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In this paper, we present a novel cognitive framework allowing a robot to form memories
of relevant traits of its perceptions and to recall them when necessary. The framework is
based on two main principles: on the one hand, we propose an architecture inspired by
current knowledge in human memory organization; on the other hand, we integrate such an
architecture with the notion of context, which is used to modulate the knowledge acquisition
process when consolidating memories and forming new ones, as well as with the notion of
familiarity, which is employed to retrieve proper memories given relevant cues. Although
much research has been carried out, which exploits Machine Learning approaches to provide
robots with internal models of their environment (including objects and occurring events
therein), we argue that such approaches may not be the right direction to follow if a long-
term, continuous knowledge acquisition is to be achieved.

As a case study scenario, we focus on both robot-environment and human-robot in-
teraction processes. In case of robot-environment interaction, a robot performs
pick and place movements using the objects in the workspace, at the same time
observing their displacement on a table in front of it, and progressively forms memo-
ries defined as relevant cues (e.g., color, shape or relative position) in a context-aware fashion.
As far as human-robot interaction is concerned, the robot can recall specific snap-
shots representing past events using both sensory information and contextual cues upon
request by humans.

Keywords: robot cognitive architectures; developmental learning; long-term knowledge
acquisition; context-based memory retrieval.

1. Introduction

The role of natural context in human and animal behavior proves to be fundamental
at various levels. We refer to a natural context as those elements involved or asso-
ciated with familiar environments (including their physical laws and social rules)
where a human or animal lives and operates (Allen & Bekoff, 1999). Since contextual
information originates from the relationship between a human and its envi-
ronment, multiple contexts can be certainly pertinent to human behaviour
at the same time. As a matter of fact, both human-human and human-environment
interaction processes are believed to be greatly affected by their natural context (Mehl
& Conner, 2012). The presence of multiple contexts can affect the way humans
interact with each other and the environment. As the experience of someone
develops, so do the contexts involving that individual, therefore modifying
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their semantics even in sensible ways.
In humans, experimental evidence suggests that context-aware mechanisms are mostly

represented in the hippocampus (Smith & Mizumori, 2006). Such mechanisms contribute
to the identification of specific contexts with respect to other situations so that the most
appropriate behavioral response can be executed or the most relevant mnemonic output
can be retrieved. The contextual information elicited by the surrounding environment,
the objects therein (as well as their properties), and the flow of events we perceive, play
a significant role in our daily behavior, eventually influencing the way we create mental
models of what we perceive and remember (Godden & Baddeley, 1975; Smith & Kosslyn,
2009).

In order to design robots able to pro-actively and sensibly understand their environ-
ment and to engage humans in long-term interaction processes, a similar concept of robot
natural context must be envisaged and integrated into their cognitive architecture. Given
the role of natural context in the formation of human mental models and memories, it
is necessary to investigate what are the implications of the equivalent concept of robot
natural context on a robot cognitive architecture that must be necessarily inspired by
memory-related mechanisms and processes.

The goal of this paper is to investigate the role of robot natural context in a robot
able to progressively acquire, consolidate and recall knowledge during the execution
of goal-oriented behavior (for both human-robot and robot-environment in-
teraction tasks), and during human-robot verbal interaction for memory rec-
ollection. In order to achieve such a goal, two research strands must be considered.

(1) No integrated and context-based robot architecture (possibly inspired by the de-
velopmental paradigm) is currently available, which is aimed at long-term human-
robot interaction processes using a precise characterization of memory components,
i.e., taking into account their interconnectivity.

(2) In spite of recent research activities on memory-inspired architectures (Bellas,
Faina, Varela, & Duro, 2010; Morse, de Greeff, Belpaeme, & Cangelosi, 2010; Nux-
oll & Laird, 2004), which are based on individual memory components, no holistic
approach has been devised to provide robot architectures with the necessary flexi-
bility to efficiently deal with contextual information.

An analysis of the literature shows that research in memory-inspired architectures is
mainly focused on modeling memory components on an individual basis, such as the
Working Memory (WM) (Phillips & Noelle, 2005), the Episodic Memory (EM) (Dodd
& Gutierrez, 2005; Jockel, Weser, Westhoff, & Zhang, 2008; Jockel, Westhoff, & Zhang,
2007; Kasap & Magnenat-Thalmann, 2010; Kuppuswamy, Cho, & Kim, 2006; Nuxoll,
2007; Nuxoll & Laird, 2004, 2012; Stachowicz & Kruijff, 2012; Tecuci & Porter, 2007) or
the Procedural Memory (PM) (Salgado, Bellas, Caamano, Santos-Diez, & Duro, 2012).

A precise (i.e., as formal as possible) characterization of architectural components
and the associated information flow must be defined. On the one hand, Stachowicz and
Kruijff (2012) provide an thorough discussion of both design requirements and formal
concepts needed to characterize EM and its storage structure. However, the focus of
their work is on the notion of event, its properties, and its use in such cognitive processes
as event recognition and recursion of events. Despite their claim of having designed
an EM-like memory structure, it is noteworthy that they do not exploit the notion of
context, which is considered of the utmost importance for EM by Godden and Baddeley
(1975) and Smith and Kosslyn (2009). On the other hand, when an attempt is made
to design a more comprehensive memory-inspired robot architecture (Bellas et al., 2010;
Morse et al., 2010; Nuxoll & Laird, 2004), the goal is limited to finding a solution to very
specific problems, instead of providing the robot with the capability of developing its own
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knowledge on the long-term. Furthermore, in such approaches, neither the relationships
between different memory components is explicitly addressed, nor the mutual influence
between components is considered. In any case, no clear use of the notion of context is
provided.

In this paper, we present a memory-inspired robot cognitive architecture that allows a
robot to progressively acquire knowledge using context-based information. To demon-
strate the features of the proposed architecture, we focus on a scenario where
robot-environment and human-robot interactions are involved. During robot-
environment interactions, the robot performs pick and place movements in-
volving objects located on a table in front of it, and is expected to progres-
sively form memory items by observing visual changes in the environments
affected by external influences (i.e., human actions, or in this case, robot
movements). In particular, pick and place actions deal with objects character-
ized by different physical properties (i.e., colors and shapes), and displace one
object at a time to a different position within the workspace, hence resulting
in a different workspace configuration. In case of the human-robot interac-
tions, after the robot forms memory items by the case of robot-environment
interactions, the robot interacts with a human, where the latter inquire ver-
bal questions to the former involving contextual information, specifically re-
garding the robot past experience. Examples of inquiries include: “What
orange objects do you know?”, “What color was the leftmost object, when
three objects were presented?”, or “How many objects were presented when
the orange lamp was the rightmost?”. We will also discuss how human-robot
interaction can occur in parallel with robot-environment interaction.

The contribution of the paper is two-fold: (i) we demonstrate the robot ability to store
and recall memory items as a result of acquiring personal experience, on the basis of
specific cues provided by a human; (ii) we show that contextual information (which may
be familiar to the robot), is fundamental for the retrieval process.

