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Abstract

A binary chief executive officer (CEO) problem is investigated with the application to
an information sensing network, where noise-corrupted versions of a binary sequence
are forwarded by a group of sensors to a single destination over orthogonal multiple
access channels. The primary goal of this thesis is to provide theoretical analysis of the
system performance and to design practical transmission techniques by applying recent
results of multiterminal rate-distortion theory.

Concatenated convolutional codes and a joint decoding scheme are proposed for
the binary information sensing network. The performance limits for threshold signal-
to-noise ratio (SNR) and the bit error probability (BEP) floor are analytically derived
using the Slepian-Wolf theorem and the Poisson binomial process, respectively. Fur-
thermore, a BEP floor lower bound is obtained from the classical rate-distortion theory.
We further derive an outer bound on the rate-distortion region for the binary CEO prob-
lem through the multiterminal source coding. Derived outer bound is applied to the
problem of acquiring the lower bound on the Hamming distortion in the framework of
convex optimization for arbitrary value of SNR. Computer simulations are carried out
to verify the theoretical results.

Furthermore, an optimal power allocation scheme is proposed for the binary infor-
mation sensing network from rate-distortion perspective. Based on the simulation re-
sults, our proposed power allocation scheme outperforms the uniform power allocation
method.

Keywords: CEO problem, multiterminal source coding, rate-distortion, achievable
rate, Hamming distortion, sensor network
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Distortion Analysis and Transmission Design. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology 
and Electrical Engineering; Centre for Wireless Communications-Radio Technologies (CWC-
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1 Introduction

Wireless sensor networking (WSN) has attracted significant attention by the sensing
and wireless communication research communities, and their practical deployment is
also gaining momentum. The applications of WSNs are numerous, and they can be
deployed in unpredictable environments to perform various distributed sensing tasks,
for which it is extraordinarily important to design good transmission and scheduling
techniques in order to make the sensor network highly energy-efficient. The informa-
tion gathered by different sensors are often correlated. Therefore, distributed source

coding (DSC) techniques inspired, e.g., by the Slepian-Wolf theorem, can provide an
effective framework to design the networks efficiently. This can be utilized to decrease
the transmission rate or to reduce the transmit power. Xiong et al. discussed the DSC
schemes for WSNs in the framework of the Slepian-Wolf theorem in a tutorial paper
[1]. This thesis deals with the design of transmission techniques for a particular WSN,
which is the binary information sensing network, and the theoretical analysis of this
network based on multiterminal information theory in the category of DSC.

This chapter begins with a historical review on classical problems of DSC and recent
results. Afterwards, the motivation of this research work is briefly introduced together
with a literature review of relevant work. Finally, the outline of this thesis is provided,
followed by the author’s contributions.

1.1 Background and History

A number of emerging applications, such as WSN, wireless mesh network (WMN),
wireless cooperative relaying networks and wireless video, involve multiple correlated
sources, which are required to be independently compressed at distributed terminals.
In such applications, distributed terminals usually cannot communicate with each other
due to the constraints on power and complexity. Distributed source coding, which
handles the problem of compressing multiple correlated sources, has thus gained a lot
of attention during the last four decades.

The fundamental question of DSC is to determine the tradeoff between the encod-
ing rates and the fidelities of the recovered correlated sources. It is well known that
this tradeoff has been mathematically investigated in the framework of rate-distortion
analysis in information theory. The study of rate-distortion theory becomes extremely
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(a) Lossless case. (b) Lossy case.

Fig. 1. Distributed source coding problem with two terminals.

important since it provides us with the design criteria for the design of the transmission
techniques of communication networks.

As shown in Fig. 1, there are two categories of DSC problem from the level of dis-
tortion perspective; one is lossless DSC and the other lossy DSC. The level of distortion
in the lossless DSC is required to be arbitrarily small while that in the lossy DSC is
allowed at a certain value with a specified distortion measure function. The problem
shown in Fig. 1 is also referred to as multiterminal source coding, which has a rich
history.

There is a further significant distinction in DSC from the viewpoint of whether or
not the sources are directly available at the encoders, which is direct versus remote

DSC. In the direct DSC, the encoder directly accesses the source which is of interest
by the decoder, while in the latter one, the encoder only has the noisy version of the
source through an observation process. There is a famous problem in the category of re-
mote DSC, which is so-called chief executive officer (CEO) problem. This dissertation
focuses on the CEO problem and its application to binary information sensing network.

1.1.1 Lossless Distributed Source Coding

In 1973, Slepian and Wolf started the pioneering work for establishing the fundamental
lossless DSC theorem with two correlated sources [2]. The admissible rate region of the
compression rate pair is determined for which two sources can be reconstructed with
an arbitrarily small error probability (which is referred as losslessly in usual Shannon
sense). Surprisingly, the Slepian-Wolf theorem showed that two correlated sources X1

and X2 can be losslessly recovered with joint decoding, as long as the compression rate
of each source and the sum rate are larger than their conditional entropy and their joint
entropy, respectively.
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Based on the setup of the Slepian-Wolf theorem, various extensions have been done
by researchers. The Slepian-Wolf theorem was generalized by Cover [3] to arbitrary
number of correlated sources. Ahlwede and Körner focused on a specific case, where
the decoder is only interested in recovering one of the sources, let’s say, X2, and the
other source X1 acts as the side information. This problem is referred as source cod-
ing with side information. The rate region was then derived in [4] through the direct
coding and converse proof. Wyner independently studied the source coding with side
information problem in [5], where two decoders reconstruct two sources with the help
of the common side information. A specific of the source coding with side information
problem where a primary source is the exclusive-OR (XOR) version of two helper infor-
mation was studied by Körner and Marton [6]. On the other hand, the practical design
of the Slepian-Wolf coding is also an active research topic, such as using low-density
parity-check (LDPC) codes [7], turbo codes [8] and rateless codes [9].

Gel’fand and Pinsker [10] examined the rate region for perfectly reproducing an
underlying source via corrupted observations of the source based on an important as-
sumption, that the observations are conditionally independent (CI) given the underlying
source. This problem is also called lossless CEO problem, which has great impact on
solving the CEO problem in lossy DSC.

1.1.2 Lossy Distributed Source Coding

As shown in Fig. 1(b), we review another particular case of the DSC problem where
the decoder only needs to recover the sources at certain distortions with a distortion
measure function, for example, Hamming distortion.

Wyner and Ziv studied the source coding problem with side information available
at the decoder, in which the main source is required to be recovered within a fidelity
criterion [11]. The rate-distortion function was derived and it showed that the required
transmission rate with Wyner-Ziv source coding is larger than that of the side infor-
mation being available both at the encoder and decoder. This finding, however, is in
contrast to the Slepian-Wolf theorem, where knowledge of side information at the en-
coder does not result in a reduction of the transmission rate. Subsequently, Wyner
generalized the Wyner-Ziv coding problem to nondiscrete sources [12]. Recently, the
Wyner-Ziv coding was extended in various directions. Gastpar considered the Wyner-
Ziv coding with multiple correlated sources [13], where an inner bound of achievable
rate region and a matching outer bound are derived. Draper derived the rate-distortion
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function of the remote Wyner-Ziv coding problem, where the encoder accesses to noisy
observations of the main source [14]. The Wyner-Ziv coding was intensively studied
with the application to wireless video networks, such as [15–18], and to the wireless
relaying network as an optimal compress-and-forward (CF) strategy [19–21].

Berger and Tung characterized the inner and outer bounds on the rate-distortion re-
gion for a multiterminal source coding problem [22, 23], where correlated sources are
independently encoded and jointly decoded, as shown in Fig. 1(b). Oohama studied
the rate-distortion theory for multiterminal source coding with correlated memoryless
Gaussian sources and squared distortion measures [24]. He derived an explicit form
of the outer bound on the rate-distortion region, and showed that Berger-Tung inner
bound is partially tight. Furthermore, he gave a rigorous proof of direct coding the-
orem using random coding arguments originated by Berger [22], Han and Kobayshi
[25]. Yeung considered the multiterminal source coding problem with only one distor-
tion criterion and derived the rate-distortion bound [26]. Oohama [27] and Pandya et

al. [28] independently examined the rate-distortion bound of a Guassian multiterminal
source coding problem, where multiple correlated Gaussian sources are encoded in a
distributed sense, and one of them is the source of interest by the decoder (many-help-
one problem). Wagner recently derived an improved outer bound on the rate-distortion
region for the multiterminal source coding problem [29].

The CEO problem, which is meaningful in the category of remote multiterminal
source coding, has intensively studied. Berger et al. originated the terminology CEO
problem from the viewpoint of distributed communication/estimation[30]. The CEO
problem is described as follows. A CEO is interested in a underlying source that cannot
be observed directly. A group of L agents (terminals) is employed by the CEO to
independently observe the underlying source and generate the corrupted versions of the
source. Each agent then independently encodes the noisy observations under a sum rate
constraint R and transmit the encoded information to a data processing center. Finally,
the CEO reproduces the estimates of the underlying source as accurate as possible. The
major objective of studying the CEO problem is to determine the tradeoff between the
sum rate and distortion when L goes to infinity.

The asymptotic behavior of the minimum distortion function with respect to the rate
was determined in the limit as L and R tend to infinity, for discrete memoryless sources
[30]. Viswanathan and Berger examined the rate-distortion behavior for the quadratic
Gaussian CEO problem, where the source and observations are assumed to jointly Gaus-
sian distributed [31]. Oohama further derived an explicit form of the rate-distortion
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Table 3. The historical problems of the distributed source coding.

Lossless DSC Lossy DSC

Slepian-Wolf coding [2]
generalized Slepian-Wolf coding [3]
source coding with helper [4, 5]
lossless CEO problem [10]
specified helper problem (XOR) [6]

Wyner-Ziv coding [11]
generalized Wyner-Ziv coding [12]
Berger-Tung inner and outer bounds [22, 23]
source coding with side Information [26]
Improved outer bound for multiterminal
source coding [29]
Gaussian multiterminal source coding [24]
Many-help-one problem [28]
CEO problem [30]
Gaussian CEO problem [36]
vector Gaussian CEO problem [33, 34]

function for the quadratic Gaussian CEO problem using the CI property. Ekrem et

al. and Wang et al. independently provided an outer bound on the rate-distortion region
for the vector Gaussian CEO problem, where a vector Gaussian source is observed by
agents [32–34]. A binary erasure CEO problem, where a binary source is observed
through multiple independent erasure channels by the agents, was studied by Wagner
and Anantharam [35].

In summary, Table 3 shows the important problems in the category of DSC.

1.2 Motivation

The DSC problem has strong connections with the design of wireless networks, as well
as distributed estimation tasks. We consider the information sensing network and its
connection to the multiterminal source coding problem with the aim of providing the
analytical assessment to the system performance and designing optimal power alloca-
tion schemes and/or scheduling protocols.

1.2.1 The state-of-the-art

Information sensing is straightforwardly modeled by the CEO problem in network in-
formation theory. As shown in Fig. 2, an example of information sensing network is
deployed to monitor the environment. For such networks, power is usually limited, and
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antenna

Fig. 2. An example of information sensing network.

hence, designing transmission techniques, which exploit correlation knowledge from
the view of DSC, become important.

Gaussian case

Correlated data gathering problem in the context of sensor networks was considered in
[37], and the Slepian-Wolf theorem was applied to result in an optimal coding strategy.

Side information aware coding strategies based on a generalization of Wyner-Ziv
coding were proposed for a tree-structured sensor network [38], where serial and paral-
lel networks are emphasized. Behroozi et al. obtained the optimal distortion and sum-
rate tradeoff using successive coding strategy for the quadratic Gaussian CEO problem
[39, 40], and proposed an optimal rate allocation scheme [41]. Successive Wyner-Ziv
coding was applied to the quadratic Gaussian CEO problem to achieve the every point
in the rate region [42], based on the nature that the rate-distortion region is contra-
polymatroid [43, 44].

In [45], the authors investigated the joint source-channel decoding for the Gaus-
sian sensor network, where the correlation among the observation data is regarded as a
global code. They explored the method of how to design the decoder of this global code,
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and then the decoder is concatenated with the decoder for the applied error correcting
codes at sensor nodes to form the joint source-channel decoding process.

Joint source-channel coding strategy for a wireless sensor network under delay, data
buffer size and energy constraints was further considered in [46]. The compressed
samples generated by a time varying Gaussian source are forwarded to a destination
over a fading channel in several time slots. For such scenario, an optimal transmission
policy was formulated in the framework of convex optimization from the rate-distortion
viewpoint. A joint source-channel coding using lattices was further considered for the
Gaussian sensor network with a large number of sensors [47]. By adopting lattices,
higher dimensions of the channel space were utilized to asymptotically achieve the
Wyner-Ziv bound.

The problem of combining the quadratic Gaussian CEO problem and the multiple
access channel (MAC) was investigated in [48], with the application to Gaussian relay-
ing network.

Binary case

For binary data gathering sensor nodes, a coding scheme using convolutional code and
an iterative joint decoding algorithm, was proposed in [49]. The joint decoding was
divided into two steps. One is horizontal iteration which performs the Bahl-Cocke-
Jelinek-Raviv (BCJR) algorithm, while the other one is vertical iteration that exploits
the correlation by evaluating the joint probability mass function (pmf) of the common
binary source and the observations.

A coding scheme based on the parallel concatenated convolutional codes was pro-
posed in [50], where the extrinsic log-likelihood ratio (LLR) sequence is weighted by
the observation error probabilities at the decoder. In addition, the capacity of the equiv-
alent parallel channel was derived to verify the bit error rate (BER) performance taking
into account the error probability of the observed data sequence. However, this calcula-
tion restricted to the case that the observation error probability is identical.

In [51], an adaptive bi-modal decoder for a binary source estimation involving two
sensors was proposed based on the modified extrinsic information transfer (EXIT) chart
analysis. Convergence property analysis of the iterative decoding algorithm was pre-
sented based on the modified EXIT chart analysis for binary information sensing net-
work in [52]. It shows that the iterative process is less useful if the channel quality is
very good or the observation accuracy is very low.
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In [53], the authors proposed an encoding/decoding technique which can signifi-
cantly improve the BER performance by exploiting the correlation knowledge through
the LLR updating function [54], for both a binary independently and identically dis-
tributed (i.i.d.) source and a binary Markov source. In [55], the authors proposed a
non-negative constrained iterative algorithm for estimating the observation error proba-
bilities in a WSN having an arbitrary number of sensors.

The rate-distortion behavior was investigated for a simple case of the binary CEO
problem in [56], where the rate is equally allocated to the terminals. The distortion
function with respect to the sum rate was derived in the limit as L → ∞.

1.2.2 Beyond the state-of-the-art

As stated above, the major focus of this thesis is the binary CEO problem with the ap-
plication to the binary information sensing network from the theoretical analysis to the
practical scheme design. For the binary CEO problem, most of the previous work only
concentrate on the design of practical encoding/decoding algorithms. This motivates
us to analyze the binary CEO problem from the rate-distortion perspective using mul-
titerminal source coding theory. The binary CEO problem is related to an important
toy scenario in "Links-on-the-fly Technology for Robust, Efficient, and Smart Commu-
nication in Unpredictable Environments (RESCUE)" project. In this toy scenario, we
consider the situation where a group of relays is deployed in the disaster area to col-
lect information, however, none of relays has correct information. This is a basic toy
scenario in RESCUE project and can be extended to more complicated cases, such as
one-way relaying network and multi-way relaying network.

Therefore, we produce the following tasks toward solving the binary CEO problem.

– The rate-distortion region analysis of the binary CEO problem needs to be performed
using the multiterminal source coding theory.

– The encoding/decoding algorithm should be designed to exploit the benefit of the
network structure and the correlation knowledge within the structure.

– The problem of minimizing the transmission power allocated to all the sensors in the
network as a whole, while keeping the quality of service (QoS) requirement, needs to
be investigated. We can implement the results of the rate-distortion region analysis
to this problem, where the transmission power corresponds to the rate and the QoS is
regarded as the distortion level.
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It should be emphasized here that the binary CEO problem can be also seen as the
theoretical model of parallel relaying network that utilizes the lossy forwarding (LF)
concept1. Hence, this work can be extended in the context of various wireless networks
for designing efficient protocols and justifying system performance theoretically, par-
ticularly, the toy scenarios 1, 2 and 3 in RESCUE project [57].

1.3 Outline of the Dissertation

The goal of this dissertation is to provide theoretical analysis of the binary CEO problem
and its application to binary information sensing network.

In Chapter 2, the background knowledge required in the theoretical analysis is sum-
marized. We first review the basic concept of entropy and mutual information. Several
important inequalities including Fano’s inequality, Mrs. Gerber’s lemma (MGL) and
data processing inequality (DPI) are provided for the converse coding proof. Then, the
classical results in multiterminal source coding, such as the Slepian-Wolf theorem, the
Wyner-Ziv bound are included. After that, we briefly discuss the channel coding theo-
rem and source-channel separation theorem. Finally, we provide the practical channel
coding and extrinsic information transfer chart analysis, followed by the decision rules
of binary information sensing.

In Chapter 3, the achievable rate and the bit error probability (BEP) floor of the
binary information sensing network are investigated. The encoding and decoding algo-
rithms are proposed for the binary information sensing network to exploit the correla-
tion knowledge of sensing data. The main theoretical results are: 1) the signal-to-noise
ratio (SNR) limit is converted from the achievable rate based on the Slepian-Wolf the-
orem and source-channel separation theorem in orthogonal additive white Gaussian
noise (AWGN) channels; 2) the BEP floor, which is a common phenomenon in the
binary information sensing network caused by the observation error, is analytically cal-
culated using the Poisson binomial process and binary rate-distortion function. Then, a
series of computer simulations is conducted to verify these limits, including the SNR
limit and the BEP floor. Finally, a three-dimensional (3D) EXIT chart analysis is per-
formed to confirm the simulation results.

In Chapter 4, we derive a theoretical lower bound on the Hamming distortion from
rate-distortion viewpoint for the binary information sensing network with joint source-

1LF protocol is originated from the decode-and-forward (DF) relaying strategy. The relay node always keeps
activated to forward the decoded message regardless of the error being introduced.
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channel (JSC) setup. The objective of this network is to estimate a single binary source
over orthogonal AWGN channels by performing independent coding at each sensor
node and joint decoding at the fusion center. For the simplicity of analysis, we focus on
orthogonal transmissions from L sensors/terminals to the fusion center, and we separate
the stages of JSC decoding and the final decision on the common source [52, 58, 59].
Hence, deriving the theoretical lower bound on the Hamming distortion is equivalent
to minimizing a distortion function subject to a series of inequalities obtained based on
the source-channel separation theorem for lossy source coding.

First, a specified example of which the number of terminals L = 2 is discussed in
detail. The binary information sensing network is modeled as a binary CEO problem.
In order to address the two-terminal binary CEO problem, we consider a more gen-
eral problem, which is a binary multiterminal source coding. We then derive an outer
bound on the rate-distortion region for the binary multiterminal source coding through
the converse coding proof. The derived outer bound is briefly compared to the classical
regions including the Slepian-Wolf theorem, the Wyner-Ziv coding and Berger-Tung
inner bound. The relationship between the binary CEO problem and the binary multi-
terminal source coding is connected through a distortion function. The theoretical lower
bound on the Hamming distortion is formulated as a convex optimization problem that
obtains the minimum values of distortions of the binary multiterminal source coding
and map them back to the distortion of the binary CEO problem. Finally, computer
simulations using our proposed encoding/decoding algorithm are performed to check
the theoretical lower bound on the Hamming distortion.

After that, we extend the solutions of the case L = 2 to arbitrary number of L. We
establish an outer bound on the rate-distortion region through the converse coding proof.
However, the outer bound is an approximation since the proof of using test channel to
bound the mutual information is lacking. Nevertheless, the lower bound on the Ham-
ming distortion using the approximated outer bound can still act as an useful reference
in verifying the performance of designed encoding/decoding algorithms for binary in-
formation sensing network. Furthermore, the superiority of our proposed joint decod-
ing algorithm is examined analytically with the comparison to the separate decoding
scheme based on the rate-distortion region analysis.

In Chapter 5, an optimal power allocation scheme is proposed to minimize the
Hamming distortion subject to a fixed total power in the context of a cluster binary
information sensing network. We first formulate the minimization problem from the
rate-distortion perspective. To avoid deriving the analytical form of the inverse of the
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binary entropy function, we then reformulate the optimization problem in the frame-
work of convex optimization by maximizing the weighted channel capacity. From the
computer simulations, the proposed power allocation scheme gains around 1.5 ∼ 2 dB
from the case of uniformly distributing the power.

In Chapter 6, we conclude this thesis and summarize the main results. We further
provide some future studies and insight discussion of how to derive the rate-distortion
function of the binary CEO problem directly.

1.4 Summary of Contributions

This thesis is written as a monograph based on two journal papers [60, 61], and two
conference papers [62, 63]. The first journal paper [60] has already been published and
the other one [61] is now under review. The author has had the main responsibility for
performing the analysis, conducting simulations, and writing all the papers [60, 62, 63].
For the paper [61], the author has worked as the corresponding author who has provided
the main idea, written Section I, and verified the simulation results. Other authors
provided helps, comments and criticism during the writing processing.

