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Abstract. OSEK/VDX, a standard of automobile OS, is proposed to
support the development of high-quality automotive applications. With
its widely adopted, more and more automotive applications have been de-
veloped based on OSEK/VDX OS. As the continuously increasing com-
plexity in the development of applications, how to efficiently develop
an application is becoming a challenge. A primary problem is the re-
quirement specification may not be accurately and easily understood
by the developers carrying out different tasks. The major reason is the
usage of informal languages or notations in the specification. To solve
this problem, formal specification provides a feasible solution. However,
some difficulties (e.g., high requirement of significant abstraction and
mathematical skills) has hindered the widely usage of formal method.
To address these difficulties, SOFL, a formal engineering methodology,
has been proposed. In this paper, in order to investigate and study how
SOFL can be used to help develop an OSEK/VDX application, we con-
duct a case study of cruise control system. Through the case study, we
can see that SOFL specification can effectively help developer to develop
an OSEK/VDX application throughout the development process.

1 Introduction

With consumers’ insatiable appetite to pursue a better driving experience, more
and more automotive applications have been developed. In order to support the
development of high-quality automotive applications, and resolve the problem
of increasing software content in automobiles, OSEK/VDX [1] [2], a standard of
automobile OS, was proposed in 1994. It has been widely adopted by many au-
tomobile manufacturers to design and develop an automobile OS, such as BMW,
Opel, and Volkswagen. With its widely adopted, a growing number of automo-
tive applications have been developed based on OSEK/VDX OS. However, as
the continuously increasing complexity in the development of applications, how
to efficiently develop an application is becoming a challenge.

A primary problem is the requirement specification may not be accurately
and easily understood by the developers carrying out different tasks. The major
reason causing that problem is the notations and languages used in the spec-
ification lack a precise syntax and semantics. These notations and languages
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inevitably associate ambiguity and may lead to misunderstanding. To solve this
problem, formal specification gives a feasible solution. With precise constrain of
semantics and syntax, formal specification can precisely define the behavior of
the software, and provide a firm basis for next developers to design and verify
the program.

However, there exist some difficulties in using formal method. For example,
it requires significant abstraction and mathematical skills; it usually costs more
in time and human effort for analysis and design [3]. These difficulties have hin-
dered the widely usage of formal method. To address these difficulties, SOFL, a
formal engineering methodology, has been proposed in [3] [4]. It proposes changes
to software process, notation, methodology, and support environments for con-
structing systems, which makes formal methods more practical and acceptable.

In this paper, in order to investigate and study how SOFL can be used to
help develop an OSEK/VDX application, we conduct a case study of cruise
control system. Through the case study, we can see that SOFL specification can
effectively help developer to develop an OSEK/VDX application throughout the
development process.

The remainder of this paper is organized as follows. Section 2 gives an
overview of our developing process. The formal requirement specification of the
cruise control system is shown in section 3. In section 4, the design and imple-
mentation of the system is given. Simulation and verification of the developed
application is illustrated in section 5. Section 6 concludes the paper and gives
future work.

2 Overview

Our developing process is divided into three stages. The first stage is for require-
ment specification. Through a survey of various cruise control systems equipped
in different kinds of automobiles, the primary functions of a cruise control sys-
tem is given. According to the given functions, a formal requirement specification
based on SOFL notations is documented.

According to the specification, the next stage is to design and implement the
cruise control system. As the cruise control system is developed as an application
running on an OSEK/VDX OS, the design and implementation needs to adhere
the OSEK/VDX standard, which means the system should be implemented as
a multi-threaded software. From the SOFL specification, we find the design and
implementation is fairly intuitive. It means SOFL is suitable to construct a
requirement specification for an OSEK/VDX application.

After implementation, the last state is verification. In order to completely
check OSEK/VDX applications, model checking [9][10] as an exhaustive tech-
nique can be applied to verify the OSEK/VDX applications. There exist many
model checking methods that have been applied to verify the general multi-
threaded software [11] and sequential software [12]. However, these existing
model checking methods cannot be directly employed to precisely verify the
OSEK/VDX applications, since the execution characteristics of OSEK/VDX ap-
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MSRP: 81.00 EUR

Cruise control system

Fuelsaving speed regulation: The cruise control system maintains any speed as of approx. 30 km/h. Particularly beneficial on long journeys. Once the desired
speed has been reached, the system is simply activated by operating cruise control lever. Operating the brake or clutch pedal deactivates the cruise control
system immediately.