The proposed architecture is culturally based on the two following arguments. On
the one hand, avoiding the currently widespread mindset that robot developmental ap-
proaches are to be identified with Machine Learning frameworks, we argue that contin-
uous knowledge acquisition allows for a progressive evolution of the stored knowledge
and its representation, which is based on a continuous interaction with the robot natural
environment. On the other hand, inspired by state of the art studies in Developmental
Psychology by Baddeley (2000); Eichenbaum and Howard (2001); Godden and Baddeley
(1975); Smith and Mizumori (2006); Smith and Kosslyn (2009); Tulving (2001, 2002),
we argue that an explicit addressing of the role of memory in human-robot interaction
processes is crucial in robot knowledge development.

The paper is organized as follows. Section 2 discusses relevant literature. Section 3
introduces the main concepts of the approach, as well as the system architecture. Section
4 elaborates on the conducted experiments with a specific, real-world scenario for the
application domain. Conclusions follow.

2. Related Work

2.1. Memory Models and Terminology

Albeit there is no widespread consensus about a general framework, memory models
typically assume a multi-storage organization. Two models constitute fundamental mile-
stones in the literature, namely the multi store model by Atkinson and Shiffrin (1968)
and the working memory model by Baddeley and Hitch (1974).
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Adopting a computational approach, the multi store model describes how information
is formed into memory items and organized into different memory models.
Three stores are usually identified, namely the Sensory Memory, the Short-Term
Memory (STM) and the Long-Term Memory (LTM). Different processes are
involved in the management of such an information flow. After being perceived and
properly conveyed to the brain through relevant neural pathways, sensory information
is represented inside Sensory Memory (available for less than 1 sec). If sensory infor-
mation is attended, the relevant part of it is transferred to STM, where it is processed
for immediate use (occurring between 0 and 18 sec). Then, if such a representation is
rehearsed (an elaborative process further developed by Raaijmakers and Shiffrin (2003)),
it is transferred to LTM (in principle, therein available forever). Otherwise, it is lost from
STM according to a memory-trace decay process.

The evidence for a distinction between STM and LTM is given in various studies
related to amnesia since the well-known case of patient H. M. (Squire & Kandel, 2000),
who still exhibits capabilities in retaining memories in STM but he is not able anymore
to consolidate any new memory items in LTM.

However, this model suffers from a number of limitations, namely a quite simplified
structure related to both STM and LTM, as well as a biased focus on attention and
rehearsal, which turned out not to be essential, as described in later studies.

Baddeley and Hitch (1974) proposed a model for STM (which they call Working Mem-
ory - WM) that aims at better characterizing its subcomponents, each one devoted to
represent and process different types of information. Specifically, WM consists of the
Central Executive that orchestrates the behaviors of two subcomponents, namely the
Visuo-Spatial Sketchpad and the Phonological Loop. The Central Executive is be-
lieved to deal with cognitive tasks related to logic and to make an on-demand use of
subcomponents. The Visuo-Spatial Sketchpad processes visual and spatial based in-
formation, e.g., related to any motion in the environment. The Phonological Loop
deals with symbol-mediated information (i.e., which can be written or spoken), and can
be further divided in two parts, namely the Phonological Store (linked to speech per-
ception) and the Articulatory Control Process (linked to speech production), see Jones,
Macken, and Nicholls (2004); Shaw and Tiggemann (2004).

As a consequence of follow-up experiments, the original model has been updated by
Baddeley (2000) to include a third subcomponent managed by the Central Executive,
namely the Episodic Buffer. The role of the Episodic Buffer is to mediate between LTM
and other components of WM: when WM is capable of identifying an observable relevant
event (as a result of Visuo-Spatial Sketchpad and Phonological Loop processing),
the Episodic Buffer appropriately manages its storage in LTM. Nowadays, there is no
shortage of reasons to believe that STM is made-up of a number of subcomponents. The
WM model accounts for a number of real-world functional behaviors, such as task and
verbal-level reasoning, reading and comprehension, problem solving, as well as visual and
spatial information processing.

With respect to LTM, as proposed by Atkinson and Shiffrin (1968), two parts can be
identified, i.e., explicit and implicit memory (Wood, Baxter, & Belpaeme, 2011). Explicit
memory (also referred to as Declarative Memory) refers to consciously available memory
items. It can be further divided in two subcomponents, namely the Episodic Memory
(EM) and the Semantic Memory (SM). EM is related to the encoding of generic events
localized in time. An example of EM is the set of specific event occurred during the
interaction with someone or with the environment. Knowledge about facts and their
meaning is stored in SM. Differently from the content of EM, SM is not believed to
depend on contextual information (Spaniol, Madden, & Voss, 2006). Finally, implicit
memory (also known as Procedural Memory) refers to motor action, specifically actions
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involved in the use of objects (including grasping, manipulation and tool use), as well as
body motions (Bullemer, Nissen, & Willingham, 1989).

2.2. Models of Memory Components

Although the systematic study of human memory traces back to 1960s (refer to the
book by Squire and Kandel (2000) for a historical account and the references therein),
only in the past few years a number of approaches have been presented, which aim at
modeling different aspects of human cognition and reasoning, as well as at developing
computational paradigms to encode them in robot cognitive architectures.

In the following paragraphs, we limit our attention to literature explicitly taking mem-
ory components modeling into account, possibly grounded in a robot implementation.

In the past few years, two approaches have been presented, which attempt at modeling
architectural aspects of memory as a whole, namely the work by Bellas et al. (2010) and
Morse et al. (2010). Both the approaches put a great emphasis on memory components
and their interconnections.

Bellas et al. (2010) employ the concept of Multilevel Darwinist Brain proposed by Bel-
las and Duro (2004) to develop an evolutionary behavior-based robot architecture. The
framework is based on an Artificial Neural Network (ANN) neuro-evolutionary approach.
Experiments are conducted on a Sony AIBO robot, which learns the basic sensorimotor
behaviors associated with a ball catching task. Both STM and LTM memory components
are modeled. Specifically, STM is further organized as a WM component (limited to vi-
sion processing) and an Episodic Buffer component, later elaborated by Salgado et al.
(2012). The framework allows for concurrent behavior execution and ANN-based contin-
uous knowledge evolution. A clear description of the advantages of applying evolutionary
approaches to a robot cognitive architecture is not adequately motivated. Furthermore,
the proposed framework lacks much detail about the actual organization of both STM
and LTM, as well as their mutual relationships.

A number of approaches are devoted to model specific memory components. With
respect to SM, two approaches are particularly interesting in our case, namely those put
forward by Dodd (2005) and Dayoub, Duckett, and Cielniak (2010).

The objective of the SM component designed by Dodd (2005) is to maintain informa-
tion about objects located in the environment. This is achieved using a novel architecture
combining the so-called Sensory EgoSphere later refined by Peters II, Hambuchen, and
Bodenheimer (2009), as well as SM, WM and the Central Executive. Although in-
teresting, the framework is characterized by a number of drawbacks, as follows: (i) a
priori knowledge about objects and the associated symbol grounding (Harnad, 1990)
is required; (ii) since SM is designed to model and recognize objects in a very specific
application domain, SM lacks the ability to represent anything that is not related to ob-
jects. In spite of these flaws, the framework has nonetheless the advantage of exhibiting
a partial interconnectivity between the memory items pertaining to EM and SM.

