
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Sliding token on bipartite permutation graphs

Author(s)
Fox-Epstein, Eli; Hoang, Duc A.; Otachi, Yota;

Uehara, Ryuhei

Citation Lecture Notes in Computer Science, 9472: 237-247

Issue Date 2015-12-09

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/13805

Rights

This is the author-created version of Springer,

Eli Fox-Epstein, Duc A. Hoang, Yota Otachi, and

Ryuhei Uehara, Lecture Notes in Computer Science,

9472, 2015, 237-247. The original publication is

available at www.springerlink.com,

http://dx.doi.org/10.1007/978-3-662-48971-0_21

Description

Algorithms and Computation, 26th International

Symposium, ISAAC 2015, Nagoya, Japan, December 9-

11, 2015, Proceedings

Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein1, Duc A. Hoang2, Yota Otachi2, and Ryuhei Uehara2

1 Brown University, USA. ef@cs.brown.edu
2 JAIST, Japan. {hoanganhduc,otachi,uehara}@jaist.ac.jp

Abstract. Sliding Token is a natural reconfiguration problem in which
vertices of independent sets are iteratively replaced by neighbors. We
develop techniques that may be useful in answering the conjecture that
Sliding Token is polynomial-time decidable on bipartite graphs. Along
the way, we give efficient algorithms for Sliding Token on bipartite
permutation and bipartite distance-hereditary graphs.

1 Introduction

Reconfiguration problems have been subject to much recent attention and study.
We focus on just one reconfiguration problem, Sliding Token, which is a nat-
ural reconfiguration problem over independent sets on graphs. Recall that an
independent set of a graph is a subset of its vertices such that no two are adja-
cent. A vertex in an independent set is called a token. Intuitively, one “slides”
tokens across edges to form new independent sets.

For independent sets I and J , we write I
G↔ J if |I| = |J | and there exists an

edge uv ∈ E(G) where I4J = {u, v}, where 4 denotes symmetric difference. A
reconfiguration sequence is a sequence of independent sets 〈I1, I2, . . . , Ik〉 such

that Ii
G↔ Ii+1 for all 1 ≤ i < k. For independent sets I and J on graph G,

the binary relation I
G
! J denotes that a reconfiguration sequence containing

both I and J exists. “
G
!” partitions independent sets into equivalence classes:

let [I]G = {J | I G
! J} be the equivalence class of I (with the subscript omitted

when implied from context). A yes-instance of Sliding Token is a graph G

and independent sets I and J where I
G
! J .

Ito et al. [4] show Sliding Token is PSPACE-complete. Kamiński et al.
give a linear-time algorithm for Sliding Token on cographs. There are also
polynomial-time algorithms on trees and claw-free graphs for Sliding Token [2,
1]. On graphs of bounded bandwidth (and thus treewidth), Sliding Token
remains PSPACE-complete [10]. Sliding Token is W [1]-hard parameterized
only by the length of the reconfiguration sequence [7, 5].

1.1 Preliminaries

Let G be a graph with vertex set V (G) (with n = |V (G)|) and edge set E(G),
and S a subset of its vertices. G[S] is the subgraph induced by S: the graph

with vertex set S and edge set E(G) ∩ (S × S). Define G \ S as G[V (G) \ S].
NG(v) is the set of all vertices adjacent to v in G and NG[v] = NG(v) ∪ {v}.
NG[S] = ∪v∈SNG[v] for vertex-subset S. When the graph is unambiguous, it is
omitted from the notation.

Let R(G, I) = {v | v ∈ ∩I′∈[I]GI
′} be the subset of I containing all of the

tokens v such that v ∈ I ′ for all I ′ ∈ [I]G. Vertices in R(G, I) are called rigid
with respect to G and I. An independent set I is unlocked if R(G, I) = ∅.

Because we frequently form sets that are just slight modifications of others,
we write A + x to be A ∪ {x} and A− x to be A \ {x}.

A graph is a permutation graph if and only if there is a bijection between the
vertices and a set of line segments between two parallel vertical lines such that
two vertices are adjacent if and only if their corresponding segments intersect.
A bipartite permutation graph is a permutation graph that has no odd-length
cycles.

