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Abstract16

We give a polynomial-time approximation scheme for the unique unit-square
coverage problem: given a set of points and a set of axis-parallel unit squares,
both in the plane, we wish to find a subset of squares that maximizes the
number of points contained in exactly one square in the subset. Erlebach and
van Leeuwen (2008) introduced this problem as the geometric version of the
unique coverage problem, and the best approximation ratio by van Leeuwen
(2009) before our work was 2. Our scheme can be generalized to the budgeted
unique unit-square coverage problem, in which each point has a profit, each
square has a cost, and we wish to maximize the total profit of the uniquely
covered points under the condition that the total cost is at most a given bound.

1. Introduction17

Let P be a set of points and D a set of axis-parallel unit squares,1 both in18

the plane R2. For a subset C ⊆ D of unit squares, we say that a point p ∈ P19

is uniquely covered by C if there is exactly one square in C containing p. In the20

unique unit-square coverage problem, we are given a pair 〈P,D〉 of a set P of21
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(Takeaki Uno), uno@mi.s.osakafu-u.ac.jp (Yushi Uno)

1Throughout this paper, a unit square is of side length one and is closed, thus contains the
boundary.
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Figure 1: (a) An instance 〈P,D〉 of the unique unit-square coverage problem and (b) an
optimal solution to 〈P,D〉, where each square in the optimal solution is hatched and each
uniquely covered point is drawn as a white circle.

points and a set D of axis-parallel unit squares as input, and we are asked to1

find a subset C ⊆ D that maximizes the number of points uniquely covered by2

C. An instance is shown in Figure 1(a), and an optimal solution to this instance3

is illustrated in Figure 1(b).4

In a more general setting, in addition to an instance 〈P,D〉 of the unique5

unit-square coverage problem, we are given a non-negative real number B, called6

the budget, a non-negative real number profit(p) for each point p ∈ P, called the7

profit of p, and a non-negative real number cost(S) for each square S ∈ D,8

called the cost of S. In the budgeted unique unit-square coverage problem, we9

are asked to find a subset C ⊆ D of total cost at most B such that the total10

profit of points in P uniquely covered by C is maximized. The unique unit-11

square coverage problem is a specialization of the budgeted unique unit-square12

coverage problem. To see this, set profit(p) = 1 for all p ∈ P, cost(S) = 0 for all13

S ∈ D, and B = 0.14

1.1. Past work and motivation15

Demaine et al. [7] formulated the non-geometric unique coverage problem in16

more general setting. They gave a polynomial-time O(log n)-approximation al-17

gorithm2 for the non-geometric unique coverage problem, where n is the number18

of elements (in the geometric version, n corresponds to the number of points).19

Guruswami and Trevisan [12] studied the same problem and its generaliza-20

tion, which they called the 1-in-k SAT. The unique coverage problem appears21

in several situations. The previous papers [7, 12] provide a connection with22

unlimited-supply single-minded envy-free pricing and the maximum cut prob-23

lem. For details, see their papers.24

The parameterized complexity of the unique coverage problem has also been25

studied by Misra et al. [19].26

2For notational convenience, throughout the paper, we say that an algorithm for a max-
imization problem is α-approximation if it returns a solution with the objective value APX
such that OPT ≤ αAPX, where OPT is the optimal objective value, and hence α ≥ 1.
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Motivated by applications from wireless networks, Erlebach and van Leeuwen1

[9] studied the geometric versions of the unique coverage problem especially on2

unit disks. In the context of wireless networks, each point corresponds to a3

customer location, and the center of each disk corresponds to a place where4

the provider can build a base station. If several base stations cover a certain5

customer location, then the resulting interference might cause this customer to6

receive no service at all. Ideally, each customer should be serviced by exactly one7

base station. This situation corresponds to the unique unit-disk coverage prob-8

lem. They showed that the problem on unit disks is strongly NP-hard, and gave9

a polynomial-time 18-approximation algorithm; for the budgeted unique unit-10

disk coverage problem, they provided a polynomial-time (18+ε)-approximation11

algorithm for any fixed constant ε > 0 [9].12

The unique unit-square coverage problem is an `∞ variant (or an `1 vari-13

ant) of the unique unit-disk coverage problem. Erlebach and van Leeuwen14

[9] introduced the budgeted unique unit-square coverage problem, and gave a15

polynomial-time (4 + ε)-approximation algorithm for any fixed constant ε > 0.16

Later, van Leeuwen [21] gave a proof that the problem on unit squares is also17

strongly NP-hard, and improved the approximation ratio to 2 + ε.18

Optimization problems on axis-parallel unit squares and unit disks have been19

thoroughly studied since Huson and Sen [15]. A seminal paper by Hochbaum20

and Maass [13] established the shifting strategy, which has been used to give21

a polynomial-time approximation scheme (PTAS) for a lot of problems on unit22

squares and unit disks (see [14] for example). However, some problems such23

as coloring [6] and dispersion [11] (see also [8]) are APX-hard already for unit24

disks. The unique coverage problem is one among the problems for which we25

know the NP-hardness, but neither APX-hardness nor a PTAS was known. The26

existence of a PTAS for unit squares has been asked by van Leeuwen [21].27

In a sister paper, we exhibit a polynomial-time approximation algorithm for28

the unique unit-disk coverage problem with approximation ratio 2 + 4/
√
3 + ε29

(< 4.3095 + ε), where ε > 0 is any fixed constant [16].30

After the conference version [17] of this paper was published, Chan and Hu31

[4] gave another PTAS for the unique unit-square coverage problem, which is,32

as they claim, “simpler to describe” than ours.33

1.2. Contribution of the paper34

In this paper, we give the first PTAS for the unique unit-square coverage35

problem, and hence we improve the approximation ratio to 1 + ε for any fixed36

constant ε > 0. The algorithm is generalized to give a PTAS for the budgeted37

unique unit-square coverage problem, too.38

We employ the well-known shifting strategy, developed by Baker [1] and39

applied to the geometric problems by Hochbaum and Maass [13]. Namely, we40

partition the whole plane into “ribbons” of height one, and delete the points in41

every 1+ d1/εe ribbons. Then, the instance is divided into several subinstances42

in which all points lie in a rectangle of height d1/εe. We compute optimal43

solutions to such subinstances, and take their union. The best among all choices44
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of possible deletions will be a (1+ ε)-approximate solution. On the other hand,1

van Leeuwen [21] was only able to solve a subinstance in a rectangle of height2

one, and thus only gave a 2-approximation since he removed the points in every3

two ribbons. A similar approach was used to give a PTAS for the weighted unit-4

square cover problem [10], but the adaptation to the unique coverage problem5

is by far more involved, as seen in this paper.6

By the strong NP-hardness, we can conclude that there is no fully7

polynomial-time approximation scheme unless P = NP [20]; in this sense, a8

PTAS is the best approximation algorithm for the problem.9

An extended abstract of this paper has been presented at the 13th Scandi-10

navian Symposium and Workshops on Algorithm Theory (SWAT 2012) [17].11

2. Main result12

The following is the main result of the paper.13

Theorem 2.1. For any fixed constant ε > 0, there is a polynomial-time (1+ε)-14

approximation algorithm for the unique unit-square coverage problem.15

We are given an instance 〈P,D〉. Our algorithm consists of two parts. In the16

first part, we partition the plane into horizontal ribbons of height one, and show17

in Section 2.2 that if there is a polynomial-time exact algorithm for the problem18

restricted to a constant number of ribbons, then the problem on 〈P,D〉 admits a19

PTAS. As the second part, Section 3 will be devoted to such a polynomial-time20

exact algorithm.21

2.1. Preliminaries22

A rectangle is axis-parallel if its boundary consists of horizontal and vertical23

line segments. Let RW be an (unbounded) axis-parallel rectangle of width W24

and height ∞ which properly contains all points in P and all unit squares in D.25

We fix the origin of the coordinate system on the left vertical boundary of RW .26

For a square S ∈ D, we define the (x, y)-coordinates of S as the coordinates27

of the top right corner of S; we denote by x(S) the x-coordinate of S, and by28

y(S) the y-coordinate of S. We can assume without loss of generality that a29

given set of squares is in general position, which means that, for the purposes30

of this paper, no horizontal (or vertical) side of a square is on the same line as31

the horizontal (resp., vertical) side of another square; otherwise, we can scale32

and translate the squares in polynomial time so that this condition is satisfied33

[21].34

We partition the rectangle RW into ribbons Ri = [0,W ] × [i, i + 1), i ∈ Z,35

that is, each ribbon is a rectangle of width W and height one. We may assume36

without loss of generality that no point in P and no horizontal side of a square in37

D is on the same line as the horizontal boundary of any ribbon [21]. Therefore,38

every unit square of side length one intersects exactly two (consecutive) ribbons.39

We may assume that each ribbon in RW contains at least one point in P and40

intersects at least one square in D; otherwise, we can simply ignore such ribbons.41
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1

Figure 2: The set Rj
W of ribbons for each j ∈ {0, . . . , k} when k = 4.