Dayoub et al. (2010) propose a SM component based on the multi store model of
human memory advocated by Atkinson and Shiffrin (1968), specifically in the context
of semantic mapping tasks carried out by a mobile robot. The robot is able to track the
displacement of several objects using omni-directional vision and it is able to provide
humans with the most likely suggestion about the location of any tracked objects within
the map. The overall behavior is managed using finite state machines. The advantages of
the framework include: (i) a strong interconnection between the representation of objects,
their locations and the capability of updating the internal model of the environment (i.e.,
the map); (ii) SM is tightly connected with the object tracking module, and it provides
humans with comprehensive information about the map as a result of a human-robot
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interaction process. Specifically, humans may pose questions such as Where was object x
the last time you have seen it? or What are the most likely locations to find object x in
the map? Since robot knowledge is only limited to object properties and locations, the
scope of questions that can be posed by humans is limited. However, the possibility of
posing questions inspired us to implement a query-based knowledge information retrieval
process.

As far as PM is concerned, the approaches by Salgado et al. (2012) and Dodd (2005)
have been considered.

The PM component by Salgado et al. (2012) stores basic skills and behaviors as a
library to ground robot learning. Specifically, a Sony AIBO robot is expected to learn a
ball catching behavior. Whilst the architecture has been designed to implement adaptive
learning techniques, it features a model of PM that turns out not to be consistent with
state of the art psychological studies. Furthermore, the information that can be obtained
as a result of human-robot interaction processes is limited due to the inability of the
system to store any information other than the learned associated behavior.

In the PM design proposed by Dodd (2005), robot motions are represented as nodes in
a graph-like structure labeled as behavior nodes, motion primitive nodes, and example
nodes. The architecture is designed to select PM nodes and to properly sequence them
(Mastrogiovanni & Sgorbissa, 2013; Ratanaswasd, Gordon, & Dodd, 2005). Even though
motions generated by sequencing robot behaviors are claimed to be fairly smooth, the PM
design is highly dependent on the employed modular controller, as it as been pointed
out by Ratanaswasd et al. (2005), the used behavior interpolator, and the trajectory
error-reduction algorithm. Furthermore, since the structure of PM nodes only contains
information about the associated behavior and the corresponding 3D trajectory, no com-
prehensive memory component interconnection is actually possible.

Finally, three approaches to model EM have been considered in our analysis, namely
the work by Jockel et al. (2007); Stachowicz and Kruijff (2012) and, again, by Dodd
(2005).

Consistently with the notion of EM, the approach proposed by Stachowicz and Kruijff
(2012) is focused on a formal framework used to represent and relate events occurring in
both space and time into spatio-temporal contexts. In particular, a hierarchy of events
is envisaged, where an event can be either atomic or complex. Atomic events can be
combined in different ways to form so-called subevents and superevents. Unfortunately,
no formal account is provided about the adopted notion of context and – above all –
its influence on the other components of the architecture. The proposed EM design also
lacks any correlations between EM and EB, specifically in view of a continuous knowledge
acquisition process while interacting with the environment.

The design for EM proposed by Jockel et al. (2007) assumes that an event is hierarchi-
cally classified as belonging to one of the following classes: perceptional event, command
event, and executive event. In this case, an event is associated with procedural callback
procedures. Among the claimed advantages of the architecture, the possibility of storing
past experiences in a life-long memory storage component, and the ability to perform
one shot learning processes. Again, no formal definition of such a notion of event is pro-
vided. This is surprising, given the argument that EM essentially consists of sequences
of events.

Finally, the EM component designed by Dodd (2005) assumes it to be a medium for
robot learning processes. Temporally sequenced records of specific events are stored as
memory items called episodes. An association is maintained between EM items and the
content of SM and WM, as well as task-related information (in a sense, mimicking the
availability of PM). Episodes are retrieved from EM using an approach similar to what
has been discussed by Anderson (1990) in the context of the ACT-R architecture. The
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Figure 1. A graphical representation of the proposed memory architecture: parts in light green corresponds to

currently implemented components.

main disadvantage of the approach is the difficulty of determining the correctness of a
retrieved episode. The authors argue that this is due to the lack of a formal context
definition. Nonetheless, our definition of EM is inspired by these design choices.

From the analysis of the literature, it emerges that two topics are fundamental to
design a memory-inspired robot framework, namely a clear design of the architecture
(including all its relevant components and interconnections) and an assessment about
how contextual information impacts on memory items storage and retrieval.

3. System Architecture

3.1. Connections with Memory Architectures

The structure of the proposed memory-inspired architecture is outlined in Figure 1. The
general design of the architecture is inspired by the multi store model by Atkinson and
Shiffrin (1968) updated with the WM model by Baddeley (2000). Each store can
be further divided in subcomponents, according to the current understanding of memory
organization in humans and other beings (Baddeley & Hitch, 1974; Wood et al., 2011).

We assume the presence of a number of sensory components feeding different parts
of the Sensory Memory. Currently, our architecture supports visual maps (in the
form of bitmaps, but other approaches may be used as well, for instance the framework
by Antonelli et al. (2014)), and a simple mechanism to represent questions that can be
posed to the system (as context-based cues), in a spirit similar to the work by Dayoub
et al. (2010), as well as robot answers (as familiarity-based cues). Visual maps corre-
spond to the basic representation used by the adopted vision algorithms. In principle,
Sensory Memory can accommodate other sensory maps, such as tactile and auditory
maps (Denei, Mastrogiovanni, & Cannata, 2015; Kallaluri, Even, Morales, Ishi, & Hagita,
2013).

In our current implementation, the visual map is manually segmented as a
perceived scene from a continuous stream of visual feed, therefore the robot’s
and human’s hand are not captured within the scene. The visual map is always
transferred to be processed in WM within the Visuo-Spatial Sketchpad. Relevant
changes in the perceived visual feed constitute scenes. The identification of scenes is
related to the formation of EM memory items (called episodes) inside the Episodic
Buffer. This process is managed by a proper computational component representing
the Visuo-Spatial Sketchpad, which we call Visual Stimuli Processor (ViSor). Inside
ViSor, visual maps are processed using color feature extraction, GIST descriptors (Oliva
& Torralba, 2006) and visual attention algorithms based on the work by Jeong, Ban, and
Lee (2008), which result is used to feed the Episodic Buffer. In other words, a
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specific image representing the changes within the environment is defined
as a scene, and scenes are used to form an episode. Multiple episodes are
encoded as collections of EM items. An event consists of several episodes
sequentially ordered based on timestamps.

Each memory item is modeled as a collection of cue-value pairs, where cues correspond
to features extracted from incoming images. On the one hand, the GIST descriptors
algorithm allows us to extract shape features for scene-wide changes detection (i.e., at
the global level) and for each detected entity (i.e., at the local level). On the other hand,
visual attention includes a saliency detection algorithm, which allows us to localize each
entity detected in the image. Schillaci, Bodiroža, and Hafner (2013) provides an
excellent analysis of the influence of saliency in a human-robot interaction
domain.