Given an ordering 〈v1, . . . , vn〉 of the vertices of a graph, let N+
G (vi) =

NG(vi) ∩ {vi+1, . . . , vn}. Similarly, define N−G (vi) = NG(vi) ∩ {v1, . . . , vi−1}.
The following is easily derived from e.g. [8, 9]:

Proposition 1. Each connected bipartite permutation graph G has an ordering
〈v1, v2, . . . , vn〉 to V (G) such that

1. for all j > 1, N(vj) 6⊂ N(v1),
2. for all i ≤ j ≤ k, every path from vi to vk contains some vertex in NG[vj]
3. v2 ∈ N(v1) if n > 1,
4. v2 is a pendant only if n = 2,
5. for all i and j where 1 ≤ i < j ≤ n, vi’s distance to v1 is at most vj’s

distance to v1, and
6. for all i and j where 1 ≤ i < j ≤ n and vi and vj have equal distance to v1,

N−G (vj) ⊆ N−G (vi) and N+
G (vi) ⊆ N+

G (vj), and
7. N−G (vi) 6= ∅ for all 1 < i ≤ n.

Such an ordering can be found in linear time.

Bipartite permutation graphs may seem somewhat arbitrary; however, their
many definitions make them a compelling class to study. For example, they
are also characterized as bipartite AT-free graphs, bipartite bounded tolerance
graphs, bipartite tolerance graphs, bipartite trapezoid graphs, and unit interval
bigraphs. They are well studied (see e.g. [8]) and Sliding Token is PSPACE-
complete on some slight non-bipartite generalizations (e.g. AT-free, perfect [6]).

We present an algorithm to efficiently decide Sliding Token on bipartite
permutation graphs. Our main theorem is:

Theorem 1. Sliding Token can be decided in polynomial time on bipartite
permutation graphs of n vertices.

This result bounds the diameter of the “reconfiguration graph” for Sliding
Token on a bipartite permutation graph; the algorithm produces a sequence of
length quadratic in the number of tokens if any sequence exists. Because of this,

determining if there exists a reconfiguration sequence of length at most k is in
NP.

To prove the main result, we first give some results about general and biparite
graphs in Sections 2 and 3. We prove our main result in Section 4 and then briefly
show how techniques developed within can be applied to other classes of bipartite
graphs.

2 Coping with Rigid Tokens

In general, tokens may be confined to specific areas of the graph. For example,
in the PSPACE-hardness reduction for Sliding Token given by Demaine and
Hearn [3], no token can ever slide out of its specific gadget (see e.g. Theorem 23
in [3]). Rigidity is a much stricter form of confinement; easing proof of strong
statements about it, and for the purposes of Sliding Token on bipartite per-
mutation graphs, it is not too restrictive. Once identified, rigid vertices and their
neighborhoods can be deleted. This allows algorithms to only consider instances
without rigid vertices, which, in this case, significantly simplifies them.

Proposition 2. If G′ is an induced subgraph of G and I
G′

! J , then I
G
! J

via the same reconfiguration sequence.

Proposition 3. I
G
! J if and only if I − v

G\N [v]
! J − v for any v ∈ R(G, I) ∩

R(G, J).

Proof. First, assume I
G
! J . Fix a reconfiguration sequence 〈I = I0, I1, . . . , Ik =

J〉. v ∈ Ij and N(v)∩ Ij = ∅ for 0 ≤ j ≤ k. Therefore, simply remove v from all
Ij , 0 ≤ j ≤ k, and remove NG[v] from G: the sets remain independent and do
not use deleted vertices.

Next, suppose I−v G\N [v]
! J−v. Proposition 2 gives I−v G

! J−v. Modify the
reconfiguration sequence by inserting v into each independent set. This maintains
independence: no vertex in NG(v) is in the reconfiguration sequence as those
vertices do not exist in the induced subgraph.

Proposition 4. I
G
! J if and only if R(G, I) = R(G, J) and I\R(G, I)

G\N [R(G,I)]
!

J \R(G, I).