Besides these publications, the author published another conference paper [64] and
co-authored several papers in the relevant area [65–70] during his doctoral study. The
author made contributions to Section IV and the revision of [65], Section III of [66],
Section IV of [67], Section I of [68], and the outage probability of CF in [69]. The
author performed the black-box simulations for [70]. Furthermore, the author has been
involved in writing technical reports2 [57, 71, 72] under the RESCUE project. The
author contributed to Section 4.1 of [57], Chapter 2, Sections 3.1.1, 4.1, 4.2 and 5.1 of
[71], Sections 2.2.1, 2.2.2 and 2.3.6 of [72], and provided the help in editing [57].

In summary, the main contributions of this thesis are summarized as follows.

– A simple encoding scheme and a joint decoding algorithm which exploit the cor-
relation knowledge are proposed for the binary information sensing network. The
Slepian-Wolf theorem is applied to analyze the theoretical limit on the threshold SNR.
The BEP floor is also derived based on the Poisson binomial process and the binary
rate-distortion function.

– An outer bound on the rate-distortion region for the binary multiterminal source cod-
ing is derived through the converse coding proof. An explicit form of the outer bound

2The technical report is not official publication.
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is provided for the case L= 2 of the binary multiterminal source coding. Furthermore,
an approximated outer bound for an arbitrary number of L is also proved.

– The binary CEO problem is connected with the binary multiterminal source coding
problem in terms of the distortion level through established distortion functions.

– We obtain the theoretical lower bound on the Hamming distortion for the binary
information sensing network with JSC setup, based on the derived outer bound and
the source-channel separation theorem.

– An optimal power allocation scheme is proposed for the binary information sensing
network by maximizing the weighted channel capacity. Based on computer simula-
tions, it is found that our proposed power allocation scheme outperforms the uniform
power allocation case.

– An insightful discussion on how to derive the rate-distortion region for the two-
terminal binary CEO problem is provided.
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2 Preliminaries

In this chapter, the necessary background knowledge for this research is reviewed. We
first introduce the basic concepts of entropy and mutual information in Section 2.1. Af-
ter that, in Section 2.2, several important inequalities, such as Fano’s inequality and
MGL, used in the converse proof of rate-distortion analysis are included. We then
review several classical results in DSC problem in Section 2.3, such as Slepian-Wolf
theorem, Berger-Tung inner and outer bounds. The Shannon’s channel coding theorem
and the source-channel separation theorem are briefly discussed in Section 2.4 and Sec-
tion 2.5, respectively. The superiority of the proposed encoding scheme is analyzed
using extrinsic information transfer chart in Section 2.6. Finally, the decision rules of
majority voting and soft combining are described in Section 2.7.

2.1 Entropy and Mutual Information

In information theory, entropy was originally described by Shannon in [73] for commu-
nication system, which is the measure of the uncertainty of information. Consider a
random variable (RV) X taking i.i.d. values from a finite alphabet X with a probability
mass function (pmf) pX (x) = Pr{X = x}, The entropy of RV X is given as

H(X) =− ∑
x∈X

pX (x) log(pX (x)). (1)

H(X) does not take negative values with the definition 0log0= 0. The base of logarithm
determines the unit of entropy, e.g., if the base is 2, entropy is expressed in bits.

The joint entropy H(X ,Y ) of discrete random variables X and Y with a joint pmf
pXY (x,y) = Pr{X = x,Y = y} is defined as

H(X ,Y ) =− ∑
x∈X

∑
y∈Y

pXY (x,y) log(pXY (x,y)), (2)

The conditional entropy of Y by given X can be further defined as

H(Y |X) = ∑
x∈X

pX (x)H(Y |X = x)

=− ∑
x∈X

pX (x) ∑
y∈Y

pY |X (y|x) log(pY |X (y|x))

=− ∑
x∈X

∑
y∈Y

pXY (x,y) log(pY |X (y|x)), (3)
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where H(Y |X) = 0 if and only if the exact state of Y can be completely determined by
X . Conversely, H(Y |X) = H(Y ) if and only if Y and X are independent.

The above definitions can be easily extended to the case of continuous RV’s by
taking integral instead of taking summation.

The chain rule of entropy [74] is simply obtained as

H(Y |X) = H(X ,Y )−H(X). (4)

The proof of (4) is a very basic training in information theory and hence we omitted.
The mutual information measures a quantity of the mutual dependence of two RV’s,

i.e., how much the information of a RV can be obtained from the other one. The mutual
information between discrete RV’s X and Y defined in (5) is the relative entropy between
the joint distribution pXY (x,y) and the product distribution pX (x)pY (y).

I(X ;Y ) = ∑
x∈X

∑
y∈Y

pXY (x,y) log
(

pXY (x,y)
pX (x)pY (y)

)
, (5)

where pX (x) and pY (y) are the marginal probability distribution functions of X and Y .
The mutual information I(X ;Y ) indicates the amount of reduction in the uncertainty of
X by knowing Y (or Y by knowing X), which is expressed as follows.

I(X ;Y ) = H(X)−H(X |Y )

= H(Y )−H(Y |X). (6)

2.2 Useful Inequalities

This section provides several important inequalities used in the converse proof of the
outer bound on the rate-distortion region.

Fano’s Inequality

Fano’s inequality is used in the converse proof of many coding theorems. Fano’s in-
equality, which is summarized in Lemma 1, provides the average information loss in
terms of the error probability pe of transmitting a source over a noisy channel.

Theorem 1 (Fano’s inequality [74]). Let a pair of RV’s (X, Y ) follow a joint pmf

pXY (x,y) and pe = Pr{X ̸= g(Y )}, where g(·) is a function that generate the estima-

tion of X from the output Y . Then we have

H(X |Y )≤ H2(pe)+ pe log(|X |−1)≤ 1+ pe log(|X |−1), (7)
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with |X | representing the cardinality of the set X and H2(·) being the binary entropy

function, i.e., H2(a) =−a log(a)− (1−a) log(1−a).

The reason of the term |X |− 1 is that if we observe an error event and X̂ , then X

should be different to X̂ and hence can only take at most |X |− 1 values. It should be
mentioned here that if the deterministic function g(·) does not take value from the same
alphabet set X , we should slightly modify (7) to

H(X |Y )≤ H2(pe)+ pe log(|X |)≤ 1+ pe log(|X |). (8)

Data Processing Inequality

The DPI states that the content of the information cannot increase through a physical
process, which is a very important theoretical concept in information theory.

Theorem 2 (Data processing inequality [74]). Suppose that RV’s X, Y and Z forms

a Markov chain as X → Y → Z, i.e., pXY Z(x,y,z) = pZ|Y (z|y)pY |X (y|x)pX (x), then the

following inequalities hold.

I(X ;Y )≥ I(X ;Z) and I(Y ;Z)≥ I(X ;Z). (9)

Equality holds if and only if I(X ;Y |Z) = 0.

The DPI can be easily proved using the chain rule of mutual information and Markov
property, i.e., X and Z are conditionally independent if Y is given. Intuitively, the DPI
states that information will be lost if further process is taken.

Mrs. Gerber’s Lemma

The MGL is usually used in the converse proof of coding theorems for the binary case,
such as the capacity of the binary broadcast channel.

Lemma 3 (Mrs. Gerber’s lemma [75]). Let X and W be two RV’s and X be binary. If a

RV Y following a Bernoulli distribution with probability p, which is denoted as Bern(p),

is independent of (X ,W ) then

H(Z|W )≥ H2[H−1
2 (H(X |W ))∗ p], (10)

where Z = X ⊕Y is the XORed version of X and Y , and H−1
2 (·) : [0,1] 7→ [0,0.5] rep-

resents the inverse function of H2(·). The operation ∗ denotes the binary convolution

process, i.e., a∗b = a(1−b)+b(1−a).
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Fig. 3. Slepian-Wolf admissible rate region. X1 follows Bern(0.5), and X2 is the output of a
binary symmetric channel with crossover probability 0.1 when X1 is the input.

The MGL is related to the entropy power inequality (EPI) introduced by Shannon
[73]. However, the generalization of the MGL to multiple dependent RV’s not only
considering one W is difficult, according to our limited knowledge.

2.3 Theorems in Distributed Source Coding

The theorems, which were established in the previous work and are necessary in the
analysis for our work, are summarized in this section.

2.3.1 Slepian-Wolf Theorem

Consider a source coding problem (as shown in Fig. 1(a)) where the decoder aims at
perfectly reproducing two corrected sources, which are independently compressed at
two terminals. Two correlated sources X1 and X2 make n independent drawing from a
joint pmf pX1X2(x1,x2) to form two correlated information sequences Xn

1 and Xn
2 . Each

encoder separately assigns an index from the set {1,2, · · · ,2nRi} for the sequence Xn
i

and sends the index to the decoder, i = 1,2. After received the indices from the encoder,
the joint decoder assigns an estimate (X̂n

1 , X̂
n
2 ) ∈ X n

1 ×X n
2 or reports an error. The
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probability of error is defined as

p(n)e = Pr{(X̂n
1 , X̂

n
2 ) ̸= (Xn

1 ,X
n
2 )}. (11)

A rate pair (R1,R2) is said to be admissible if there exists codes (n,2nR1 ,2nR2) such that
p(n)e → 0 with n → ∞. Slepian and Wolf characterized the admissible rate region which
is the closure of the set of admissible rate pairs of such problem.

Theorem 4 (Slepian-Wolf theorem [2]). For two discrete memoryless sources X1 and

X2 which draws i.i.d. from a joint pmf pX1X2(x1,x2), the admissible rate region R is

given by

RSW =
{
(R1,R2) : R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)

R1 +R2 ≥ H(X1,X2)
}
.

The Slepian-Wolf theorem is proved based on random binning, which is a key con-
cept in DSC for partitioning the outcomes of the random source. Some specific linear
codes were constructed to achieve the Slepian-Wolf bound [76, 77].

Figure 3 shows the admissible rate region of compressing two binary sources X1

and X2 by applying the Slepian-Wolf theorem. As a reference, the rate region of two
independent sources is also included in Fig. 3. From this example, the total minimal
compression rate is significantly decreased compared to the independent case.

The Slepian-Wolf theorem was extended to an arbitrary number of correlated sources,
as shown in the following theorem.

Theorem 5 (Generalized Slepian-Wolf theorem[78]). In order to achieve lossless com-

pression of L correlated sources {X1,X2, · · · ,XL}, the source coding rate Ri should

satisfy the following conditions

∑
i∈S

Ri ≥ H(XS |XS C) for all S ⊆ {1,2, · · · ,L}, (12)

where S C = {1,2, · · · ,L} \S represents the complementary set of S and XS =

{Xi|i ∈ S }.
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Fig. 4. The Wyner-Ziv source coding problem.

For example, the admissible rate region for the case L = 3 is

R1 ≥ H(X1|X2,X3), (13)

R2 ≥ H(X2|X1,X3), (14)

R3 ≥ H(X3|X1,X2), (15)

R1 +R2 ≥ H(X1,X2|X3), (16)

R1 +R3 ≥ H(X1,X3|X2), (17)

R2 +R3 ≥ H(X2,X3|X1), (18)

R1 +R2 +R3 ≥ H(X1,X2,X3). (19)

2.3.2 Wyner-Ziv Bound

The source coding problem which Wyner and Ziv examined in [5] is shown in Fig. 4.
In this problem, a pair of dependent RV’s (X ,Y ) produce i.i.d. sequences; the encoder
assigns an index from the set {1,2, · · · ,2nR0} for the source sequence Xn; the decoder
reconstructs the estimates X̂n using the side information generated by Y and the received
index from the encoder. Wyner-Ziv derived the rate-distortion function RWZ

0 (D), i.e.,
the codes (n,2nR0) with rate R0 achieves limsupn→∞ E[d(Xn, X̂n)] ≤ D, and provided
the converse and direct coding proofs.

Theorem 6 (Wyner-Ziv bound [5, 79]). Given a pair of discrete memoryless sources

(X ,Y ) generates i.i.d. realizations, and there exists a RV Z such that X ,Y and Z forms a

Markov chain Z → X → Y in this order. The decoder reproduce the estimates X̂ based

on Z and Y . Then a rate R is achievable if R ≥ RWZ
0 (D), where RWZ

0 (D) is given as

RWZ
0 (D) = inf [I(X ;Z|Y )], (20)

with a distortion measure D=E[d(X , X̂)] and inf[·] representing the infimum of a subset.
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Fig. 5. Binary Wyner-Ziv bound on rate-distortion.

We now consider a specific example of Wyner-Ziv source coding where X follows
Bern(0.5), and Y is the output of a binary symmetric channel (BSC) with crossover
probability being p0 and the input X . The distortion measure is specified to Hamming
distortion. As a consequence of applying Theorem 6, the following corollary is ob-
tained.

Corollary 7 (Binary-Hamming Wyner-Ziv bound [5]).

RWZ
0 (D) = inf [αg(β1)+(1−α)g(β2)], (21)

with

g(D) =

H2(p0 ∗D)−H2(D), 0 ≤ D ≤ p0

0, D = p0,
(22)

and the infimum being with respect to all α ∈ [0,1] and β1,β2 ∈ [0, p0].

Figure 5 shows the rate-distortion bounds using Corollary 7. As it is found from
the figure, the binary Wyner-Ziv bound includes two parts: (i) the graph of function
g(D) for D ≤ dc; and (ii) the straight line which is tangent to the graph of g(D) for
dc ≤ D ≤ p0, since distortion level p0 is achievable by R0 = 0. Here, the point dc is the

37



solution of

g(dc)

dc − p0
=

dg(D)

dD
|D=dc , (23)

where dg(D)
dD represents the derivative of g(D) with respect to D. Furthermore, it reduces

to the conventional rate-distortion function for a binary source if p0 = 0.5, i.e., the
helper is independent with the main source.

2.3.3 Multiterminal Source coding

Considering a multiterminal source coding problem shown in Fig. 1(b), two corre-
lated sources X1 and X2 form two n independent copies Xn

1 and Xn
2 from a joint pmf

pX1X2(x1,x2), as in Slepian-Wolf coding. Each encoder independently sends an index
taking from the set {1,2, · · · ,2nRi} for the sequence Xn

i to the decoder, i = 1,2. After
that, the joint decoder assigns an estimate (X̂n

1 , X̂
n
2 ) for each received index pair. A rate

pair (R1,R2) is said to be achievable for distortion pair (D1,D2) if there exists codes
(n,2nR1 ,2nR2) such that

lim
n→∞

supE{1
n

n

∑
t=1

d(xi(t), x̂i(t))} ≤ Di, i = 1,2, (24)

where d(·) is the distortion measure function and sup[·] represents the supremum of a
subset.

The exact bound on the rate-distortion region of such problem is still an open ques-
tion. Alternatively, Berger [22] and Tung [23] derived the inner and outer bounds of the
rate-distortion region.

Berger-Tung Inner Bound

Theorem 8 (Berger-Tung Inner Bound [22, 78]). For a sequence {X1(t),X2(t)}∞
t=1 of a

discrete RV pair (X1,X2) drawing i.i.d. from a joint pmf pX1X2(x1,x2), where X1(t)∈X1

and X2(t) ∈ X2. Then for any rate pair that satisfy


R1 ≥ I(X1;U1|U2,Q),

R2 ≥ I(X2;U2|U1,Q),

R1 +R2 ≥ I(X1,X2;U1,U2|Q),

(25)
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there exists an integer n and mappings

f1 : X n
1 → M1 = {1,2, · · · ,2nR1},

f2 : X n
2 → M2 = {1,2, · · · ,2nR2},

g : M1 ×M2 → X n
1 ×X n

2 ,

(26)

such that

E[d1(X1, X̂1)]≤ D1 and E[d2(X2, X̂2)]≤ D2, (27)

for some conditional pmf pQ(q)pU1|X1Q(u1|x1,q)pU2|X2Q(u2|x2,q) with |Ui| ≤ |Xi|+
4, i = 1,2, i.e., Ui and Xi form a Markov chain by given Q as U1 → X1 → X2 →U2|Q.

It is easy to see that the Slepian-Wolf theorem is a special case of the Berger-Tung
inner bound by setting D1 = D2 = 0.

Berger-Tung Outer Bound

As stated above, the rate-distortion region of lossy source coding problem is still not
known in general. The lower convex envelope of the Berger-Tung inner bound deter-
mines an upper bound of the rate-distortion region, while the lower convex envelope
of the Berger-Tung outer bound determines a lower bound of the rate-distortion region.
Here, the Berger-Tung outer bound is reviewed.

Theorem 9 (Berger-Tung Outer Bound [78]). For distributed lossy source coding prob-

lem, a rate pair (R1,R2) is achievable with given a distortion pair (D1,D2) only if there

exists two auxiliary RV’s U1 and U2 which satisfy the inequalities
R1 ≥ I(X1,X2;U1|U2),

R2 ≥ I(X1,X2;U2|U1)

R1 +R2 ≥ I(X1,X2;U1,U2),

(28)

for some conditional pmf pU1U2|X1X2(u1,u2|x1,x2) such that U1 → X1 → X2 and X1 →
X2 →U2 form two independent Markov chains and E[di(Xi, X̂i)]≤Di with X̂i = fi(U1,U2),

i = 1,2.

The expression of the outer bound is very similar to the Berger-Tung inner bound
except requiring the time sharing variable Q to ensure the convexity of the envelope of
the inner bound. Furthermore, the Markov condition is weaker than that in Berger-Tung
inner bound. Berger-Tung outer bound determines the necessary requirement of the
admissible rate pair (R1,R2), i.e., in order to achieve the average distortions (D1,D2),
the rate pair must satisfy the inequalities in Berger-Tung outer bound.
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Gaussian Multiterminal Source Coding

Oohama determined the rate-distortion region of a particular case of the multiterminal
source coding problem [24], which is so-called Gaussian multiterminal source coding.
Two correlated memoryless Gaussian sources X1 and X2 having a joint probability den-
sity function (pdf) pX1X2(x1,x2) are independently encoded and jointly decoded within
squared distortions D1,D2, where the pdf pX1X2(x1,x2) is given by

pX1X2(x1,x2) =
1

2π|Σ|1/2 exp{−1
2

xΣ−1T x} (29)

with x = (x1,x2) ∈ X1 ×X2 and Σ being a covariance matrix as

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, −1 < ρ < 1. (30)

An outer bound of the rate-distortion region was derived in [24], where a rigorous proof
of the direct coding theorem is also given. Let

R1(D1) =

{
(R1,R2) : R1 ≥

1
2

log+[
σ2

1
D1

(1−ρ2 +ρ22−2R2)]

}
, (31)

R2(D2) =

{
(R1,R2) : R2 ≥

1
2

log+[
σ2

2
D2

(1−ρ2 +ρ22−2R1)]

}
, (32)

R12(D1,D2) =

{
(R1,R2) : R1 +R2 ≥

1
2

log+[(1−ρ2)
σ2

1 σ2
2

D1D2
]

}
, (33)

where log+(a) = max{log(a),0}. Then the following theorem holds.

Theorem 10 (Oohama’s outer bound [24]). For all D1,D2 > 0, R(D1,D2)⊆RYI(D1,D2),

where RYI(D1,D2) = R1(D1)∩ R2(D2)∩ R12(D1,D2), and R(D1,D2) = {(R1,R2) :
(R1,R2) is admissible}.

The converse proof of deriving Theorem 10 is used as a very important reference in
our work for deriving the outer bound on the rate-distortion region for binary multiter-
minal source coding.

2.3.4 The CEO Problem

The CEO problem of which an abstract model is shown in Fig. 6 provides a theoretical
framework of designing the transmission techniques and scheduling protocols for dis-
tributed WSNs. A (n,2nR1 , · · · ,2nRL ,∑L

i=1 Ri ≤ R) code for the CEO problem involves
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Fig. 6. The abstract model of the CEO problem.

– L encoders send indices taking from the set {1,2, · · · ,2nRi} for each sequence Xn
i ,

i = 1, · · · ,L.
– the decoder generate an estimate X̂n based on the received L indices.

A rate-distortion pair (R,D) is said to be achievable if

lim
n→∞

supE[
1
n

n

∑
t=1

di(x(t), x̂(t))]≤ D (34)

for some codes (n,2nR1 , · · · ,2nRL ,∑L
i=1 Ri ≤ R).

In general, to determine the achievable rate-distortion region for the CEO problem
is an open question except the quadratic Gaussian case. We review an established rate-
distortion function derived by Oohama [36] for the quadratic Gaussian CEO problem.

Quadratic Gaussian CEO

The quadratic Gaussian CEO problem assumes that the source X and the multiple obser-
vations X1, · · · ,XL are jointly Gaussian distributed. Assume that X follows Gaussian dis-
tribution with mean 0 and variance σ2

X , which draws an i.i.d. data sequence {X(t)}∞
t=1

by taking values from X . Let {Xi(t)∞
t=1}, i = 1, · · · ,L, represent noisy versions of

{X(t)}∞
t=1 corrupted by independent AWGN, i.e.,

Xi(t) = X(t)+Zi(t), (35)

where Zi(t) are independent Gaussian RV’s following Gaussian distribution with mean
0 and variance σ2

Z . The quadratic Gaussian CEO problem is described as follows. The
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CEO aims at producing the estimates of {X(t)}∞
t=1 by deploying a team of L agents.