We thus deal with only a polynomial number of ribbons. Let R1, R2, . . . , Rt be1

the ribbons in RW ordered from bottom to top.2

For a set G of ribbons, we denote by P∩G the set of all points in P contained3

in the ribbons in G. For a point set P and a square set C ⊆ D, we denote by4

profit(P, C) the number of points in P that are uniquely covered by C.5

2.2. Restricting the problem to a constant number of ribbons6

As the first part of our algorithm, we give the following lemma, by applying7

the well-known shifting strategy [9, 13].8

Lemma 2.2. Let k = d1/εe be a fixed constant, and suppose that we can obtain9

an optimal solution to 〈P ∩G,D〉 in polynomial time for every set G consisting10

of at most k ribbons. Then, we can obtain a (1 + ε)-approximate solution to11

〈P,D〉 in polynomial time.12

Proof. For an index j ∈ {0, . . . , k}, let Rj
W be the set of ribbons obtained13

from RW by deleting the ribbons Ri, 1 ≤ i ≤ t, if and only if i ≡ j mod k + 1,14

as illustrated in Figure 2. We regard the remaining (at most) k consecutive15

ribbons in Rj
W as forming one group. Then, those groups have pairwise distance16

more than one, and hence no square (with side length one) can cover points in17

two distinct groups. Therefore, we can independently solve the problem on18

〈P ∩ G,D〉, where G is a group in Rj
W . (Indeed, it suffices to consider the19

squares in D which intersect the group G.) Combining the optimal solutions for20

all groups in Rj
W , we obtain an optimal solution Cj ⊆ D to 〈P ∩ Rj

W ,D〉. As21

our approximate solution CA ⊆ D to 〈P,D〉, we choose the best one from Cj ,22

0 ≤ j ≤ k, and hence we have23

profit(P, CA) ≥ max
0≤j≤k

profit(P ∩Rj
W , Cj). (1)

Clearly, we can obtain the approximate solution CA in polynomial time if the24

problem on 〈P ∩G,D〉 for each group G can be optimally solved in polynomial25

time.26

We now show that the above algorithm is a (1 + ε)-approximation to the27

original instance 〈P,D〉. Consider an arbitrary optimal solution C∗ ⊆ D to28

〈P,D〉. The shifting strategy [13] with respect to the index j implies that there29

exists an index j∗ ∈ {0, 1, . . . , k} such that30

k

k + 1
profit(P, C∗) ≤ profit(P ∩Rj∗

W , C∗).
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Remember that Cj∗ is an optimal solution to 〈P ∩Rj∗

W ,D〉. Therefore, we have1

profit(P ∩Rj∗

W , C∗) ≤ profit(P ∩Rj∗

W , Cj∗). Since k = d1/εe, we thus have2

profit(P, C∗) ≤
(
1 +

1

k

)
· profit(P ∩Rj∗

W , C∗) ≤ (1 + ε) · profit(P ∩Rj∗

W , Cj∗).

By Eq. (1), we thus have profit(P, C∗) ≤ (1 + ε)profit(P, CA), as required. �3

3. Algorithm for a constant number of ribbons4

Together with Lemma 2.2, the following lemma completes the proof of The-5

orem 2.1.6

Lemma 3.1. The unique unit-square coverage problem on 〈P ∩ G,D〉 can be7

optimally solved in polynomial time for a set G consisting of at most k ribbons,8

where k is a constant.9

The proof of Lemma 3.1 is constructive, namely, we give such an algorithm.10

In this section, we introduce Lemmas 3.3 and 3.5, which are key lemmas of this11

paper, and give the whole algorithm based on them; Section 4 gives the proofs of12

the two key lemmas. The proof of Lemma 3.1 will be based on the key lemmas.13

3.1. Basic idea of our algorithm14

Our algorithm employs a dynamic programming approach based on the line-15

sweep paradigm. Namely, we look at points and squares from left to right, and16

extend the uniquely covered region sequentially. However, adding one square S17

at the rightmost position can influence a lot of squares that were already chosen,18

and can change the situation drastically (we say that S influences a square S′ if19

the region uniquely covered by S′ changes after the addition of S). We therefore20

need to keep track of the squares that are possibly influenced by a newly added21

square. Unless the number of those squares is bounded by some constant (or22

the logarithm of the input size), this approach cannot lead to a polynomial-time23

algorithm. Unfortunately, new squares may influence arbitrarily many (i.e., a24

super-constant or super-logarithmic number of) squares.25

Instead of adding a square at the rightmost position, we add a square S such26

that the number of squares that were already chosen and influenced by S can be27

bounded by a constant. Lemmas 3.3 and 3.5 state that we can do this for any28

set of squares, as long as a trivial condition for the square set to be an optimal29

solution is satisfied. Furthermore, such a square can be found in polynomial30

time.31

3.2. Basic definitions32

We may assume without loss of generality that the set G consists of con-33

secutive ribbons, forming a group; otherwise we can simply solve the problem34

for each group, because those groups have pairwise distance more than one.35

Suppose that G consists of k consecutive ribbons Rj+1, Rj+2, . . . , Rj+k in RW ,36

6



Ri−1

Ri

Figure 3: A set C of squares in Di, together with A1(C) (gray), the upper envelope (red) and
the lower envelope (blue). The dotted lines show the lower boundaries of Ri−1, Ri and Ri+1.

ordered from bottom to top, for some integer j. If a square can cover points in1

P ∩ G, then it is totally included in ribbons Rj , Rj+1, . . . , Rj+k+1. For nota-2

tional convenience, in the remainder of this section, we assume j = 0 without3

loss of generality. Note that the two ribbons R0 and Rk+1 are not in G.4

Since no horizontal side of a square is on the same line as the horizontal5

boundary of any ribbon, if a square in D intersects G, then it intersects the lower6

boundary of exactly one ribbon Ri, i ∈ {1, . . . , k+1}. For each i ∈ {1, . . . , k+1},7

we denote by Di ⊆ D the subset of all squares in D intersecting the lower8

boundary of Ri. Note that the square sets D1,D2, . . . ,Dk+1 form a partition of9

the squares intersecting G. No square in Di intersects any square in Dj with10

j ≤ i−2 or j ≥ i+2. Furthermore, if a square Si in Di intersects a square Si+111

in Di+1 (or a square Si−1 in Di−1), then the intersection Si ∩ Si+1 must be in12

Ri (resp., Si−1 ∩ Si must be in Ri−1).13

For a square set C ⊆ D, let A0(C), A1(C), A2(C) and A≥3(C) be the areas14

covered by no square, exactly one square, exactly two squares, and three or15

more squares in C, respectively. Then, each point contained in the area A1(C)16

is uniquely covered by C.17

3.3. Properties on square subsets of Di18

In this subsection, we deal with squares only in a set C ⊆ Di and the region19

uniquely covered by them. Of course, squares in Di−1 ∪ Di+1 may influence20

squares in C; this difficulty will be discussed in Section 3.5.21

3.3.1. Upper and lower envelopes22

Let C ⊆ Di be a square set. Since C is in general position, we can partition23

the boundary of the closure of A1(C) into two types: The boundary between24

A0(C) and A1(C); and that between A1(C) and A2(C). We call the former the25

union boundary of C. In Figure 3, the union boundary of C is illustrated as26

(red or blue) thick lines. We call the union boundary in Ri (or Ri−1) the upper27

