
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Application of Data Compression Technique in

Congested Networks

Author(s)
Kho, Lee Chin; Ngu, Sze Song; Tan, Yasuo; Lim,

Azman Osman

Citation
Lecture Notes in Electrical Engineering, 348:

235-249

Issue Date 2015-10-29

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/13783

Rights

This is the author-created version of Springer,

Lee Chin Kho, Sze Song Ngu, Yasuo Tan, and Azman

Osman Lim, Lecture Notes in Electrical

Engineering, 348, 2015, 235-249. The original

publication is available at www.springerlink.com,

http://dx.doi.org/10.1007/978-81-322-2580-5_23

Description
Proceedings of WCNA 2014, Book Title: Wireless

Communications, Networking and Applications

Application of Data Compression Technique in

Congested Networks

Lee Chin Kho1, Sze Song Ngu2,*, Yasuo Tan1, and Azman Osman Lim1

1Japan Advanced Institute of Science and Technology (JAIST),

School of Information Science, 1-1 Asahidai, Nomi City, Ishikawa,

923-1292, Japan
2Universiti Malaysia Sarawak,

Department of Electrical and Electronic Engineering, Faculty of Engineering,

Kota Samarahan, Sarawak, Malaysia
*ssngu@feng.unimas.my

Abstract. One of the viable solutions for reducing congestion in networks is

compression. Compression reduces data size and transmission time. The

conventional compression techniques are mainly designed to compress data at

application level of the Internet protocol suite and during network off-line

condition. In this paper, a novel data compression based congestion control

(DCCC) technique in transmission control protocol is proposed. The DCCC can

be divided into two stages, which are the congestion detection and compression.

In the first stage, congestion status identification is performed. If it is predicted

that the congestion may appear in a particular network, then a sender that

satisfies the compression conditions will send for compression. The second

stage consists of the dictionary construction and data encoding to

eliminate/reduce redundancy. The numerical result shows that the proposed

technique can save up to 20% the network bandwidth when the block size of

more than 16 Kbyte is used.

Keywords: Congestion control; data compression; transmission control

protocol; redundancy

1 Introduction

Wireless networks and future communication technologies such as the Internet of

Things (IoT), Machine-to-Machine (M2M), and Long Term Evolution (LTE) are

being developed rapidly in recent years. These have led to vast amount of data

transmission, resulting in the overloading of communication networks. Networks,

with limited bandwidth maybe congested. If the network is congested, the

performance of the network in terms of the quality of service (QoS) and energy

efficiency will be degraded. Therefore, the network congestions must be managed

efficiently.

The conventional congestion control solutions relieve the congested network by

decreasing the transmission rate of child nodes of a congested node. However, when

the data is propagated back to the source in the case of serious congestion, packet loss

might still occur due to collision among nodes. Furthermore, transfer rate adjustment

by congestion control techniques might raises difficulty in maintaining the network

throughput stability. It is proposed in this paper that the actual transmitted data size in

the network should be decreased to overcome this shortcoming. This can be achieved

by the compression of data at the sender nodes.

Compression techniques in networks have started since a few decades ago, mainly

during the data storage and data transmission processes. Compression techniques are

stable, well developed and used in wide range of applications. Due to the space and

time complexity of the compression algorithm, compression is mainly achieved in the

application layer of Internet protocol suite and network off-line condition.

Traditionally, the duration for large data compression and transmission is longer than

the data transmission without compression. However, the data processing of recent

machines are getting faster, compression is starting to be appealing for real-time low

bandwidth network and wireless sensor network.

The congestion control technique with compression, Adaptive-Compression based

congestion control Technique (ACT) has been described in [1]. Three compression

techniques, Discrete Wavelet Transform (DWT), Adaptive Differential Pulse Code

Modulation (ADPCM) and Run-Length Coding (RLC) are used in this studied. The

network efficiency is improved with ACT, but it is limited in a specific environment

and data format.

The real time adaptive packet compression scheme [2] is developed to improve the

performance of high latency network with limited bandwidth. The scheme

implements zlib compression library for compressing and decompressing the blocks

of aggregated packet. Although this scheme can improve the packet drop rate in a

heavy load satellite network, it operates only in the point to point connection.