Proof. By definition of rigidity, if R(G, I) 6= R(G, J) then J 6∈ [I]G. Repeated
application of Proposition 3 implies the other direction.

Proposition 5. Let I be an independent set and S ⊆ I. If, for all w ∈ N(S),
|N(w) ∩ S| > 1, then S ⊆ R(G, I).

Algorithm 1: SwitchSides(A,B,E, I0)

Input: Bipartite graph G = (A ∪B,E), independent set I0
Output: Reconfiguration sequence 〈I0, . . . , Ik〉 where I0 ∩ Ik ∩A = R(G, I0)∩A

and k = |I0| − |R(G, I0) ∩A|
1 M ← ∅ // Will hold available slides

2 C ← table from vertices to subsets of vertices
// Initialize M

3 foreach vertex u ∈ B do
4 Cu ← N(u) ∩ I0
5 if |Cu| = 1 then
6 M ←M ∪ {u}

7 k ← 0
8 while |M | > 0 do
9 k ← k + 1

10 u← remove an arbitrary element u from M // u ∈ B will be in Ik
11 v ← remove the unique vertex v from Cu // v ∈ Ik−1

12 Ik ← Ik−1 − v + u
13 foreach vertex w ∈ N(v) do
14 Cw ← Cw − v
15 if |Cw| = 1 then
16 M ←M ∪ {w}

17 return 〈I0, I1, . . . , Ik〉

Algorithm 2: Wiggle(A,B,E, I0)

Input: Bipartite graph G = (A ∪B,E), independent set I0
Output: Reconfiguration sequence 〈I0, . . . , Ik〉 with k ≤ 4|I0| such that for all

v ∈ I0 \R(G, I0), there is some j where Ij \ Ij−1 = {v}
1 〈I0, . . . , Ik1〉 ← SwitchSides(A,B,E(G), I0)
2 〈I0 = I ′0, . . . , I

′
k2
〉 ← SwitchSides(B,A,E(G), I0)

3 return 〈I0, . . . , Ik1 , Ik1−1, . . . , I0, I
′
1, . . . , I

′
k2
, I ′k2−1, . . . , I0〉

3 An Algorithm on Bipartite Graphs

In this section, we show that it is relatively straightforward to manipulate the
tokens of an independent set in a bipartite graph in a number of ways to e.g.
find rigid tokens. In general graphs, identifying R(G, I) is PSPACE-complete.

Proposition 6. Given a bipartite graph G = (A∪B,E) and an independent set
I0, in linear time a reconfiguration sequence 〈I0, . . . , Ik〉 can be computed where
I0 ∩ Ik ∩A = R(G, I0) ∩A and k = |I0| − |R(G, I0 ∩A)|.

Proof. We analyze Algorithm 1.
Runtime. The first loop, when processing u, charges its work to all the

incident edges to u. Charge each iteration of the inner loop (lines 14–16) to the
edge vw and charge the work on lines 9–12 to the vertex v. No edge or vertex is
charged more than twice, and each charge takes O(1) time.

Correctness. Let Ct
u (M t) be the state of Cu (resp., M) at the top of the

tth execution of the while loop (i.e. at line 9 when k is incremented to be t).
The while loop of Algorithm 1 maintains these properties going into the tth

iteration: (P1) Ct
u = N(u)∩ It−1 for all vertices u ∈ B and (P2) M t = {u ∈ I0 :

|Ct
u| = 1}.
The output is a valid reconfiguration sequence because (1) Ik and Ik−1 differ

by adjacent vertices (line 12) and (2) P1 guarantees that each set is independent.
Next, we prove I0 ∩ Ik ∩ A = R(G, I0) ∩ A. As only vertices in I0 ∩ A are

removed from an independent set during the reconfiguration sequence, both I0
and Ik contain I0 ∩ B. Since it is a valid reconfiguration sequence, we know
R(G, I0) ⊆ I0 ∩ Ik. Thus, R(G, I0) ⊆ I0 ∩ Ik and it remains to be shown that
no non-rigid vertices of I0 \ (R(G, I0) ∩ A) are in Ik. Since M is empty at the
end of the algorithm, |Cu| 6= 1 for all u ∈ Ik. Consider S = I0 ∩ Ik ∩ A. Any
w ∈ N(S) must have |Cw| > 1 by property (P1), so Proposition 5 with G and S
shows S ⊆ R(G, I0). Thus, I0 ∩ Ik ∩A = R(G, I0) ∩A.