Each agent i independently encodes the corrupted version {Xi(t)∞
t=1} by the encoder

function φi(Xi) with a sum rate constraint R. The CEO processes information φi(Xi) to
generate the estimation X̂ through the decoder function ψ(φ1(X1), · · · ,φL(XL)). Math-
ematically, φi is defined as

φi : X n → Mi = {1,2, · · · ,2nRi}, (36)

with the sum rate constraint
L

∑
i=1

Ri ≤ R. (37)

On the other hand, the decoder function ψ is expressed by

ψ : M1 ×M2 ×·· ·×ML → X n. (38)

The explicit formula of the rate-distortion function RCEO(D) is provided in the fol-
lowing theorem, which is derived by Oohama using CI property.
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Theorem 11 (Rate-distortion function of Gaussian CEO [36]). For every D > 0

RCEO(D) =
σ2

Z

2σ2
X

[
σ2

X
D

−1
]+

+
1
2

log+(
σ2

X
D

). (39)

where [a]+ = max{0,a}.

Figure 7 shows an example of RCEO(D) function of Theorem 11. The classical rate-
distortion function for a Gaussian source is also depicted as a reference. It can be found
from the results, the difference between RCEO(D) and classical rate-distortion function
becomes small when D goes large, i.e., the rate loss is large for relatively small D.

2.4 Channel Coding Theorem

We now consider a dual setting that transmits the compressed message over a noisy
channel. In information theory and communications, there are various models to de-
scribe the statistical properties of noisy channels, such as, BSC, AWGN channel. Since
the noisy channel introduces errors into the message, there arises a question what is
the condition on the transmission rate R in order to correct all the errors. Shannon
established the channel coding theorem to describe the requirement of R for reliable
communications. Before going to the detail of the channel coding theorem, we first
review an essential property of the noisy channel. Let

C = max
pX (x)

I(X ;Y ) (40)

be the capacity of a discrete memoryless channel pY |X (y|x).
The channel coding theorem states the condition on transmission rate R with respect

to C as follows.

Theorem 12 (Channel coding theorem [73, 74]). For a discrete memoryless channel,

if R ≤ C, reliable communication can be achieved. Conversely, in order to guarantee

reliable communication, the transmission rate R must satisfy the condition R ≤C.

The channel coding theorem is also called Shannon’s second coding theorem [73],
which proves the existence of codes, however, how to construct such codes is not pro-
vided.
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Fig. 8. Joint source-channel coding setup.

2.5 Source-Channel Separation Theorem

There exists an assumption that the channels between the encoders and the decoder
are perfect behind the discussions of Section 2.3. However, in many situations, the
compressed sources must be transmitted to the decoder over noisy channels, as in Sec-
tion 2.4. In this section, we review a more general joint source-channel setup, which is
illustrated in Fig. 8. The encoder sends a codeword Un ∈ U n for the source samples
Xk ∈ X k, and the decoder generates an estimate X̂k based on the received sequence
Y n. A prevalent way, in this case, is to perform source and channel encoding and decod-
ing separately. For the point-to-point (P2P) communication with stationary memoryless
sources and channels, Shannon proved that such strategy is asymptotically optimal [73],
which is called Shannon’s source-channel separation theorem.

Theorem 13 (Source-channel separation theorem). Given a discrete memoryless source

X and an average distortion measure d(x, x̂) with rate-distortion function R(D) and a

discrete memoryless channel with capacity C, the following statement hold

If kR(D)< nC, then there exists a sequence of JSC codes such that

limn→∞ supE[d(Xk, X̂k)]≤ D. (41)

where k is source samples and n is the channel symbols. R(D) is expressed in bits per

sample and the capacity C is in bits per channel symbol.

The crucial point, however, is whether source-channel separation theorem holds for
complicated setups, such as sending multiple sources over MAC. Unfortunately, the
separation theorem does not hold in general, where a series of contradictory examples
can be found in [80–82]. In this dissertation, we only focus on orthogonal MAC, hence,
Theorem 13 can be appropriately applied in analyzing the system performance, i.e., it
is an optimal way that performs source and channel encoding sequentially in this case.
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Fig. 9. The proposed encoding scheme with iterative decoding. DeM: demapper.

2.6 Channel Coding, Modulation and EXIT Chart Analysis

2.6.1 Channel Coding and Modulation

To protect the message to be transmitted over noisy channels, channel coding which
adds redundancy to the message is performed after the source coding. A variety of
channel coding schemes were designed during the last several decades, such as convo-
lutional codes, LDPC codes and fountain codes.

In this subsection, we provide the advantages of our proposed encoding scheme
used in binary information sensing networks. As shown in Fig. 9, the information
sequence x is first encoded by the convolution encoder CC with generate polynomial
G = [11,10] at coding rate 1

2 . The encoded sequence is then interleaved by a random
interleaver Π, of which the role is to enable the iterative decoding according to turbo
principle. After that, the interleaved sequence is doped-accumulated by an accumula-
tor ACC and then mapped to the symbol based on the constellation patterns shown in
Fig. 10. Note that ACC is a systematic recursive convolutional code with G = [11,10],
and the systematic bit is regularly superseded by the coded bit based on the doping
ratio for achieving coding rate 1. Furthermore, the modulation scheme, particularly,
higher order modulations used here is based on bit-interleaved coded-modulation with
iterative decoding (BICM-ID) technique, where the demapper/demodulation process
is involved in the iterative decoding to improve the performance. Hence, the constel-
lation of quadrature phase-shift keying (QPSK) and 16-quadrature amplitude modula-
tion (QAM) are not Gray mapping. Note that for binary phase-shift keying (BPSK)
iterative demapper is not needed.
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Fig. 10. Constellation of QPSK and 16QAM.

Iterative decoding is performed for the proposed encoding scheme. The decoders
ACC−1 and DCC use the logarithmic versions of maximum a posteriori algorithm, such
as BCJR to generate the LLR sequences. Moreover, the function of demapper is to
generate the extrinsic LLR of k-th bit of symbol s(t) by

le(s(t)k) = ln
Pr(y(t)|s(t)k = 1)
Pr(y(t)|s(t)k = 0)

= ln

∑
s(t)∈Sk

1

p(y(t)|s(t))∏m
j=1, j ̸=k exp(s(t) j · la(s(t) j))

∑
s(t)∈Sk

0

p(y(t)|s(t))∏m
j=1, j ̸=k exp(s(t) j · la(s(t) j))

, (42)

where ln(·) is the natural logarithm function. s(t)k represents k-th bit of symbol s(t) and
Sk

b is the subsets of the symbols of which the k-th bit is b, b = 0,1. The a priori LLR
la(s(t) j)) is the feedback from the decoder DCC. The bit per symbol in the constellation
is denoted by m, i.e., m = 2 for QPSK and m = 4 for 16QAM. The extrinsic LLR
le(s(t)k), t = 1, · · · ,2n, k = 1, · · · ,m forms the LLR sequence lev and fed into ACC−1.

The proposed encoding scheme is very simple, since the memory size of the con-
volutional code is 1, however, it achieves superior BER performance against channel
noises, which is verified through EXIT chart analysis.
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2.6.2 EXIT Chart Analysis

Basics

EXIT chart is a novel tool to analyze the convergency property of iterative decoding of
concatenated soft-in-soft-out decoders [83, 84].

As mentioned in [84], the BER performance of iterative decoding usually contains
three regions: 1) in the region of low SNR, BER is very high with negligible gain
over iterations; 2) the turbo cliff region where the BER is significantly reduced by
increasing SNR by a small amount when enough iterations are performed; 3) the error
floor appears in the region of high SNR where a quite low BER can be achieved by
performing only several iterations. However, it is well known that with the help of
doped-accumulator (ACC), the error floor can be eliminated, which is supported by the
EXIT chart analysis [85].

In order to analyze the convergence behavior of iterative decoding, a density evo-
lution algorithm has been proposed to calculate the convergence threshold for LDPC
codes over the AWGN channel and to construct LDPC capacity-approaching codes
[86, 87]. The main idea of density evolution is to track the pdf of the exchanged in-
formation message in the iterative decoding process. The pdf of LLRs can be assumed
to be Gaussian distributed. EXIT chart visualizes the density evolution of extrinsic LLR
over the iteration using the mutual information between the coded bits at the transmitter
and the corresponding LLRs at the receiver. It can be visually understand the exchange
of extrinsic LLR through the trajectory in the EXIT chart analysis, and hence, the turbo
cliff region can be predicted. Furthermore, with the aid of the EXIT chart, the code
optimization falls into the problem of the EXIT curve matching [88].

EXIT Chart

We consider the analysis of the proposed encoding scheme with iterative decoding, as
shown in Fig. 9. The output LLR sequence lev of the demapper together with ACC−1

is generated from the received signals y and the a priori LLR lav fed back from the
decoder DCC. However, the extrinsic LLR sequence lec of DCC is generated by BCJR
algorithm with the input LLR lac which is artificially generated. The mutual information
Ie
ACC = I(lev;v) and Ie

CC = I(lec;c) need to be computed.
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Fig. 11. EXIT chart analyses of using proposed encoding and iterative decoding.
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The mutual information I(B;Le
b) between the RV Le

b and B, where Le
b and B represent

the RV’s that generate the realizations of the extrinsic LLR l and the bit b ∈ {+1,−1},
respectively. As we know, the pdf of RV Le

b approaches Gaussian distribution as the
number of iterations is enough, thus, Le

b is modelled by

Le
b = µlb+nl (43)

with nl is the Gaussian RV with mean 0 and variance σ2
l . The mean of Le

b is represented

by µl =
σ2

l
2 . According the definition of mutual information, I(B;Le

b) is calculated by

I(B;Le
b) = ∑

b=+1,−1

∫ +∞

−∞
p(l|b)p(b) log

p(l|b)
p(l)

dl. (44)

Using the assumption that p(b) = 1
2 for both b = +1,−1 and p(l) = 1

2 [p(l|b = −1)+
p(l|b =+1)], we have

I(B;Le
b) =

1
2 ∑

b=−1,1

∫ +∞

−∞
p(l|b) · log

2p(l|b)
p(l|b =−1)+ p(l|b =+1)

dl, (45)

with

p(l|b) = 1√
2πσ 2

l

exp

−
(l − σ2

l
2 b)2

2σ2
l

 . (46)

Applying (45) to our system, we can evaluate the mutual information between the
output LLRs of DCC, the demapper together with ACC−1 and the corresponding bits.
The values of mutual information are plotted in Fig. 11.

From the EXIT chart analysis, it is found that the curve of the demapper together
with ACC−1 approached the (1.0,1.0) mutual information point, however, the curve
of only using demapper (without ACC) cannot achieve that point. In other words, the
BER performance can be significantly improved with ACC, in particular, the error floor
region is removed. Furthermore, through EXIT chart analyses, the doping ratios of
ACC for BPSK, QPSK and 16-QAM modulations are obtained.

2.7 Decision of Binary Information Sensing

2.7.1 Binary Information Sensing

The binary information sensing is the major application to be considered. As shown in
Fig. 12, multiple sensors observe a common binary source which produces binary i.i.d.
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Fig. 12. An abstract model of binary information sensing.

sequence x = [x(1), · · · ,x(n)] from the Bernoulli distribution. The noisy observations
xi = [xi(1), · · · ,xi(n)] are encoded independently by each sensor and sent to the fusion
center over noisy channel. The observation error probability of i-th link is pi. At the
fusion center, the joint decoding process the a posteriori LLR lpi based on the received
signal from the channel. The detail of the encoding, property of channels and decoding
is omitted since we focus on the decision rule. Also, in the figure, only one realization
of the source is presented.

2.7.2 Majority Voting

A simple decision rule for generating estimates x̂ from multiple independent LLR values
lp
1 , · · · , l

p
L is majority voting, i.e., the LLR values are first converted to hard bits based

on the sign of LLRs, + 7→ 1 and − 7→ 0, and then comparing the number of 1’s and 0’s
of the hard bits. The majority voting decision is expressed as

x̂ =

1, ∑L
i=1 x̂i >

L
2

0, otherwise
, (47)

where x̂i is the generated bits from lp
i based on hard decision. The majority voting deci-

sion rule deals with hard bit, however, the information is lost during the hard decision
process of the LLR values. The other drawback of majority voting is that the observa-
tion error pi is not utilized in the decision. Intuitively, if pi of each link is not the same,
the LLR value of the link with smaller pi should assign larger weight. Thus, majority
voting works inadequately for the case pi of each link are various.
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2.7.3 Soft Combining

To avoid disadvantages of the majority voting, we proposed a soft combining technique
to generate the estimate x̂ as

x̂ =

1, ∑L
i=1 fc(l

p
i , pi)> 0

0, otherwise
, (48)

where function fc is the LLR updating function [54], the definition of which is

fc(l
p
i , pi) = ln

(1− pi)exp(lp
i )+ pi

(1− pi)+ pi exp(lp
i )
, (49)

Soft combining outperforms the majority voting since the LLR is weighted by pi through
fc function. However, it is difficult to analyze the decision error probability for the soft
combining.

2.8 Summary

This chapter provided the background concepts and theorems used throughout this re-
search. First of all, we reviewed the definition of entropy and mutual information. Sev-
eral necessary inequalities, such as MGL, for conversely proving the rate-distortion re-
gion were summarized. After that, the well-known theorems in the category of DSC
were presented. We briefly discussed the channel coding theorem and the source-
channel separation theorem, followed by the practical channel coding techniques, EXIT
chart analysis and decision rules used in binary information sensing.

51



52



3 Analyses of Asymptotic Sum Rate Limit and
Bit Error Rate Floor

We consider a binary information sensing network, in which multiple sensors observe
a single binary source to produce erroneous observations. They are independently en-
coded by each sensor and transmitted to a fusion center over orthogonal AWGN chan-
nels. The fusion center reconstructs the estimates of the common binary source from
the received signals by a joint decoder. As stated in Chapter 1, the problem of estimat-
ing a single source via multiple unreliable sensors (agents) is modeled by the binary
CEO problem. However, due to the difficulty in deriving the rate-distortion function for
the binary CEO problem, we analyze the binary information sensing network using the
Slepian-Wolf theorem in this chapter.

Numerous encoding/decoding algorithms have been proposed for binary informa-
tion sensing networks [50, 51, 53, 55]. In [50], authors proposed an encoding scheme
using parallel concatenated convolutional codes and a joint decoding method using
weighted extrinsic LLR to utilize the correlation knowledge. An adaptive bi-modal
decoder for the binary information sensing network having two sensors was proposed
in [51]. We studied the binary information sensing network in [53] and [55]. A very sim-
ple encoding and joint decoding algorithm using LLR updating function was proposed,
the BER performance of which is significantly improved [53]. We further proposed an
algorithm for estimating the correlation parameters in [55].

In AWGN channels, the BER curve of the proposed techniques for the binary infor-
mation sensing network exhibits a sharp turbo cliff at a certain threshold SNR like the
standard turbo codes do. However, the BER curve exhibits a flat error floor, which keeps
at a certain level even we increase the SNR. It is clearly understood that the floor is due
to the fact that the observations suffer from errors before being channel-encoded for
transmission. Then, there arises a question: what the reference values of the theoretical
threshold SNR and the bit error floor are to be compared with?

To answer this question, we use the Slepian-Wolf theorem, channel capacity theo-
rem and separability to derive the theoretical SNR limit converted from the achievable
sum rate. Furthermore, the BEP floor is analytically calculated on the basis of Pois-
son binomial process, and its lower bound is obtained from the binary rate-distortion
function.
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Fig. 13. A schematic diagram of a binary information sensing network.

The rest of this chapter is organized as follows. Section 3.1 states the problem
of binary information sensing. The approximation of the limit on sum rate using the
Slepian-Wolf theorem is derived in Section 3.2. The BEP floor and its lower bound are
analyzed in Section 3.3. The encoding/decoding algorithm is presented in Section 3.4.
Numerical results obtained through computer simulations and EXIT chart analysis are
shown in Section 3.5. Finally, Section 3.6 concludes this chapter.

3.1 Problem Statement

The block diagram of the binary information sensing network to be analyzed is illus-
trated in Fig. 13. A sensing object, producing binary i.i.d. data x = [x(t)]nt=1 from a
source X ∼ Bern(0.5), is observed by L sensors, where t represents the time index with
n being the block length. The observation xi made by the i-th sensor is a corrupted ver-
sion of x by the binary error sequence bi with Pr(bi(t) = 1) = pi, where i = 1,2, · · · ,L
indicates the index of sensors. The observation xi can be seen as the output of a BSC
with associated crossover probability pi when x is the input, i.e., xi = x⊕ bi. Con-
sequently, the observations are correlated with each other since they have the com-
mon input x of the independent BSCs. In other words, X and Xi follows a joint pmf
pXX1···XL(x,x1, · · · ,xL), where Xi is the random variable that generates observation se-
quences xi.

Each sensor encodes its observation xi by an joint source-channel encoder ENCi and
transmits the corresponding coded data to the fusion center over independent AWGN
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channels. The fusion center performs joint decoding to form estimates x̂ of the original
source.

It should be emphasized here that the difference between our approach and Berger-
Tung coding strategy. In the latter one, a vector quantization (VQ) is used to generate
codewords for source samples, followed by a binning step. However, we focus on the
case where we observe binary sequences. Moreover, our purpose is to determine how
much transmission power (dual to the compression rate) can be saved by exploiting the
source correlation at the joint decoding stage. As a result, encoding process by the VQ
is not explicitly considered here.

3.2 Achievable Sum Rate and SNR limit in AWGN Channels

In order to analyze the theoretical SNR limit for the binary information sensing network,
the achievable rate region of the source coding should be clarified based on source-
channel separation theorem. However, directly deriving the achievable rate region using
the source coding model, the binary CEO problem, is not easy. We then modify the
problem into a relatively simple one in order to approximately analyze the achievable
rate region. It is found through simulation results, as shown in Fig. 14, that the turbo
cliff appears at the SNR value that the bit error floor is reached. Hence, for deriving
the theoretical threshold SNR, we assume that observations are losslessly recovered,
which corresponds to the situation that the bit error floor is achieved. As a reference, in
Fig. 14, the BER performance of the case that one of pi is 0 is also presented. This case
is equivalent to one-way relaying system which has been intensively studied by using
the Slepian-Wolf theorem in [65, 89]. It is found that the turbo cliff almost appears at
the same SNR point if the correlation level is the same.

Therefore, the Slepian-Wolf theorem is applied to obtain the achievable sum rate
for the binary information sensing network.

Since the channels between the sensors and the fusion center are assumed to be or-

thogonal with each other, source-channel separation holds in this case [54]. Therefore,
based on separability, the SNR limit converted from the achievable sum rate is shown
as below.

Proposition 14.

SNRlim =

10lg
(

22Rc
i H(XL )/L−1

2

)
, one-dimensional signal

10lg
(

2Rc
i H(XL )/L −1

)
, two-dimensional signal

, (50)
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Fig. 14. BER comparison between the lossless and lossy cases.
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where Rc
i represents the end-to-end rate of the i-th sensor node and lg(·) is the logarithm

function with base 10. H(XL ) = H(X1, · · · ,XL) is the joint entropy of sources Xi, i =

1, · · · ,L. The SNR limit SNRlim is expressed in dB.

Proof. Starting from source-channel separation theorem, we have

L

∑
i=1

Ri(Di)Rc
i ≤

L

∑
i=1

C(γi), (51)

where Ri(Di) is the required rates in bits per sample that achieve Hamming distortions
Di between xi and x̂i, and Rc

i is the end-to-end rate in samples per channel use. C(γi)

is the Shannon’s channel capacity function in bits per channel use and γi the SNR. By
letting Di → 0, we can rewrite (51) to

Rc
i

L

∑
i=1

Ri ≤ LC(γi). (52)

We need to compute the sum rate ∑L
i=1 Ri to obtain the threshold γi. As we know, the

source coding of Fig. 13 belongs to Slepian-Wolf coding problem when Di goes to 0.
Using Slepian-Wolf theorem summarized in Theorem 5, the sum rate ∑L

i=1 Ri = H(XL ).
Therefore, substituting ∑L

i=1 Ri = H(XL ) into (52), we have

γlim =

 22Rc
i H(XL )/L−1

2 , one-dimensional signal

2Rc
i H(XL )/L −1, two-dimensional signal

, (53)

based on an assumption that capacity-achieving code is used at each sensor node. Then
by changing the unit of γlim to a logarithmic unit decibel, we obtain (50).

It should be emphasized here that the derived SNR limit SNRlim assumes that the
minimum Hamming distortion (BEP floor) is reached in the binary sensing network,
since we set Di goes to 0. The minimum Hamming distortion is equivalent to the bit
error floor in the BER performance, which is analyzed in the next section. Now we
need to calculate Rsum = ∑L

i=1 Ri = H(XL ).
Given the fact that xi, i = 1, · · · ,L, is the result of passing x through a BSC with

crossover probability pi, where xi and x represent the i.i.d. realizations of Xi and X ,
respectively, the joint probability Pr(x1,x2, · · · ,xL) is formulated as

Pr(x1,x2, · · · ,xL) =
1
2 ∏

k∈A

(1− pk) ∏
j∈A C

p j +
1
2 ∏

k∈A

pk ∏
j∈A C

(1− p j), (54)
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where A = {i ∈ L |xi = 0} and A C = L \A is the complement set of A with L =

{1, · · · ,L}. For example, setting L = 3 with x1 = 0, x2 = 1 and x3 = 0, the set A is
equal to {1,3} and A C = {2}.