Once a scene has been captured and processed through the ViSor compo-
nent, an episode is formed and consolidated into the LTM storage. Here, the
scene is captured after the robot performs each pick and place movement.
Saliency detection has been considered in the proposed framework given the widespread
belief that it plays a central role in the human memory consolidation process and episodic
segmentation (Jeong, Arie, Lee, & Tani, 2011; Kaster & Ungerleider, 2000; Posner & Pe-
tersen, 1990, 2012).

Currently, only EM and SM have been implemented within LTM, and cue-
value pairs in LTM are represented using a relational database. Relevant
results (i.e., episodes or SM items) temporarily stored in the Episodic Buffer
are compared with the Memory Database, which keeps track of familiar SM
items and episodes, and consolidated when either they are not familiar or
not listed in the database. The bidirectional arrow connecting the Episodic Buffer
(specifically, the ViSor module) and LTM (specifically, the Memory Database) in
Figure 1 represents the ability to consolidate and recall memory items.

As postulated by Eichenbaum and Howard (2001) and Tulving (2001, 2002), human
memory is characterized by the property of undergoing a continuous, subjective re-
hearsal and active modification, which is how we actually re-experience past events
during memory recollection. Even though a precise understanding of this phenomenon
is still subject to research efforts, our framework aims at mimicking this feature of the
human memory, which without any doubt plays a central role in everyday behavior.

From a computational point of view, the choice of which information to store inside
LTM as a collection of cue-value pairs is an important design parameter for the whole
architecture. It is necessary to find a trade-off between the proper selection of image fea-
tures (i.e., to be stored as cues) best discriminating among different episodes (i.e., having
well-separable value spaces), and the need for storing the minimum amount of informa-
tion (i.e., the size of the LTM storage) given the continuous nature of the knowledge
acquisition process. Two main ideas are considered for this matter: (i) consider-
ing that every computer science problem is related to the famous “time-space
trade-off” regardless of the capacities and availability of computer memories
in the present and the future; and (ii) anticipating the increasing needs of
storing more information in a single memory item in the future (compared
with our currently implemented color and shape information). In particular,
although the capacity of computer memory is considered abundant and in-
expensive nowadays, having succinct representation of memory items allows
for more efficient memory retrieval processes, which eventually allows more
memory items to be stored, as well as boosts runtime performance.

A similar information flow can be determined when the user asks the robot to recall
previously acquired memory items. Currently, this is done using the cue-value pair based
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formalism that is mapped to specific queries in the Phonological Loop to be submitted
to LTM. The same cue-value based formalism is used to present to a human user the
robot accounts related to what has been actually recalled1.

It is noteworthy that these two information flows are not to be considered in strict
alternative. In fact, it is possible to pose questions while the robot is still acquiring new
knowledge.

The ability to manage different parts of STM is due to our implementation of Central
Executive. In human memory, the Central Executive is believed to be responsible
for processing information originating from different sources, coordinating a number of
otherwise passive subsystems, as well as performing selective attention and inhibition
strategies (Baddeley, 1996, 1998; Collette & der Linden, 2002). In the current implemen-
tation of the architecture, Central Executive is designed as a computational process
able to perform a number of tasks, as follows:

(1) Managing the encoding processes of Episodic Buffer to store relevant visual
information computed by Visuo-Spatial Sketchpad (e.g., object shapes, colors
or locations as perceived in a scene) in the form of cue-value pairs in such LTM
components as EM and SM.

(2) Performing familiarity-based information retrieval, i.e., identify relevant cues, based
on logical processes involving cue analysis and problem awareness (Mastrogiovanni,
Scalmato, Sgorbissa, & Zaccaria, 2011; Mastrogiovanni & Sgorbissa, 2012).

(3) Executing recollection processes, i.e., recalling memory items from LTM using the
results of the familiarity-based retrieval process.

(4) Supervising the Phonological Loop to analyze cue-value pairs based information
related to recalled LTM memory items.

3.2. Formal Definitions and their Meaning

In this Section, we define the most important concepts of the proposed architecture,
thereby defining the memory model upon which the framework is designed and imple-
mented. We introduce first the notion of memory item. We will later use the definition
of memory item to formally define elements in SM and EM.

Definition 1 (Memory Item): A Memory Item i ∈ I is a set of n cue-value pairs, such
as i = {(c1, v1), . . . , (cn, vn)}.

A memory item is a single element that can be used to represent any of the subcom-
ponents of LTM, such as SM, EM or Procedural Memory. In this paper, we do not
model Procedural Memory. However, it is noteworthy that we explicitly take into
account the link between the knowledge represented in SM and EM (Squire & Kandel,
2000). As we discussed in Section 2.1, SM stores general-purpose knowledge about the
environment in terms of concepts and their relationships (which are, in a sense, inde-
pendent from the particular robot and therefore transferable to other robots), whereas
EM represents robot experiences (in the form of episodes) anchored to a specific point
in space and time (which is typically robot-dependent).

Definition 2 (Entity): An Entity ε is a grounded memory item iε ∈ E, with E ⊂ I.

Entities are a representation of objects in the environment, humans and other agents
acting therein. Each entity is mapped to a set of grounded cue-value pairs, where the

1Current work is devoted to design and implement a speech-based dialog system grounded with respect to the
cue-value pair based formalism.
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semantics associated to cues globally define the entity as a type.

Definition 3 (Object): An Object n is a grounded memory item in ∈ N , with N ⊂ I,
where in is defined in terms of three multi-valued cues, i.e., name, shape and color, and
by a number of Boolean cues, i.e., graspable and manipulable.

Each memory item corresponding to an object is characterized by specific values as-
sociated with its constituent cues. For instance, the shape cue can assume one of the
values cube, plane, disc, cylinder and sphere, as well as custom for general shapes. As
a consequence, a bluebox object is modeled as a specific collection of grounded cue-
value pairs, as follows: {(name, bluebox), (shape, cube), (color, blue), (graspable, true),
(manipulable, true)}.

Definition 4 (Location): A Location l is a grounded memory item il ∈ L, with L ⊂ I,
where il is defined in terms of one numerical cue corresponding to a 3-element vector
pos3d and one Boolean cue type.

A memory item representing a location can refer to either an absolute or relative 3D
position (expressed using the type and pos3d cues, respectively), whose semantics de-
pends on the specific Cartesian frame with respect to which the location is expressed. For
example, the description of the previously introduced bluebox object can be augmented
with a description {(pos3d, (0.72, 0.13,−0.29)), (type, relative)}.

We also introduce a notion of time inspired by a simple linear time logics approach
(Emerson & Halpern, 1986), as follows.

Definition 5 (Time Instant): A Time Instant t is a cue-value pair, with t =
(time, integer).

Time instants are represented in Unix epoch time, which are positive integer
numbers.

Definition 6 (Semantic Memory): A Semantic Memory SM is a collection of k
grounded memory items {ı1, . . . , ık}, which can be divided into 5 disjoint sets, such that
SM = {N,H,L, T,W}, where: N represents known (or previously identified) objects, H
stores information about humans or other agents the robot interacts with, L is related to
entities spatial information (locations), T represents entities temporal information (time
instants), whereas W is an association between lexical knowledge and entities.