(resp., lower) envelope of C. We say that a square S forms the boundary of an28

area A if a portion of a side of S is appears on the boundary of the closure of29

A. Let UE(C) and LE(C) be the sequences of squares that form the upper and30

lower envelopes of C, from right to left, respectively. Note that a square S ∈ C31

may appear in both UE(C) and LE(C). An example is shown in Figure 3.32

Consider an arbitrary optimal solution C∗ ⊆ Di to 〈P ∩ (Ri−1 ∪Ri),Di〉. If33

there is a square S ∈ C∗ contained in the union of C∗ \{S}, i.e., S ∩A1(C∗) = ∅,34
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then we can simply remove it from C∗ without losing the optimality. Thus,1

hereafter we deal with a square set C ⊆ Di such that every square S in C forms2

the union boundary of C, that is, S ∈ UE(C) or S ∈ LE(C) holds. (Note that3

some square S ∈ C may satisfy both S ∈ UE(C) and S ∈ LE(C).) This property4

enables us to extend the upper and lower envelopes sequentially.5

3.3.2. Top squares and the key lemma6

When we add a “new” square S to the current square set C \ {S}, we need7

to know the symmetric difference of A1(C) and A1(C \ {S}): The area A1(C) \8

A1(C \{S}) ⊆ A1(C) is the uniquely covered area obtained by adding S, and the9

area A1(C \ {S}) \ A1(C) ⊆ A2(C) is the non-uniquely covered area due to the10

addition of S. However, it suffices to know A1(C \{S})\A1(C) and its boundary11

since the boundary of A1(C) \A1(C \ {S}) is formed only by S and the squares12

forming the boundary of A1(C \ {S}) \A1(C).13

For a square S in a set C ⊆ D, let ∆(C, S) be the set of all squares in14

C that form the boundary of A1(C \ {S}) \ A1(C). An example is shown in15

Figure 4. Clearly, every square in ∆(C, S) has non-empty intersection with S.16

As we mentioned in Section 3.1, ∆(C, S) may contain arbitrarily many (i.e., a17

super-constant or super-logarithmic number of) squares if we simply choose the18

rightmost square S in C.19

The plan is as follows. (The formal definitions will be given later.)20

• For each square set C ⊆ Di, we canonically identify a subset of “rightmost”21

squares, which we call top squares. Such a set of top squares of C has the22

following property: there always exists a top square S of C such that23

∆(C, S) only contains top squares of C. Such a square S will be called24

stable in the set of top squares.25

• Some square sets may have the same set of top squares. This defines a26

preimage: given a set F of squares, we identify the family of all square sets27

contained in Di such that their sets of top squares are equal to F . This28

family will be denoted by Ci(F). A candidate F of the set of top squares29

will be called a feasible set. Note that Ci(F) 6= ∅ when F is feasible.30

• To perform the dynamic programming, we only maintain a value for every31

feasible set F . The dynamic programming computes the value for F “from32

left to right.” To obtain the value for F , we look at a stable square S in F33

and delete it from each square set C in Ci(F). Then, C \ {S} has another34

set of top squares for which the value was already computed in the course35

of dynamic programming. Since ∆(C, S) only contains top squares of C,36

we can also compute the area uniquely covered by ∆(C, S) in polynomial37

time. This enables us to calculate the value for F , and we can complete38

our dynamic-programming computation.39

Following this plan, we first give definitions.40

For a square set C ⊆ Di, a square S ∈ C is called a top square of C if one of41

the following conditions (i)–(iv) holds:42

8



S

Figure 4: The gray region shows A1(C \ {S}) \A1(C) for the thick square S.

(i) (ii)

(iii) (iv)

Figure 5: An example of top squares. The (blue) thick squares are top squares, and the
numbers correspond to the conditions in the definition.

(i) S is one of the six rightmost squares of UE(C);1

(ii) S is one of the six rightmost squares of LE(C);2

(iii) S is one of the two rightmost squares of UE(LE(C) \ UE(C));3

(iv) S is one of the two rightmost squares of LE(UE(C) \ LE(C)).4

An example is given in Figure 5. We denote by Top(C) the set of top squares of5

C. Note that a square may satisfy more than one of the conditions above; indeed,6

there is no square set C ⊆ Di such that |Top(C)| = 16 since the rightmost square7

in C always satisfies both (i) and (ii).8

A square set F ⊆ Di is feasible on Di if Top(F) = F . For a feasible square9

set F ⊆ Di, we denote by Ci(F) the set of all square subsets of Di whose top10

squares are equal to F , that is,11

Ci(F) = {C ⊆ Di | Top(C) = F}.

A top square S in a feasible set F is said to be stable in F if ∆(C, S) consists12

only of top squares in F for any square set C ∈ Ci(F). The following lemma13

implies that, for a feasible square set F ⊆ Di, we can check in polynomial time14

whether a top square S ∈ F is stable in F .15

Lemma 3.2. Let S be any (top) square in a feasible set F ⊆ Di. Then, S is16

stable in F if and only if S′ 6∈ ∆(F ∪{S′}, S) holds for every square S′ ∈ Di \F17

such that Top(F ∪ {S′}) = F .18

Proof. By the definition of stable squares, the necessity clearly holds. We thus19

show the sufficiency: If S is not stable in F , then there exists a non-top square20

S′ ∈ Di \ F such that Top(F ∪ {S′}) = F and S′ ∈ ∆(F ∪ {S′}, S).21

9



Since S is not stable in F , there exists a square set C ∈ Ci(F) such that1

∆(C, S) contains non-top squares of C. Let S′ be an arbitrary non-top square2

in C \ F . Then, we have Top(F ∪ {S′}) = F and S′ ∈ ∆(F ∪ {S′}, S). �3

Indeed, stable top squares will be crucial to our algorithm: If a top square S4

is stable in a feasible set F ⊆ Di, then ∆(C, S) contains at most 16 top squares5

in F for any square set C ∈ Ci(F); and hence we can compute ∆(C, S) in poly-6

nomial time. Therefore, below is the key lemma for our dynamic programming7

algorithm, whose proof will be given in Section 4.1.8

Lemma 3.3. For any feasible square set F ⊆ Di, there always exists a top9

square K(F) which is stable in F . Moreover, K(F) can be found in polynomial10

time.11

The proof of Lemma 3.3 is postponed to Section 4.1. In most cases, we12

choose the rightmost square of F as K(F). However, when the rightmost square13

intersects too many other squares, such a choice does not work. Indeed, K(F)14

will be one of the following five squares:15

1. the rightmost square of F ;16

2. the rightmost square of LE(F) \ UE(F);17

3. the second rightmost square of LE(F) \ UE(F);18

4. the rightmost square of UE(F) \ LE(F); and19

5. the second rightmost square of UE(F) \ LE(F).20

In Figure 5, K(F) is the rightmost square. In Figure 6, the left figure shows a21

case where K(F) is the rightmost square of LE(F)\UE(F) and the right figure22

shows a case where K(F) is the second rightmost square of LE(F) \ UE(F).23

The other two cases can be obtained symmetrically.24

3.4. Algorithm for the problem on 〈P ∩ (Ri−1 ∪Ri),Di〉25

To gain intuition, we first present the dynamic programming algorithm when26

the set of points is restricted to P∩(Ri−1∪Ri) and the set of squares is restricted27

to Di. We later generalize this approach to the general case. Let G = Ri−1∪Ri.28

We want to solve the problem on 〈P ∩G,Di〉 optimally in polynomial time.29

For a feasible square set F on Di, let f(F) be the maximum number of30

points in P ∩G uniquely covered by a square set in Ci(F), that is,31

f(F) = max{profit(P ∩G, C) | C ∈ Ci(F)},

where profit(P∩G, C) is the number of points in P∩G that are uniquely covered32

by C. Then, since every subset of Di belongs to Ci(F) for some feasible set F ,33

the optimal value OPT(P ∩G,Di) for 〈P ∩G,Di〉 can be computed as34

OPT(P ∩G,Di) = max{f(F) | F is feasible on Di}.