Therefore, the joint entropy H(XL ) with XL = {Xi|i ∈ L }, which is equivalent to
Rsum, is calculated as

H(XL ) =− ∑
xi∈{0,1}

Pr(x1,x2, · · · ,xL) log(Pr(x1,x2, · · · ,xL)). (55)

However, the computational complexity increases very fast if L goes large. We further
simplify the calculation in (55) by considering the symmetric property of Pr(x1,x2, · · · ,xL),
and function h(·) is defined to calculate the joint entropy H(XL ) as follows.

Definition 1. A function h(pL ) expresses the joint entropy of the outputs of indepen-
dent BSCs with a set of crossover probabilities pL and the input X . Based on this fact,
function h(pL ) is

h(pL ) =


0, if |L |= 0,

1, if |L |= 1,

−2 ·
2(|L |−1)

∑
k=1

qk log(qk), otherwise,

(56)

with qk = 0.5·(∏ j∈Ak
p j ∏l∈A c

k
(1− pl)+∏ j∈Ak

(1− p j)∏l∈A c
k

pl) and Ak ⊆{1,2, · · · , |L |−
1}.

3.3 BEP Floor Analysis

To analyze the bit error floor that appears in the BER performance curve when perform-
ing the encoding/decoding technique proposed in [53] and [55], we assume the channels
between the sensors and the fusion center are noiseless, since the bit error floor appears
in the high SNR regime and it is only determined by the observation error probabilities.
It should be emphasized here that the bit error floor is not caused by the coding tech-
nique, while it is caused by the system structure. The observation errors are inserted in
the source sequence before the encoding process. In this section, we statistically evalu-
ate the value of the bit error floor, which is referred to as BEP floor, and its theoretical
lower bound.
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Fig. 15. The model of analyzing the BEP floor.

3.3.1 Poisson-Binomial Approximation

Without loss of generality, we assume the source x is an all zero sequence with n bits,
as shown in Fig. 15. The majority decision rule to generate x̂(t) is

x̂(t) =

{
1, if 1(X(t))> 0(X(t)),

0, otherwise,
(57)

where 1(X(t)) and 0(X(t)) count the number of 1’s and 0’s in the t-th column of X,
respectively, with X being a L×n matrix that stores xi row-by-row. The decision error
occurs when x̂(t) is decided to be 1. Hence, the BEP floor is analyzed by determining
the probability of the number of 1’s from L independent Bernoulli sequences having
different probabilities of "1". In the statistics, the Poisson-binomial distribution is the
probability distribution of the sum of independent Bernoulli trials that are not necessar-
ily identically distributed. The probability of J-times occurrence of the error in L-times
repeated binary trials with different crossover probabilities is [90]

Pr(J = j) =


L
∏
i=1

(1− pi), j = 0,

1
j

j
∑

k=1
(−1)(k−1) Pr(J = j− k)U(k), j > 0,

(58)

where U(k) =
L
∑

i=1

(
pi

1−pi

)k
and 0 ≤ j ≤ L.
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As a result, the BEP floor with different observation noise probabilities is calculated
by

PB(pL ) = Pr(x̂(t) ̸= x(t)) =


L
∑

j= L+1
2

Pr(J = j), if L is odd,

1
2 Pr(J = L

2 )+
L
∑

j= L
2 +1

Pr(J = j), if L is even.
(59)

Obviously, it is reduced to a binomial process if pi is identical.

3.3.2 Theoretical Lower Bound on the BEP Floor

The BEP floor analysis provided in the previous subsection is based only on the general-
ized majority logic (Poisson-binomial) analysis. However, it does not take into account
the impact of soft-combining of the LLRs. The exact BEP floor analysis taking soft-
combining into account is studied in [61, 91]. Instead, we further provide a theoretical
lower bound on the BEP floor plb.

According to the rate-distortion theory for a binary source [74], the theoretical lower
bound of the BEP floor is given in the following proposition.

Proposition 15 (Lower bound on BEP floor). Assume that a random variable X ∼
Bern(0.5), and Xi is the output variable of a BSC with crossover probability pi, where

0 ≤ pi ≤ 1
2 . The minimum error probability of estimating X from Xi is given by

plb = H−1
2 [1+

L

∑
i=1

H2(pi)−H(XL )]. (60)

Proof. According to the rate-distortion function for binary source [74], we have (61)

1−H2(d̃)≤ I(X ; X̂) (61)

≤ I(X ;XL ) (62)

= H(X)−H(X |XL ) (63)

= 1−H(X ,XL )+H(XL ) (64)

= 1−{H(X)+H(X1|X)+ · · ·+H(XL|X)}+H(XL ) (65)

= 1−{1+H2(p1)+ · · ·+H2(pL)}+H(XL ), (66)

where d̃ is a dummy variable, and the steps are justified as:
(62) there exists information loss in the process of obtaining X̂ from XL ,
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Fig. 16. Proposed encoding scheme at each sensor node.

(65) assume Xi → X → (X1, · · · ,Xi−1,Xi+1, · · · ,XL) forms Markov chains, i.e., given
X , Xi are independent to each other [10]. A detailed explanation of the CI is given in
Appendix 1.

Thus, it is obvious from (66) that d̃ ≥ H−1
2 [1+H2(p1)+ · · ·+H2(pL)−H(XL )].

Therefore, the lower bound on the BEP floor plb in (60) is obtained by setting to the
minimal value of d̃.

The lower bound plb is fully based on theoretical analysis regardless of any specific
decision rules. As it is seen from (61) and (62), we assume that there is no information

loss when producing X̂ from XL . However, in practice, this is difficult to achieve. It is
left as a future study to find better decision schemes that the soft combining.

3.4 Encoding and Joint Decoding Algorithms

3.4.1 Encoding Scheme

There are a variety of encoding techniques that can be used for the binary information
sensing network. However, as stated above, the primary purpose of this chapter is to
study the asymptotic limit of the sum rate and the BEP floor, and hence, we simply
follow the transmission technique proposed in [53, 55].

As shown in Fig. 16, observation xi is first interleaved by an interleaver Πi,1 whose
role is to enable the iterative decoding process to utilize the correlation knowledge ac-
cording to the turbo principle. The interleaved sequence is then encoded by an encoder
CCi resulting in the coded sequence ci. It is further interleaved by another interleaver
Πi,2, the length of which depends on the coding rate of the encoder CCi. After that, the
interleaved version of ci is doped-and-accumulated by a so-called ACC with a doping
ratio Pd . Finally, the modulated symbol sequence si generated by a specified modulation
scheme for the doped-accumulated binary sequence, is transmitted over AWGN chan-
nels to the fusion center. For simplicity, the modulation schemes used in this chapter
are BPSK and QPSK, and we assume that the channels from the sensors to the fusion
center are orthogonal to each other, indicating that the transmission from a sensor does
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Fig. 17. The block diagram of the joint decoder that utilizes the correlation knowledge
through global iteration.

not suffer interference from the other sensors. Therefore, the received signal yi in the
fusion center from the i-th sensor is simply expressed as

yi(t) = si(t)+ zi(t), (67)

where zi(t) generating from CN(0,σ2) is the complex AWGN sequence with the vari-
ance per dimension σ2.

3.4.2 Joint Decoding Algorithm

The block diagram of the proposed joint decoding technique is shown in Fig. 17. Be-
cause of the fact that the received data sequences from the sensors are highly correlated,
global iteration is introduced in the iterative decoding process with the view to utiliz-
ing the correlation knowledge, i.e., the extrinsic LLR is exchanged between global and
L local iterations to enhance the BER performance and thereby to reduce the power
consumption of each sensor.

The decoding process is divided into following steps.

(a) Initialization: The channel state information is fully known to the fusion center.
Thereby, after receiving the signal yi from the i-th sensor, the channel LLR lci =
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[lc
i (t)]

n
t=1 is calculated by3

lc
i (t) =

2
σ2 ℜ(yi(t)), (68)

where ℜ(·) takes the real part of a complex value in its argument. In addition, the
extrinsic LLR leci

of the coded bits and the a priori LLR laxi
of the systematic bits,

which are corresponding to the a priori LLR fed back to ACC−1 after interleaving,
and the a priori LLR to DCCi, respectively, are set to 0.

(b) Local iteration: Local iterations including the decoding processes of decoders
ACC−1 and DCCi are concurrently performed once.

(c) Global iteration: The extrinsic LLR lexi
, which is obtained by subtracting the a

priori LLR laxi
from the a posteriori LLR lpxi , is deinterleaved by Π−1

i,1 and then
updated through function4 fc [54] as

lex,i = fc{Π−1
i,1 (l

e
xi
), pi}. (69)

Function fc can be obtained by first converting the LLR into the probabilities of
the systematic bits being "0" and "1", and then modifying the values by taking
into account the knowledge of pi. The purpose of function fc is to avoid the error
propagation while exchanging likelihood information between local and global
iterations.

The interleaver Πi,1 makes the observation errors randomly distributed in the
observation, and hence, global iteration can be involved in the decoding process to
achieve significant improvement on the BER performance.

Since the scenario of multiple sensors observing the common sensing object
can be seen equivalent to performing the repetition coding, a degree L variable
node combines L− 1 extrinsic LLRs lex, j, j ̸= i, obtained as the results of local
iterations, to calculate the message fed back to the decoder DCCi of the k-th local
iteration. Thus, the a priori LLR lax,i is then obtained as

lax,i = ∑
j∈L \i

lex, j, (70)

with L = {1,2, · · · ,L} being the set of the indices of the sensors, and L \i means
removing i from the set L .

3This calculation is applied for BPSK demodulation, however, for other modulation schemes, the channel
LLR is generated by demodulator (DeM) based on BICM-ID method [92].
4In this work, the observation error probability pi is assumed to be known to the fusion center. We can use
the proposed algorithm in [55] to accurately estimate them only in the fusion center.
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The output of fc(lax,i, pi) is interleaved by Πi,1 to form the a priori LLR laxi

which is fed back to DCCi in the corresponding i-th local iteration.
(d) Convergence control: For saving the computational power of the destination node,

we add the convergence control after the global iteration to remove unnecessary it-
erations. The mutual information on the sum LLR is estimated using the averaging
method after the second global iteration as [93]

MI = I(lpx;x) = 1− 1
n

n

∑
t=1

H2

( exp(|lp
x(t)|/2)

exp(|lp
x(t)|/2)+ exp(−|lp

x(t)|/2)

)
. (71)

The difference on the mutual information is calculated by subtracting the value
of the last iteration from that of the current iteration. If the difference is smaller
than a given threshold δ , e.g., 10−4, or the number of total iterations reaches the
pre-setting value, the iteration process is terminated.

(e) The decoding process is performed in an iterative manner where steps (b) to (d)
are repeated with the switches shown in Fig. 17 being closed.

(f) Hard decision: A hard decision on x is made to make a final estimate x̂ of x, based
on the a posteriori LLR lpx originated by summing up all the deinterleaved and
fc-updated versions of the a posteriori LLR lpxi .

3.5 Simulations for Verification

A series of simulations have been conducted to verify the performance limits on thresh-
old SNRs and BEP floors. This section provides the results of the simulations.

3.5.1 Parameters in Encoding/Decoding Algorithm

The common parameters assumed in the simulations are summarized in Table 4.

3.5.2 Identical Observation Error Probability pi

First, we consider the case each sensor has the same observation error probability, let
say, pi = 0.01. The analytical results of SNR limits, approximated BEP floors using
Poisson binomial and their lower bounds for L= 2,4,6 and 8 are summarized in Table 5.

Figure 18 illustrates the BER performance using the proposed encoding/joint decod-
ing algorithm. The modulation scheme used here is BPSK. The results of the theoretical
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Table 4. The settings of simulation parameters.

Parameter Value

Block length n 10000 bits
Block 1000
Interleavers random

Encoder CCi
Rate 1/2, G = (3,2)8, memory-1 nonrecursive
systematic convolutional code

Doping ratio Pd 1 for BPSK and 8 for QPSK
Modulation BPSK and QPSK with natural mapping
Decoding Algorithm log-maximum a posteriori

The number of iterations: 50
δ 10−4
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Fig. 18. BER performance of our proposed technique with the number of sensors L =

{2,4,6,8}. pi are set at 0.01. The corresponding SNRlim are plotted in vertical dash-dot lines.
Approximated BEP floors and the lower bounds plb on the BEP floors are presented in hori-
zontal dashed and dash-dot lines, respectively.
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Table 5. The analytical results of the threshold SNR and the BEP floor. (identical pi)

L SNRlim (dB) BEP floor plb

2 -6.6 1×10−2 2.1×10−3

4 -9.157 2.98×10−4 4.03×10−5

6 -10.48 9.85×10−6 1.01×10−6

8 -11.31 3.42×10−7 2.84×10−8

analysis presented in Table 5 are also shown as references. It can be clearly seen that
in all the cases, the BER curves exhibit a sharp drop in the values at their correspond-
ing threshold SNR values, like turbo-cliff of the turbo-codes. The difference between
the threshold SNR obtained by the simulations and the analytical SNR limits shown in
Table 5 are {1.61,1.65,1.88,1.92} dB for L = {2,4,6,8}. The gap is because theoret-
ical SNR limits assume that the capacity-achieving code is used at each sensor node,
however, the encoding scheme in simulations is not optimized.

Furthermore, such sharp a decrease in BER suddenly plateaus at a value, however,
the appearance of the bit error floor is different from that with the turbo codes; the bit
error floor is flat with our proposed techniques, while that with the turbo codes it still
has a decay which is due to the property of the consistent codes. The approximated BEP
floor using Poisson-binomial function PB(·) is very accurate in these cases. However,
the lower bound on the BEP floor is difficult to achieve by the proposed joint decoding
algorithm. As it is found from the results, for each parameter case, a gap between the
simulations and lower bounds can be clearly observed. The reason is that the lower
bound on the BEP floor is derived by assuming there is no information loss during the
decision process from the observations.

3.5.3 Diverse Observation Error Probability pi

The impact of variation on pi to theoretical analyses is considered. The values of pi are
set based on: (i) predefined values, {0.002, 0.025, 0.075} for L= 3, {0.005,0.0145,0.015,0.025,0.03}
for L = 5 and {0.0003,0.005,0.01,0.015, 0.02,0.02,0.05} for L = 7; (ii) the pmf of loga-
rithmic distribution Log(ξ ), as an example of the case the pi follows a specific distribu-
tion due to some practical reason, as

pi =
−1

ln(1−ξ )
ξ i

i
, (72)
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Table 6. The analytical results of the threshold SNR and the BEP floor. (various pi)

cases L ξ SNRlim (dB) BEP floor plb

predefined pi

3
5
7

–
-7.02
-9.223
-10.28

2.1×10−3

4.6×10−5

1.33×10−6

4.44×10−4

1.58×10−5

8.37×10−8

Log(ξ )
6
7
9

0.9
0.99
0.97

-2.297
-3.729
-4.087

0.0148
6.8×10−4

1.488×10−4

0.002
1.741×10−4

2.323×10−5
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Fig. 19. BER performance comparison with the number of sensors L = {3,5,7}. The theoret-
ical results including SNR limits and BEP floors are plotted according to the values shown
in Table 6.

where 0 < ξ < 1 is the parameter of Log(ξ ) and ln(·) is the natural logarithm function.
If the obtained pi is larger than 0.5, we simply adjust pi = 1− pi.

Figure 19 shows the BER performance with L = {3,5,7}, where the observation
error probability pi of each sensor was set as the predefined values. Even in these cases,
the BER performance gap to the theoretical limits are about {1.52,1.73,1.8} dB.

Figure 20 depicts the BER performance using logarithmic distributed pi and QPSK
modulation for L = {6,7,9}. SNR limits and the lower bounds on the BEP floor are
also presented in Fig. 20 according to the values of Table 6. The gap between the
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Fig. 20. BER performance comparison with the number of sensors L = {6,7,9}. The obser-
vation error probabilities follows the logarithmic distribution with the parameter ξ shown in
shown in Table 6. The modulation of each link is QPSK with natural mapping that results in
Rc

i = 1 sample per channel use.

SNR limits and the SNR points of turbo cliff are around {2.2,3.7,4} dB for different
number of sensors, which are larger than the previous cases. The reason is because
the obtained pi are relatively large from the logarithmic distribution using the setting ξ
and the modulation is QPSK, and thus the BER performance cannot achieve significant
gains through global iterations.

It is also found that the bit error floors shown in Figs. 19 and 20 are placed between
the results of the Poisson-binomial approximation and the rate-distortion lower bound.
In other words, the predicted BEP floors based on Poisson-binomial process are not
accurate for the case having various pi values. As a result, to more accurately predict
the system performance with respect to BEP floor, the soft combining need to be taken
into account.

We thus derive the BEP floor using different weights based on pi [61], the detail of
which is provided in Appendix 2. We use this method to calculate the BEP floor for the
case that the Poisson-binomial is not accurate and list the results in Table 7. Through the
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Table 7. The actual bit error floor and predicted BEP floor based on soft combining.

L pi Actual error floor predicted BEP floor

7 predefined 6.2×10−7 5.44×10−7

6 pi ∼ Log(0.9) 0.0048 0.0048
7 pi ∼ Log(0.99) 5.9×10−4 5.914×10−4

9 pi ∼ Log(0.97) 9.38×10−5 9.628×10−5

comparisons, the predicted BEP floor using this method exactly matches the simulation
results. The negligible difference is due to the accuracy of simulations.

Moreover, in the practical encoding/decoding design, source compression is not
carried out. The rate loss is large for two cases: (i) source entropy is less than 1; (ii)
the channel is good, i.e., the SNR is relatively large. In these two cases, compression
should be performed to reduce the redundant information.

3.5.4 Verification by EXIT Analysis

The convergence behavior of the i-th local iteration is evaluated by the EXIT chart
analysis [84, 93]. The 3D EXIT chart analysis is used to verify the convergence of local
iteration, taking into the account of the helper information of global iteration.

A

Fig. 21. The abstract model for EXIT analysis. GI: global iteration.

The abstract model indicating the relationships of the mutual information for EXIT
chart analysis is shown in Fig. 21. For obtaining the 3D EXIT chart, the a priori input
LLR fed back to ACC−1 was first artificially generated for different values of Ia

ACC−1 ,
0 ≤ Ia

ACC−1 ≤ 1. The mutual information Ie
ACC−1 was then calculated by evaluating the

histogram of the output extrinsic LLR output from ACC−1. Furthermore, the EXIT
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function for DCCi is determined by evaluating the histogram of LLR leci
in the form of

Ie
ci
= Ti(laci

, laxi
), (73)

where Ie
ci

is the mutual information between the extrinsic LLR leci
and the coded bits

ci, indicating that Ie
ci
= I(leci

;ci). Since Ie
ci

is the output of a function with two inputs,
laci

and laxi
, they were artificially generated for different values of Ia

ci
, 0 ≤ Ia

ci
≤ 1, and

Ia
xi
= I(laxi

;xi), 0 ≤ Ia
xi
≤ I(xL \i;xi), respectively.

The mutual information Ie
ci

was then calculated by evaluating the histogram of leci

output from DCCi. Finally, the 3D EXIT chart is plotted based on the values of the
mutual information.

The 3D EXIT chart shown in Fig. 22 was obtained by setting pi = 0.01, i = 1, · · · ,4,
SNR = −7.5 dB, and Fig. 23 obtained by setting pi as the predefined random values,
SNR− 7 dB. From Figs. 22 and 23, it is found that the effectiveness of global itera-
tion is significant. The two EXIT planes are stuck at the initial stage, however, the
tunnel between two EXIT planes opens as Ia

xi
becomes large. The 3D trajectories ob-

tained by evaluating Ia
xi

, Ie
ACC−1 and Ie

ci
in the real simulations are also presented in

Figs. 22 and 23. As we can see, the trajectories asymptotically reach a point very
close to (1.0, I(xi;xL \i),1.0) mutual information point, indicating that the information
xi transmitted from the i-th sensor node can be recovered with an arbitrary low error
probability.

3.6 Summary

We investigated the transmission techniques for the binary information sensing network,
where multiple sensors observe a common binary source and transmit their erroneous
observations to the fusion center. The theoretical limit on the sum rate was analyzed
based on the framework of the Slepian-Wolf theorem in lossless distributed source cod-
ing problem. We then converted the sum rate to the SNR limit of capacity based on
separability theorem. Numerical results shown that the SNR values where turbo cliffs
happened in the BER curves are only around 1.5 ∼ 2 dB to the corresponding SNR
limit. Furthermore, the EXIT chart analysis clearly verified the practical threshold SNR
values in the BER performance. The BEP floor, which is common to the CEO problem,
was also approximated by evaluating the Poisson-binomial distribution. The simulation
results were very close to the approximated BEP floor. In addition, the lower bound on
the BEP floor was derived from the rate-distortion function for binary sources.
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Fig. 22. 3D EXIT curves of ACC−1 and DCCi at SNR =−7.5 dB and L = 4.
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4 Hamming Distortion Bounds of Binary
Information Sensing

We analyzed the theoretical limits in AWGN channels using the Slepian-Wolf theorem
for the binary information sensing network in Chapter 3. However, the limits are ob-
tained with a strong assumption that the observations are recovered losslessly in usual
Shannon sense, which is not always true. Instead, in this chapter, we analyze a prob-
lem that how small a Hamming distortion level the fusion center can achieve from the
rate-distortion perspective by taking into account distortions of reconstructed observa-
tions. To this end, we formulate a minimization problem to obtain the lower bounds on
Hamming distortion using the JSC setup with orthogonal MAC components.