Finally, we show that the length of the reconfiguration sequence, k, is as
promised. For all 0 < j ≤ k, we have that |Ij ∩ I0| = |Ij−1 ∩ I0| − 1, so |I0| −
|R(G, I0) ∩ A| is an upper bound on k. To lower-bound k, it takes k slides to
reconfigure k vertices out of I0.

Algorithm 2 applies Algorithm 1 twice to produce a sequence that starts and
ends with the same sequence but ensures that each token not in R(G, I) slides
exactly twice.

Lemma 1. Given bipartite graph G = (A ∪ B,E), and independent set I0 in
linear time Algorithm 2 finds a reconfiguration sequence of length at most 4|I0|
in which each token of I0 \R(G, I0) slides exactly twice.

Lemma 2. Let G = (A ∪ B,E) be a bipartite graph and I be an independent
set of G. In linear time, R(G, I) can be computed.

Proof. Invoke Algorithm 2. By the post-condition promises, the tokens that
never slid in the output sequence are exactly R(G, I).

Lemma 3. Let G = (A∪B,E) be a connected bipartite graph and I an unlocked
independent set. Then for any v ∈ V (G), in linear time, one can find a recon-
figuration sequence 〈I = I0, I1, . . . , Ik = J〉 where v ∈ J , v 6∈ Ik−1, and k is at
most |I| plus the distance between v and the closest token of I.

Proof. We distinguish 3 cases:
(1) If v ∈ I, the entire sequence is just 〈I〉.
(2) If there is a unique closest token w in I to v, the reconfiguration sequence

repeatedly replaces that token with a vertex that is one closer to v. Let u be
any vertex in N(v) where some shortest path from w to v passes through u.
Since w is uniquely closest to v among all tokens in I, it must be the case that
N(u) ∩ I = {w}. So update construct I ′ = I − w + u; u is now uniquely closest
in I ′ to v, so this process can be repeated.

(3) Otherwise, let S be the set of all closest vertices to v at distance d.
Without loss of generality assume S ⊆ A. By the correctness of Algorithm 1,
there is a J ∈ [I] where J ⊆ B. Consider a reconfiguration sequence 〈I =
I0, I1, . . . , Ik = J〉 from I to J . There must be an index j, with j ≤ k ≤ |I|,
where Ij has a unique closest token to v as either some token will first move
to be distance d − 1 away from v, or all but one token will slide to be at least
distance d+ 1 away. Then, from Ij , the reconfiguration sequence is as described
in case (2).

We write IGv (with the graph usually omitted) to indicate an independent set
resulting in invoking Lemma 3 on G and I to place a vertex on v. This produces
some reconfiguration sequence of linear length from I to Iv, in which Iv is the
only independent set containing v.

We are able to simplify instances with the following lemma:

Lemma 4. Let I be an unlocked independent set in bipartite graph G.
(1) If N [v] ∩ I = ∅, then R(G \ {v}, I) = ∅.
(2) If N [N [v]] ∩ I ⊆ {v}, then R(G \N [v], I − v) = ∅.

Proof. Invoke Algorithm 2 on G. Since all tokens move no farther than to their
neighbors, both cases immediately follow.

Proposition 7. Suppose NG(u) = NG(v). For any unlocked independent sets I

and J , I
G
! J if and only if IGu

G\{v}
! JG

u .

4 Sliding Token on Bipartite Permutation Graphs

Throughout the section, let G be a bipartite permutation graph with vertices
〈v1, v2, . . . , vn〉 ordered as described previously.

Proposition 8. Assume R(G, I) = R(G, J). If vi ∈ R(G, I), then each compo-

nent of G \N [vi] is a bipartite permutation graph and I
G
! J if and only if, for

each component C of G \N [vi], we have I ∩ C
G[C]
! J ∩ C.