Since |F| < 16, this computation can be done in polynomial time if we have the35

values f(F) for all feasible square sets F on Di.36

10



Figure 6: The choice of stable squares. The blue squares are top squares, and the red one is
stable. (Left) The rightmost square of LE(F) \ UE(F) is stable in F . (Right) The second
rightmost square of LE(F) \ UE(F) is stable in F . In each of the figures, the gray region
depicts A1(C \ {S}) \A1(C) when S is the red square. We may observe that ∆(C, S) consists
only of top squares. On the other hand, ∆(C, S) contains a non-top square (black square)
when S is the rightmost square (a thick blue square). Note that, in the right figure, the
rightmost square of LE(F) \ UE(F) is not stable in F , and neither of the rightmost square
nor the second rightmost square of UE(F) \ LE(F) is stable in F .

We thus compute f(F) in polynomial time for all feasible square sets F on1

Di, according to the “parent-child relation.” For two feasible square sets F and2

F ′ on Di, we say that F ′ is a child of F if there exists a square set C ∈ Ci(F)3

such that Top(C \ {K(F)}) = F ′. The parent-child relation for the feasible4

square sets on Di is a binary relation specified by “F is a child of F ′,” which5

may also be viewed as a directed graph such that the vertex set is the family of6

feasible square sets on Di and an arc exists from F ′ to F if and only if F is a7

child of F ′.8

Lemma 3.4. The parent-child relation for the feasible square sets on Di can9

be constructed in polynomial time. Furthermore, the parent-child relation is10

acyclic.11

Proof. We can enumerate all feasible square sets on Di as follows: We first12

generate all sets C ⊆ Di consisting of 16 squares, and then check whether13

Top(C) = C. The number of candidates for C is bounded by |Di|16 and the14

check can be done in polynomial time. Therefore, the enumeration can be per-15

formed in polynomial time.16

For a feasible square set F on Di, let C be any square set in Ci(F). Then, we17

have |Top(C \ {K(F)}) \ Top(C)| ≤ 2 since the top square K(F) can appear in18

at most two sets among UE(C), LE(C), UE(LE(C) \UE(C)) and LE(UE(C) \19

LE(C)). Therefore, the number of candidates of children of F can be bounded20

by O(|Di|2). We can thus construct the parent-child relation in polynomial21

time.22

For acyclicity, consider the sequence of the x-coordinates of top squares23

from right to left. Any child F ′ has a sequence lexicographically smaller than24

11



its parent F , or F ′ ⊂ F . This implies that the parent-child relation is acyclic.1

�2

With the parent-child relation, we give the algorithm that solves the problem3

on 〈P ∩G,Di〉.4

Let D0 be the square set consisting of the leftmost 16 squares in Di. As the5

initialization, we first compute f(F) for all feasible sets F on D0. Since |D0| is6

constant, the total number of feasible sets F on D0 is also constant. Therefore,7

this initialization can be done in polynomial time.8

We then compute f(F) for a feasible square set F on Di from the values9

f(F ′) for all children F ′ of F . Since the parent-child relation is acyclic, we can10

find a feasible square set F such that the values f(F ′) are already computed11

for all children F ′ of F . For a square set C ⊆ Di and a square S ∈ C, we12

denote by z(C, S) the difference of the number of uniquely covered points in13

P ∩ G caused by adding S to C \ {S}, that is, the number of points in P ∩ G14

that are included in S ∩ A1(C) minus the number of points in P ∩ G that are15

included in S ∩ A1(C \ {S}). By the definition of a stable square, we have16

z(F ,K(F)) = z(C,K(F)) for all square sets C ∈ Ci(F). Therefore, we can17

correctly compute f(F) by18

f(F) = max{f(F ′) | F ′ is a child of F}+ z(F ,K(F)).

This way, the algorithm correctly solves the problem on 〈P∩G,Di〉 in polynomial19

time.20

3.5. Properties on square subsets of D21

We then get back to the general case where we want to solve the problem22

on 〈P ∩G,D〉. Remember that the ribbons R0, R1, . . . , Rk+1 are ordered from23

bottom to top, and that Di is the set of all squares in D intersecting the lower24

boundary of Ri for each i ∈ {1, . . . , k+1}. For a square set C ⊆ D, let Ci = C∩Di25

for each i ∈ {1, . . . , k + 1}. Then, these square sets C1, C2, . . . , Ck+1 form a26

partition of C.27

The plan is as follows.28

• We look at the parts C1, C2, . . . , Ck+1 in the partition of C, and consider29

a set of top squares in each part. This way, we may obtain the union of30

k + 1 sets of top squares.31

• We prove in Lemma 3.5 that there exists at least one top square S in this32

union such that ∆(C, S) consists only of top squares in this union. This33

square S can be treated as a “stable” square in this general case.34

• The property above enables us to develop a dynamic-programming algo-35

rithm as hinted in Section 3.4.36

We will follow this plan, and introduce the relevant concepts.37

12



R0

R1

R2

K(F1)

K(F2)

Figure 7: An illustration of a safe family. The blue squares form F , and K(F1) and K(F2)
are shown as red squares. Since ∆(C,K(F2)) has one square that does not belong to F , F2

is not safe for F . On the other hand, F1 is safe for F as ∆(C,K(F1)) ⊂ F . The gray region
shows A1(C \ {S}) \A1(C) when S is one of the red squares.

A square set F ⊆ D is feasible on D if Top(F ∩ Di) = F ∩ Di for each1

i ∈ {1, . . . , k + 1}. For a feasible square set F on D and i ∈ {1, . . . , k + 1}, we2

denote by Fi = F ∩ Di, and let3

C(F) = {C ⊆ D | Top(Ci) = Fi for each i ∈ {1, . . . , k + 1}}.

We say that Fi is safe for F if ∆(C,K(Fi)) ⊂ F for any square set C ∈ C(F),4

where K(Fi) is the stable top square in Fi which is selected as in the proof of5

Lemma 3.3. In Figure 7, a case where k = 2 is illustrated. There, F1 is safe for6

F , but F2 is not safe for F .7

The below is another key lemma for our dynamic programming algorithm,8

which shows at least one Fq is safe for F .9

Lemma 3.5. For any feasible square set F on D, there exists an index q ∈10

{1, . . . , k + 1} such that Fq is safe for F .11

The proof will be given in Section 4.2.12

3.6. Algorithm for the problem on 〈P ∩G,D〉13

We are now ready to describe our algorithm for the problem on 〈P ∩G,D〉.14

The algorithm follows the guidance of Section 3.4, but the treatment is much15

more general here.16

For a feasible square set F on D, let f(F) be the maximum number of points17

in P ∩G uniquely covered by a square set in C(F), that is,18

f(F) = max{profit(P ∩G, C) | C ∈ C(F)},

13



where profit(P∩G, C) is the number of points in P∩G that are uniquely covered1

by C. Then, since every subset of D belongs to C(F) for some feasible set F ,2

the optimal value OPT(P ∩G,D) for 〈P ∩G,D〉 can be computed as3

OPT(P ∩G,D) = max{f(F) | F is feasible on D}.