In [3], a Fast Cross Layer Congestion Control (FCLCC) algorithm for compressed

sensing technique is proposed. The FCLCC provides good compression and reduce

the congestion duration greatly. However, the FCLCC is only suitable to solve the

congestion problem in wireless sensor network.

 The aforementioned researches depict that the data compression techniques can

be implemented to solve the congestion problem. But, it is limited to a specify

network environment and/or data type format. To the best of our knowledge,

compression in congestion control is mainly implemented in wireless sensor network.

This is because sensor data are usually spatial and temporal correlated. If the data is

highly correlated, the compression performance is increased. To obtain highly

correlated data and avoid the problem of packet timeout due to compression

processing time, the compression is performed in the transport layer of sender nodes.

Furthermore, this also allows the proposed scheme to be implemented in different

type of networks and applications.

This paper proposes a new scheme, namely data compression based congestion

control (DCCC). This scheme coordinates the data compression and TCP congestion

control technique to address the congestion problem in the low bandwidth network.

Our contributions are:

(1) The DCCC scheme is proposed to ensure the compression performance is

beneficial to the congestion. For example, when the expected compression ratio

(CR) for the block of data is higher than compression threshold, the data is sent

without compression.

(2) In the DCCC, a new dictionary-based compression algorithm is proposed and

implemented. This algorithm has lesser addition space complexity than the

conventional dictionary-based compression algorithm.

(3) The DCCC scheme wills pre-determination the compressibility of the data. This

can avoid the wasteful recompression for the data types such as JPEG, MPEG4,

PDF, and M4A, which cannot give the good CR.

The arrangement of this paper is organized as follows. Section 2 devotes the

architecture of DCCC. Section 3 discusses the proposed compression algorithm. The

performance of the algorithm is evaluated in Section 4 and conclusion in section V.

2 Proposed DCCC Scheme

The DCCC scheme is implemented in transport layer of sender nodes. It is activated

during the connection establishment, but only performs when network is congested. It

will deactivate when the connection is disconnected.

2.1 DCCC Architecture

An example of DCCC performing scenario is depicted in Fig. 1. Multiple senders are

transmitting their data packets to a router simultaneously. When the arrival rate of the

incoming packet is greater than the rate of the router that can possible to send

through, congestion is occurred. Then, the sender receives three duplicated

acknowledgement messages from the receiver. The sender is responded by reducing

the size of congestion window to decrease the transmission rate.

The DCCC is proposed to compress the outgoing data to avoid network

congestion. Two main concerns of the compression algorithm in DCCC are additional

memory needed during the compression and its ability to compress. A new

compression algorithm is proposed and the detail of is discussed in the next section.

Fig. 1. An example of DCCC performing scenario

The architecture and session management of DCCC is showed in Fig. 2 and 4

respectively. Traditionally, when the data arrives at the transport layer, the protocols

s2

Sender Domain Network of router Receiver Domain

congested

router

s1

s3

R1

R2

such as TCP, UDP, SCTP and ATP start the process of data encapsulation. The

application data is encapsulated into transport protocol data units called segment. In

DCCC, the TCP is performed exactly same procedure during the normal condition.

However, when a router is in the congested condition, the compression function at the

sender will be operated if the compression activation condition is fulfill. Then, the

compressibility of data arrives at the TCP protocol will be determined. If the data is

un-compressible, it will forward directly to the segmentation process. If not, the data

will be encoded before forward to segmentation process.

The session management of DCCC is performed during the connection

establishment. After the connection is established, DCCC sends a control segment,

‘ACTIVATE’ to receiver. If the receiver consists of DCCC scheme, a segment of

‘ACTIVATE_ACK’ is returned to acknowledge the successful receipt of the segment.

Then, the compression connection is established by sending the control segment of

‘ACTIAVTE_COMPRESSION’. If not, a segment of ‘ACTIVETE_NACK’ is

returned. When the network is reached to a certain stage of congestion mode, the

application data is directly sent to compression function in DCCC. The session

management of DCCC is deactivated before the established connection is

disconnected.

The congestion status is divided into three stages: moderate congestion, serious

congestion and absolute congestion. These congestion stages are based on the traffic

load of a congested router, which depicted in Fig. 3. During the moderate congestion,

the router sent a notification message for enabling more packets to be forwarded. In

the serious congestion stage, the router sends a notification message in on-demand

fashion. At this time, the compression function in DCCC is performed. If the traffic

load is still increasing until the absolute congestion stage, the formal TCP congestion

control mechanism is performed.