In order to solve the minimization problem, we first model the source coding of
the binary information sensing network by the binary CEO problem. We then reduce
the binary CEO problem to a binary multiterminal source coding problem, which plays
the core role in solving the main problem. An outer bound for the rate-distortion re-
gion of the binary multiterminal source coding problem is then derived by providing
the converse coding proof. We establish the connection with respect to the Hamming
distortion level between the binary CEO problem and the binary multiterminal source
coding problem. Finally, the minimization problem is formulated in the framework of
convex optimization. It should be emphasized here that our purpose is not intended to
derive a tight rate-distortion bound for the binary CEO problem. Instead, we focus on
the derivation of a lower bound on the Hamming distortion that can be used as a ref-
erence of the BER performance curves of the encoding/decoding algorithms, including
the technique proposed in our contributions [53, 55].

This chapter is organized as follows. In Section 4.1, the system model and the
problem to be solved are described. The derivation of the outer bound and its proof
for the binary multiterminal source coding problem with two terminals is detailed in
Section 4.2. The problem of how to obtain the lower bound on the Hamming distortion
is formulated in Section 4.3. Section 4.4 provides the numerical results of simulations
as well as their corresponding lower bounds. We extend the analysis to the binary
information sensing network with multiple sensors in Section 4.5. Finally, we conclude
this chapter in Section 4.6.
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Fig. 24. The abstract system model of estimating a single source through two independent
nodes with joint source-channel coding.

4.1 Problem Statement

The system model of estimating a single source through two sensors/terminals is de-
picted in Fig. 24. A common i.i.d. source X produces a sequence x = [x(t)]nt=1 by
taking values from a binary set X = {0,1} with equal probability. Source X is ob-
served by two nodes and forwarded to a single destination. Due to the inaccuracy of the
estimation and/or limited received signal power at nodes, such as in WSN and WMN,
the sequences received by the nodes may contain errors5, and the nodes still forward
the erroneous sequences to the destination, which is referred as LF [65, 95]. The error
probabilities Pr(x1(t) ̸= x(t)) and Pr(x2(t) ̸= x(t)) are denoted as p1 and p2, respec-
tively, i.e., Pr(bi(t) = 1) = pi for the binary noise sequence bi = [bi(t)]nt=1, i = 1,2.
At the nodes, the noisy versions x1 = [x1(t)]nt=1 and x2 = [x2(t)]nt=1 of xn are indepen-
dently encoded by two JSC encoders to generate symbol sequences s1 = [s1(t)]

k1
t=1 and

s2 = [s2(t)]
k2
t=1 with coding rates ri = n/ki, i = 1,2. The symbol sequences s1 and s2 are

then transmitted to the destination over two orthogonal AWGN channels, as

yi = hi · si + zi, i = 1,2, (74)

where hi and zi = [z(t)]ki
t=1 represent the channel gain and the AWGN sequence at the

destination, respectively. The orthogonality can be achieved by any scheduled multiple
access scheme, like time division multiple access (TDMA), i.e., s1 and s2 can be trans-
mitted at different time intervals. The destination performs JSC decoding to form esti-
mates x̂i of the sequences xi, i = 1,2. We define the expected Hamming distortion mea-
sures E[ 1

n ∑n
t=1 d(xi(t), x̂i(t))]≤ Di +ε to evaluate the error probability Pr(xi(t) ̸= x̂i(t))

5In WMN applications, the nodes correspond to the transceivers in the multiple routes. In a WMN, a source
communicates with a destination through multiple intermediate nodes if they are not within the communica-
tion coverage. If errors are allowed in the messages forwarded by the intermediate nodes, the WMN can be
also modeled as the model shown in Fig. 24 [94].
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Fig. 25. The abstract model of the binary CEO problem with two independent nodes.

with

d(xi(t), x̂i(t)) =

{
1, if xi(t) ̸= x̂i(t),

0, if xi(t) = x̂i(t),
(75)

and ε representing an arbitrarily small positive number.
Finally, the destination reconstructs the source information xn of which the estimate

is denoted as x̂n based on a decision rule from x̂n
1 and x̂n

2. Therefore, the distortion
measure E[ 1

n ∑n
t=1 d(x(t), x̂(t))] ≤ D + ε can be formulated as a function of Di, i =

1,2, as D = Fd(D1,D2), where function Fd(·) is detailed in Section 4.3. It should be
emphasized here that function D=Fd(D1,D2) limits the decoding scheme to which first
reconstructs xn

1 and xn
2 and then makes the decision on xn from those reconstructions

(it is referred to as sequential decoding), as shown in Fig. 24. The optimality of such a
decoding scheme is an open problem, but it is definitely of interest for practical systems.
Furthermore, Fd(D1,D2) largely depends on the decision rule, i.e., there exists different
function Fd(D1,D2) for different decision rules6.

According to the source-channel separation theorem for lossy source coding [96],
distortion D1 and D2 can be achieved if the following inequalities hold:{

R1(D1) · r1 ≤C(γ1),

R2(D2) · r2 ≤C(γ2),
(76)

where Ri(Di) is the rate-distortion function for the source coding and C(γ) is the Shan-
non capacity using Gaussian codebook7 with the argument γ denoting the signal-to-

6It has been assumed in this setup that 1) each encoder uses joint typicality encoding and binning based on
random coding arguments, and the decoder performs joint typicality decoding with a sufficiently large n to
achieve the average distortion Di as in the Berger-Tung source coding problem [78]; 2) the errors occurring
in each sequence xn

i are i.i.d. In the practical system, we use random interleavers to asymptotically make this
assumption practical. As shown in Section 4.4, the simulation results are consistent with the lower bound
calculation based on soft combining decision.
7For one-dimensional signal, C(γ) = 1

2 log2(1+2γ), and for two-dimensional signal, C(γ) = log2(1+γ) [74].
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Fig. 26. The binary multiterminal source coding problem for two correlated binary sources.

noise ratio (SNR) of the channel. As stated above, r1 and r2 represent end-to-end cod-
ing rates of two links. Our goal is to derive the theoretical lower bound on the Hamming
distortion for the system shown in Fig. 24. It is equivalent to minimizing the expected
Hamming distortion D through a function Fd(D1,D2) under constraints shown in (76),
as

min
D1,D2

D = Fd(D1,D2) (77)

s.t. (78)

R1(D1) · r1 ≤C(γ1),

R2(D2) · r2 ≤C(γ2),

The minimization being performed in (77) is for a specific system which maps the
average distortions D1 and D2 to D, since function Fd(D1,D2) is defined for designated
decision rules. To achieve this goal by solving (77), we turn to derive the rate-distortion
function Ri(Di) for the problem shown in Fig. 24 and to establish the function D =

Fd(D1,D2) for the decision rule used at the destination.

4.2 Rate-Distortion Region Analysis

4.2.1 Outer Bound on the Rate-Distortion Region

Source Coding

In network information theory, the source coding of the communication system shown
in Fig. 24 is modeled by the binary CEO problem. The abstract model of the binary
CEO problem is illustrated in Fig. 25. In order to derive the rate-distortion function
Ri(Di), we first reduce the binary CEO problem to a binary multiterminal source coding
problem. An outer bound for the rate-distortion region which is determined by the rate-
distortion function Ri(Di) is then derived for the binary multiterminal source coding
problem through the converse proof, as in the Gaussian case [24].
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The binary multiterminal source coding problem which we consider is depicted in
Fig. 26. Since random sources Xn

1 and Xn
2 originate from the common source Xn, the

random variable pair (X1,X2) follow a joint pmf pX1X2(x1,x2) = Pr{X1 = x1,X2 = x2}
given by

pX1X2(x1,x2) =

 1
2 ρ, if x1 ̸= x2,

1
2 (1−ρ), otherwise ,

(79)

where ρ = Pr(x1 ̸= x2) is the correlation parameter between the sources X1 and X2, i.e.,
X2 can be seen as the output of a BSC with the crossover probability ρ where X1 is the
input. Two encoders independently encode Xn

1 and Xn
2 at rates R1 and R2 as

φ1 :X n → M1 = {1,2, · · · ,2nR1},

φ2 :X n → M2 = {1,2, · · · ,2nR2}.

The encoder output sequences U1 = φ1(Xn
1 ) and U2 = φ2(Xn

2 ) are transmitted to a com-
mon receiver. It jointly decodes the received samples to construct the estimates (X̂n

1 , X̂
n
2 )

of the source pair (Xn
1 ,X

n
2 ) denoted as (X̂n

1 , X̂
n
2 ) = ψ(φ1(Xn

1 ),φ2(Xn
2 )).

For given distortion values D1 ∈ [0, 1
2 ] and D2 ∈ [0, 1

2 ], the rate-distortion region
R(D1,D2) is defined as

R(D1,D2) =
{
(R1,R2) : (R1,R2) is admissible such that

E
1
n

n

∑
t=1

d(xi(t), x̂i(t))≤ Di + ε, i = 1,2
}
.

It should be emphasized here that the admissible rate-distortion region may not

applied to the binary CEO problem directly, since the strategy at the CEO is specified
to two-step decoding. The admissible rate-distortion region defined above limits the
problem which has the specific setup.

Main Results

We provide a bound Ro(D1,D2) of the rate-distortion region R(D1,D2).

Definition 2. Let

Ro
1(D1) =

{
(R1,R2) :

R1 ≥ H2[ρ ∗H−1
2 (1− [R2]

−)]−H2(D1)
}
, (80)
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Fig. 27. Case 1: X2 acts as the side information.

Ro
2(D2) =

{
(R1,R2) :

R2 ≥ H2[ρ ∗H−1
2 (1− [R1]

−)]−H2(D2)
}
, (81)

and

Ro
12(D1,D2) =

{
(R1,R2) :

R1 +R2 ≥ 1+H2(ρ)−H2(D1)−H2(D2)
}
, (82)

with [Ri]
− = min{1,Ri}.

For every D1 ∈ [0, 1
2 ] and D2 ∈ [0, 1

2 ],

Ro(D1,D2) = Ro
1(D1)

∩
Ro

2(D2)
∩

Ro
12(D1,D2). (83)

In what follows, we prove that Ro
1(D1), Ro

2(D2) and Ro
12(D1,D2) are the supersets

of the regions of R(D1,D2). It means that the following theorem holds.

Theorem 16 (Outer bound on rate-distortion region [60]). Ro(D1,D2) is an outer

bound for the rate-distortion region R(D1,D2); i.e., R(D1,D2)⊆ Ro(D1,D2).

Proofs

Proof of Theorem 16 (Converse). To prove Theorem 16, the following three different
cases of the binary multiterminal source coding problem are considered.

Case 1. In order to prove that R(D1,D2) ⊆ Ro
1(D1), we assume that the rate pair

(R1,R2) ∈ R(D1,D2) and show that this implies that (R1,R2) ∈ Ro
1(D1). In the proof,

Xn
2 is first reconstructed without constraint on D2 which results in (89), and then X̂n

2 is
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regarded as the side information to recover Xn
1 , as shown in Fig. 27. Assume that a rate

pair (R1,R2) achieves distortion D1, then

n · (R1 + ε)≥ H(U1)

≥ H(U1|U2) (84)

= I(Xn
1 ;U1|U2) (85)

= I(Xn
1 ;U1,U2)− I(Xn

1 ;U2) (86)

≥ I(Xn
1 ; X̂n

1 )− I(Xn
1 ;U2), (87)

where the steps are justified, because
(84) conditioning reduces entropy,
(85) U1 is a function of Xn

1 ,
(86) the chain rule of mutual information,
(87) Xn

1 → (U1,U2)→ X̂n
1 forms a Markov chain.

Now our aim is to lower bound I(Xn
1 ; X̂n

1 ) and upper bound I(Xn
1 ;U2). Since I(Xn

1 ; X̂n
1 )=

H(Xn
1 )−H(Xn

1 |X̂n
1 ) = n−H(Xn

1 |X̂n
1 ), to lower bound I(Xn

1 ; X̂n
1 ) is equivalent to upper

bound H(Xn
1 |X̂n

1 ). According to the Fano’s inequality, we have

H(Xn
1 |X̂n

1 ) ≤ n ·H2(D1)+n ·D1 · log(|X |−1)

= n ·H2(D1). (88)

On the other hand, since I(Xn
1 ;U2) = H(Xn

1 )−H(Xn
1 |U2) = n−H(Xn

1 |U2), an up-
per bound on I(Xn

1 ;U2) corresponds to the lower bound on H(Xn
1 |U2). Observing that

Xn
1 → Xn

2 →U2 forms a Markov chain, it can be shown that H(Xn
1 |U2)≥ nH2(ρ ∗β ) by

MGL, where β = 1
n H−1

2 [H2(Xn
2 |U2)]. Since the binary convolution ∗ is monotonically

increasing with respect to β if ρ is fixed, we need to find the minimizing value of β to
lower bound H2(ρ ∗β )8. We also have the rate constraint on R2 as

n · (R2 + ε)≥ H(U2)

= I(Xn
2 ;U2). (89)

Letting ε → 0, we have n ·R2 ≥ I(Xn
2 ;U2) = H(Xn

2 )−H(Xn
2 |U2) = n− nH2(β ), and

hence β ≥ H−1
2 (1−R2). Therefore, the lower bound on H(Xn

1 |U2) is given by

H(Xn
1 |U2)≥ n ·H2[ρ ∗H−1

2 (1−R2)]. (90)

8The binary entropy function is a monotonically increasing function in the interval [0, 1
2 ].
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From (87), (88) and (90), we can obtain

n · (R1 + ε)

≥ n−n ·H2(D1)−n+n ·H2[ρ ∗H−1
2 (1−R2)]

= n ·H2[ρ ∗H−1
2 (1−R2)]−n ·H2(D1). (91)

The rate-distortion region Ro
1(D1) shown in (80) is obtained by letting ε → 0 in (91).

Thus, the rate pair (R1,R2) satisfies condition (80); i.e., (R1,R2) ∈ Ro
1(D1).

Case 2. The source Xn
1 acts as a helper to reconstruct Xn

2 under the required distor-
tion level D2. This is the case symmetric with Case 1. The rate-distortion region shown
in (81) can be proved in the same way as in Case 1.

Case 3. Here, we prove that (R1,R2) ∈ R(D1,D2) implies (R1,R2) ∈ Ro
12(D1,D2).

To this end, assume that the rate pair (R1,R2) achieves distortion D1 for X1 and D2 for
X2. In the following proof, decoder ψ jointly reconstructs the sources Xn

1 and Xn
2 under

required distortions D1 and D2. The following inequalities are obtained:

n · (R1 +R2 + ε)≥ H(U1)+H(U2)

≥ H(U1,U2)

= I(Xn
1 ,X

n
2 ;U1,U2) (92)

= I(Xn
1 ;U1,U2)+ I(Xn

2 ;U1,U2|Xn
1 )

= I(Xn
1 ;U1,U2)+ I(Xn

2 ;Xn
1 ,U1,U2)−n · I(X1;X2)

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ; X̂n

2 )−n · I(X1;X2), (93)

where (92) holds since Ui is a function of Xn
i , i = 1,2. Similarly, by utilizing Fano’s

inequality to lower bound I(Xn
1 ; X̂n

1 ) and I(Xn
2 ; X̂n

2 ), we have

n · (R1 +R2 + ε)≥ n+n ·H2(ρ)−n ·H2(D1)−n ·H2(D2). (94)

Letting ε → 0 in the above inequality, we conclude that (82) holds. That is, (R1,R2) ∈
Ro

12(D1,D2).
Through these three cases, it can be concluded that the admissible rate pair (R1 +

ε,R2+ε)∈Ro(D1,D2). Furthermore, the monotonicity of the outer bound Ro(D1,D2)

[23] implies that Ro(D1,D2) ⊆ Ro(D1 + ε,D2 + ε). Since (R1,R2) is admissible, we
conclude that R(D1,D2)⊆ Ro(D1,D2) by letting ε → 0.
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In summary, the outer bound on the rate-distortion function Ri(Di) is given by
R1(D1)≥ H2[ρ ∗H−1

2 (1−R2(D2))]−H2(D1),

R2(D2)≥ H2[ρ ∗H−1
2 (1−R1(D1))]−H2(D2),

2
∑

i=1
Ri(Di)≥ 1+H2(ρ)−

2
∑

i=1
H2(Di).

(95)

4.2.2 Inner Bound

As it is known that the exact rate-distortion bound for lossy multiterminal source coding
problem lies between the Berger-Tung inner and outer bounds [78]. We also derived the
rate-distortion region R i(D1,D2) based on the Berger-Tung inner bound [57] as

R i(D1,D2) = R i
1(D1)

∩
R i

2(D2)
∩

Ri
12(D1,D2) (96)

with 

R i
1(D1) = {(R1,R2)|R1 ≥ H2(ρ ∗D1 ∗D2)−H2(D1)},

Ri
2(D2) = {(R1,R2)|R2 ≥ H2(ρ ∗D1 ∗D2)−H2(D2)},

Ri
12(D1,D2) = {(R1,R2)|

R1 +R2 ≥ 1+H2(ρ ∗D1 ∗D2)−∑2
i=1 H2(Di)},

for every 0 ≤ D1,D2 ≤ 1
2 . The detailed proof is given in Appendix 3.

4.2.3 Remarks

We now show that the derived outer and inner bounds on the rate-distortion region is
connected to the classical results mentioned in Chapter 2.

Remark 1. If either R1 = 0 or R2 = 0, i.e., one of two encoders is breakdown in the
network, Ro(D1,D2) is then consistent with the classical rate-distortion function 1−
H2(Di) for the binary source.

Remark 2. If the distortions D1 and D2 are required to be arbitrarily small, then Ro(D1,D2)

reduces to the Slepian-Wolf rate region [2] for correlated binary sources if we set
D1 → 0 and D2 → 0. The Slepian-Wolf rate region and Ro(D1,D2) are shown in
Fig. 29. Obviously, it is found that by allowing nonzero distortion, the sources can
be further compressed compared to the Slepian-Wolf lossless case.
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Fig. 28. The comparison of Wyner-Ziv rate-distortion bound and derived outer bound. The
correlation ρ between two sources is set at 0.3.

Remark 3. If we are interested in reconstructing only one of the two sources, say X1,
and there is no rate limit on describing Xn

2 , i.e., R2 ≥ 1
n H(Xn

2 ), then it is equivalent to the
Wyner-Ziv compression problem [78]. Fig. 28 plots the rate-distortion bound RWZ

1 (D1)

of the Wyner-Ziv source coding [11] and our derived outer bound. In this case, Ro
1(D1)

is not tight, since it can be found from Fig. 28 that the rate-distortion region of the
Wyner-Ziv problem lies inside of Ro

1(D1).

Remark 4. In Fig. 29, the Berger-Tung inner bound for binary case R i(D1,D2) is also
presented as a reference to verify how close the bounds Ro(D1,D2) and Ri(D1,D2) are.
It can be seen from the figure that they are very close to each other for small values of
D1 and D2, i.e., the outer bound can be considered as a useful reference in the evaluation
of the BER performance, even though there exists a small gap. The gap between the
Berger-Tung inner bound and the derived outer bound is sensitive to both ρ and Di. If ρ
goes large and/or Di small, the gap becomes relatively small. However, to resolve this
gap, further insightful discussions are still needed as in Gaussian multiterminal source
coding [24].
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(b) ρ = 0.15, D1 = D2 = 0.05.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R2

R
1

 

 

Slepian−Wolf rate region

Berger−Tung inner bound

Outer bound

(c) ρ = 0.3, D1 = D2 = 0.005.
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Fig. 29. The comparison of Ro(D1,D2), Berger-Tung inner bound and Slepian-Wolf admissi-
ble rate region.
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Fig. 30. The comparison of two-step outer bound and Berger-Tung inner bound with optimal
decision, and the direct outer bound of the binary CEO problem. We assume that p = p1 = p2

and R1 = R2.

