To take all the positive cells in a generalized
horizontal base-line forcer of length ` (and not to take any negative cell), we
need either one horizontal base-line or ` vertical base-lines. We construct a tight
example by putting one generalized horizontal base-line forcer of length ` and
one generalized vertical base-line forcer of length ` so that no row nor column
intersects both of the two base-line forcers. We set the weight 1 to every positive
cell. Clearly, we can take all positive cells with one horizontal and one vertical
base-lines, and thus the optimal solution is of weight 2`. On the other hand, if
we use only horizontal base-lines (or only vertical base-lines), then we can take
only `+1 positive cells using two base-lines. Therefore, the approximation ratio
is 2`/(`+ 1) = 2− o(1).

The tight example above can be beaten by a heuristic idea: if we guess the
number of horizontal base-lines (and thus the number of vertical ones), then we
can obtain the optimal solution for the example.

13



...

Figure 9: A generalized horizontal base-line forcer. A generalized vertical base-line forcer can
be obtained by rotating this gadget.

5. The k Base-Segment MWRP

Here we extend the results of Chun et al. [5] (see Theorem 2.1). We first re-
duce the two-directional version to Weighted Independent Set in bipartite
graphs. We next reduce Independent Set in planar graphs to the original k
base-segment MWRP. The first reduction implies that the two-directional ver-
sion can be solved in polynomial time, and the second implies that the original
problem is NP-hard, since Independent Set can be solved in polynomial time
for bipartite graphs [11], and is NP-hard for planar graphs [8].

In what follows, we may assume without loss of generality that no base-
monotone shape with respect to a base-segment contains another base-segment
properly (in such a case, we can partition the base-monotone shape). We may
also assume that two vertical (or two horizontal) base-segments may have inter-
section only at their end-points.

5.1. Two-directional version

To show that 2-directional version can be solved in polynomial time, we
reduce the problem to Weighted Independent Set for bipartite graphs.

We first divide each base-segment of length ` into ` unit base-segments.
This refinement does not change the optimum value. Now we have O(kn) base-
segments of length 1. We identify a base-segment s with (i, j) if s is the left or
bottom edge of a pixel (i, j).

For each vertical base-segment s = (i, j), we define its range as follows: if
there is no vertical base-segment s′ = (i′, j) with i′ > i, then the range of s
is [i, n]; otherwise the range of s is [i, i′ − 1], where i′ is the smallest index for
which such a segment exists (see Figure 10). We define the range of a horizontal
base-segment analogously.

Let s = (i, j) be a vertical base-segment with range [i, i′]. Let as(0) =
i − 1, and for p ≥ 1, let as(p) be the minimum index h such that as(p −
1) < h ≤ i′ and

∑
as(p−1)<q≤h w(q, j) is positive. If there is no such index,

then as(p) is undefined. If as(p) is defined for some p ≥ 1, then let ws(p) =∑
as(p−1)<q≤as(p) w(q, j). See Figure 10. For each horizontal base-segment s′,

we also define the sequence as′(·) and ws′(·) analogously.
Now we construct a vertex-weighted bipartite graph G = (U, V ;E). Let

s = (i, j) be a vertical base-segment. Assume that ` is the largest index such
that as(`) is defined. All as(0), . . . , as(`) are defined by the definition. If ` = 0,
then this segment s is useless and ignored. Otherwise, we put vertices us(p), 1 ≤

14
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Figure 10: (Left) The ranges of vertical base-segments s and s′. (Right) Example of as(p).
The corresponding weights ws(1), . . . , ws(5) = 5, 1, 1, 3, 3.
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Figure 11: The bipartite graph construction. The vertices corresponding to the crossing ranges
of two base-segments induce the disjoint union of an independent set and a complete bipartite
graph.

p ≤ `, with weight ws(p) into U . For each horizontal base-segment s′ = (i′, j′),
we put vertices vs′(p

′) into V in the same way. Next we define the edge set E.
Two vertices us(p) ∈ U and vs′(p

′) ∈ V are adjacent if and only if two base-
monotone regions with base-segments s and s′ have nonzero area intersection if
they contain (as(p), j) and (i′, as′(p

′)), respectively. More precisely, this can be
stated as: i ≤ i′ ≤ as(p) and j′ ≤ j ≤ as′(p′). See Figure 11 for an example.