 Fig. 2. The DCCC architecture. Fig. 3. The congestion stage in a router.

 Fig. 4. The session management of DCCC

2.2 Notations and Definitions

Table 1. List of notations.

Symbol Description

x A character, which is set of hexadecimal number. Each character represents four

binary bits (or a nibble), which is half of a byte (8 bits).

s A symbol, which is a group of two or more characters. If the symbol has two

characters, then the maximum number of the symbols is 162or256.

ls A symbol length, which is the number of bits of a symbol. If the symbol has two

characters, then the symbol length is 2 characters X 4 bits = 8 bits.

c A codeword, which is a group of two or more concatenated symbols. If the

codeword has two symbols and each symbol has two characters, then the

maximum number of the codewords is 2562, which is equivalent to 65536.

lc A codeword length, which is the number of bits of a codeword. If the codeword

has two symbols and each symbol has two characters, then the codeword length

is 2 symbols X 2 characters X 4 bits = 16 bits.

Symbol Description

C A code, which is a mapping from a symbol or a codeword to a set of finite length

of binary strings.

 A code length, which is the length of a code. If the code has bits, then we can

encode at most 2of symbols and codewords.

D A dictionary, which is initialized to contain the single codeword corresponding

to all the possible input characters. The dictionary is identical to the source data.
E A entry, which is a unique codeword that formed from the concatenation of

symbols in the dictionary

So The size of source data that to be compressed

Sc The size of encoded data

P The sum of repetitions of all output symbols and codeword

Ps The sum of repetitions of all output symbols that were not compressed

Pc The sum of repetitions of all output codeword that have been compressed

Q The sum of entries in the dictionary

lcmax The codeword length that has the maximum number of bits of a codeword

lcmin The codeword length that has the minimum number of bits of a codeword

îc The codeword length that has the average number of bits of a codeword

Throughout this paper, the list of notations and definitions is given in Table 1.

3 Proposed Compression Algorithm

Lossless compression techniques are generally classified into two groups: entropy-

based and dictionary-based. In the entropy-based, the shorter code length is assigned

to the codeword that occur more frequently in the source data to eliminate the

redundancy. This technique provides a good compression ratio (CR), but it requires

high computation time and memory. Meanwhile, dictionary-based replaces the source

data with a code to an entry in a dictionary. The most well known dictionary-based

techniques are Lempel-Ziv algorithm and their variants. These compression

techniques require an infinite dictionary size, which needs a huge memory. A new

compression algorithm that requires lesser memory is proposed here to reduce the

memory problem in the TCP.

3.1 Assumption and Constrains

To limit the memory requirements for the encoder and decoder, the amount of

dictionary is bounded. Since the dictionary is going to transfer for decoding, the size

of dictionary must be kept as small as possible. The dictionary is limited to 256

entries here.

The dictionary is filled with higher repetition codeword first regardless their

position of appearance. Each of the codeword in the dictionary must fulfill the

minimum repetition threshold (Rthre). The minimum threshold is given by

 (1)

The codewords that less than Rthre shall not include in the dictionary because it will

causes the poor compression ratio.

The fixed length code is used in this algorithm. A fixed length code is a code such

that i=j for all i and j.

Example 1: Suppose we have one symbol, {AB} and two codewords, {9F1B,

3E70B2}. In the fixed length code of 2 bits, the code would be C(AB) = 00, C(9F1B)

= 01, and C(3E70B2)= 10.

A dictionary is initialized to contain the symbols corresponding to all possible

input character. This dictionary is contained in both encoder and decoder, with the

index from 0 to 255. As a result, the dictionary for codeword must start from =9 bits,

and consists at least 512 entries. Since the first 256 entries are reserved for the

symbols, only leave 256 entries are for the codeword.

3.2 Development of Proposed Compression Algorithm

The process flow of proposed compression algorithm is showed in Fig. 5. When the

TCP is in serious congestion stage, the compressibility of the source data is

determined by compressing 1048 byte of data from the middle of the block. Although

this method cannot provide an accurate prediction of the source data compressibility,

it is enough to ensure the data is compressed or not. If the source data is compressed,

it will send directly for segmentation. If not, it will be split into a specific block size.