Proof. First, note that an induced subgraph of a bipartite permutation graph is
still a bipartite permutation graph. Now, we appeal to Proposition 4.

Lemma 2 locates rigid vertices in linear time and Proposition 8 permits
treating each component independently after deleting rigid vertices and their
neighborhoods. We assume R(G, I) = ∅ for the remainder of the section. Using
Proposition 7 allows us to assume that each vertex has a distinct neighborhood.

In each equivalence class over
G
!, we will pick a representative independent

set by defining a injective function f(·) from independent sets to natural num-
bers: the representative will be the independent set in the equivalence class that
minimizes the function. The function used is

f(I) =
∑
vi∈I

2i.

We write I+ to indicate the representative of the equivalence class to which

some independent set I belongs: I+ = arg minI′∈[I]G f(I ′). Then, deciding if I
G
!

J is equivalent to determining if I+ = J+.
To give some intuition on why finding I+ is nontrivial, Figure 1 illustrates

two unlocked independent sets in different equivalence classes.

v1

v2

v3

v4

v5

v6

v7

v8

f({v1, v3, v5}) = 50

f({v2, v4, v6}) = 76

Fig. 1. Two unlocked independent sets in different equivalence classes: {v1, v3, v5}
and {v2, v4, v6}.

Fix some I and let w+
j be the jth least token of I+. The algorithm relies on

two vital observations: first, that there are only two possibilities for where the
token of least index in I will reside in I+ and second, that I+ can be assembled
one vertex at a time.

Proposition 9. |{v1, v2}∩I+| = 1. If |I+| ≥ 2 and v2 ∈ I+ then |N(v1)∩ I+| ≥
2.

Proof. First, we prove |{v1, v2} ∩ I+| = 1. Suppose not: that w+
1 = vi for some

i > 1. There are two cases to consider:
(1) Assume vi ∈ N(v1). Use Lemma 3 to place a token on v1 and obtain a

reconfiguration sequence 〈I+ = I0, I1, . . . , Ik〉. Recall that vi ∈ Ij for all j < k.
Consider the sequence 〈I0, . . . , Ik, Ik−1 − vi + v2, Ik−1 − vi + v2, Ik−2 − vi +

v2, . . . , I0 − vi + v2〉. This sequence is valid, so I+ − vi + v2 ∈ [I+]. But f(I+ −
vi + v2) < f(I+), a contradiction.

(2) Now assume vi 6∈ N(v1). Again use Lemma 3 to place a token on v1.
Similarly, the sequence can be unrolled in reverse, except this time leaving a
token on v1.

Now we prove if v2 ∈ I+ then |N(v1) ∩ I+| ≥ 2. Suppose not: that v2 ∈ I+

but N(v1) ∩ I+ = {v2}. Then I+
G↔ I+ − v2 + v1 is legal, which decreases f , a

contradiction.

Proposition 10. If I is an unlocked independent set containing w+
1 and w+

2

then R(G \N [w+
1], I − w+

1) ⊆ {w+
2 }.

Proof. We assume |I| > 2 as the statement is otherwise trivial. Let vj = w+
2 for

some j > 2. We proceed with a complicated case analysis:

1. Assume v1 ∈ I.
(a) Assume N [N [v1]] ∩ I = {v1}. Then Lemma 4 applies to I.
(b) Assume v1 is a pendant. For v1 to slide, at some set I ′ in the reconfig-

uration sequence given by Algorithm 2, N(v2) ∩ I ′ = {v1}. Lemma 4
applies to I ′.

(c) Assume no neighbor of v1 has v1 as its only neighboring token. N(v1) ⊆
N(vj) (otherwise, we fall into one of the previous cases) so the token
on v1 cannot slide until vj slides. Once vj slides, N [N [v1]] = {v1} and
Lemma 4 completes the proof.

(d) Otherwise, observe that N(v2) ∩ I = {v1}. Let Li be the set of vertices
distance i away from v1.