Since |F| < 16(k + 1), this computation can be done in polynomial time if we4

have the values f(F) for all feasible square sets F on D.5

We thus compute f(F) in polynomial time for all feasible square sets F on6

D, according to the “parent-child relation.” For a square set C ⊆ D, we denote7

simply by Top(C) =
∪

1≤i≤k+1 Top(Ci). For a feasible square set F on D, let8

K(F) = K(Fq) where Fq = F ∩ Dq is safe for F . For two feasible square9

sets F and F ′ on D, we say that F ′ is a child of F if there exists a square set10

C ∈ C(F) such that Top(C \ {K(F)}) = F ′. The parent-child relation for the11

feasible square sets on D is a binary relation specified by “F is a child of F ′,”12

which may also be viewed as a directed graph as before.13

Lemma 3.6. The parent-child relation for the feasible square sets on D can14

be constructed in polynomial time. Furthermore, the parent-child relation is15

acyclic.16

Proof. We can enumerate all feasible square sets on D, as follows: We first17

generate all sets C ⊆ D consisting of 16(k+1) squares, and then check whether18

Top(C ∩ Di) = C ∩ Di for each i ∈ {1, . . . , k + 1}. Since k is a constant, this19

enumeration can be done in polynomial time.20

For a feasible square set F on D, let C be any square set in C(F). Then,21

we have |Top(C \ {K(F)}) \ Top(C)| ≤ 2 since the top square K(F) = K(Fq)22

can appear in at most two sets among UE(Cq), LE(Cq), UE(LE(Cq) \UE(Cq))23

and LE(UE(Cq) \ LE(Cq)). Therefore, the number of candidates of children of24

F can be bounded by O(|D|2). We can thus construct the parent-child relation25

in polynomial time.26

Consider the sequence of the x-coordinates of top squares from right to left.27

Any child F ′ has a sequence lexicographically smaller than its parent F , or28

F ′ ⊂ F . This implies that the parent-child relation is acyclic. �29

We finally give the algorithm that solves the problem on 〈P ∩G,D〉.30

For each i ∈ {1, . . . , k+1}, let D0
i be the square set consisting of the first 1631

squares in Di having the smallest x-coordinates. Let D0 =
∪

1≤i≤k+1 D0
i , then32

|D0| ≤ 16(k + 1). As the initialization, we first compute f(F) for all feasible33

sets F on D0. Since |D0| is a constant, the total number of feasible sets F on34

D0 is also a constant. Therefore, this initialization can be done in polynomial35

time.36

We then compute f(F) for a feasible square set F on D from the values37

f(F ′) for all children F ′ of F . Since the parent-child relation is acyclic, we can38

find a feasible square set F such that the values f(F ′) are already computed39

for all children F ′ of F . By Lemma 3.5 there always exists a feasible square40

set Fq = F ∩ Dq on Dq which is safe for F , and hence by Lemma 3.3 we41

14



have a stable top square K(F) = K(Fq) in polynomial time. For a square set1

C ⊆ D and a square S ∈ C, we denote by z(C, S) the difference of the number2

of uniquely covered points in P ∩G caused by adding S to C \ {S}, that is, the3

number of points in P ∩ G that are included in S ∩ A1(C) minus the number4

of points in P ∩ G that are included in S ∩ A1(C \ {S}). Since Fq is safe for5

F and K(F) = K(Fq), we have z(F ,K(F)) = z(C,K(F)) for all square sets6

C ∈ C(F). Therefore, we can correctly update f(F) by7

f(F) := max{f(F ′) | F ′ is a child of F}+ z(F ,K(F)). (2)

This way, the algorithm correctly solves the problem on 〈P∩G,D〉 in polynomial8

time.9

This completes the proof of Lemma 3.1. �10

4. Proofs of key lemmas11

To finalize the whole proof, we give proofs of Lemmas 3.3 and 3.5 in Sections12

4.1 and 4.2, respectively.13

4.1. Proof of Lemma 3.314

To prove Lemma 3.3, we need a thorough preparation. We first give several15

properties on squares composing uniquely covered regions. Using them, we then16

give the proof of Lemma 3.3. Remember that we deal with squares only in a17

set C ⊆ Di and the region uniquely covered by them.18

4.1.1. Upper and lower envelopes19

We first give the following lemma for the upper envelope; its counterpart20

holds for the lower envelope by a symmetric argument.21

Lemma 4.1. Let C ⊆ Di be a square set, and suppose that a square S ∈ C is22

not in UE(C). Then, any point in S ∩ Ri is covered by at least one square in23

UE(C).24

We remind that x(S) and y(S) refer to the coordinates of the top right corner25

of S.26

Proof. Let p = (x, y) ∈ S ∩ Ri be an arbitrary point. Consider the vertical27

line ` through p. Then, ` meets the upper envelope in Ri. Let S′ ∈ UE(C) be28

a square that meets `. Since S 6∈ UE(C), it holds that x(S′) − 1 < x < x(S′)29

and y ≤ y(S) < y(S′). Since p ∈ Ri and S′ ∈ C ⊆ Di, we have y(S′) − 1 < y.30

Therefore, p ∈ S′. �31

We give the following lemma for the upper envelope.32

Lemma 4.2. Let S and S′ be any two squares in a square set C ⊆ Di with33

x(S) < x(S′). Suppose that there are q squares S1, S2, . . . , Sq, q ≥ 1, such that34

Sj ∈ UE(C) and x(S) < x(Sj) < x(S′) for each index j ∈ {1, . . . , q}. Then, any35

point in S ∩ S′ ∩ Ri is covered by at least 2 + q squares unless the intersection36

is empty.37
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Proof. We show that every point p′ = (x′, y′) in S∩S′∩Ri is covered by every1

square Sj , 1 ≤ j ≤ q, that is, both x(Sj)− 1 ≤ x′ ≤ x(Sj) and y(Sj)− 1 ≤ y′ ≤2

y(Sj) hold.3

We first show that x(Sj)− 1 ≤ x′ ≤ x(Sj) holds. Since p′ ∈ S ∩ S′ ∩Ri and4

x(S) < x(S′), we have x(S′)−1 ≤ x′ ≤ x(S). Then, since x(S) < x(Sj) < x(S′),5

we have x(Sj)− 1 < x(S′)− 1 ≤ x′ ≤ x(S) < x(Sj).6

We then show that y(Sj) − 1 ≤ y′ ≤ y(Sj) holds. Since all the squares in7

Di intersect the lower boundary of Ri, we have y(Sj) − 1 ≤ y′. On the other8

hand, suppose for a contradiction that y′ > y(Sj) holds. Since p′ ∈ S ∩ S′ ∩Ri,9

we have y′ ≤ min{y(S), y(S′)}. Then, we have y(Sj) < y′ ≤ min{y(S), y(S′)}.10

Since x(S) < x(Sj) < x(S′), every point (x′′, y(Sj)), composing the top side of11

Sj , is contained in S ∪ S′, where x(S) − 1 < x(Sj) − 1 ≤ x′′ ≤ x(Sj) < x(S′).12

Thus, the top side of Sj does not appear in the upper envelope of C at all. This13

contradicts Sj ∈ UE(C). �14

Similar arguments establish the counterpart for the lower envelope, as fol-15

lows.16

Lemma 4.3. Let S and S′ be any two squares in a square set C ⊆ Di with17

x(S) < x(S′). Suppose that there are q squares S1, S2, . . . , Sq, q ≥ 1, such that18

Sj ∈ LE(C) and x(S) < x(Sj) < x(S′) for each index j ∈ {1, . . . , q}. Then, any19

point in S ∩S′ ∩Ri−1 is covered by at least 2+ q squares unless the intersection20

is empty.21

4.1.2. Top squares22

We denote by U∆(C, S) the set of all squares that form the boundary of23

(A1(C \ {S}) \A1(C))∩Ri, and by L∆(C, S) the set of all squares that form the24

boundary of (A1(C \ {S}) \ A1(C)) ∩ Ri−1. By the definition, we clearly have25

the following lemma.26

Lemma 4.4. Let S and S′ be two squares in a set C ⊆ Di. Then, S′ is not in27

U∆(C, S) if any point in S′∩S ∩Ri is contained in A≥3(C \{S}). Similarly, S′
28

is not in L∆(C, S) if any point in S′ ∩ S ∩Ri−1 is contained in A≥3(C \ {S}).29

�30

For a feasible square set F ⊆ Di, let UE(F) = (K>
1 ,K>

2 , . . . ,K>
α ) with31

x(K>
α ) < x(K>

α−1) < . . . < x(K>
1 ), (3)

and let LE(F) = (K⊥
1 ,K⊥

2 , . . . ,K⊥
β ) with32

x(K⊥
β ) < x(K⊥

β−1) < . . . < x(K⊥
1 ). (4)