The codeword is created while reading the block data. The codeword in the

dictionary is just the expected codeword that shall be frequently used in the encoding

process. This codeword is constructed by concatenating in the overlapping way based

on the codeword length, lc.

Example 2: Consider a sequence data of A = {01ABABABAB01AB}. If lc. = 2,

the possible codeword become: 01AB, ABAB, ABAB, ABAB, AB01, 01AB. Each of

the codeword is then counted by adding one during the concatenation or found the

match between the block data and dictionary.

Fig. 5. The process flow of modified LZW compression

The codeword in the dictionary are then sorted descendingly based on repetition. If

the codeword repetition that is less than Rthre, it will be removed from the dictionary.

After building the dictionary, the block data is encoded by matching the symbols or

codeword from dictionary. If the maximum codeword length of block data exists in

the dictionary, the codeword indices are used as the compressed output. If not, the

shorter codeword length is matched until only one byte remaining. If one byte is left,

the implicit part of the dictionary, the first 256 indices that are reserved for one byte

symbols is used. Since the fixed length code is implemented, the beginning of symbol

from the implicit part of the dictionary must add with zero. This process is repeated

until the entire block data is encoded.

3.3 Derivation of the Compression Ratio

The performance of the data compression techniques is depended on the type of

source data format that to be compressed. In order to compare different data

compression techniques fairly, a factor, which is known as a compression ratio (CR)

is commonly used.

In our paper, the compression ratio is defined as the ratio between the size of the

source data (So) and the size of the compressed data (Sc), which can be expressed as

(2)

The amount of compression can also be stated as CR:1, where So can be assumed as a

string of N characters. This leads to So is equivalent to 4N bits.

Based on our proposed compression algorithm, Sc can be expressed as

(3)

The term of (lc+8)Q is referred to the dictionary size that need to be transmitted for

decoding. The 8 bits is represented as the number of concatenated symbols in each of

codeword. While, the P is coded data size and the P= Ps+Pc.

Example 3: Consider = 9 bits with source data of ABDE0378E4ABDEABDEAB

DEABDE’. The So = 4 X 26 = 104 bits. The codeword that in the dictionary are c =

{ABDE, 0378E4}. Since the codeword length is variable, the average of codeword

length, îc is equal to îc = (16+24)/2 = 20 bits. The dictionary size becomes (20 bits + 8)

2 = 56 bits. The coded data size is given by 9(0+5) = 45 bits. Therefore, the Sc= 56

bits + 45 bits = 101 bits. As a result, the CR = 104/ 101= 1.03.

3.4 Implementation Issues

To minimize the error that due to channel noise, the fixed length code is used.

However, it creates the problem of enlarging the CR, when the compressed data

consists of more Ps than Pc. To avoid this, the pre-determine compression performance

is performed. A new metric called total accumulative percentage (TAP) is introduced.

If the TAP is less than some threshold, then the dictionary would not be able to

compress enough percentage of the data, which result in bad CR. The TAP is a

heuristic solution. It can only use as an expected CR.

The TAP is calculated after building the dictionary and before the compression.

First, the total codeword repetition (TCR) that generated from overlapped block data

is calculated. Then the percentage of each codeword (PCi) is obtained by dividing the

codeword repetition (Ci) with TCR. The accumulative percentage (AP) for each

codeword in the dictionary is calculated by summing its own percentage (PCi) with

the percentages of all codeword ahead in the sorted dictionary (PCi-1). The AP of the

bottom codeword remaining would be referred as TAP. The AP can be described as

APi=PCi+PCi-1 (4)

The PCi can be defined as the fraction of a codeword repetition compared to the total

codeword repetition, which is given by

 (5)

 (6)

The Smax and Smin are the sum to the maximum or minimum number of the square.

Example 4: Consider a dictionary with three entries ‘0ab158’, ‘9fb5’, and ‘7def83”

with repetition of 100, 80, and 69 respectively. The `0ab158' and `7def83' is at the

entries of i=1 and i=3 respectively with lc=3. The `9fb5' is at the entries of i=2 and

lc=2. The So=2,500 bytes, lmax=3 and lmin=2. Then, the Smax=0+1+4+9=14 and

Smin=0+1=1. The TCR= ((2,500+1)/2)(2)(5)-14+1, which is equal to 12,492. The

PC1= (100 X 3)/12,492 becomes 0.024. Similarly, the PC2=0.012 and PC3=0.016.