Remark 5. In Fig. 30, we compare three rate-distortion bounds for the binary CEO
problem. As a reference, we directly derived the outer bound on the rate-distortion
region for the two-node binary CEO problem, which is summarized in Appendix 4.
This outer bound is referred as direct outer bound. Our derived outer bound with optimal
decision, which is stated in the next section, is not tight for the binary CEO problem.
However, if the observation accuracy is low, let say, p1 = p2 = 0.25, the gap between
the derived two-step outer bound and the direct outer bound is negligible. Furthermore,
for large rate Ri, two bounds exactly match with each other. Hence, the derived outer
bound is tight for relatively large p and/or Ri based on the results shown in Fig. 30,
which is consistent with the above discussion in Remark 4. Also, it is interesting to find
that the Berger-Tung inner bound with optimal decision coincides with the direct outer
bound for any pi. As a result, it is concluded that the binary CEO problem with two
nodes is solved.
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4.3 Problem Formulation: Hamming Distortion Lower Bounds

4.3.1 Distortion Function

As stated in Section 4.1, distortion D is a function of distortions Di, i = 1,2. Function
Fd(D1,D2) is obtained by evaluating the relationship between the binary CEO and the
binary multiterminal source coding problems in terms of distortions, where the model of
the relationship is shown in Fig. 31. The estimate X̂ is obtained based on the decision
rule from the outputs of two parallel BSCs with crossover probabilities p1 ∗D1, p2 ∗
D2 and input X . The distortion D largely depends on the decision rule used by the
destination. Here we only consider two decision rules. One is the soft combining
decision and the other the optimal decision.

Fig. 31. The relationship between the binary CEO and multiterminal source coding problems.
BMTSC: binary multiterminal source coding.

Soft combining decision

Distortion D is obtained by evaluating the probability of an error event. Let θ1 = p1∗D1

and θ2 = p2 ∗D2. Without loss of generality, we assume that θ1 ≤ θ2. Hence, the error
event is composed of two independent events: node 1 makes a wrong decision and
node 2 makes correct decision or both node 1 and node 2 make erroneous decisions.
Therefore, the distortion D in this case is approximated by D ∼= θ1(1−θ2)+θ1θ2 = θ1.
It can be found that the corner point θ1 or θ2 in the rate-distortion region is achieved.
Hence, the soft combining decision rule can be seen as being equivalent to that derived
from the time sharing method.
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Optimal decision

Since the block length is assumed to be infinite and the code is random, an optimal
lower bound on the distortion D is determined by applying Proposition 15, as

D = H−1
2 [H2(θ1)+H2(θ2)−H2(θ1 ∗θ2)]. (97)

It should be emphasized here that the optimal decision acts as a universal lower bound
on the Hamming distortion for specific schemes which assume sequential decoding.
However, in the design of practical encoding/decoding algorithms, we do not consider
this decision rule.

In summary, the distortion level D of the two decision rules described above is given
as

D = Fd(D1,D2) =

{
min{θ1,θ2}, soft combining,
H−1

2 [H2(θ1)+H2(θ2)−H2(θ1 ∗θ2)], optimal.
(98)

4.3.2 Convex Optimization: Minimizing Distortion

By substituting the rate-distortion function (95) and (98) into the minimization problem
(77), we have

min
D1,D2

D (99)

s.t.

H2[ρ ∗H−1
2 (1− C(γ2)

r2
)]−H2(D1) ≤ C(γ1)

r1
,

H2[ρ ∗H−1
2 (1− C(γ1)

r1
)]−H2(D2) ≤ C(γ2)

r2
,

1+H2(ρ)−H2(D1)−H2(D2) ≤ C(γ1)

r1
+

C(γ2)

r2
,

Di ≤ 1
2
, i = 1,2,

Di ≥ 0, i = 1,2.

The reason of using the derived outer bound, not the Berger-Tung inner bound is
that, the outer bound can be easily formulated as a convex optimization. The Berger-
Tung inner bound includes term D1 ∗D2 in the binary entropy function which cannot
be easily handled in the minimization. It is found that distortion D = Fd(D1,D2) is
monotonically increasing function on the intervals Di ∈ [0, 1

2 ], i = 1,2 for both the soft
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combining decision and optimal decision rules, and the proof is detailed in Appendix 5.
Furthermore, since the sequential decoding (first reconstructs x1 and x2, then makes
decision on x) is applied, we first minimize the ℓ2-norm of a vector [D1,D2] instead of
directly minimizing D, as

min
D1,D2

∥[D1,D2]∥2 (100)

s.t.

−H2(D1)−H2(D2) ≤ C(γ1)

r1
+

C(γ2)

r2
−1−H2(ρ),

−H2(D1) ≤ C(γ1)

r1
−H2[ρ ∗H−1

2 (1− C(γ2)

r2
)],

−H2(D2) ≤ C(γ2)

r2
−H2[ρ ∗H−1

2 (1− C(γ1)

r1
)],

Di ≤ 1
2
, i = 1,2,

−Di ≤−0, i = 1,2,

to obtain the minimal values of D1 and D2, and then map them to D by using function
Fd(D1,D2).

It is easily found that the problem (100) is convex since the objective function is
convex and function −H2(·) is also convex. Therefore, it can be efficiently solved using
convex optimization tools. Assume that the minimum values of D1 and D2 obtained
through the convex optimization are denoted as D⋆

1 and D⋆
2, respectively. Substituting

D⋆
1 and D⋆

2 into (98), the minimum distortion value D⋆ is then obtained through

D⋆ =

{
min{θ ⋆

1 ,θ ⋆
2 }, soft combining,

H−1
2 [H2(θ ⋆

1 )+H2(θ ⋆
2 )−H2(θ ⋆

1 ∗θ ⋆
2 )], optimal,

(101)

where θ ⋆
1 and θ ⋆

2 are p1 ∗D⋆
1 and p2 ∗D⋆

2, respectively. It should be emphasized here
that the distortion D1 or D2 should be set to 0 in the optimization problem (99) if C(γ1)

r1

or C(γ2)
r2

is larger than or equal to 1, which is the binary entropy of the source X1 and
X2. The reason is that a source can be reconstructed under an arbitrary small error
probability if the source coding rate is larger than its entropy even in the case the helper
does not exist [74].
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Fig. 32. Block diagram of the encoding/decoding algorithm.

4.4 Verification of Hamming Distortion Lower Bounds

4.4.1 Simulation Settings

We briefly explain the practical encoding/decoding algorithm [53, 55] which is illus-
trated in Fig. 32. This algorithm is used to verify the theoretical Hamming distortion
lower bounds. As illustrated in Fig. 32, each node encodes its erroneous sequence by us-
ing a serially concatenated memory-1 convolutional code and ACC. The encoder output
sequences are then modulated and transmitted to the destination over statistically inde-
pendent AWGN and block Rayleigh fading channels, where the channel gain hi is static
within each block but varies independently block-by-block. At the destination, iterative
decoding process is carried out between the decoders of the convolutional code and the
ACC, as well as between the two decoders of the convolutional codes through the LLR
updating function fc to modify the extrinsic LLR, according to the error probabilities
p1 and p2.

The lower bounds9 on the Hamming distortion for different SNR values γ1,γ2 are
obtained through solving the convex optimization problem which we presented in Sec-
tion 4.3. The results are shown in Figs. 33–36 for AWGN channels and Fig. 37 for block
Rayleigh fading channels. The common parameters used in conducting the simulations
are shown in Table 8.

9The terminology "lower bound" used here is due to the Hamming distortion is calculated based on the
derived outer bound, even though the approximation of the objective functions is used.
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Table 8. The settings of simulation parameters.

Parameter Value

Block length n 10000 bits for AWGN and 2048 bits for fading
Block 1000 for AWGN and 10000 for fading
Interleavers random

Encoder CCi
Rate 1/2, G = (3,2)8, memory-1 nonrecursive
systematic convolutional code

Doping ratio Pd 1
Modulation BPSK and QPSK with natural mapping
Decoding Algorithm log-maximum a posteriori

The number of iterations: 30
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Fig. 33. Symmetric P and SNR. BPSK is used for both nodes.
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Fig. 34. Asymmetric P and symmetric SNR. BPSK is used for both nodes.

4.4.2 Numerical Results

Figure 33 shows the error probability lower bounds and the BER versus SNR when p1,
p2 and SNRs of the two nodes are set identically; this is referred as the symmetric case.
It can be found that, the BER curves obtained by simulations and the theoretical lower
bounds on the Hamming distortion exhibit a similar tendency. The gap between the
simulated BER and theoretical lower bound on Hamming distortion is caused by: (i)
the derived outer bound is not tight, and thus smaller Hamming distortion is obtained
for fixed rates; (ii) the Hamming distortion lower bound is obtained by assuming the
optimal source coding rate is adopted based on separability, however, fixed coding rate
is used in simulations.

Furthermore, it is clearly found that the error floor of the BER obtained by the sim-
ulation and the lower bound on the Hamming distortion based on soft combining match
exactly. The reason is that if the SNRs of two nodes are large enough, the distortion lev-
els D1 and D2 are almost 0, which results in the error floor being determined completely
by the error probabilities p1 and p2. A gap clearly appears between the Hamming dis-
tortion lower bounds using the soft combining and optimal decision rules. The reason
is twofold: 1) the optimality of the soft combining cannot be guaranteed; 2) optimal
decision is derived based on the assumption of the binary rate-distortion function with-
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Fig. 35. Asymmetric r1 and r2. The coding rates r1 and r2 are set at 1
4 and 1

2 , respectively.
The transmit power of two nodes is the same. BPSK is used for both nodes.

out any loss during processing the information. To find a better decision rule than soft
combining rule is left as a future study. However, it is clear that the Hamming distortion
lower bound deriving from the optimal decision cannot be exceeded.

The impact of the variation of the error probabilities p1, p2 and the coding rates ri

are evaluated in AWGN channels. Fig. 34 shows the results for asymmetric p1 and p2

but symmetric SNRs. When the coding rates10 r1 and r2 are set as 1
4 and 1

2 , respectively,
the BER performance shown in Fig. 35 is obtained. We further consider using differ-
ent modulation schemes for the nodes to achieve different rates of the channel code in
Fig. 36, where QPSK is used for node 1 and BPSK for node 2. Even in these asym-
metric cases, the theoretical lower bounds on the Hamming distortion can still provide
us with a useful reference when we evaluate the BER performance of practical systems.
Furthermore, the theoretical lower bounds on the Hamming distortion obtained based
on our derived outer bound exhibit similar behaviors to those of the BER curves found
by simulations.

10We simply transmit the output of ACC without doping to achieve rate 1
4 . No optimized design of the

channel code is considered.
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Fig. 36. Asymmetric r1 and r2. The coding rates r1 and r2 are set at 1 and 1
2 , respectively. The

transmit power of two nodes is the same. QPSK is used for node 1 and BPSK for node 2.
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Fig. 37. BER performances over Rayleigh fading channels. Both nodes use BPSK modula-
tion.
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In both the symmetric and asymmetric cases, the threshold SNR value at which
turbo cliff in the BER obtained by the simulation is around 1.5 dB larger than that
observed in the theoretical lower bounds in static AWGN channels. In addition, since
the lower bounds on the Hamming distortion plateaus at a certain level even if the
power is increased at high SNR regime, increasing the number of nodes is a proper way
to improve performance in the practical deployment.

In Fig. 37, the channels between two nodes and the destination experience inde-
pendent block Rayleigh fading. Therefore, the instantaneous SNRs of two nodes are
different while the average SNRs of the two channels are the same. The lower bounds
on the Hamming distortion shown in Fig. 37 are calculated as

D⋆
fading =

∫ +∞

0

∫ +∞

0
D⋆(γ1,γ2) ·Pr(γ1) ·Pr(γ2)dγ1dγ2, (102)

where D⋆(γ1,γ2) is the result of (101), obtained for static AWGN channels. Pr(γi) is the
probability density function of the SNR γi, which follows the Rayleigh distribution. We
use Monte Carlo method to obtain the lower bounds on the average Hamming distortion
D⋆

fading instead of theoretically calculating (102). In the Rayleigh fading case, the shape
of the BER curves and the lower bounds on the Hamming distortion are almost the same.
Two points need to be emphasized here. The analytical solution of (102) is difficult
to find, because D⋆(γ1,γ2) is obtained by solving the formulated convex optimization
using cvx tool. The other point is that, the outage probability approaches 1 using the
definition that the outage event happens when the package cannot losslessly recovered.
Hence, the definition of outage should be changed in this case. We follow the method
of using Slepian-Wolf theorem and separability to calculate the outage probability pout

for the situation that bit error floor is reached [57, Section 4.2], where the definition of
outage event is Outage, D > min{p1, p2}

Success, otherwise
(103)

The detail of deriving pout for two-node case is shown in Appendix 6. We compare the
theoretical outage probability pout and the frame error rate (FER)11, where the results
is shown in Fig. 38. The FER performance obtained by practical encoding/decoding
algorithm are around 1 ∼ 2 dB in average SNR to the theoretical outage pout.

11The frame is error if and only if D > min{p1, p2}.
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Fig. 38. Comparison between FER and theoretical pout.

4.5 Extension to Multiple Terminals

The outer bound on the rate-distortion region for L = 2 terminals is proved and dis-
cussed in detail. However, it is worth to show the possibility of extending the proposed
solutions to the general binary CEO problem with an arbitrary number of terminals. In
this section, the same approach where the rate-distortion region of the binary CEO prob-
lem is solved through establishing the relationship with the binary multiterminal source
coding is applied to the general binary CEO problem.

4.5.1 Problem Statement

The binary multiterminal source coding which we consider is depicted in Fig. 39. Let
the information sequence of source Xn

i = {xi(t)}n
t=1, i = 1,2, · · · ,L, be binary i.i.d. It

should emphasized here that Xn
i is generated from Xn through a BSC with crossover

probability pi in order to make connection with the binary CEO problem. Each encoder
independently encodes the data sequences Xn

i with the coding rate Ri as

φi : X n → Mi = {1,2, · · · ,2n·Ri}, (104)
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where φi is the i-th encoder function. The encoder outputs φi(Xn
i ) are transmitted to

a common receiver over noiseless channels. The common receiver jointly produces
estimates X̂n

i of the sources based on the received sequences from the agents as X̂n
i =

ψ[φ1(Xn
1 ), · · · ,φL(Xn

L )], where ψ is the decoder function.
Let di(xi(t), x̂i(t)) be the average Hamming distortion measure. For given positive

numbers Di ∈ [0,1/2], we define the rate-distortion region R(DL ) as

R(DL ) = {(RL ) : (RL ) is admissible such that

E
1
n

n

∑
t=1

di(xi(t), X̂i(t))≤ Di + ε},

where L = {1, · · · ,L}, RL = {Ri|i ∈ L } and DL = {Di|i ∈ L }. We provide an outer
bound Ro(DL ) for the rate-distortion region R(DL ) with the converse proof in the
next section.

4.5.2 Rate-Distortion Region Analysis

Definition 3. Ro(DL ) =
∩

S {Ro
S (DS )}, ∀S ⊆ L and S ̸= /0, with

Ro
S (DS ) =

{
(RS ) : ∀R j, j ∈ S c = L \S ,

∑
i∈S

Ri ≥ h({pS ,αS c})−h({αS c})− ∑
i∈S

H2(Di)

}
, (105)

where

pS = {pi|i ∈ S }, (106)

αS c = {α j| j ∈ S c}, (107)

α j = p j ∗H−1
2 (1− [R j]

−), (108)

set S c is the complementary set of S and [a]− = min{1,a}. Function h(·) is defined
in Definition 1.

Theorem 17. R(DL )⊆ Ro(DL ).

Proof

Converse proof of Theorem 17. In order to easily present the proof of the outer bound,
we take L = 3 as a basic example. Let Ui = φ(Xn

i ).
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...

Fig. 39. The binary multiterminal source coding problem for L correlated binary sources.

Case 1. S = {1} and S c = {2,3}. In this case, sources Xn
2 and Xn

3 operate as
helpers for recovering Xn

1 . The case belongs to the category of many-help-one problems
in the network information theory. A specific two-help-one problem where the primary
source, which the decoder wants to reproduce is the XOR version of two helpers was
studied by Körner and Marton [6]. Furthermore, the many-help-one problem for corre-
lated Gaussian sources was studied by Oohama [27] and Pandya et al. [28], respectively.
Assume that D1 is achieved by a rate triple (R1,R2,R3), then the following equations
hold:

n(R1 + ε) ≥ H(U1)

≥ H(U1|U2,U3) (109)

= I(Xn
1 ;U1|U2,U3) (110)

= I(Xn
1 ;U1,U2,U3)− I(Xn

1 ;U2,U3) (111)

≥ I(Xn
1 ; X̂n

1 )− I(Xn
1 ;U2,U3) (112)

where the steps are justified since
(109) conditioning reduces the entropy,
(110) U1 is a function of Xn

1 ,
(111) the chain rule of mutual information,
(112) data processing inequality,

n(R2 + ε)≥ H(U2) = I(Xn
2 ;U2), (113)

n(R3 + ε)≥ H(U3) = I(Xn
3 ;U3). (114)
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Fig. 40. The test BSC model for proving the outer bound.

Now, we need to find the lower bound on the term I(Xn
1 ; X̂n

1 ) and the upper bound
on I(Xn

1 ;U2,U3). As same as in L = 2 case, the lower bound on I(Xn
1 ; X̂n

1 ) is obtained
by applying Fano’s inequality

I(Xn
1 ; X̂n

1 )≥ n−nH2(D1). (115)

The upper bound on I(Xn
1 ;U2,U3) is derived based on the test BSC model shown in

Fig. 40 and inequalities (113), (114), as12

I(Xn
1 ;U2,U3) = nH(X1)+H(U2,U3)−H(Xn

1 ,U2,U3)

≤ n+nh({α2,α3})−nh({p1,α2,α3}), (116)

where (116) is obtained based on the fact that Xn
1 , U2 and U3 are the outputs from a BSC

or a cascade BSC channels when Xn is the input. By substituting (115) and (116) into
(112) and letting ε go to 0, we conclude that

R1 ≥ h({p1,α2,α3})−h({α2,α3})−H2(D1). (117)

For the cases S = {2} and S = {3}, the bounds can be obtained in the same way.
Case 2. S = {1,2} and S c = {3}. The source Xn

3 acts as the helper to recover
Xn

1 and Xn
2 . Gastpar derived the inner and outer bounds for the rate-distortion region of

independently compressing two or more correlated sources with side information avail-
able at the decoder [13]. In this case, except that (114) holds, the following inequalities

12Inspired by the MGL, we establish the test BSC model to bound the mutual information. However, this
bound may exist a gap to the global optimal bound. The validation of the global optimality is left as a future
study. Indeed, the bound derived from the current setup can still serve as a useful reference in the power
allocation and scheduling of WSNs. Some further discussions on this issue are provided in subsection 4.5.4.
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also hold.

n(R1 + R2 + ε)≥ H(U1)+H(U2)

≥ H(U1,U2|U3)

= I(Xn
1 ,X

n
2 ;U1,U2|U3)

= I(Xn
1 ,X

n
2 ;U1,U2,U3)− I(Xn

1 ,X
n
2 ;U3)

= I(Xn
1 ;U1,U2,U3)+ I(Xn

2 ;U1,U2,U3|Xn
1 )− I(Xn

1 ,X
n
2 ;U3)

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ;U1,U2,U3,Xn

1 )

− I(Xn
1 ;Xn

2 )− I(Xn
1 ;U3)− I(Xn

2 ;U3|Xn
1 ) (118)

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ; X̂n

2 )

− I(Xn
1 ;Xn

2 )− I(Xn
1 ;U3)− I(Xn

2 ;U3,Xn
1 )+ I(Xn

1 ;Xn
2 )

≥ H(Xn
1 ,X

n
2 ,U3)−H(U3)−n[H2(D1)+H2(D2)] (119)

≥ n[h({p1, p2,α3})−h({α3})−H2(D1)−H2(D2)] (120)

where (118) holds because the chain rule of mutual information and data processing
inequality, (119) follows from several steps of elementary calculation, and (120) is
obtained based on the same test BSC model which is shown in Fig. 40.

By letting ε go to 0, it is concluded that R1 +R2 ≥ h({p1, p2,α3})− h({α3})−
H2(D1)−H2(D2). The other two similar cases with S = {1,3} and S = {2,3} can be
followed the same derivation which is shown above.

Case 3. S = {1,2,3} and S c = /0. Assume that a rate triple (R1,R2,R3) achieves
the required distortions D1, D2 and D3, we have the following inequalities.

n(R1 +R2 + R3 + ε)≥ H(U1)+H(U2)+H(U3)

≥ H(U1,U2,U3)

= I(Xn
1 ,X

n
2 ,X

n
3 ;U1,U2,U3)

= I(Xn
1 ;U1,U2,U3)+ I(Xn

2 ,X
n
3 ;U1,U2,U3|Xn

1 )

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ,X

n
3 ;U1,U2,U3,Xn

1 )− I(Xn
2 ,X

n
3 ;Xn

1 )

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ;U1,U2,U3,Xn

1 )+ I(Xn
3 ;U1,U2,U3,Xn

1 |Xn
2 )− I(Xn

2 ,X
n
3 ;Xn

1 )

≥ I(Xn
1 ; X̂n

1 )+ I(Xn
2 ; X̂n

2 )+ I(Xn
3 ; X̂n

3 )− I(Xn
3 ;Xn

2 )− I(Xn
2 ,X

n
3 ;Xn

1 )

= nh({p1, p2, p3})−n
3

∑
i=1

H2(Di). (121)
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The derivation of above inequalities can be straightforwardly extended to the gen-
eral case having an arbitrary number of sources. In summary, we conclude that

∑
i∈S

Ri ≥ h({pS ,αS c})−h({αS c})− ∑
i∈S

H2(Di). (122)

Hence, we can conclude that R(DL )⊆ Ro(DL ).