From the definition of as(p) and ws(p), the following fact follows.

Remark 5.1. In each inclusion-wise minimal optimal solution, the base-monotone
region with the vertical base-segment s = (i, j) is either empty or consists of the
consecutive cells (i, j), . . . , (as(p), j) for some p ≥ 1. In the latter case, the
weight of the base-monotone region with s is

∑
1≤q≤p ws(q).

The horizontal counterpart of the above remark also holds.
From the conditions i ≤ i′ ≤ as(p) and j′ ≤ j ≤ as′(p′), it is easy to see that

if as(p + 1) is defined and {us(p), vs′(p′)} ∈ E, then {us(p + 1), vs′(p
′)} ∈ E

also holds. Thus we have NG(us(1)) ⊆ NG(us(2)) ⊆ · · · for any vertical base-
segment s, and NG(vs′(1)) ⊆ NG(vs′(2)) ⊆ · · · for any horizontal base-segment
s′, where NG(v) denote the neighborhood of v ∈ V (G) in G. Thus we have the
following lemma.

Lemma 5.2. Each maximal independent set of G is of the form⋃
s∈C
{us(1), . . . , us(ps)} ∪

⋃
s′∈C′

{vs′(1), . . . , vs′(p
′
s′)},
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where C and C ′ are the sets of vertical and horizontal base-segments, respec-
tively.

Proof. Let s be a vertical base-segment and I be a maximal independent set of
G. Assume us(p) ∈ I for some p > 1. Now the neighborhood NG(us(p)) of us(p)
cannot be in I. Thus we remove NG(us(p)) from G. In the obtained graph, each
us(p

′) with p′ < p is an isolated vertex since NG(us(p
′)) ⊆ NG(us(p)). This

implies that {us(1), . . . , us(p)} ⊆ I. The proof for horizontal base-segments is
almost the same. �

Now we prove the main result of this section.

Lemma 5.3. An optimum solution of an instance of the two-directional k base-
segment MWRP has weight at least W if and only if the corresponding bipartite
graph G has an independent set of weight at least W .

Proof. For the only-if part, let R be an inclusion-wise minimal maximum-
weight base-monotone region. Let W =

∑
(i,j)∈R w(i, j). We shall find an

independent set I of G with weight W . For each vertical base-segment s = (i, j),
either R has empty intersection with the range of s or R contains the consecutive
cells (i, j), . . . , (as(p), j) for some p ≥ 1 (see Remark 5.1). In the latter case,
we put the vertices vs(1), . . . , vs(p) into I. We do the same thing for each
horizontal base-segment. Clearly, I is of weight W . Furthermore, I is indeed
an independent set from the construction of G.

For the if part, let I be a maximum-weight independent set of G. Assume
that the weight of I is W . Let s = (i, j) be a vertical base-segment. By
Lemma 5.2, either I contains no vertex us(·) or I contains consecutive vertices
us(1), . . . , us(p) for some p ≥ 1. In the latter case, we take the consecutive cells
(i, j), . . . , (as(p), j) as the base-monotone region with the base-segment s. We
do the same thing for each horizontal base-segment. The total weight of the
taken cells is W . Since I is an independent set of G, the base-monotone regions
taken are pairwise disjoint. �

Theorem 5.4. The two-directional k base-segment MWRP can be solved in
O(k3n6 log kn) time.

Proof. Given an instance of the two-directional k base-segment MWRP, we
first refine each base-segment and construct the corresponding bipartite graph G
as described in this section. Clearly, |U∪V | = O(kn2), and thus the construction
can be done in O(k2n4) time. Next we find the maximum-weight independent
set I in G. Since G is bipartite, I can be found in O(|U ∪V | · |E| log |U ∪V |) =
O(k3n6 log kn) time [11]. By Lemma 5.3, we can construct from I a maximum-
weight base-monotone feasible region with respect to the given k base-segments
in O(kn2) time. �
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Figure 12: A planar graph. Its visibility and nice visibility representations.