Then, the TAP=0.024+0.012+0.016=0.052

The variable codeword length in this algorithm might take longer time to create the

dictionary. The longer the lc, the time needs for determine the possible codeword

becomes larger. Therefore, the fixed codeword length and variable codeword length

effect toward the CR is evaluated in the numerical analysis section.

4 Numerical Analysis and Discussion

In this section, code length, codeword length, and block size are analyzed. The code

length is analyzed to determine the lower bound of the CR that this algorithm can be

achieved. The codeword length and block size is analyzed to determine the optimal

value for the proposed compression algorithm. Besides, the CR of the proposed

compression algorithm is compared with others compression algorithm.

4.1 Code Length

When the code length is =8 bits, no dictionary is built. The  must start from 9 bits

onward. In this paper, the upper bound of CR in the proposed compression algorithm

is computed with the assumption of the sum of repetitions of all output symbols that

were not compressed, Ps=0, the codeword length is fixed to lc=2, and total number of

entries in dictionary is fully utilize, where Et.=2-28. When Ps=0, it means perfect

compression, the So is only encoded by the codeword. In this case, the best

compression of CR that can achieve is given by

(7)

Then, the upper bound of CR is given by

(8)

The worst case of CR in the proposed compression algorithm can be computed when

we assume the Pc=0. The worst compression of CR is given by

 (9)

The lower bound of CR is given by

(10)

The upper bound of CR for the proposed compression algorithm is showed in Fig.

6. The CR is decreased when the code length is increased. In order to have a better

CR with fixed codeword length of 2, the 9 bits is the best selection. From the Fig. 6,

the best performance that proposed compression algorithm can reach is 1.778. This

means the compression algorithm can save up to 44% of the bandwidth in a network.

Due to the fixed codeword length, it might also enlarge the compressed data size. The

worst performance of this algorithm reaches is 0.889, which enlarge nearly 12% of

the original data size. However, this problem can be solving by using the TAP pre-

determination to reject compressing bad compression ratio data.

4.2 Codeword Length

The codeword length, lc is used to vary the length of the codeword string. The longer

of the codeword string, the more data bits can be compressed per symbol. However,

the time needed to determine the possible codeword will be higher. The example of

CR for fixed codeword length and variable codeword length are showed in Fig. 7(a)

and Fig. 7(b) respectively. The test samples are from benchmark of the canterbury

corpus [4] and silesia corpus [5]. The CR for book is the average of book1 and book2,

obj is the average of obj1 and obj2, paper is the average of paper1 and paper2, prog is

the prog1, prog2, and prog3.

From Fig. 7 (a), the lc=2 gives the highest CR among the others. This is because

when the lc is increased, the probability of false to match with the code is also

increased. In the variable codeword length, the minimum codeword length is equal to

two and maximum codeword length is varied from 2 to 6 as shown in Fig. 7 (b). The

CR for all of the test samples is over than 1. When the lc is increased, the compression

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
C

o
m

p
re

ss
io

n
 R

at
io

 (
C

R
)

The size of source data that to be compressed, S0 (Kbyte)

2 4 16 32 65 131 262 524 1048 2097 4194

Fig. 6. The upper bound of CR for modified LZW algorithm

0.0

0.5

1.0

1.5

2.0
bib

book

geo

news

objpaper

prog

trans

x-ray

lc = 2

lc = 3

lc = 4

lc = 5

lc = 6

0.0

0.5

1.0

1.5

2.0
bib

book

geo

news

objpaper

prog

trans

x-ray

lcmax = 2

lcmax= 3

lcmax = 4

lcmax = 5

lcmax = 6

Fig. 7(a) Fixed codeword length Fig. 7(b). Variable codeword length

will become better, because the algorithm will try to search for the longest codeword

to encode. However, this will take longer processing time. Likewise, the lc=2 for fixed

codeword length gives the nearly same CR with the variable of codeword length with

lmax=6. In this case, the lc=2 for the fixed codeword length is selected for the

following simulation.