If any two vertices va, vb in I ∩L2 have N−(u) = N−(v), then Algo-
rithm 1 slides all vertices of L2 with index at least b (assuming a < b)
into L3. Notice that it suffices to show that a = j.

In I+, there must be a k where k > j and N−(vk) = N−(vj); (oth-
erwise I+ − v1 + v2 − vj + vi would improve on f(·) for some i < j).
However, if vk 6∈ I, more argument is required. Consider any reconfigu-
ration sequence from I to I+. Let I ′ be the last independent set in the
sequence containing vk. In I ′, the token of second-least index cannot be
in N−(vk) but must be in L2. We show this gives a contradiction to I+
minimizing f : since the token on vk does not slide for the remainder of
the reconfiguration sequence, the two first tokens are able to reconfigure
from v1 and vj in I+ to a configuration with smaller f -value.

2. Assume v2 ∈ I. By Proposition 9, vj ∈ N(v1). Thus, N(v2) ⊆ N(v1). Con-
sider a reconfiguration sequence in which v2 eventually slides, e.g. the one
generated by Lemma 3 to produce IGv1 . In this, vj must slide before v1. Let
I ′ be the independent set immediately after vj slides. N [N [vi]] ∩ I ′ = {vi},
so Lemma 4 applies.

Proposition 11. I+ − w+
1 is f -minimal on G \N [w+

1].

We find a reconfiguration sequence between I and I+ using dynamic pro-
gramming over vertex index with a table T [·]. For notational convenience, we
define J i,k = {vj ∈ J | i ≤ j ≤ k} for any independent set J . Let Gi be the
unique component of G \N [vi] containing vertices of higher index. T [i] will be
assigned some J = arg maxJ∈[I]:J3vi |J0,i|. As a base case, set T [0] = I.

Define

W (i, j) =


T [j] if vi ∈ T [j]

T [j]0,k ∪ (T [j]j+1,n)
Gj

vi
if R(Gj , T [j]j+1,n) = ∅

“invalid” otherwise.

(Recall, the notation in the middle case invokes Lemma 3.) Say W (i, j) is
valid if 0 ≤ j < i and W (i, j) is an independent set and not “invalid”. Among
the valid W (i, j) that maximize |W (i, j)0,i|, set T [i] to be the W (i, j) where j is
least.

Lemma 5. If vi ∈ I+ then T [i]0,i = I0,i+ .

Proof. Using Proposition 10 and Proposition 11, this follows from a simple in-
duction on the size of I+.

Theorem 2. Given a connected bipartite permutation graph G and an unlocked
independent set I, there is a cubic-time algorithm to find I+.

Proof. Given the dynamic programming table T [·], find the least index i where
|T [i]0,i| = |I| and report I+ = T [i]; by Lemma 5, this is correct.

In total, O(n2) sets W (i, j) are computed, each of which takes linear time,
giving cubic runtime.

Given this, proving the main theorem is straightforward:

Proof (of Theorem 1). As input, we are given a bipartite permutation graph
G and two independent sets I and J . If R(G, I) 6= R(G, J), then output “no”.
Otherwise, form G′ = G\N [R(G, I)]. For each C component of G′, find I ′ = I∩C
and J ′ = J ∩ C; then find I ′+ and J ′+ using Theorem 2. If in any component,

I ′+ and J ′+ differ, then output “no”. Otherwise, it must be that I
G
! J .

5 Sliding Token on Bipartite Distance-Hereditary Graphs

In this section, we give an additional application of the techniques built in Sec-
tion 3. A graph is distance-hereditary if the distance between two vertices in
any connected induced subgraph is exactly the distance in the original graph.
One characterization of bipartite distance-hereditary graphs is graphs obtain-
able from a single vertex by repeatedly picking a vertex v in the graph and then
adding a new vertex w with either N(w) = {v} (pendant) or N(w) = N(v)
(twin).

Theorem 3. There is a polynomial-time algorithm to decide Sliding Token
on bipartite distance-hereditary graphs.

Proof. Let I0 and J0 be independent sets of the same cardinality on bipartite
distance-hereditary graph G. We analyze the following algorithm.