5.2. NP-hardness of the k base-segment MWRP

We now show the following theorem.

Theorem 5.5. The k base-segment MWRP is NP-complete in the strong sense.

The problem is clearly in NP, and thus it suffices to show the strong NP-
hardness. We reduce Independent Set for planar graphs to the k base-
segment MWRP. A graph is planar if it can be drawn in the plane without
edge crossings. It is known that Independent Set is NP-hard even for planar
graphs [8].

Nice visibility representations. Planar graphs have several geometric represen-
tations. We use one of them here. A w × h grid is the subset {1, 2, . . . , w} ×
{1, 2, . . . , h} of the plane. A visibility representation of a planar graph G maps
each vertex of G to a horizontal segment with endpoints in a grid and each edge
of G to a vertical segment with endpoints in a grid such that

1. no segments of two distinct vertices intersect,
2. segments of two distinct edges intersect only at their endpoints, and
3. the segment of an edge {u, v} touches the segments of u and v.

See Figure 12 for an example. Otten and van Wijk [12] showed that every planar
graph has a visibility representation. It is known that a visibility representation
of a planar graph in an O(n) × O(n) grid can be found in linear time (see
[13–15]). Here we need the following additional conditions for representations:

4. no two vertical segments have the same x-coordinate,
5. no two horizontal segments have the same y-coordinate, and
6. no two endpoints of segments have the same position.

We call a visibility representation satisfying the three additional conditions a
nice visibility representation. Given a visibility representation of a planar graph,
we can obtain a nice visibility representation of the graph in polynomial time by
refining each cell of the grid into a 3n × 3n subgrid, extending each horizontal
segment to both directions by one pixel, and shifting each vertical segment to
break the same x-coordinate. The shifting of each vertical segment can be done
since there are at most 3n− 6 edges and there are 3n new x-coordinates for the
original x-coordinate. Note that each segment in this representation has length
at least 6n.
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Figure 13: Each green thick segment is a base-segment. In the right figure S = {b, d}.

Reduction. Let (G, s) be an instance of Independent Set, where G is a planar
graph with n vertices and m edges. Note that we do not assume n = m here. We
first construct a nice visibility representation R = (A,B) of G in polynomial
time, where A is the set of horizontal segments and B is the set of vertical
segments. We construct a pixel grid P from R as follows (see Figure 13).

Vertex gadget: For each vertex u ∈ V with the corresponding horizontal
segment au = [x1, x2]× {y} ∈ A, we put a vertical base-segment (x1, y) and set
the weight 1 to the cell (x2, y).

Edge gadget: For each edge e = {v, w} ∈ E with the corresponding vertical
segment bu = {x} × [y1, y2] ∈ B, we put horizontal base-segments (x, y1) and
(x, y2 + 1) and set the weight n to the cell (x, ye), where the y-coordinate ye is
not used by any vertical base-segment and y1 < ye < y2. Such a coordinate can
be chosen since each segment has length at least yn.

Weight of gadgets: Note that the weight of a cell is at most n and there is
no negative-weight cell.

Remark 5.6. For each base-segment in the construction above, there is only
one cell with positive weight that can be taken by the base-segment.

Equivalence. We now show that (G, s) is a yes-instance if and only if the opti-
mum value of k base-segment MWRP on P is at least mn+ s. Since the weight
of each cell is polynomially bounded, the problem is NP-hard in the strong
sense.

For the only-if part, let S be an independent set of G with |S| ≥ s. We
first take |S| positive cells of weight 1 by the vertical base-segments of vertices
in S. For each edge e = {u, v} ∈ E, P contains two horizontal base-segments.
Since S is an independent set, at least one of them can be used to take the
corresponding positive cell of weight n (see Figure 13). Therefore, we can take
the cells of total weight at least mn+ |S| ≥ mn+ s.
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For the if part, first observe that we must take all positive cells of weight n
since otherwise the total sum is at mostmn < mn+s. Thus we use one of the two
horizontal base-segments for each edge. This implies that for each edge {u, v},
we can take at most one positive cell of weight 1 using the corresponding vertical
base-segment of u or v. Let S be the set of vertices such that the corresponding
vertical base-segments are used to take their positive cells of weight 1. By the
observation above, S is an independent set of size at least s. This completes the
proof.