Models:

A3 20032007
A3 20062008
A3 20092012
A3 Cabriolet 20082014
A3 Sportback 20052008
A3 Sportback 20092013
S3 20072008
S3 20092013
S3 Sportback 20092013

Fig. 1. Function buttons on the control lever of cruise control system. (The figure is
from the home page of Audi)

plications are different from the sequential software and general multi-threaded
software. In order to apply existing model checking methods to verify the system,
we translate the developed cruise control system into a sequential software.

Moreover, based on SOFL specification, we can easily extract the checking
properties which are translated into assertions inserted into the translated se-
quential software. After this, the existing model checkers (e.g., SPIN and CBMC)
can be employed to verify the cruise control system.

3 Formal Requirement Specification

3.1 Cruise Control System

Cruise control system is a servomechanism that can maintain a constant vehicle
speed as set by the driver. It accomplishes this function by measuring the vehicle
speed, comparing it to the set speed, and automatically adjusting the throttle
according to a control algorithm. It is usually used for long drives across high-
ways. By using the cruise control system, drivers do not need to control the
throttle pedal to maintain the speed of vehicles, which can alleviate the fatigue
of drivers. Meanwhile, it can reduce the unnecessary change of speed, which usu-
ally results in better fuel efficiency. With these advantages, cruise control system
has now been widely equipped in various brands of automobiles, such as BMW,
Audi, and Volkswagen.

Cruise control systems developed by different automobile manufacturers usu-
ally have different auxiliary functions. Fig. 1 shows control lever of a cruise
control system equipped in an Audi automobile. A driver can activate different
functions by pressing the function buttons on the control lever. Button ON and
OFF are to turn on and turn off the system, respectively. After system turns on,
when the button SET is pressed, if the speed of vehicle is within a specific speed
interval which is supported by the cruise control system, the system will start to
maintain current vehicle speed until a driver presses button OFF, or CANCEL,
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or steps on brake. SPEED+ and SPEED- is used to adjust the set speed when
system keeps on maintain current vehicle speed. When SPEED+ is pressed, the
set speed will be increased, and the system will increase current speed to the
set speed and maintain the speed of vehicle at that level. The button CANCEL

can temporarily turn off the system, meanwhile, button RESUME can resume
the system to the moment at which the system is temporarily turned off.

3.2 Requirement Specification

As our objective is to investigate whether SOFL can be used in developing
OSEK/VDX application, rather than develop a fully functional system, for sim-
plicity, we only consider parts of the functions. Moreover, to the consideration
of safety, a new CONFIRM button is provided.

After system turns on, the primarily functions required by a cruise control
system are as follows (as function button SET in Fig. 1 is not considered in our
design, in the following parts of the paper, system turns on means the system
stars to maintain current vehicle speed):

1. Let drivers increase and decrease the value of set speed. The set speed is
required within a speed interval supported by the cruise control system. To
the consideration of safety, a confirm operation is needed to confirm the
setting.

2. Keeps on maintaining the vehicle speed at the set value.

Although above specification is very simple, it still may cause misunderstanding.
For example, the sentence “a confirm operation is needed to confirm the setting”
does not clearly describe what will happen if the confirm operation is not per-
formed. A designer may think that if an operation of increasing or decreasing is
not followed by a confirm operation, it will be ignored. While another designer
may think the confirm operation is needed only when the driver has finished
the setting (maybe through multiple operations of increasing and decreasing).
In order to avoid any potential misunderstanding, as we described above, formal
notation can help greatly.

3.3 SOFL Specification

A SOFL specification is a hierarchical condition data flow diagram (CDFD) that
is linked with a hierarchy of specification modules (s-modules) [4]. The CDFD
comprises a set of condition processes and describes data flows between them,
while the linked s-modules precisely defines the functionality of the components
(condition process, data flow, data store) in the CDFD. Each condition process
in the CDFD is linked with a c-process which is defined in the s-modules and
describes functions in terms of pre and post conditions, within the specific
specification context of the module [6]. For more details in SOFL specification,
refer [3] [4].