Remark 6. The outer bound Ro(DL ) for the rate-distortion region is a convex hull of
a set of rate tuples.

Remark 7. If all the distortion levels DL approach to 0, the outer bound Ro(DL )

coincides with the Slepian-Wolf theorem with multiple correlated sources [3, 78].

Remark 8. Consider the case two agents observe the same source X , i.e., L = 2. In
this case, since h(·) has a very simple form, we can obtain the following rate-distortion
inequalities by substituting pi and Di into the outer bound expression

R1(D1)≥ H2(p1 ∗α2)−H2(D1),

R2(D2)≥ H2(p2 ∗α1)−H2(D2),
2
∑

i=1
Ri(Di)≥ 1+H2(p1 ∗ p2)−

2
∑

i=1
H2(Di),

(123)

which is consistent with the results shown in L = 2 case.

4.5.3 Sum Rate versus Distortion

The distortion level D is examined with respect to the sum rate R, giving fixed values
of L and the observation error probabilities pi. The results of D versus R are shown in
Fig. 41 with different L. The distortion D is the result of

D = PB(pL ∗D⋆
L ), (124)

where pL ∗D⋆
L = {p1 ∗D⋆

1, · · · , pL ∗D⋆
L} and D⋆

L = {D⋆
i |i ∈ L } is given by

D⋆
i = argmin ∥[D1, · · · ,DL]∥2 (125)

s.t.

 ∑
i∈S

H2(Di)≥ h({pS ,αS c})−h({αS c})− ∑
i∈S

R
L ,

0 ≤ Di ≤ 0.5, i ∈ L

and PB(·) calculated the error probability based on the Poisson binomial process using
(59).
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Fig. 41. Sum rate versus distortion. The rate is equally allocated to each link. The observa-
tion error probabilities are set to 0.01.

It should be emphasized here that the sum rate R is equally allocated to each link
without considering any optimal rate allocation scheme. It can be seen from the figure
that, D becomes small, if the number of links L increased and/or the sum rate R is large.
However, D converges to a certain level (not equal to 0) even we increase R which is
very clear in the enlarged view. The certain level is given by PB(pL ) by assuming the
distortions Di asymptotically approach 0. Furthermore, this level also decreased when
the number of agents increases.

4.5.4 Brief Discussions of using test BSC

In the proof of the outer bound, there is an important step of bounding the mutual in-
formation term I(Xn

1 ;U2, · · · ,UL) using the test BSCs. In other words, the cardinality
bound on Ui is assumed to be 2. In [97], Soumya gave a proof of reducing the cardi-
nality bound of auxiliary RV Ui in multiterminal source coding problem. It is found
that the cardinality bound can be reduced as |Ui| ≤ |Xi|. Applying the result in our
specified binary Hamming case, it is reasonable to set the cardinality bound |Ui| to 2.
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Fig. 42. Simulation results verify the lower bounds on Hamming distortion using 16QAM and
identical pi.

Besides this, the further discussion is needed for whether it is optimal to use BSC to
lower bound the conditional entropy terms, such as H(Xn

1 |U2,U3). Inspired by the proof
of MGL, we use the BSC as the test channel in the derivation. However, the extension
of MGL to this general setup still needs some efforts. Hence, the outer bound on the
rate-distortion region is only an approximation.

4.5.5 Numerical Results

A series of simulations are performed to verify the Hamming distortion lower bound
that obtained by solving the following convex optimization problem

min ∥[D1, · · · ,DL]∥2 (126)

s.t.

− ∑
i∈S

H2(Di)≤ ∑
i∈S

C(γi)
ri

−h({pS ,αS c})+h({αS c}),

0 ≤ Di ≤ 0.5, i ∈ L

and mapping the minimal values to D using Poisson binomial process.
To obtain the BER performance, the practical encoding/decoding algorithm is used

as the same as in Fig. 16 and Fig. 17 (Section 3.4 of Chapter 3), where the modulation
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Fig. 43. Simulation results verify the lower bounds on Hamming distortion using BPSK and
logarithmic distributed pi.

scheme is assumed to be 16-QAM with modified set partition (MSP) mapping [98] and
BPSK, respectively.

Figure 42 shows the simulation results and their corresponding Hamming distortion
lower bounds for identical pi. As we can see from the figure that, the Hamming distor-
tion lower bounds and the simulation results have very similar tendency. However, if
L goes large, the difference between the simulation results and the theoretical bounds
also becomes significant. The reason is that the theoretical bounds are obtained by as-
suming the capacity-achieving code is used at each sensor node. To further analyze the
impact of pi variation, Fig. 43 shows the BER performance using the obtained pi from
logarithmic distribution. Their Hamming distortion lower bounds also presents as refer-
ences. Note that in these cases, the Hamming distortion bound on D is obtained using
soft combining (Appendix 2) after the minimal distortions Di of each link are available.
From the simulations results, it concludes that the impact of pi variation to the bound
analysis is not significant.

Furthermore, the superiority of performing global iteration in decoding process is
proved through the theoretical analysis. It is found that from Fig. 44, the performance
gain in AWGN channels is around 5 dB for L = 4 and 8.5 dB for L = 12, respectively.
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Fig. 44. Comparison on theoretical Hamming distortion lower bounds by assuming whether
correlation is utilized through global iteration.
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Simulation results using the proposed encoding/decoding algorithm also confirm the
gain. The Hamming distortion lower bound for the case global iteration is not per-
formed is given by

DnoGI = PB({p1 ∗H−1
2 (1− [C(γ1)]

−), · · · , pL ∗H−1
2 (1− [C(γL)]

−)}). (127)

In other words, DnoGI is the result of solving the following convex optimization prob-
lem.

DnoGI = PB(pL ∗DnoGI⋆
L ), (128)

where pL ∗DnoGI⋆
L = {p1 ∗DnoGI⋆

1 , · · · , pL ∗DnoGI⋆
L } and DnoGI⋆

L = {DnoGI⋆
i |i ∈ L } is

given by

min ∥[D1, · · · ,DL]∥2 (129)

s.t.

− ∑
i∈S

H2(Di)≤ ∑
i∈S

C(γi)
ri

−|S |,

0 ≤ Di ≤ 0.5, i ∈ L

Comparing the constraints of (126) and (129), it is obviously found that |S | ≥ h({pS ,

αS c})−h({αS c}) with equality holding if and only if pi = 0.5. Hence, the Hamming
distortion lower bound DnoGI is greater than D.

4.6 Summary

In this chapter, we examined theoretically the lower bound on the Hamming distor-
tion for the binary information sensing network modelled by the binary CEO problem,
where several independent terminals forward the erroneous versions of a common bi-
nary source to the destination over static AWGN and block Rayleigh fading channels.

We first considered a simple case that the number of terminals is 2. The binary CEO
problem was first formulated as the binary multiterminal source coding problem, which
is the core part of the binary CEO problem. The outer bound on the rate-distortion
region for the binary multiterminal source coding problem was then derived based on
the converse proof of the bound. The relationship between the binary CEO problem and
the binary multiterminal source coding problem in terms of the distortion function has
been established. According to the lossy source-channel separation theorem, the lower
bound on the Hamming distortion was formulated by minimizing the distortion function
subject to the inequalities between the derived outer bound and the channel capacities.
The problem of obtaining the lower bound on the Hamming distortion was solved in the
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framework of convex optimization, and the results of Hamming distortion lower bounds
only apply to schemes which use sequential decoding. Through a series of simulations,
it has been shown that the BER curves obtained with a practical encoding/decoding
algorithm is consistent with the result of the theoretical lower bounds on the Hamming
distortion.

We further extended discussions to the binary CEO problem having arbitrary num-
ber of terminals. An approximated outer bound was derived through the converse cod-
ing proof. The outer bound on the rate-distortion region was used to obtain the theoreti-
cal lower bound on the Hamming distortion for the general binary information sensing
network as the case of two terminals. Finally, we simply discussed the superiority of
our proposed decoding algorithm from the rate-distortion perspective.
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5 Power Allocation of Binary Information
Sensing Networks

In this chapter, a power allocation (PA) scheme is proposed to minimize the distortion
with a fixed total transmission power in the context of binary information sensing net-
work.

In sensor networks, each sensor node is equipped with a battery and the power is
usually scarce owing to the limit battery size. Hence, the power allocation and schedul-
ing in sensor networks become extremely important. In [99, 100], an optimization
framework for joint source coding, routing and resource allocation was presented in
sensor networks. The distortion and power were weighted by two vectors in the op-
timization problem to achieve the goal of balancing the tradeoff between them. The
optimization problem was solved efficiently in the dual domain. Optimal power allo-
cation for Gaussian sensor network with distortion constraints was considered in [101],
where both TDMA and non-orthogonal multiple access (NOMA) schemes are assumed
in transmission phases of sensors.

We consider the power allocation in AWGN channel for binary information sens-
ing network from rate-distortion perspective in order to achieve optimum distortion
under total power constraints. The problem is formulated in the convex optimization
framework and is solved using Karush-Kuhn-Tucker (KKT) conditions. Computer sim-
ulations are performed to show the advantage of our proposed PA scheme.

This chapter is organized as follows. Section 5.1 describes the problem, followed
by the proposed PA algorithms in Section 5.2. The numerical results are presented in
Section 5.3. We conclude this chapter in Section 5.4.

5.1 Problem Statement

In the binary sensing network which is illustrated in Fig. 45, a group of sensors is dis-
tributed in a specific area to observe a binary sensing object. There exists a leader,
which is often called cluster head, in this group to collect the position of each sensor.
The leader is in charge of calculating the observation accuracy of each sensor based on
their position and determining the power ratio of each sensor. The leader then broad-

107



Sensing

 Object

+

   Joint 

 Decoder

Fusion Center

+

+

+

+

+

+

+

Sensors

Fig. 45. System model of binary information sensing network with power allocation.

casts the power ratio to each sensor. Meanwhile, we simply suppose that the power
ratio is correctly received by each sensor.

After this initialization stage, each sensor encodes its observation xi using the con-
catenated convolutional codes. The coded sequences are then modulated by BPSK and
transmitted to the fusion center over an AWGN channel with the corresponding power
ratio. For simplicity, the channel noise at the receiver side is normalized to 1. The prob-
lem is to determine the optimal power ratio at the leader node with fixed total power ET

to achieve minimal BER.

5.2 Proposed Power Allocation Schemes

As stated in Chapter 4, the binary sensing network is modeled by the binary CEO prob-
lem, and we formulated the minimization problem of obtaining the lower bound on
Hamming distortion. Similarly, the problem of optimal power allocation is formulated
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as follows.

min
βi

PB(p1 ∗d1, · · · , pL ∗dL) (130)

s.t.

− ∑
i∈S

H2(di) ≤ ∑
i∈S

C(βiET )

ri
−h({pS ,αS c})+h({αS c}), (131)

L
∑

i=1
βi = 1, (132)

βi ≥ 0. (133)

The formulated problem is non-convex and not easy to solve. The reason is that the
analytical form of h(·) is complicated and the parameters αS c depend on the allocated
power. Moreover, the objective function PB(·) is not convex. We thus propose a brute
force search-based heuristic method to obtain the optimal power ratio β ⋆

i , which is
summarized in Algorithm 1.

Algorithm 1: Heuristic method for power allocation
Input: pi, ET

Output: β ⋆
i such that d is minimized

Initialization: ascending sort pi, d− = ∞
for β1 = 0 to 1 do

for β j = 0 to 1−∑ j−1
k=1 βk, ( j = 2, · · · ,L−1) do

βL = 1−∑L−1
k=1 βk;

if βk > βl , (∀k > l) then
Continue;

end
Obtain minimal di for each link based on the outer bound;
Caculate d using PB(p1 ∗d1, · · · , pL ∗dL);
if d < d− then

β ⋆
i = βi, i = 1, · · · ,L;

d− = d;
end

end
end

However, the computational complexity of Algorithm 1 is very high, since the num-
ber of combinations on βi is very large. Even we add a condition that βi < β j,∀i < j
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to reduce the number of combinations, the heuristic method is not tractable in practice,
particularly for large number of sensors, e.g., L = 7.

Hence, we need to formulate this problem instead of using our derived outer bound.
To simplify this problem, we use the summation of pi ∗ di, which is the mean value of
the Poisson binomial distribution as the objective function. Furthermore, we suppose
that the observations are independent of each other. As a consequence, the problem
(130) is formulated to

min
βi

L

∑
i=1

(1−2pi)di + pi (134)

s.t.

1−H2(di)≤C(βiET ), (135)
L

∑
i=1

βi = 1, (136)

βi ≥ 0. (137)

It should be emphasized here that the solution of this problem only provides a subop-
timal power ratio of the main problem, since the effectiveness of the correlation is not
taken into account. The complexity of the problem, however, is significantly reduced.
In the minimization problem (134), it is easily found that di works as a dummy variable.
Due to the fact that di is proportional to −C(βiET ), we reformulate the problem (134)
into the following maximization problem

max
βi

L

∑
i=1

(1−2pi)C(βiET ) (138)

s.t.
L

∑
i=1

βi = 1, (139)

βi ≥ 0, (140)

to avoid analytically deriving the inverse function of H−1
2 (·). Obviously, the problem

(138) is convex [102], since the capacity function C(·) is concave and the constraints
are linear. The KKT conditions of (138) are summarized in Appendix 7. From the KKT
conditions, we have the analytical solutions for optimum power ratio β ⋆

i in (138), as

β ⋆
i =


1−2pi

µ⋆ − 1
ET

, µ⋆ < (1−2pi)ET ,

0, µ⋆ ≥ (1−2pi)ET ,
(141)
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Table 9. Optimal power ratio of each sensor obtained by proposed PA scheme.

pi ET (dB) β ⋆

{0.005,0.05,0.15}
−5
0
10

{0.6745,0.3255,0}
{0.529,0.39,0.081}
{0.397,0.3517,0.2513}

{0.005,0.01,0.02,
0.1,0.3}

−5
0
10

{0.3811,0.3453,0.2736,0,0}
{0.3271,0.3137,0.2869,0.0723,0}
{0.2595,0.256,0.2487,0.1905,0.0453}

{0.002,0.008,0.01,
0.05,0.07,0.1,0.15}

−5
0
10

{0.3596,0.3174,0.3033,0.0197,0,0}
{0.2631,0.2479,0.2428,0.1414,0.0904,0.0144,0}
{0.1722,0.169,0.1679,0.146,0.135,0.1186,0.0913}

with
L

∑
i=1

max{0,
1−2pi

µ⋆
− 1

ET
}= 1, (142)

where µ is the Lagrange multiplier for the equality constraint (140). We apply the pro-
posed optimal PA scheme to binary information sensing network and make comparison
with the uniform PA method.

5.3 Numerical Results

By using (141), the optimal power ratios are obtained for some fixed ET and sets of
observation error probabilities, the results of which are showed in Table 9. Based on
these results, it is found that β ⋆

i is equal to 0 in some cases, e.g., L = 3 with ET =

−5 dB. Hence, our proposed scheme can be perceived as a scheduling method in binary
information sensor network. In this case, the leader (cluster header) sends a control
message to those sensors of which the power ratio is 0 to force them into sleeping mode.
After a constant time interval, those sensors are activated and report their positions to
the cluster header. Our proposed joint decoding algorithm that utilizes the correlation
knowledge is adopted in order to obtain the BER performance.

Figures 46–48 demonstrate the BER performance versus total SNR using our pro-
posed power allocation scheme and uniform power allocation. For L = 3 and L = 5,
the BER performance using the power ratio obtained from the heuristic method are also
presented. From these results, it exhibits that our proposed PA scheme gains around
1.5 ∼ 2 dB in terms of the total power compared to the uniform PA case for the specific
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Fig. 46. BER performance of using the proposed PA, uniform PA and heuristic method for
L = 3.

observation error probabilities. Compared to the heuristic method, the loss of our pro-
posed PA is very small, 0.5 dB for L = 3, while almost no loss for L = 5. The loss is
relatively large if the BER performance is dominated by a small number of sensors, e.g.,
the sensor with p = 0.005 in 3-node case dominates the performance. Based on these
comparisons, our proposed power allocation scheme can be seen as a good approxima-
tion of the main problem. Moreover, the benefit of our proposed power allocation is
the low complexity. In heuristic method, 39 and 106 combinations, respectively, were
searched for L = 3 and L = 5 at each SNR point. As a consequence, the proposed PA
can be easily applied in practical situations for the binary information sensing compared
to the heuristic method.

At the high SNR regime, the BER performance obtained by all the schemes con-
verges together. The reason is twofold: 1) at high SNR regime, the proposed power al-
location scheme approaches to the uniform allocation, while in heuristic method, power
is uniformly allocated to the dominated sensors; 2) the BER performance is only deter-
mined by the error probability pi when the power is large enough.
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Fig. 47. BER performance of using the proposed PA, uniform PA and heuristic method for
L = 5.
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Fig. 48. BER performance of using the proposed PA and uniform PA for L = 7.
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Fig. 49. BER performance of using the proposed PA and uniform PA for L = 9. pi follows
logarithmic distribution with ξ = 0.6.
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Fig. 50. BER performance of using proposed PA and heuristic method.
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Fig. 51. Updated LLR values through LLR updating function fc.

The observation error probability pi is set at predefined values in above analyses,
however, Fig. 49 illustrates the BER performance of the proposed power allocation
scheme when pi follows logarithmic distribution. It is found that the proposed power
allocation scheme can achieve 2 dB gain in total power compared to the uniform power
allocation.

We also consider the power allocation for the case pi are equally distributed, where
the BER performances are illustrated in Fig. 50 . The proposed convex optimization
method (138) results in same power ratio for each link since the capacity of each link is
weighted by the same value. However, the heuristic method obtains different power ra-
tio at some SNR points, for example, at −4,−3.5 and −1.5 dB, the optimal power ratio
β ⋆

i are {0.5,0.45,0.05}, {0.45,0.4,0.15} and {0.7,0.15,0.15}, respectively. However,
the difference in terms of the BER performance between the proposed power allocation
and the heuristic methods is not significant. The reason is that, as shown in Fig. 51, the
value of the updated LLR is significantly affected by the observation error probability
pi. However, the input LLR that depends on the channel SNR does not change the up-
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dated LLR much. Hence, if pi is the same, we can simply allocate equal power to each
sensor.

In general, our proposed scheme works appropriately, however, the proposed PA is
centralized, in which the cluster head needs to collect the information from the sensors.
The complexity of the problem may increase if the number of sensors is large in a group.
In the future, we need to find a solution to make the PA distributed, and/or to seek for a
good partition method to group sensors.

5.4 Summary

We proposed an optimal power allocation scheme for binary information sensing net-
work from the viewpoint of rate-distortion. For the original formulated problem, we
proposed a brute-force search-based heuristic method to get the optimal power ratio.
However, it is necessary to check a great number of combinations for the power ratio in
the heuristic method. In order to reduce the complexity, we reformulated the optimiza-
tion problem to maximize the sum of channel capacities weighted by the observation
accuracy (1−2pi). Through computer simulations, it showed that our proposed power
allocation scheme outperforms the uniform allocation method and is easy to deploy in
practice compared to the heuristic method. Even though our proposed scheme is not dis-
tributed, it still be applicable to small-scale sensor network or parallel relaying network.
In the future, we need to find a distributed power allocation to reduce the overhead when
collecting the information from each sensor node by the cluster head.
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6 Conclusion and Outlook

6.1 Conclusion

In this work, the theoretical analysis of the binary CEO problem was carried out from
the view of rate-distortion behavior. We solved the rate-distortion bound for the binary

CEO problem with two-terminal by establishing a direct outer bound and a two-step
Berger-Tung inner bound with optimal decision on the rate-distortion region. It was
found that the inner bound and the outer bound exactly match with each other. Further-
more, for the binary CEO problem with multiple terminals, we established a loose outer

bound on the rate-distortion region using the specified two-step setup. Meanwhile, the
practical encoding/decoding algorithm was proposed for the binary information sensing
network to utilize the correlation knowledge of the observations. A power allocation
scheme based on the derived loose outer bound was proposed to achieve better BER
performance under total power constraints. In summary, the significance of this work
is listed below.

– The two-terminal binary CEO problem was solved.
– The proposed joint decoding algorithm has wide applications, such as parallel relay-

ing networks.
– Proposed power allocation scheme for binary information sensing networks achieved

significant improvements in terms of BER performance in AWGN channels.

The contributions of each chapter are summarized below.
In Chapter 3, the limit on the achievable sum rate and the BEP floor of the binary

information sensing network, including the threshold SNR converted from the sum rate
requirement and the BEP floor lower bound, was investigated. The main results are as
follows.

– We proposed the encoding and decoding algorithms that exploit the correlation knowl-
edge of sensing data, and introduced the convergence control using mutual informa-
tion measurement to improve the efficiency of the joint decoding algorithm. The
proposed joint decoding is scalable and is with linear complexity in terms of the
number of sensors. Furthermore, the proposed joint decoding algorithm is also appli-
cable to the relaying system using lossy forwarding and the automatic repeat request
(ARQ) system [103].
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– The achievable sum rate was derived using the Slepian-Wolf theorem, and was con-
verted to corresponding SNR limit based on the source-channel separation theorem
for transmitting correlated data over orthogonal AWGN channels. It was found that
there exists an around 2 dB gap between the SNR limits and the simulation results.
The reason is that the SNR limit was obtained based on using the capacity-achieving
code.