We separately model N and H in order to account for inanimate objects and intentional
agents, respectively. As previously noted, in this paper we focus on the set N and not on
H, which is characterized by the appropriate knowledge to model the objects the robot
interacts with.

The representation of object is first consolidated as an SM item whenever a novel
object is detected by the ViSor module, through a process which resembles habituation
(Squire & Kandel, 2000).

Definition 7 (Episode and Scene): An Episode σ̂ is a memory item succinctly
representing the captured visual changes of the environment, which is a col-
lection of b grounded memory items {iσ̂,1, . . . , iσ̂,b}, which occur at a time in-
stant tσ. The visual change occurring at a time instant tσ is defined as a
scene, which is a sequence of visual feed {σ1, . . . , σb}.

In particular, a scene is an instance of a captured image in the visual stream, which
is then later processed using the ViSor module and yields saliency informa-
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tion. The saliency information is further processed through a global and local
processing module of color and shape for each detected object, which results
are used to form an episode (an EM item). Episodes can employ both memory
items related to objects represented therein as well as global descriptors of a scene, such
as the number of objects, through the cue count. Two subsequent scenes are separated
by a significant change in the image saliency level.

Definition 8 (Event Type): An Event Type ξ is a cue-value pair, with ξ =
(type, active|passive).

Events are classified as being active or passive. An active event originates from one or
more actions performed by the robot itself, whereas a passive event either corresponds
to actions carried out by humans interacting with the robot or to something that simply
happens in the robot workspace and is perceived in a scene. In this paper, we con-
sider both active and passive events. Although the robot witnesses events
that are influenced by its own motions, it should be noted that since PM
is not considered at the moment, active events will not influence conducted
experiments.

Definition 9 (Event): An Event η is a collection of s episodes {σ̂η,1, . . . , σ̂η,s}, with
associated type information.

An event is defined by two corresponding initial and final scenes (represented as
episodes), namely σ̂η,1 and σ̂η,s, as well as by all intermediate scenes. In principle, any
two events can be distinct, overlap, or one can include the other, thereby implementing
the whole set of relationships between intervals defined by Allen (1983).

Definition 10 (Episodic Memory): An Episodic Memory EM is a collection of z events
{η1, . . . , ηz}.

The knowledge retrieval process is based on the notion of context.

Definition 11 (Context): A Context γ is a collection of any m cue-value pairs, with
γ = {(c1, v1), . . . , (cm, vm)}.

Differently from memory items, contexts are not part of the set I, meaning that they
do not necessarily correspond to definitions of entities, objects or locations. In our frame-
work, contexts are used in the knowledge retrieval process to recall memory items stored
in LTM. As it will be discussed in Section 3.3, humans interacting with the robot can
pose a number of questions, which are formally encoded as contexts.

To this aim, cues can be classified as general-purpose and context-dependent, depend-
ing on their memory scope. For instance, cues may be appropriate to all the available
memory components (e.g., SM and EM), or be related to one component exclusively
(e.g., SM only).

Definition 12 (General-purpose Cue): A cue c is general-purpose if it refers to a mem-
ory item i that is not specific to any memory component.

A context using a general-purpose cue may include, for instance, information related
to both SM and EM.

Definition 13 (Context-dependent Cue): A cue c is context-dependent if it refers to a
memory item i that is specific to a particular scene observed by the robot.

As we discussed in Section 2.1, the visual stream in processed by Visuo-Spatial

11
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Sketchpad (represented by the implemented ViSor module) to form episodes,
which are consolidated in LTM as part of EM through the Episodic Buffer. Context-
dependent cues are used to retrieve memory items stored in EM.

In a complete sensorimotor process, it is believed that the consolidation process involves
SM, EM and Procedural Memory, as discussed by Tulving (1985) and Squire (2004).

3.3. Knowledge Acquisition and Retrieval

In the proposed framework, LTM is considered as a virtually infinite storage, where
information in the form of memory items can be represented indefinitely through synaptic
consolidation. On the one hand, SM is expected to store intrinsic properties of objects,
which do not change over time, such as their shape and color. On the other hand, EM
stores events described as a collection of episodes, each one representing intrinsic as
well as extrinsic properties, which may change over scenes, such as the number of objects
(i.e., the count), as well as their locations and mutual displacements (e.g., leftMost,
rightMost, front and back).

As discussed in Section 3.2, a context is represented as a collection of cue-value pairs.
When an event is recalled by retrieving the proper memory items, a context has the effect
of filtering away irrelevant episodes, thereby limiting the overall number of matching
episodes. As an example, let us assume to have presented a robot with a scene consisting
of three objects, one of which is a blue box. The memory retrieval process may include a
question like: What do you know about a blue box when three objects have been presented?
The question is translated in a query defined as a simple cue-value pair (shape, box ),
whereas the context may be expressed as {(color, blue), (count, 3)}.

In order to implement the context-based knowledge acquisition and retrieval process,
we use a Familiarity Filtering Index (FFI) as a part of the implemented WM. The
index is meant at mimicking cue familiarity phenomena that can be observed in human
cognition. The concept of familiarity in humans is exhibited through the ability to recog-
nize an event or an object, even without knowing the details associated with the process
leading to the storage of the corresponding memory items, as well as the relationships
with other relevant elements, as discussed by Henson, Cansino, Herron, Robb, and Rugg
(2003); Henson, Rugg, Shallice, Josephs, and Dolan (1999).

In Section 3.2, we defined an object as a set of cue-value pairs, two of which are shape

and color, respectively. Although the corresponding values are expressed in symbolic
form, they are associated with deterministic and statistical information within WM:
shape with GIST descriptors, color with mean and variance of object information in
the hue space. In the current implementation, shape and color are the features used to
compute FFI.

Definition 14 (Familiarity Item): A Familiarity Item f is a cue-value pair, such as
fs = (shape, GIST ) or fc = (color, (mean(hue), var(hue))).

Familiarity items define a set of cue-value pairs mapping symbolic representations of
perceived objects to their counterparts in feature space.

Definition 15 (Familiarity Filtering Index): A Familiarity Filtering Index φ is a col-
lection of q + w familiarity items, such that φ = {fs,1, . . . , fs,q, fc,1, . . . , fc,w}.

FFI is used in both knowledge acquisition and retrieval. During knowledge acquisition,
FFI is used to determine whether a detected object is familiar to the robot by checking
its shape and color values in feature space. If the values were not present in FFI, then
the object would be considered new, otherwise it would be considered familiar. In case
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Data: A set {fc,1, . . . , fc,w} of w color features
Result: A symbolic value for the color cue
foreach color feature fc,i do

mi ← mean(hue(fc,i))
vi ← var(hue(fc,i))
foreach familiarity item fc,j ∈ φ do

mj ← mean(hue(fc,j))
vj ← var(hue(fc,j))
di,j ← dist((mi, vi), (mj , vj))

end
d∗j = min(di,j)
f∗c,j = argj(d

∗
j )

if d∗j < Ωc then
value ← color associated with f∗c,j
f∗c,j ← update with fc,i

else
value ← ask the human for new colour name
φ ← φ ∪ fc,i

end
return value

end
Algorithm 1: Knowledge acquisition: familiarity filtering for the color cue.

a familiar object was detected, nothing would be consolidated in SM. This mechanism
resembles habituation (Squire & Kandel, 2000), a memory consolidation strategy widely
employed by humans within implicit memory.