Note that some squares may appear in both UE(F) and LE(F). In particular,33

we always have K>
1 = K⊥

1 . Then, we have the following lemma.34

Lemma 4.5. For a square K>
j ∈ UE(F), 1 ≤ j ≤ 4, suppose that there exists35

a square set C ∈ Ci(F) such that U∆(C,K>
j ) contains a non-top square Q of36

C with x(Q) < x(K>
j ). Then, |LE(F)| ≥ 6 and either |UE(F)| ≤ j + 1 or37

x(K>
j+2) < x(K⊥

6 ) holds.38
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Proof. We first claim that there exists at most one square K> ∈ UE(C)1

such that x(Q) < x(K>) < x(K>
j ). Suppose for a contradiction that there2

exist two squares K,K ′ ∈ UE(C) such that x(Q) < x(K) < x(K ′) < x(K>
j ).3

Then, by Lemma 4.2 every point in Q ∩ K>
j ∩ Ri is covered by at least four4

squares and hence is contained in A≥3(C \ {K>
j }). By Lemma 4.4 we then have5

Q 6∈ U∆(C,K>
j ), a contradiction.6

This claim implies that Q 6∈ UE(C); otherwise, since 1 ≤ j ≤ 4, we have7

Q ∈ {K>
2 ,K>

3 ,K>
4 ,K>

5 ,K>
6 } and hence Q is a top square in F . Remember that8

each square in C appears in UE(C) or LE(C), and hence we have Q ∈ LE(C).9

Then, since Top(C) = F and Q 6∈ F , we have |LE(F)| ≥ 6 and10

x(Q) < x(K⊥
6 ). (5)

The claim also implies that either |UE(F)| ≤ j + 1 or11

x(K>
j+2) < x(Q) (6)

holds. By Eqs. (5) and (6) we have x(K>
j+2) < x(K⊥

6 ), as required. �12

Similar arguments establish the counterpart of Lemma 4.5, as follows.13

Lemma 4.6. For a square K⊥
j ∈ LE(F), 1 ≤ j ≤ 4, suppose that there exists14

a square set C ∈ Ci(F) such that L∆(C,K⊥
j ) contains a non-top square Q of15

C with x(Q) < x(K⊥
j ). Then, |UE(F)| ≥ 6 and either |LE(F)| ≤ j + 1 or16

x(K⊥
j+2) < x(K>

6 ) holds. �17

Using Lemmas 4.5 and 4.6, we have the following lemma.18

Lemma 4.7. For a feasible square set F ⊆ Di, let S1 be the square in F with19

the largest x-coordinate. Then, the following (a) and (b) hold:20

(a) If there exists a square set C ∈ Ci(F) such that U∆(C, S1) contains21

a non-top square of C, then L∆(C′, S1) ⊂ F holds for all square sets22

C′ ∈ Ci(F);23

(b) If there exists a square set C ∈ Ci(F) such that L∆(C, S1) contains24

a non-top square of C, then U∆(C′, S1) ⊂ F holds for all square sets25

C′ ∈ Ci(F).26

The situation (a) is illustrated in Figure 6 (left).27

Proof. Note that S1 = K>
1 = K⊥

1 . We show that (a) holds. (The proof for28

(b) is similar.)29

Suppose that there exists a square set C ∈ Ci(F) such that U∆(C, S1) con-30

tains a non-top square Q of C. Since S1 is the square with the largest x-31

coordinate, we have x(Q) < x(S1). Then, since S1 = K>
1 , by Lemma 4.5 we32

have33

|LE(F)| ≥ 6 (7)

and either |UE(F)| ≤ 2 or34

x(K>
3 ) < x(K⊥

6 ) (8)

17



holds.1

We now show that L∆(C′, S1) ⊂ F holds for all square sets C′ ∈ Ci(F).2

Suppose for a contradiction that there exists a square set C′′ ∈ Ci(F) such that3

L∆(C′′, S1) contains a non-top square Q′ of C′′. Then, since S1 = K⊥
1 and4

x(Q′) < x(S1), by Lemma 4.6 we have |UE(F)| ≥ 6 and either |LE(F)| ≤ 2 or5

x(K⊥
3 ) < x(K>

6 ) holds. By Eq. (7) we thus have6

x(K⊥
3 ) < x(K>

6 ). (9)

Moreover, the inequality |UE(F)| ≥ 6 implies that Eq. (8) holds. Therefore, by7

Eqs. (4), (8) and (9) we have x(K>
3 ) < x(K>

6 ). This contradicts Eq. (3). �8

Note that Lemma 4.7 implies that, for any square set C ∈ Ci(F), at most9

one of U∆(C, S1) and L∆(C, S1) can contain non-top squares of C.10

4.1.3. Proof of Lemma 3.311

We now prove Lemma 3.3. We consider the following cases, and prove that12

there is a stable top square K(F) in each case. Let S1 be the square in F whose13

x-coordinate is largest. Note that S1 = K>
1 = K⊥

1 .14

Case 1: S1 is stable in F .15

In this case, we set K(F) = S1. Note that by Lemma 3.2 we can check16

whether S1 is stable in F in polynomial time.17

Case 2: S1 is not stable in F .18

Since S1 is not stable in F , by Lemma 3.2 there exists a non-top square19

Q ∈ Di \ F such that Q ∈ ∆(F ∪ {Q}, S1) and Top(F ∪ {Q}) = F . Lemma 4.720

allows us to assume Q ∈ U∆(F ∪{Q}, S1) without loss of generality. (The case21

for Q ∈ L∆(F ∪ {Q}, S1) is symmetric.) Then, by Lemma 4.5 we have22

|LE(F)| ≥ 6 (10)

and either |UE(F)| ≤ 2 or23

x(K>
3 ) < x(K⊥

6 ) (11)

holds.24

Consider an arbitrary non-top square Q′ ∈ Di\F such that Top(F∪{Q′}) =25

F . We claim that26

x(Q′) < x(K⊥
6 ). (12)

Note that Eq. (10) ensures that the square K⊥
6 exists. Since Q′ is a non-27

top square, we clearly have x(Q′) < x(K⊥
6 ) if Q′ ∈ LE(F ∪ {Q′}). We thus28

consider the case where Q′ ∈ UE(F∪{Q′}). Then, since Q′ is a non-top square,29

|UE(F)| ≥ 6 and x(Q′) < x(K>
6 ) hold. Furthermore, |UE(F)| ≥ 6 implies that30

Eq. (11) holds, and hence by Eq. (3) we have x(Q′) < x(K⊥
6 ). Therefore, in31

either case, Eq. (12) holds.32

Let S2 and S3 be the rightmost and the second rightmost squares in LE(F)\33

UE(F), respectively. Since either |UE(F)| ≤ 2 or x(K>
3 ) < x(K⊥

6 ) holds, at34
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most two squares in UE(F) can appear also in K⊥
1 ,K⊥

2 , . . . ,K⊥
6 . Furthermore,1

S1 = K⊥
1 = K>

1 . Therefore, we have S2 ∈ {K⊥
2 ,K⊥

3 } and S3 ∈ {K⊥
3 ,K⊥

4 }. We2

consider the following two sub-cases.3

Case 2-1: S3 is in UE(LE(F) \ UE(F)).4

In this case, we show that S2 is stable in F , and hence we set K(F) = S2.5

By Lemma 3.2 it suffices to show that Q′ 6∈ ∆(F ∪ {Q′}, S2) for every square6

Q′ ∈ Di \ F such that Top(F ∪ {Q′}) = F .7

We first show that Q′ 6∈ L∆(F ∪ {Q′}, S2). Since S2 ∈ {K⊥
2 ,K⊥

3 }, by Eq.8

(12) we have9

x(Q′) < x(K⊥
6 ) < x(K⊥

5 ) < x(K⊥
4 ) < x(S2).