– The BEP floor was analytically calculated based on Poisson binomial process and
its lower bound was obtained based on the binary rate-distortion function and the
conditional independent property.

– Finally, a 3D EXIT chart analysis was performed to confirm the simulation results.

Chapter 4 derived a theoretical lower bound on the Hamming distortion from rate-
distortion perspective for the binary information sensing network withJSC setup, in
which a single binary source is observed by multiple sensors and transmitted the coded
data to the fusion center over orthogonal AWGN channels. The analysis, however,
limited the decoding schemes to which separate the stages of JSC decoding and the
final decision on the common source.

– We explored the specified case where the number of terminals L = 2 in details. The
binary information sensing network was first modeled as a binary CEO problem. For
solving the rate-distortion region for the two-terminal binary CEO problem, a more
general problem, which is a binary multiterminal source coding, was considered. We
then derived an outer bound on the rate-distortion region for the binary multiterminal
source coding through the converse coding proof. The derived outer bound has a
very simple form and can be applied to practical wireless sensor/relaying network to
analyze the system performance.

Moreover, comparisons between the outer bound and the classical results, includ-
ing Slepian-Wolf rate region, Wyner-Ziv bound and Berger-Tung inner bound were
made by drawing the rate-distortion region. Also, we derived a direct outer bound on
the rate-distortion region for the binary CEO problem. Through the comparisons, our
two-step outer bound 13 is not tight in general. However, if the observation accuracy
is low and/or the distortions are small, the two-step outer bound has negligible gaps
to the corresponding Berger-Tung inner bounds.

13The two-step outer bound is the established outer bound for the binary multiterminal source coding problem,
and then map to the binary CEO problem based on decision rules.

118



After that, we established the relationship between the binary CEO problem and
the binary multiterminal source coding using a distortion function for several spe-
cific decision rules. The theoretical lower bound on the Hamming distortion was
then formulated in the framework of convex optimization. Finally, computer simula-
tions using our proposed encoding/decoding algorithm were performed to verify the
theoretical lower bound on the Hamming distortion.

– We further established an outer bound on the rate-distortion region through the con-
verse coding proof for the binary CEO problem with arbitrary number of terminals.
The derived outer bound, however, is only an approximation since it is lack of rigor-
ous proof of using test channel to bound the mutual information. The lower bound
on the Hamming distortion using the approximated outer bound still acted as a use-
ful reference of the performance obtained using the encoding/decoding algorithms
in the binary information sensing network. Furthermore, the superiority of our pro-
posed joint decoding algorithm was investigated analytically with the comparison to
the independent decoding scheme.

In Chapter 5, an optimal power allocation scheme was proposed to minimize the
Hamming distortion subject to a fixed total power in the context of a cluster binary
information sensing network.

– We formulated the power-distortion optimization problem based on the derived two-
step outer bound in Chapter 4 and the source-channel separation theorem. A heuristic
method was proposed to solve the formulated optimization problem. However, the
complexity of the heuristic method is very high.

– To reduce the complexity, we reformulated the optimization problem by relaxing sev-
eral conditions, such as, correlation was not taken into account. After that, to avoid
the inverse of the binary entropy function, we modified the optimization problem us-
ing the property that distortion is proportional to the negative channel capacity. An
analytical solution was subsequently obtained from the KKT conditions of the prob-
lem of maximizing weighted channel capacities.

– From the computer simulations, the proposed power allocation scheme achieved
1.5 ∼ 2 dB gains compared to the uniform power allocation case. In addition, the
difference between the proposed power allocation scheme and the heuristic method
was not significant.
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6.2 Future Studies

In this section, we give several directions of extending our work.

Directly derive the rate-distortion bound for the binary CEO problem

As an important future study, the outer bound on the rate-distortion region for the binary
CEO problem with multiple terminals should be directly analyzed and compare with the
derived two-step outer bound with optimal decision, as the two-terminal binary CEO
problem case. Also, the Berger-Tung inner bound should be extended to the case having
multiple terminals. After that, comparisons between the Berger-Tung inner bound and
the direct outer bound can be made to show the tightness of the bounds.

Rate-distortion Analysis with energy harvesting sensors

The energy harvesting sensor network has attracted a lot of attention recently in order
to improve the lifetime of the sensor network [46, 104–109]. Based on the derived
rate-distortion bound for the binary CEO problem, it is worth to study the design of the
power allocation schemes and scheduling protocols for the binary information sensing
network with energy harvesting.

Outage analysis of the parallel relaying network

The outage analysis of one-way relaying network using LF protocol was intensively
studied in [65, 89, 110, 111], however, the problem becomes complicated when the
number of relays increased. As an extension of our work, theoretical analysis of com-
bining the rate-distortion analysis and the impact of fading variation is a good direction,
including outage probability derivation and the design of power optimization scheme.

Power allocation for sensor network

In this work, we proposed a power allocation scheme for the binary information sens-
ing network in AWGN channel. However, the power allocation works in centralized
manner, where the channel state information and observation accuracy are needed in
the cluster head. In the future, it is important to design distributed power allocation
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scheme to avoid the signaling overhead of collecting information from each sensor by
the cluster head.

Decision rule

So far, we considered the majority voting and soft combining to generate the hidden
source information from the observations. Through simulations, the soft combining
outperformed the majority voting, however, it has a clear gap to the theoretical lower
bound. In the future, we need to find some other decision rules to improve the perfor-
mance.

Source compression

In this work, source compression was not carried out in the the practical encoding de-
sign. However, it caused rate loss for the cases: (i) the source entropy is less than 1,
and (ii) the channel is good. Combining source compression, using such as Huffman
coding, and channel coding is left as a future study.

Nonorthogonal multiple access channel (NOMA)

We mainly focused on the orthogonal MAC, and thus source coding and channel cod-
ing can be separately analyzed according to the separability on source-channel coding.
However, if the channels are nonorthogonal, the proposed method of analyzing the
rate-distortion bound is suboptimal. As a future study, the analysis of rate-distortion
behavior for binary information sensing should be extended to NOMA channels, since
the throughput of the network is significantly improved by NOMA.
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Appendix 1 Conditional Independence of
Observations

The CI property is used in deriving the rate-distortion function as well as the theoretical
BEP floor lower bound. Therefore, we give an intuitive verification of the CI for the
correlated binary discrete memoryless sources. Assume that X is a binary source gen-
erated from Bern(p), and Xi is the noisy observations of X through independent BSCs.
According to the basic probability theory, we have the following Table 10 to show how
to calculate the joint probability pXX1X2(x,x1,x2).

Table 10. Joint probability of correlated binary sources.

x x1 x2 pX (x) pXX1X2(x,x1,x2)

0 0 0 p pp̄1 p̄2

0 0 1 p pp̄1 p2

0 1 0 p pp1 p̄2

0 1 1 p pp1 p2

1 0 0 p̄ p̄p1 p2

1 0 1 p̄ p̄p1 p̄2

1 1 0 p̄ p̄ p̄1 p2

1 1 1 p̄ p̄ p̄1 p̄2

In the table, the notation p̄ = 1 − p. It is easily found that pXX1X2(x,x1,x2) =

pX (x)pX1|X (x1|x)pX2|X (x2|x). And hence, the observations are conditional independent
by given the underlying source. The calculation can be straightforward extended to the
case of pXX1···XL(x,x1, · · · ,xL).
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Appendix 2 BEP Floor of Soft Combining Decision

For the case pi are various over links, the BEP floor obtained by Poisson-binomial pro-
cess is not accurate. Thus, the BEP floor needs to be analyzed by taking soft combining
into account. In soft combining decision, the LLR sequence is weighted by pi using
function fc. It is equivalent to a weighted majority voting, for which the hard decision
of x̂ follows

x̂ =

1, wvT > 0

0, otherwise
(143)

where w = [log 1−p1
p1

, · · · , log 1−pL
pL

] and v = sign([lp
1 , · · · , l

p
L]), with sign(·) taking the

sign of its argument, i.e., 1 for positive numbers, −1 for negative numbers. Similar to
the Poisson binomial process by assuming that 0 is transmitted, the BEP floor is given
by

pe = Pr{ ∑
k∈V+

wk > ∑
j∈V−

w j}+
1
2

Pr{ ∑
k∈V+

wk = ∑
j∈V−

w j}, (144)

where V+ = {i|vi = +1} and V− = {i|vi = −1}. Note that the difference between the
BEP floor using Poisson binomial process and (144) is that, the error is determined by
the number of 1’s and 0’s in Poisson binomial, and the weights of positive and negative
signs in soft combining, respectively. To compute (144), it needs to carry out the search
of the possible combinations of wi over the power set of {1, · · · ,L}.
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Appendix 3 Calculation of the Inner Bound

The Berger-Tung inner bound on the rate-distortion region for the binary case with
Hamming distortion is calculated based on the test BSCs. By using the Markov property
and the chain rules of entropy and mutual information, R i(D1,D2) shown in (97) is
obtained in the following way

R1 ≥ I(X1;V1|V2)

= H(V1|V2)−H(V1|X1,V2) (145)

= H(V1|V2)−H(V1|X1) (146)

= H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D1)

R2 ≥ H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D2) (147)

R1 +R2 ≥ I(X1,X2;V1,V2)

= H(V1,V2)−H(V1,V2|X1,X2)

= H(V1)+H(V1|V2)−H(V1|X1,X2)−H(V2|X1,X2,V1) (148)

= 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H(V1|X1)−H(V2|X1,X2) (149)

= 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H(V1|X1)−H(V2|X2) (150)

= 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D1)−H2(D2)

where the steps are justified, with:
(145) the chain rule for mutual information,
(146) given X1, V1 and V2 are conditionally independent,
(147) symmetric to the calculation of R1,
(148) the chain rule for entropy,
(149) given X1, X2 and V1 are conditionally independent, also, V1 and V2 are condition-
ally independent given X1 and X2,
(150) given X2, X1 and V2 are conditionally independent.

It should be emphasized here that the timing sharing variable Q is not involved in
the above calculation, while the equations are based on [22]. In order to visually present
the Berger-Tung inner bound, the rate-distortion region is divided into three parts, as
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(a) for some 0 ≤ d̃ ≤ D2{
R1 ≥ H2(D1 ∗ p1 ∗ p2 ∗ d̃)−H2(D1),

R2 ≥ 1−H2(d̃),
(151)

(b) for some 0 ≤ d̃ ≤ D1{
R2 ≥ H2(D2 ∗ p1 ∗ p2 ∗ d̃)−H2(D2)

R1 ≥ 1−H2(d̃);
(152)

(c)
R1 +R2 ≥ 1+H2(D1 ∗ p1 ∗ p2 ∗D2)−H2(D1)−H2(D2), (153)

where d̃ is a dummy variable. We calculate the rates R1, R2 as well as R1 +R2 with
given D1 and D2, respectively, and then plot the rate-distortion region by combining the
three parts shown above, which is similar to the time sharing concept.
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Appendix 4 Direct Outer Bound for the Two-node
Binary CEO Problem

Let

RL(D) =
{
(R1, · · · ,RL,D) : there exists φ1, · · · ,φL,ψ) such that

1
n

log |φi| ≤ Ri (154)

1
n

Ed(Xn, X̂n) =
1
n

n

∑
t=1

Ed(X(t), X̂(t))≤ D
}
. (155)

be the rate-distortion region of the binary CEO problem with d(,) being the Hamming
distortion measure and |φi|= 2nRi denoting the range of cardinality of φi. Our aim is to
derive a good outer bound on RL(D). Assume that (R1,R2,D) ∈ RL(D) and define

Ui = φi(Xn
i )

X̃t = [X(1), · · · ,X(t −1),X(t +1), · · · ,X(n)]

εt = Pr{xi ̸= x̂i}.

(156)

Then we can obtain the inequality as

1
n

H(Xn|X̂n)≤ H2(D). (157)

A proof of (157) is shown as follows.

1
n

H(Xn|X̂n) =
1
n

n

∑
t=1

H(X(t)|X t−1X̂n) (158)

≤ 1
n

n

∑
t=1

H(X(t)|X̂(t)) (159)

≤ 1
n

n

∑
t=1

(εt(log(|X |−1))+H2(εt)) (160)

=
1
n

n

∑
t=1

H2(εt) (161)

≤ H2(
1
n

n

∑
t=1

εt) (162)

≤ H2(D) (163)
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with the steps being justified by
(158) chain rule of entropy,
(159) conditioning reduces entropy,
(160) Fano’s inequality,
(162) Jensen’s inequality and H2 is concave,
(163) definition.

Based on the assumption (R1,R2,D)∈RL(D) and several steps of basic calculation,
we have 

Ri ≥ 1
n

n
∑

t=1
I(Ui;Xi(t)|UL \i, X̃t)

Rsum ≥ 1
n

n
∑

t=1
I(UL ;XL (t)|X̃t)

H2(D) ≥ 1
n H(X |UL )

, (164)

and the outer bound on RL(D) as

Ro
L(D) =

{
(RL ) :Ri ≥ I(Ui;Xi|UL \i)

Rsum ≥ I(UL ;XL )

H2(D)≥ H(X |UL )

for some Ui with independent Markov chains

Ui → Xi → X → XL \i →UL \i

X → (X1, · · · ,XL)→ (U1, · · · ,UL)

|Ui| ≤ |Xi|+7
}
. (165)

The proof of RL(D) ⊆ Ro
L(D) is based on the lossless CEO problem originated by

Gel’fand and Pinsker [10] and is omitted here.
The outer bound Ro

L(D) needs to be computed using a good parametrization method.
Similar to the quadratic Gaussian CEO problem, we introduce following terms

ηi = I(Xi;Ui|X) for all i ∈ L (166)

to parameterize the outer bound. Then Ro
L(D) is represented byRi ≥ ηi +H(X |UL \i)−H2(D)

Rsum ≥ 1−H2(D)+∑L
i=1 ηi

(167)

The term ηi can be easily obtained by MGL. Then the questions remain for future study
are a series of minimization problems, denoted as min H(X |US ) with S ⊆ L . So far,
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in this dissertation, we use test BSC to obtain the minimal value on H(X |U1,U2) for the
two-node case. It is found that the results of using test BSC consistent with that of using
a brute-force search over a fine mesh of conditional distributions pUi|Xi(ui|xi) [114].

139



140



Appendix 5 Monotonicity of Distortion D

Majority decision. D = min{θ1,θ2}. Since θi, i = 1,2 is the result of the binary convo-
lution of pi and Di, θi is obviously increasing as Di is increasing, when pi is fixed.

Optimal decision. D = H−1
2 [H2(θ1)+H2(θ2)−H2(θ1 ∗θ2)].

In this case, D is a composite function of H−1
2 (·) and H2(θ1)+H2(θ2)−H2(θ1 ∗

θ2). Since the function H−1
2 (·) is monotonically increasing, we only need to prove that

g(θ1,θ2) = H2(θ1)+H2(θ2)−H2(θ1 ∗θ2) is also an increasing function of θ1 and θ2.
Assume θ2 is fixed. The partial derivative ∂g(θ1,θ2)

∂θ1
on θ1 is

∂g(θ1,θ2)

∂θ1
= log

1−θ1

θ1
− (1−2θ2) · log

1−θ1 ∗θ2

θ1 ∗θ2
. (168)

In order to prove that (168) is nonnegative, we should prove

1−θ1

θ1
≥ (

1−θ1 ∗θ2

θ1 ∗θ2
)(1−2θ2). (169)

The above always holds according to the monotonically increasing property of function
log(·). As 0 ≤ θi ≤ 1

2 , i = 1,2 and 0 ≤ θ1 ∗θ2 ≤ 1
2 is assumed, the following inequalities

are obtained after several steps of elementary calculation

1−θ1

θ1
≥ (

1−θ1

θ1
)(1−2θ2) ≥ (

1−θ1 ∗θ2

θ1 ∗θ2
)(1−2θ2). (170)

Therefore, it is found that (168) can not take negative values according to (170). Sym-
metrically, we can assume θ1 is fixed, and show that the partial derivative ∂g(θ1,θ2)

∂θ2
on

θ2 is also nonnegative. Hence, g(θ1,θ2) is increasing in the dimension of θ1 and θ2,
respectively. Based on the above two cases, it is concluded that the distortion D is
increasing with respect to D1 and D2.
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Appendix 6 Outage Probability Derivation

Following the method of deriving the outage probability for one-way relaying network
[110], the outage probability pout of binary information sensing over Rayleigh fading
channels is obtained. Based on the Slepian-Wolf theorem, if the rate pair (R1,R2) falls
into parts 1 and 2, as shown in Fig. 52, both the correlated sources can be recovers in
arbitrarily small error probability. Furthermore, if (R1,R2) is in part 3 or 4, source 2 or
1 can be losslessly recovered. Define Pi, i = 1,2,3,4 as the probabilities that (R1,R2)

falls into part i, respectively, then based on the definition of the outage event, pout is
expresses as

pout =


1− (P1 +P2 +P4), p1 < p2

1− (P1 +P2 +P3), p1 > p2

1− (P1 +P2 +P3 +P4), p1 = p2

. (171)

Note that outage happens if and only if the final distortion D is larger than min{p1, p2},
and thus, the sensor with smaller pi or both sensors if p1 = p2 dominate the performance.
In the calculation of outage probability, P3 and/or P4 should be subtracted accordingly.
Now, we need to compute P1, P2, P3 and P4.

Assume the instantaneous SNR γi, i = 1,2 follows Rayleigh fading, as

pΓi(γi) =
1
Γi

exp(− γi

Γi
). (172)

Fig. 52. Slepian-Wolf rate region for analyzing outage probability.
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Based on the Slepain-Wolf theorem and separability of source and channel, we have

P1 = Pr{H2(ρ)< R1 < 1,R1 +R2 > 1+H2(ρ)}

= Pr{2r1H2(ρ)−1 < γ1 < 2r1 −1,2[r2(1+H2(ρ))−
r2
r1

log(1+γ1)]−1 < γ2}

=
∫ 2r1−1

2r1H2(ρ)−1

∫ +∞

2
[r2(1+H2(ρ))−

r2
r1

log(1+γ1)]−1
pΓ1(γ1)pΓ2(γ2)dγ1dγ2

=
1

Γ1

∫ 2r1−1

2r1H2(ρ)−1
exp(− γ1

Γ1
)

[
exp(− γ1

Γ1
)

]+∞

2
[r2(1+H2(ρ))−

r2
r1

log(1+γ1)]−1
dγ1

=
1

Γ1

∫ 2r1−1

2r1H2(ρ)−1
exp(

1
Γ2

− γ1

Γ1
− 2r2(1+H2(ρ))

Γ2(1+ γ1)
r2
r1

)dγ1, (173)

P2 = Pr{R1 > 1,R2 > H2(ρ)}

= Pr{2r1 −1 < γ1 < ∞,2r2H2(ρ)−1 < γ2 < ∞}

=
∫ +∞

2r1−1

∫ +∞

2r2H2(ρ)−1
pΓ1(γ1)pΓ2(γ2)dγ1dγ2

=
∫ +∞

2r1−1
pΓ1(γ1)dγ1

∫ +∞

2r2H2(ρ)−1
pΓ2(γ2)dγ2

= exp[−(
2r1 −1

Γ1
+

2r2H2(ρ)−1
Γ2

)], (174)

P3 = Pr{0 < R1 < H2(ρ),R2 > 1}

= Pr{0 < γ1 < 2r1H2(ρ)−1,2r2 −1 < γ2 < ∞}

=
∫ 2r1H2(ρ)−1

0

∫ +∞

2r2−1
pΓ1(γ1)pΓ2(γ2)dγ1dγ2

=
∫ 2r1H2(ρ)−1

0
pΓ1(γ1)dγ1

∫ +∞

2r2−1
pΓ2(γ2)dγ2

= [1− exp(−2r1H2(ρ)−1
Γ1

)]exp(−2r2 −1
Γ2

). (175)

Similarly,

P4 = [1− exp(−2r2H2(ρ)−1
Γ2

)]exp(−2r1 −1
Γ1

). (176)

The outage is then obtained by (171) depending on the values of p1 and p2. Note that
the derivation is using the capacity function with two-dimensional signal. The outage
probability can be similarly calculated for the one-dimensional signal.
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Appendix 7 The KKT Conditions of (138)

The KKT conditions for the optimization problem (138) are summarized as follows.

β ⋆
i ≥ 0, (177)

∑
i

β ⋆
i = 1, (178)

λ ⋆
i ≥ 0, (179)

λ ⋆
i β ⋆

i = 0, (180)

− (1−2pi)ET

1+β ⋆
i ET

−λ ⋆
i +µ⋆ = 0, (181)

where i = 1, · · · ,L, and λi, µ are the introduced Lagrange multipliers for the constraints.
It is found that this problem is very similar to the water-filling algorithm [118] in wire-
less communications, and we can easily get the analytical solutions for β ⋆

i from the
KKT conditions.
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