Algorithm 1 describes the familiarity filtering process associated with color cues dur-
ing knowledge acquisition. Given an episode σ̂, we assume that Visuo-Spatial Sketch-
pad produces a set of color features, each one corresponding to a detected object. The
procedure loops on those features. For each feature, it computes mean and variance of
the corresponding hue information. Then, for each familiarity item in φ, the probabilistic
distance between the item and the feature is computed. To this aim, many probabilis-
tic distance measures can be employed, e.g., the Mahalanobis distance is a commonly
adopted one. If the smallest distance is below a given threshold Ωc, which is experi-
mentally tuned at 70%, then the feature is considered familiar, and the corresponding
familiarity item color cue is retrieved. Given the association with the feature, the re-
trieved familiarity item is updated with the new information. It is noteworthy that this
implicitly implements a clustering process as an interactive human-robot interaction pro-
cess. Otherwise, the color feature is considered to be a new color, which is added to the
set of familiarity items.

Algorithm 2 describes a similar procedure for the shape cue. As previously discussed,
GIST descriptors are used. Differently from color information, here we use a simple
Euclidean metric to compute the distance. Again, a threshold Ωs is experimentally set-
up at 70% to discriminate between familiar and unfamiliar shapes.

The knowledge acquisition process is outlined in Algorithm 3. When the WM mod-
ule detects significant changes in the visual stream, new memory items are consoli-
dated within LTM, involving both EM and SM. Specifically, EM is augmented by novel
episodes, whereas SM is updated with new SM items. The Algorithm assumes the avail-
ability of a set of shape and color cues, and full access to EM and SM. First, an empty
episode σ̂i is initialized. Then, Algorithm 1 and Algorithm 2 are sequentially called to
retrieve symbolic information for shape and color from image features, respectively. For
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Data: A set {fs,1, . . . , fs,q} of q shape features
Result: A symbolic value for the shape cue
foreach shape feature fs,i do

GISTi ← GIST description of fs,i
foreach familiarity item fs,j ∈ φ do

GISTj ← GIST description of fs,j
di,j ← dist(GISTi, GISTj)

end
d∗j = min(di,j)
f∗c,j = argj(d

∗
j )

if d∗j < Ωs then
value ← shape associated with f∗s,j

else
value ← ask the human for new shape name
φ ← φ ∪ fs,i

end
return value

end
Algorithm 2: Knowledge acquisition: familiarity filtering for the shape cue.

Figure 2. Object recognition rate based on the available knowledge at scene capturing time.

each detected object, shape and color information is consolidated as SM. Finally, the
current episode σ̂i is built encoding time, name, shape, color (and other cues, e.g.,
graspable, manipulable or pos3d) for each object therein. After the current episode
σ̂i is formed, then it is added to LTM storage.

As an example, let us consider Figure 3(a), where a first scene of a knowledge acquisi-
tion process is shown. The robot performs pick and place movements on several
objects available in a particular workspace configuration until the final con-
figuration shown in Figure 3(i) is obtained. Successfully detected objects are
enclosed with a bounding box, and subject to local feature extraction pro-
cess. In scene 1, proper bounding boxes are associated with detected objects, which are
called soft vinyl toy, tennis ball and orange lamp. Since this is the first captured
scene, none of the objects are familiar. Therefore, three color familiarity items are cre-
ated, corresponding to colors black/yellow, light green and orange, and three shape
familiarity items are created, labeled as custom, ball, and dome. As a consequence, nine
cue-value pairs are added to LTM storage (i.e., three SM items per object), for name,
shape and color, respectively. Furthermore, one scene is stored in the LTM as a col-
lection of cue-value pairs for each object (represented by an episode), including also
cues that are specific to the scene.

After objects configuration is changed from Scene 1 to Scene 2 (see Figure 3(b)), an-
other scene is captured and processed by the ViSor module. For the statistics,
Figure 2 shows the average recognition value from both color and shape,
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Data: A set {(fs, fc)1, . . . , (fs, fc)o} of o detected objects, represented using shape

and color features, current EM, current SM
Result: An event η to be encoded in EM, a collection of grounded memory items i

to be stored in SM
σ̂i = ∅
{fs,1, . . . , fs,o} ← Extract from {(fs, fc)1, . . . , (fs, fc)o}
{(shape, s1)1, . . . , (shape, so)o} ← Algorithm 1 on {fs,1, . . . , fs,o}
{fc,1, . . . , fc,o} ← Extract from {(fs, fc)1, . . . , (fs, fc)o}
{(color, c1)1, . . . , (color, co)o} ← Algorithm 2 on {fc,1, . . . , fc,o}
foreach new detected object j do

n ← ask the human for a new object name
nj ← (name, n)
SM ← SM ∪ nj
SM ← SM ∪ (shape, sj)j
SM ← SM ∪ (color, cj)j

end
t ← current time
tσi
← (time, t)

σ̂i ← σ̂i ∪ tσi

s ← ask the human for the scene name

sσi
← (name, s)

σ̂i ← σ̂i ∪ sσi

foreach detected object j do
σ̂i ← σ̂i ∪ nj
σ̂i ← σ̂i ∪ (shape, sj)j
σ̂i ← σ̂i ∪ (colour, cj)j
. . .

end
η ← Create from σ̂i
EM ← EM ∪ η

Algorithm 3: Knowledge acquisition process in scenes.

which determines whether an object is familiar. The value for each scene,
starting from scene 2, is determined from the robot knowledge available dur-
ing the time when that particular scene is captured. Now, although all the
objects in the scene seem familiar, the statistics shows that softtoy in scene
2 has 67.9% recognition rate. When the recognition value of an object is less
than the threshold value, which is set at 70%, a new SM item is formed and
consolidated. Here, to refer to them as the same object, we set the same
name with different ID number as the human feedback, such as softtoy-2 or
orangelamp-2, considering that accuracy is not a major issue in our experi-
ments. Now, all the objects in the scene are familiar to the robot. However, since the
objects have been displaced, a new scene representation (in the form of cue-value pairs)
is generated, a new episode is created and consolidated in EM.

The same pattern applies to all the sequences of scenes in Figure 3 up to Scene 8, when
a new object (a wooden cube) is introduced. Since the wooden cube is unfamiliar to the
robot, new familiarity items for shape and color (corresponding to cube and brown,
respectively) are created and stored as SM items. Proper information representing the
new scene is consolidated as an episode (EM item). Finally, in the last scene of
Figure 3(i), the orange lamp is removed. If we look at Figure 2, the recognition
value of the cube is 99.02% with respect to the available knowledge at that
time (i.e., compared with scene 8, since it is the only scene where a cube is
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

(g) Scene 7 (h) Scene 8 (i) Scene 9

Figure 3. Workspace configurations exposed to Baxter.

detected). Also, since the orangelamp is removed in scene 9, no orangelamp is
detected (which corresponds to the recognition value of 0% in the Figure 2).
Therefore, three objects are detected in scene 9, which are all familiar to the robot. As
a consequence, no new information is acquired and consolidated as SM, whereas relevant
information about the scene is consolidated as an episode.