The CDFD of cruise control system is shown in Fig. 2, and the linked s-
model is shown in Fig. 3. Each box surrounded by narrow borders in Fig. 2
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col_down

col_setact_adjust

col_cruise
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col_confirm

CRU_control

ECU

SET_adjust

SET_control

SET_update
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Fig. 2. Condition data flow diagram (CDFD) for cruise control system.

denotes a process, such as SET adjust() and CRU control(), which describes
an operation. It tasks inputs and produces outputs. Each directed line with a
labeled variable name denotes a data flow. The solid line denotes a active data
flow, while, dotted line denotes a control data flow. The box with a number
and an identifier (e.g., temp speed) is a data store which can be accessed by
processes. A directed line from a data store to a process represents the process
can read the data from the store, while, a directed line from a process to a data
store means the process can read, write, and update the data in the store. More
details about the components used in the CDFD can refer [4] [7].

The cruise control system comprises two primarily functions: set the desired
vehicle speed (through increasing or decreasing the set speed) and maintain
the vehicle speed at the set value. These two functions are triggered by a ECU()

(electronic control unit) process. Processes with names star with SET are for the
first functions, and processes CRU control() is for the second function. When
system is running, process ECU() keeps on monitoring the inputs of drivers.
Different inputs will trigger different processes to achieve different functions.
The selection of speed up, speed down, or confirm denotes the corresponding
function button on the system control lever shown in Fig. 1 is pressed by the
driver.

When button speed up or speed down is pressed, process ECU() then gener-
ates a data flow act adjust to indicate which command has actually been se-
lected, and passes this information to process SET adjust(). Based on the value
of act adjust, process SET adjust() will trigger either processes SET up()

(speed up is selected) or SET down() (speed down is selected). Process SET up()

or SET down() first reads the value of temp speed from the data store, and try
to update temp speed by increasing or decreasing it with a constant value, re-
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spectively. As cruise control system can only run within a speed interval, before
updates the data, the process SET up() and SET down() will first check if the
updated value of temp speed is within the interval, if not, an error message will
be issued. Data temp speed is a temporary data used to react to the process
SET up() and SET down(), and only after the process SET update() performs,
the data temp speed can be assigned to set speed. After process SET up() or
SET down() completes the updates of temp speed, it will sends the completion
information to process SET update(). Process SET update() will assign data
temp speed to set speed only after the confirm button is pressed. After pro-
cess SET update() assigns data temp speed to set speed, it will trigger process
SET control() to control current vehicle speed current speed to the new set
speed set speed.

When no function button is pressed by driver, it means the driver does not
want to adjust the set speed and wants to maintain current vehicle speed, pro-
cess CRU control() will be triggered by process ECU(). Process CRU control()

maintains current vehicle speed current speed based on the value of set speed.

s-module Compared with the specification written in natural language given
in section 3.1, the functional abstraction expressed by the CDFD is obviously
more comprehensible, especially, the dependency relations among processes can
be clearly expressed. However, in order to completely define the CDFD, all the
components (conditional process, data flows, data stores) in the CDFD must be
precisely defined. To achieve this, the CDFD is linked with a s-model shown as
in Fig. 3.

Part const shows the constant variables used in the module. All the data
flow variables, and data stores in the CDFD are defined in the var part. Each of
them is defined in a specific data type. Keyword inv, stands for invariant, indi-
cates the properties that must be sustained throughout the entire specification.
For example, min speed <= set speed <= max speed in section inv means the
setting value of the cruise control system must be larger than the maximum
value that supported by the system and less than the minimum value. Func-
tion Controller() achieves the function of speed control based on a control
algorithm. At this level of specification, the control algorithm is not defined.

Process Init() is the initial process which performs only one time when the
system stars up. We can see that, pre condition defines in the process Init()

requires that current speed should be less than max sp and larger than min sp.
This ensures that the system can star up only when vehicle is running within
the speed interval that supported by the cruise control system.

Each processes in the CDFD is linked with a c-process. It describes functions
of the processes in terms of pre and post conditions in which predicate logic is
adopted. For example, the post condition in c-process SET adjust() means: if
the value of data flow variable act adjust is true, process SET adjust() will
trigger SET up(), otherwise, act adjust with a false value will make process
SET down() be triggered.
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var

ext #current_speed: real;
\*the current_speed is an external data store that 
exists independently of the cruise control system. 
The data is read from the speed sensor equipped 
on the vehicle.*\
temp_speed, set_speed: real;
speed_up, speed_down, confirm,
col_confirm, col_cruise, col_up, col_down,
col_set: sign;
act_adjust: bool;
errMsg1, errMsg2, errMsg3: string;

c-process CRU_control

c-process CRU_control(col_cruise: sign)
ext rd set_speed: real

wr current_speed: real
post current_speed =

controller(current_speed, set_speed)
end-process;

processInit()

c-process Init

c-process Init()
pre  min_sp <= current_speed <= max_sp;
post set_speed = current_speed and

temp_speed = current_speed
end-process;

function Controller

function Controller(speed: real, desired_speed: 
real): real
== undefined /* This function operates actuators 
to control  the speed to the desired_speed based 
on a control algorithm.  A precise definition is left 
for design or implementation. */
end-function;