4.3 Block Size

The CR of different source data size is simulated to determine the optimal block size

for the proposed compression algorithm. 100 of test benchmark samples with 50% of

binary format such as mp4, jpeg, and wmv, and 50% of text format such as txt, html,

and .c are tested. The simulation result is showed in Fig. 8. The CR of 1.25 is used as

a reference that needs to be achieved for the minimum CR. In this case, compressing

each of the block data can at least save 20% of the network bandwidth.

From Fig. 8, when the source data is 8KB, 61% of the test samples give the CR

with more than 1.25. When the block size is 32 KB and 64 KB, 68% of the test

samples can compress more than 20% of the original file size. However, the test

samples that able to compress more than 1.25 of CR is decreased when the block size

is more than 131 KB.

Fig. 8. The CR for 100 test samples in different block size

4.4 Comparison between Proposed and Other Compression Algorithms

The overall performance in term of average Bit Per Character (BPC) of proposed

compression, Run-Length coding, Huffman coding, and Lempel–Ziv-Welch (LZW)

coding are compared and showed in Table 2. The run-length coding uses the

repetition based technique to compress the data. It is created to encode the data with a

string of repeated symbols. Meanwhile, Huffman coding is the statistical based

compression, where the probability distribution of character from source is used to

develop the codewords. The LZW is the most commonly used of dictionary based

compression. It compresses the data by using a dictionary to store repetitive

codewords that occur in the source

Table 2. Comparison of BPC for different compression algorithm

File Name File Size RLE Huffman LZW Proposed

book2 610856 8.16 4.83 3.78 4.55

news 377109 7.98 5.24 4.33 4.97

obj2 246814 8.05 6.33 4.68 5.43

paper1 53161 8.13 5.07 4.50 5.19

trans 93695 7.90 5.61 4.26 5.14

From the Table 2., the average of bit per character for proposed compression is

lesser than the RLE and Huffman coding. However, the proposed compression needs

more bits to represent a character than LZW.

To further investigate the addition memory requires by LZW and proposed

compression, the following test environment is set. The simulation is performed in

the GNU/Linux 3.13, 32-bit operating system, Intel Core 2 Duo 1.20GHz CPU, 4GB

main memory, 160GB 66MHz hard disk. The C code of LZW and proposed

compression are compiled with gnu C version 4.8.1. The simulation results are

showed in Table 3. The additional memory needed by proposed compression is at

least 10 times lesser than LZW. In summary, although the LZW performs better than

proposed compression in general, it needs much more additional memory compare to

proposed algorithm.

Table 3. Comparison of additional memory usage between LZW and proposed algorithm

File Name Memory (Mbyte)

LZW Proposed

book2 72 5

paper1 69 3

news 71 6

obj2 70 6

trans 69 2

5 Concluding Remark

In this paper, an application of data compression technique in congested networks,

namely data compression based congestion control (DCCC) is proposed. The

theoretical study showed that the proposed compression algorithm can compress up to

44% with the perfect compressible data. The numerical analysis showed that code

length of 9 bits, codeword length of 2 and block size of 16kB are the optimal

parameters of the proposed compression algorithm. Based on these parameters, the

proposed compression algorithm is performed and compared with others compression

algorithms. The results showed that the proposed compression is performed better

than the repetitive and statistical based compression. The LZW is performed better

than proposed compression, but it requires huge additional memory.

References

1. Hyoung, J., Jung, I. B.: Adaptive-compression based congestion control technique for

wireless sensor networks. J. of Sensors. 10: 2920-2945 (2010)

2. Tan, L. S., Lau, S. P., Tan, C. E.: Quality of service enhancement via compression technique

for congested low bandwidth network. In: Int. Conf. on Commun., pp. 71-76. Kota

Kinabalu, Malaysia (2011)

3. Li, M., Jing, Y., Li, C.: Fast cross layer congestion control algorithm based on compressed

sensing in wireless sensor network. In: Int. Conf. on Info. Tech. and Software Eng. Lecture

Note in Elec. Eng. Springer. Vol. 210, pp. 869-876 (2013)

4. Ross, A., Timothy, B.: Canterbury corpus. http://corpus.canterbury.ac.nz/. Access 20 June

2014

5. Silesian University of Technology: Silesia compression corpus,

http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia. Accessed 20 June 2014

http://corpus.canterbury.ac.nz/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