By Lemma 4.3 every point in Q′ ∩ S2 ∩Ri−1 is covered by at least five squares,10

and hence is contained in A≥3((F ∪{Q′}) \ {S2}). By Lemma 4.4 we thus have11

Q′ 6∈ L∆(F ∪ {Q′}, S2), as required.12

We then show that Q′ 6∈ U∆(F ∪ {Q′}, S2). Since S3 ∈ {K⊥
3 ,K⊥

4 } and13

x(S3) < x(S2), by Eq. (12) we have x(Q′) < x(S3) < x(S2). Since S3 ∈14

UE(LE(F) \ UE(F)), by Lemma 4.2 every point in Q′ ∩ S2 ∩ Ri is covered15

by at least three squares. Moreover, since S2 6∈ UE(F), by Lemma 4.1 every16

point in Q′ ∩ S2 ∩ Ri is covered by at least one square in UE(F). Thus, in17

total, every point in Q′ ∩ S2 ∩ Ri is covered by at least four squares in F , and18

hence is contained in A≥3((F ∪ {Q′}) \ {S2}). By Lemma 4.4 we thus have19

Q′ 6∈ U∆(F ∪ {Q′}, S2), as required.20

Case 2-2: S3 is not in UE(LE(F) \ UE(F)).21

In this case, we show that S3 is stable in F , and hence we set K(F) = S3.22

By Lemma 3.2 it suffices to show that Q′ 6∈ ∆(F ∪ {Q′}, S3) for every square23

Q′ ∈ Di \ F such that Top(F ∪ {Q′}) = F .24

We first show that Q′ 6∈ L∆(F ∪ {Q′}, S3). Since S3 ∈ {K⊥
3 ,K⊥

4 }, by Eq.25

(12) we have26

x(Q′) < x(K⊥
6 ) < x(K⊥

5 ) < x(S3).

By Lemma 4.3 every point in Q′ ∩S3 ∩Ri−1 is covered by at least four squares,27

and hence is contained in A≥3((F ∪{Q′}) \ {S3}). By Lemma 4.4 we thus have28

Q′ 6∈ L∆(F ∪ {Q′}, S3), as required.29

We then show thatQ′ 6∈ U∆(F∪{Q′}, S3). Since S3 6∈ UE(LE(F)\UE(F)),30

by applying Lemma 4.1 to LE(F)\UE(F), every point in Q′∩S3∩Ri is covered31

by at least one square X in UE(LE(F)\UE(F)). Moreover, since S3 6∈ UE(F),32

by applying Lemma 4.1 to F , every point in Q′ ∩ S3 ∩Ri is covered by at least33

one square Y in UE(F). Note that X 6= Y since X ∈ UE(LE(F)\UE(F)) and34

Y ∈ UE(F). Thus, in total, every point in Q′ ∩ S3 ∩ Ri is covered by at least35

four squares (Q′, S3, X, Y ), and hence is contained in A≥3((F ∪ {Q′}) \ {S3}).36

By Lemma 4.4 we thus have Q′ 6∈ U∆(F ∪ {Q′}, S3), as required. �37

4.2. Proof of Lemma 3.538

We first give an auxiliary lemma which states that at least one of Fi and39

Fi+1 is safe for the other for each i ∈ {1, . . . , k}, and then give the proof of40

Lemma 3.5.41
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4.2.1. Auxiliary lemma1

Let F be a feasible square set on D, and let C be a square set in C(F). For2

each i ∈ {1, . . . , k + 1}, let ux(Ci) be the x-coordinate of the leftmost point of3

the area Ri ∩K(Fi)∩
(
A1(Ci)∪A2(Ci)

)
, while let lx(Ci) be the x-coordinate of4

the leftmost point of the area Ri−1∩K(Fi)∩
(
A1(Ci)∪A2(Ci)

)
. Remember that5

no horizontal side of a square is on the same line as the horizontal boundary of6

any ribbon, and that A1(Ci)∩ S 6= ∅ for every square S ∈ Ci. Therefore, ux(Ci)7

and lx(Ci) are well-defined. Since K(Fi) is stable in Fi, we see that ux(Ci) is8

invariant under the choice of C ∈ C(F). Thus, we also write ux(Fi) to mean9

ux(Ci) for any C ∈ C(F). The same applies to lx(Fi).10

We first give the following lemma.11

Lemma 4.8. Let Fi be a feasible square set on Di. Let C ⊆ Di be any square12

set in Ci(Fi), and Q be a non-top square of C. Then,13

(a) every point (x, y) ∈ Q ∩Ri ∩
(
A1(C) ∪A2(C)

)
satisfies x < ux(Fi); and14

(b) every point (x, y) ∈ Q ∩Ri−1 ∩
(
A1(C) ∪A2(C)

)
satisfies x < lx(Fi).15

Proof. We show that (a) holds; the proof for (b) is symmetric.16

Suppose for a contradiction that there exists a point (x′, y′) ∈ Q ∩ Ri ∩17 (
A1(C) ∪ A2(C)

)
which satisfies x′ ≥ ux(Fi). Since the square K(Fi) is stable18

in Fi, no point in K(Fi)∩Q is contained in A1(C)∪A2(C). Therefore, we have19

K(Fi) ∩Q ∩Ri ∩
(
A1(C) ∪A2(C)

)
= ∅, (13)

and hence (x′, y′) is not contained in K(Fi). Since Q is a non-top square of C20

and K(Fi) is a top square of C which is selected as in the proof of Lemma 3.3,21

we have x(Q) < x(K(Fi)). Since x′ ≤ x(Q) and x(K(Fi)) − 1 ≤ ux(Fi), we22

then have23

x(K(Fi))− 1 ≤ ux(Fi) ≤ x′ ≤ x(Q) < x(K(Fi)). (14)

By Eq. (14) we have x(K(Fi)) − 1 ≤ x′ < x(K(Fi)). Since (x′, y′) is not24

contained in K(Fi) and is contained in Ri, we have y′ > y(K(Fi)). Notice25

that by Eq. (14) we have x(Q) − 1 ≤ ux(Fi) ≤ x(Q). Then, Q contains any26

point (ux(Fi), y
′′) in K(Fi) which is in Ri ∩ K(Fi) ∩

(
A1(Ci) ∪ A2(Ci)

)
. This27

contradicts Eq. (13). �28

Let F be a feasible square set on D. Then, for each i ∈ {2, . . . , k}, Fi−1, Fi29

and Fi+1 are feasible square sets on Di−1, Di and Di+1, respectively. We say30

that Fi is safe for Fi+1 if ∆(Ci∪Ci+1,K(Fi)) ⊂ Fi∪Fi+1 for any square set C in31

C(F). Similarly, we say that Fi is safe for Fi−1 if ∆(Ci−1∪Ci,K(Fi)) ⊂ Fi−1∪Fi32

for any square set C ∈ C(F). For the sake of notational convenience, let D0 = ∅33

and Dk+2 = ∅; F1 is always safe for F0; and Fk+1 is always safe for Fk+2.34

Since each ribbon is of height 1 and each unit square is of side length 1, the35

square K(Fi) ∈ Di intersects squares in Di−1 ∪ Di ∪ Di+1 only. Therefore, for36

i ∈ {1, . . . , k + 1}, Fi is safe for F if and only if Fi is safe for both Fi−1 and37