During knowledge retrieval, which in our scenario happens as part of human-robot
interaction tasks, FFI is used to recognize whether the input provided by a human (in
terms of cue-value pairs arranged in a context) elicits some familiarity with any items
that have been consolidated at a previous stage.

Algorithm 4 shows how familiarity filtering is used during knowledge retrieval. The
Algorithm assumes a context is given in the form of a collection of cue-value pairs,
and returns a set of event-related information Γ∗, initialized as empty. Ideally, the
Algorithm iterates on all the episodes stored as part of events in LTM (specifically
EM). Each cue-value pair is compared with each memory item of each scene, in order
to check for familiarity: if the distance between any of these two entities is below a given
threshold Ωf , we say that the corresponding cue is familiar to the robot since it resembles
the scene itself. The corresponding familiar event is included in Γ∗.

Two remarks can be made: (i) the semantics associated with distance between cue-value
pairs depends on the particular cue, thereby encompassing probabilistic (i.e., involving
mean and variance) or deterministic (i.e., Euclidean) distance measures; (ii) different
thresholds for familiarity may be used: for instance, one may argue that a single familiar
cue does not make a corresponding scene familiar, as well as one single familiar scene
does not make the corresponding event familiar.

It is now possible to discuss how the proposed architecture addresses the requirements
posed beforehand. On the one hand, the robot is able to encode scenes, and consolidate
the associated events into memory items that can be recalled afterwards. On the other
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Data: A context γ of m cue-value pairs γ = {(c1, v1), . . . , (cm, vm)}
Result: A list of e relevant event-related information Γ∗

Σ = ∅
Γ∗ = ∅
foreach event ηj ∈ EM do

σ̂j ← retrieve the episode corresponding to ηj
Σ ← Σ ∪ σ̂j

end
foreach pair (ck, vk) ∈ γ do

foreach episode σ̂z ∈ Σ do
foreach memory item iσ̂,b ∈ σ̂z do

dk,b ← dist((ck, vk), iσ̂,b)
if dk,b < Ωf then

ηj ← retrieve the episode corresponding to σ̂z
Γ∗ ← Γ∗ ∪ ηj

end

end

end

end
return Γ∗

Algorithm 4: Knowledge retrieval: familiarity filtering during recollection.

(a) Baxter (b) The workspace layout

Figure 4. (a) Our Baxter robot in front of the table. (b) Possible locations of objects on the table.

hand, memory item retrieval exploits contextual information to retrieve events stored in
the robot’s memory, on the basis of the robot personal experience in EM. As long as
the robot keeps perceiving new scenes, its memory is expected to grow, but encoding
only relevant events. It is noteworthy that a mechanism usually associated with memory
storage, namely forgetting, is currently under investigation.

4. Recollection of Personally Experienced Events

4.1. Scenario

In order to validate our framework and the associated hypotheses, we developed two in-
tegrated scenarios: the first for robot-environment interaction, the second for
human-robot interaction. Our experiments consist of two phases: progressive
knowledge acquisition and memory retrieval. During progressive knowledge
acquisition, the robot-environment interaction involves a Baxter robot per-
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(a) Initial configuration (b) Final configuration

Figure 5. Configurations of objects on the table in front of the robot.

forming pick and place operations on objects in the workspace, and at the
same time, passively observing the changes occurring in a scene (Figure 4(a)). Objects
are moved within, inserted in and removed from the robot field of view (Figure 4(b)).
The visual stream (a scene) is captured and manually segmented after the pick and
place operation is performed, therefore both robot hand and human hand are not cap-
tured within the scene. After being captured, the scene is analyzed both globally (i.e., by
means of the saliency of detected objects and areas of detected movements) and locally
(i.e., determining such information as color, shape, position, and size). This yields an
episode per scene, which is consolidated in LTM. The second phase (memory re-
trieval) represents the human-robot interaction step, in which a human may
pose questions to Baxter regarding its past experience.

In the current procedure, we assume that: (i) no occlusion occurs between
objects in the scene; and (ii) no forgetting mechanism is employed, i.e., the
knowledge acquired by the robot develops monotonically. The system has been
implemented using the ROS framework2. Each component is implemented as a collection
of ROS nodes, whereas the communication between components is managed using ROS
topics. The workstation used in our experiments is equipped with an Intel R©Core TMi7-
4712MQ CPU, 2.30GHz clock frequency, and 16GB of RAM. The Baxter left hand camera
is used as the main perception device. The query component is implemented as a simple
user interface. Once provided by a human, the user interface sends the given cue and
context data to a processing server, and then shows the result once it is available.

4.2. Interaction Procedure

As previously pointed out, we present progressive knowledge acquisition and memory
retrieval as two separate stages. Nonetheless, it is possible to execute them concurrently:
in this case memory retrieval operates on the currently available knowledge.

4.2.1. Knowledge Acquisition

Initially, three objects (i.e., a black and yellow soft vinyl toy, a tennis ball and an orange
lamp) are located in the robot field of view, as shown in Figure 5(a).

To avoid occlusions within the robot field of view five distinct locations on the table,
which are labeled as A to E, have been chosen. The locations are arranged in two rows
(namely, front and back, as depicted in Figure 4(b)). Based on such a configuration,

2The code is available at https://github.com/ferdianap/eris
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objects are initially placed in a subset of available locations, and it is possible to move
them into the remaining available locations during the interaction. Outside the robot field
of view, a separate area is used to temporarily store other objects to be later introduced
in the scene. The corresponding locations are called X, Y and Z.

In our experiment, each object is presented to the robot beforehand, in order to boot-
strap the representation using color and shape information. As a consequence, during
scene 1, Baxter is able to directly recognize the detected objects using the previously
introduced familiarity index. Furthermore, each object presented to the robot is provided
with a label. This allows the robot to associate the statistical measurements of each ob-
ject features with a symbol. In the case of the initial configuration, the label soft toy

corresponds to the object characterized by the black/yellow color and a complex shape
labeled custom1, the label orange lamp is associated with the object characterized by
an orange color and a dome shape, whereas tennis ball has a light green color and
a sphere shape. For a robot architecture explicitly adapting to human knowledge, it
is noteworthy that such labeling process may require either a human supervision or a
specifically designed learning approach.

In the initial configuration (Figure 5(a)), three objects are present in the scene: the
soft toy in A, the tennis ball in B, and the orange lamp in E. Two more objects,
namely a wooden cube and a purple cube are placed in Y and Z, respectively.

The robot acquires the scene and consolidates it within LTM. Then, a human per-
forms a sequence of object displacements from the initial position to the final configura-
tion shown in Figure 5(b). During each step, Baxter captures and assesses the scene by
determining position, color and shape of each object. The sequence is as as follows:

(1) move soft toy from A to D
(2) move orange lamp from E to C
(3) move soft toy from D to A
(4) move soft toy from A to E
(5) move orange lamp from C to A
(6) move soft toy from E to D
(7) move wooden cube from Z to E
(8) move orange lamp from A to Z

4.2.2. Memory Retrieval Process

While memory items are stored, it is possible to query the robot memory about them.
Currently, this is done using a simple user interface, through which a human can provide
memory cues, their values and different contexts. On the basis of both cues and contextual
information, the familiarity filter is used to retrieve relevant memories. Examples of
questions that can be posed to the robot are listed in Table 1.