The three-directional version. In the reduction above, we may assume without
loss of generality that the region can be built only on the right side of each
vertical base-segment, on the upper sides of some horizontal base-segments,
and on the lower sides of the remaining horizontal base-segments. We call this
version the three-directional k base-segment MWRP.

Corollary 5.7. The three-directional k base-segment MWRP is NP-complete
in the strong sense.

6. Polynomial-Time Algorithm for Quad Decomposition

Recall that Quad Decomposition is the problem of finding a depth d quad
decomposition of P that maximizes the total sum of the weight of the optimum
solution of Room-Edge Problem for the subgrids in the decomposition.

A dynamic programming approach allows us to have the following result.

Theorem 6.1. Quad Decomposition can be solved in O(n7) time.

Proof. For 0 ≤ i ≤ j ≤ n and 0 ≤ s ≤ t ≤ n, let P(i,s),(j,t) be the submatrix of

P with the bottom-left point (i, s) and the top-right point (j, t). Let A
(0)
(i,s),(j,t)

be the weight of an optimum solution of Room-Edge Problem in P(i,s),(j,t).

The entries A
(0)
(i,s),(j,t) for all i, j, s, t can be computed in O(n7) time by using

the O(n3)-time algorithm in [4].

For δ ≥ 1, let A
(δ)
(i,s),(j,t) be the weight of an optimum solution of the depth

δ Quad Decomposition in P(i,s),(j,t). It is not difficult to see that

A
(δ)
(i,s),(j,t) = max

i<p<j, s<q<t

(
A

(δ−1)
(i,s),(p,q) +A

(δ−1)
(p,s),(j,q) +A

(δ−1)
(i,q),(p,t) +A

(δ−1)
(p,q),(j,t)

)
.

See Figure 14. Hence each entry A
(δ)
(i,s),(j,t) can be computed in O(n2) time

with precomputed entries A
(δ−1)
(i′,s′),(j′,t′) for all i′, j′, s′, t′, and thus all the entries

A
(δ)
(i,s),(j,t) can be computed in O(n6) time in total. Clearly, the weight of an

optimal solution for the depth d Quad Decomposition is A
(d)
(0,n),(0,n). This

entry will be computed in O(n7 + d · n6) time. Since d ∈ O(log n), the theorem
holds. �
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Figure 14: Computing A
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from the entries of A(δ−1).

The bottleneck of the running time above is the first phase of solving Room-
Edge Problem for all the possible O(n4) subgrids. Using techniques developed
in the study of the all-pairs shortest path problem, we can slightly improve the
running time of the first phase as follows.

Given s × t and t × r real matrices A = (ai,j) and B = (bi,j), the funny
product (or the distance product) A � B is the s × r matrix C = (ci,j) with
ci,j = max1≤k≤n(ai,k + bk,j). It is known that the computational complexity
of funny matrix multiplication is equivalent to that of all-pairs shortest path
problem in weighted directed graphs (see [1, Section 5.9]). We can show that
the first phase involves funny matrix multiplication. Using the current best
algorithm for funny matrix multiplication by Han and Takaoka [10], we can
present an O(n7 log log n/ log2 n)-time algorithm for Quad Decomposition.

7. Concluding Remarks

Base-Line Location and related problems are studied as formulations of
image segmentation problems. In this paper, although we believe that these
problems can arise in practical settings, we focused on their theoretical aspects
and studied their computational complexity. Experimental results of k base-line
MWRP and Quad Decomposition for image segmentation can be found in
[3, 4].

From a computational-complexity point of view, it would be interesting to
ask the fixed-parameter tractability of Base-Line Location with parameter
k, the number of base-lines.
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