Fi+1.38

Then, Lemma 4.8 gives the following lemma.39
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Lemma 4.9. Let F be a feasible square set on D. Then, for each i ∈ {1, . . . , k},1

the following (a) and (b) hold:2

(a) Fi is safe for Fi+1 if lx(Fi+1) < ux(Fi); and3

(b) Fi+1 is safe for Fi if ux(Fi) < lx(Fi+1).4

Proof. We show that (a) holds: If lx(Fi+1) < ux(Fi), then ∆(Ci ∪5

Ci+1,K(Fi)) ⊂ Fi ∪ Fi+1 for any square set C in C(F). (The proof for (b)6

is symmetric.)7

Consider an arbitrary square set C ∈ C(F), and let Q be a square in Ci∪Ci+18

such that Q 6∈ Fi ∪ Fi+1. We will show that Q 6∈ ∆(Ci ∪ Ci+1,K(Fi)). Note9

that, however, we have Q 6∈ ∆(Ci ∪ Ci+1,K(Fi)) if Q ∈ Ci, because the square10

K(Fi) is stable in Fi.11

We thus consider the case whereQ ∈ Ci+1. SinceK(Fi) ∈ Ci, the intersection12

K(Fi) ∩ Q is contained in Ri. Therefore, similarly to Lemma 4.4, we have13

Q 6∈ ∆(Ci∪Ci+1,K(Fi)) if any point in Q∩K(Fi)∩Ri is contained in A≥3(Ci∪14

Ci+1 \ {K(Fi)}).15

Since K(Fi) ∈ Ci, if a point in Q ∩ K(Fi) ∩ Ri is contained in A≥3(Ci+1),16

then the point is contained in A≥3(Ci ∪Ci+1 \ {K(Fi)}). Therefore, we consider17

a point (x′, y′) in Q ∩ K(Fi) ∩ Ri which is contained in A1(Ci+1) ∪ A2(Ci+1);18

and hence (x′, y′) is contained in at least one square in Ci+1. Then, by Lemma19

4.8 we have x′ < lx(Fi+1) and hence x′ < ux(Fi). This implies that the point20

(x′, y′) is contained in at least three squares in Ci (one of which is K(Fi)). Thus,21

the point (x′, y′) is contained in A≥3(Ci ∪ Ci+1 \ {K(Fi)}). �22

4.2.2. Proof of Lemma 3.523

Since no vertical side of a square is on the same line as the vertical side24

of another square, ux(Fi) 6= lx(Fi+1) for each i ∈ {1, . . . , k}. Therefore, by25

Lemma 4.9 at least one of Fi and Fi+1 is safe for the other. Remember that F126

is always safe for F0, and that Fk+1 is always safe for Fk+2. Therefore, there27

exists at least one index q ∈ {1, . . . , k + 1}, such that Fq is safe for both Fq−128

and Fq+1. Then, Fq is safe for F . �29

5. Budgeted version30

In this section, we give the following theorem.31

Theorem 5.1. For any fixed constant ε > 0, there is a polynomial-time (1+ε)-32

approximation algorithm for the budgeted unique unit-square coverage problem.33

We give a sketch how to adapt the algorithm above to the budgeted unique34

unit-square coverage problem. To this end, we first describe the adaptation to35

give an optimal solution to 〈P ∩G,D〉 in pseudo-polynomial time when budget,36

cost, and profit are all integers.37

We keep the same strategy, but for the dynamic programming, we slightly38

change the definition of f . In the budgeted version, profit(P, C) means the total39

profit of the points in P that are uniquely covered by C, and cost(C) means the40
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total cost of the squares in C. Let X =
∑

p∈P profit(p), then profit(P, C) ≤ X1

for any square set C ⊆ D. For a feasible square set F ⊆ D and an integer x ∈2

{0, . . . , X}, let g(F , x) be the minimum total cost of squares in a set C ∈ C(F)3

such that the total profit of uniquely covered points in P ∩G by C is at least x,4

that is,5

g(F , x) = min{cost(C) | C ∈ C(F) and profit(P ∩G, C) ≥ x}.

If there is no square set C ∈ C(F) such that profit(P ∩ G, C) ≥ x, then let6

g(F , x) = +∞. Then, the optimal value OPT(P ∩ G,D) for the budgeted7

version on 〈P ∩G,D〉 can be computed as8

OPT(P ∩G,D) = max{x | 0 ≤ x ≤ X, g(F , x) ≤ B}.

We proceed along the same way as the algorithm in Section 3.6, except for the9

update formula (2) that should be replaced by10

g(F , x) :=min{g(F ′, y) | F ′ is a child of F , y+ z(F ,K(F)) ≥ x}+ cost(K(F)),

where z(F ,K(F)) means the difference of the total profit of uniquely covered11

points in P ∩G caused by adding the square K(F) to F \ {K(F)}. This way,12

we obtain an optimal solution to 〈P ∩ G,D〉 for a group G consisting of at13

most k consecutive ribbons. Note that the blowup in the running time is only14

polynomial in X.15

Let R1, R2, . . . , Rt be the ribbons in RW ordered from bottom to top. For16

each j ∈ {0, . . . , k}, let Rj
W be the set of groups G1, G2, . . ., each of which17

consists of at most k ribbons, obtained from RW by deleting the ribbons Ri if18

and only if i = j mod k + 1, as illustrated in Figure 2. We now explain how19

to obtain a solution to the problem on 〈P ∩ Rj
W ,D〉. The adapted algorithm20

above can solve the problem on each group Gl in Rj
W , and hence suppose that21

we have computed g(F , x) for each group Gl and all integers x ∈ {0, . . . , X}.22

Then, obtaining a solution to 〈P∩Rj
W ,D〉 can be regarded as solving an instance23

of the multiple-choice knapsack problem [5, 18], as follows: The capacity of the24

knapsack is equal to the budget B; each g(F , x) in Gl and x ∈ {0, 1, . . . , X} have25

a corresponding item with profit x and cost g(F , x); and the items corresponding26

to Gl form a class, from which at most one item can be packed into the knapsack.27

The multiple-choice knapsack problem can be solved in pseudo-polynomial time28

which polynomially depends on X [5, 18], and hence we can obtain an optimal29

solution to 〈P ∩Rj
W ,D〉, 0 ≤ j ≤ k, in pseudo-polynomial time.30

Then, by the standard scale-and-round technique (as used for the ordinary31

knapsack problem) [5, 18], for any fixed constant ε′ > 0, we obtain a (1 + ε′)-32

approximate solution to 〈P ∩ Rj
W ,D〉 for each j ∈ {0, . . . , k}. Overall, we33

can obtain such an approximate solution to each of the k + 1 subinstances34

〈P ∩ Rj
W ,D〉, 0 ≤ j ≤ k, in polynomial time. By taking the best one, we can35

obtain a (1+ ε)-approximate solution to 〈P,D〉 for any fixed constant ε > 0, by36

choosing ε′ appropriately.37
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6. Conclusion1

The PTAS in this paper combines the well-known shifting strategy [1, 13]2

and a novel dynamic programming algorithm to solve the problem restricted to3

regions of constant height, and answers a question by van Leeuwen [21]. The4

generality of the approach enables us to solve the budgeted version, too.5

In a sister paper [16], we give a polynomial-time (2+4/
√
3+ε)-approximation6

algorithm for the unique unit-disk coverage problem for any fixed constant ε > 0,7

thus improving the approximation ratio of 18 by Erlebach and van Leeuwen [9].8

The basic idea is similar to our PTAS in this paper, but the situation is much9

more complicated for unit disks.10

The reader may wonder why the technique developed in this paper cannot11

readily yield a PTAS for the unit disk case. The current technique involves two12

aspects; one is the partition of the whole plane to adapt the shifting strategy,13

and the other is a polynomial-time algorithm for each group. However, these14

two aspects may affect each other in the following sense. If we would stick to15

a partition of the whole plane to obtain a PTAS, then we were not able to16

develop a polynomial-time algorithm for each group. If we would want to have17

a polynomial-time algorithm for each group, then the partition could not be18

good enough to give a better approximation ratio. Indeed, for the unit disks, as19

treated in our sister paper [16], we have a different way of partitioning the whole20

plane, so that the polynomial-time algorithm can be developed.3 Then, the21

approximation ratio got worse, and we only have a (2+4/
√
3+ε)-approximation22

algorithm, not a PTAS.23

The running time of our PTAS is a polynomial of degree depending on24

1/ε. It is desirable to obtain a PTAS such that the degree of its polynomial25

running time does not depend on 1/ε: Such a PTAS is called an efficient PTAS26

(EPTAS). The existence of an EPTAS would be excluded by showing W[1]-27

hardness (unless FPT = W[1]) [2, 3], but the unique coverage problem is fixed-28

parameter tractable [19], thus unlikely to be W[1]-hard. The existence of an29

EPTAS is left open.30
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de DEA, Université Paris Sud (1995)5
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