Table 2 translates the previous questions into formal notation. It is noteworthy that
such labels as leftmost, rightmost, orange, etc., are associated with specific numerical
ranges that refer to object parameters and the geometry of the scene.

4.3. Results

Based on the workspace layout depicted in Figure 4, captured scenes are
shown in Figure 3 after each pick and place action. Scenes 1 to 7 represent config-
uration changes related to objects that are present in the robot field of view from the
beginning, whereas scenes 8 and 9 represent the insertion and the removal of an object,
respectively. As a consequence of this sequence, nine episodes and four SM memory
items are stored in LTM.
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Table 1. Results corresponding to given questions.

No. Question Answer
1 What orange objects do you know? orange lamp

2 What color was the leftmost object, black/yellow (scenes 1, 2, 3, 4),
when three objects were presented? light green (scene 5),

orange (scenes 6, 7)
3 How many objects were presented, when 3 (scenes 1, 2, 3, 4, 5)

the orange lamp was the the rightmost?
4 When two objects were presented, none

what shape the leftmost object had?
5 When the soft toy was in the front, orange lamp (scenes 2, 3, 5),

which object was the rightmost? soft toy (scene 6),
tennis ball (scene 7),
wooden cube (scenes 8, 9)

6 Is the wooden cube ever at the back, yes (scene 9)
when three objects were presented?

Table 2. Input sets corresponding to possible questions.

Question Cue Value Position Shape Color Count
1 color orange - - - -
2 color - leftmost - - 3
3 count - - dome orange -
4 shape - leftmost - - 2
5 position rightmost front custom1 black/yellow -
6 position back back cube brown 3

The first posed question has no context associated with the main cue. It refers to
orange objects so far known to the robot. When the sequence of actions performed by
the human is completed, only one orange object is known to the robot, namely the
orange lamp, hence the result in Table 1. The second question is about the color of the
leftmost object when only three objects are detected. The result shows that an object
with a black/yellow color was detected from scene 1 to 4, a light green object in
scene 5, and an orange object in scenes 6 and 7. The answer to the third question is
that three objects were detected when the orange lamp was detected in the rightmost

location. For the fourth question, none is returned as a result because it never happens
that only two objects are detected. The fifth question is about the rightmost object
that is detected when the soft toy is in the front row. Finally, the last posed question
demonstrates the capability of the system to check the occurrence of a particular event.
In this case, the expected values for the cue and the context are provided in input.

4.4. Discussion

Interconnectivity analysis. The purpose of the experiment is to analyze the interconnec-
tivity between memory components, specifically as far as memory items are related to
the physical properties of the objects contributing to a particular event (i.e., the SM-EM
interconnectivity). In our experiments, since the robot acts only as a passive observer,
we do not focus on the SM-PM and PM-EM interconnectivity.

Since the location of objects changes as a consequence of human actions, their geo-
metrical features (e.g., leftmost or rightmost) and the rows they are located in (i.e.,
front and back) change as well. Such changes are enough for use to test the SM-EM
interconnectivity.
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(a) Correct objects detection in Scene 4

(b) False detection of wooden cube in Scene 8

(c) False detection of wooden cube in Scene 9

Figure 6. Successful and failure cases in captured scenes (left: saliency map, right: object detection).

The result of the first question shows that the system can recall memory items even
in absence of contextual information. One of the main characteristics of contextual in-
formation is its inherent capability to bridge cues and experienced past events. When no
specific context is given, memory recollection only involves general knowledge
stored in SM. Since contextual information is always provided in the other questions,
recollection in those cases affects both EM and SM.

The results for the second question are related to many scenes, i.e., the black/yellow

color is detected in scenes 1 to 4, light green in scene 5, and orange in scenes 6 and 7.
In this case, information stored in EM is fundamental to identify initial and final scenes
(i.e., the episodes) related to changes in the provided cue. Therefore, an event in which
the black/yellow soft toy is in the leftmost position is detected to occur from scene
1 to scene 4. A second event related to the leftmost position refers to the tennis ball

in scene 5, whereas a similar event occurs in scenes 6 and 7 involving the orange lamp.
Results related to the third and the fourth question can be interpreted in a similar

way.
No results are given for the fourth question, because the robot did not experience any

events in which only two objects were presented.
In the result for the sixth question, both the cue and its value are provided, as well

as the context. This shows the ability of the proposed architecture not only to retrieve,
but also to check for the occurrence of an event, which is based on the value given with
respect to the context.

Wrong interpretations in scenes. Figure 6(b) and Figure 6(c) depict a case of
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wrong interpretation of a scene in the image processing phase, where each
detected object should be enclosed in a blue rectangle. On the one hand, since
saliency-based object detection is employed, several factors affect saliency
results, including the mutual distance between objects, lighting conditions,
and background colors. On the other hand, the object detection module is
based on a number of assumptions and parameters, based on the fact that
objects are assumed to correspond to the salient areas in the scene. One
obvious drawback of the employed approach is that an object that has the
same or a similar color of the background may be very difficult to identify.

As an example, Figure 6(b) and Figure 6(c) show a false detection of the cube
at the right hand side of the scene. In Figure 6(b), the detected region of
the tennisball is smaller compared to the one in Figure 6(a) or Figure 6(c).
We hypothesise these issues to be caused by a number of a priori defined
and manually-tuned parameters, such as the amount and the size of saliency
blob. If we have a closer look at the salience region of the cube in Figure 6(b)
and Figure 6(c), we discover it is rather faint compared to the other detected
objects within the scene. The fixed values for the parameters cause these
issues, which explains that fact that the detected cube region is not as big as
it should be. Nevertheless, since our algorithm is modular, modules employed
in our architecture can be replaced with more accurate ones, to improve
performance.

As far as a memory-based architecture is concerned, such misinterpretations directly
map to wrong memories, which may lead to inconsistencies among episodes. This is
directly related to the well-known symbol grounding problem argued by Harnad (1990).
Such problems lead to the need to address research challenges related to knowledge
revision, rebuttal and forgetting.

5. Conclusions

In this paper, we present and discuss a novel cognitive architecture that allows robots
to form memories related to their perceptions. We argue that two main characteristics
are required to design such an architecture: on the one hand, we adopt a bio-inspired
multi-store model that divides memory in components with different capabilities, and we
try to mimic those capabilities; on the other hand, we integrate such a design with the
use of contextual information, which is fundamental for an efficient memory formation
and retrieval. Memories are represented using sets of cue-value pairs capturing relevant
features of objects and the robot workspace.

As a case study scenario, we implemented a human-robot interaction where the robot
(for the moment, only passively) observes what happens in the environment: humans can
displace different objects thereby generating events for the robot to remember. Stored
memories can be retrieved using a question-answering process.

Current work includes a more structured representation of objects, an improved def-
inition of events, the integration of memories generated by robot’s own actions, and
mechanisms to allow a robot to revise and change its memories (including forgetting
specific events).
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