We can assume, using Lemma 2 and Proposition 4 that R(G, I) = R(G, J) =
∅. Repeatedly:

1. If N(v) = N(w) for any v, w, use Lemma 3 to place a token on v in I and
in J , and then delete w.

2. Else, if there is a pendant v whose neighbor w has degree 2, use Lemma 3
to place a token from I and from J on v, then delete N(v).

3. Otherwise, compute a sequence of operations used to construct the graph
and look at the last twin operation used. At least one of the two involved
vertices must have a pendant. Use Lemma 3 to place a token from I and
from J on the pendant and delete it and its neighborhood.

Bipartite distance-hereditary graphs are closed under vertex deletion, so af-
ter each iteration the graph remains bipartite distance-hereditary. Suppose that
before an iteration, R(G, I) = ∅. Let G′, I ′, J ′ be the graph and independent
sets after the iteration. We show that R(G′, I ′) = R(G′, J ′) = ∅.

In case (1), since NG(v) = NG(w) and v ∈ I ′ ∩ J ′, we have NG(w) ∩ I ′ =
NG(w) ∩ J ′ = ∅. Lemma 4 implies R(G′, I ′) = R(G′, J ′) = ∅. In cases (2) and
(3), if there is a token on any neighbor u of w besides v in I ′, then after invoking
Algorithm 2, there must be an intermediate independent set I ′′ where v ∈ I ′′

but u 6∈ I ′′. From I ′′, Lemma 4 completes the proof.

6 Discussion

We show that Sliding Token can be efficiently decided on bipartite permuta-
tion graphs and bipartite distance-hereditary graphs. The results of [6] show that
Sliding Token is PSPACE-hard on AT-free graphs, which are a natural gener-
alization of bipartite permutation graphs to non-bipartite graphs. This suggests
that bipartitedness is closely related to the complexity of Sliding Token.

The complexity of Sliding Token on bipartite graphs remains a com-
pelling topic for future research; the tools developed here tackle rigidity but need
strengthening to be able to decide Sliding Token when dynamic programming
does not fit as naturally.

References

1. P. S. Bonsma, M. Kaminski, and M. Wrochna. Reconfiguring independent sets in
claw-free graphs. In Algorithm Theory - SWAT 2014.

2. E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono,
Y. Otachi, R. Uehara, and T. Yamada. Polynomial-time algorithm for sliding
tokens on trees. In Algorithms and Computation, volume 8889 of Lecture Notes in
Computer Science, pages 389–400. Springer International Publishing, 2014.

3. R. A. Hearn and E. D. Demaine. PSPACE-completeness of Sliding-block Puzzles
and Other Problems Through the Nondeterministic Constraint Logic Model of
Computation. Theor. Comput. Sci., 343(1-2):72–96, October 2005.

4. T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara,
and Y. Uno. On the complexity of reconfiguration problems. In Algorithms and
Computation, volume 5369 of Lecture Notes in Computer Science, pages 28–39.
Springer Berlin Heidelberg, 2008.

5. T. Ito, M. Kamiński, H. Ono, A. Suzuki, R. Uehara, and K. Yamanaka. On the
parameterized complexity for token jumping on graphs. In Theory and Applications
of Models of Computation, volume 8402 of Lecture Notes in Computer Science,
pages 341–351. Springer International Publishing, 2014.

6. M. Kamiński, P. Medvedev, and M. Milani. Complexity of independent set recon-
figurability problems. Theor. Comput. Sci., 439:9–15, June 2012.

7. A. E. Mouawad, N. Nishimura, V. Raman, and M. Wrochna. Reconfiguration over
tree decompositions. In Parameterized and Exact Computation, volume 8894 of
Lecture Notes in Computer Science, pages 246–257. Springer International Pub-
lishing, 2014.

8. J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs. Discrete
Applied Mathematics, 18(3):279–292, 1987.

9. A. P. Sprague. Recognition of bipartite permutation graphs. Congressus Numer-
antium, 62:151–161, 1995.

10. M. Wrochna. Reconfiguration in bounded bandwidth and treedepth. CoRR,
abs/1405.0847, 2014.