Inv

min_sp <= set_speed <= max_sp;
min_sp <= temp_speed <= max_sp;

c-process SET_down

c-process SET_down(col_down: sign) errMsg2:
string
ext wr temp_speed: real
post temp_speed - step_down >= min_sp and

temp_speed = temp_speed - step_down or
temp_speed - step_down < min_sp and
errMsg2 = "the setting speed is too low"

end-process;

c-process ECU

c-process ECU(speed_up: sign | speed_down: 
sign | confirm: sign | dummy: void) act_adjust: 
bool | col_confirm: sign | col_cruise: sign
post speed_up <> nil and act_adjust = true or

speed_down <> nil and act_adjust = false or
confirm <> nil and col_confirm <> nil or
bound(dummy) and col_cruise <> nil

end-process;

c-process SET_control

c-process SET_control(col_set: sign)
ext rd set_speed: real

wr current_speed: real
post current_speed =

controller(current_speed, set_speed)
end-process;

c-process SET_update

c-process SET_update(con_confirm: sign)
errMsg3: string | col_set: sign
ext rd temp_speed: real

wr set_speed: real
post min_sp <= temp_speed <= max_sp and

set_speed = temp_speed and col_set <> nil or
temp_speed < min_sp and errMsg3 = "the
setting speed is too low" or
temp_speed > max_sp and errMsg3 = "the
setting speed is too high"

end-process;

c-process SET_up

c-process SET_up(col_up: sign) errMsg1: string
ext wr temp_speed: real
post temp_speed + step_up <= max_sp and

temp_speed = temp_speed + step_up or
temp_speed + step_up > max_sp and
errMsg1 = "the setting speed is too high"

end-process;

c-process SET_adjust

c-process SET_adjust(act_adjust: bool) col_up: sign
| col_down: sign
post act_adjust = true and col_up <>nil or

act_adjust = false and col_down <> nil
end-process;

processInit()

const
min_sp: real; /* minimum value of set speed */
max_sp: real; /* maximum value of set speed */
step_up: real; /* the increased value of 
temp_speed when process SET_up performs one 
time */
step_down: real; /* the decreased value of 
temp_speed when process SET_down performs 
one time */

Fig. 3. s-module for cruise control system.

4 Design and Implementation

4.1 Running mechanism

Before start to design and implement the cruise control system as an OSEK/VDX
application, we should first obtain a preliminary understanding of the running
mechanism of OSEK/VDX OS and its applications.

An OSEK/VDX application is developed as a multi-threaded software run-
ning on an OSEK/VDX OS. Tasks (i.e., threads) within the application are con-
currently executed and can invoke service APIs to interact with OSEK/VDX
OS modules. According to the service APIs invoked by a running task, the cor-
responding OS modules can dynamically change states of tasks.

Module: A general OSEK/VDX OS is composed of scheduler module, event
process module, resource process module, interruption process module, and alarm
process module. For simplicity, the cruise control system only interacts with the
scheduler module of OSEK/VDX OS. Scheduler module in OSEK/VDX OS
adopts static priority scheduling policy. A ready queue, shown in Fig. 4, is main-
tained to store identifiers of ready tasks. The ready queue is a composition of
queues with different priorities. Tasks in the ready queue with the highest prior-
ity will be first scheduled to execute. If tasks have the same priority, the scheduler
module will schedule these tasks based on first in first out (FIFO).
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ready queue

t1
FIFOpriority

Fig. 4. Ready queue in OSEK/VDX OS.

terminate

preempt

start

activate

running suspendedready

Fig. 5. States switch of basic tasks.

Task states switching: There are two kinds of tasks, basic task and extended
tasks, that can be proceeded in OSEK/VDX OS. The states of a basic task
consist of running state, suspended state, and ready state. Compared with the
basic tasks, an extended task has an unique state called waiting state which are
used to interact with event process module. As the cruise control system does
not interact with the event process module, tasks in the cruise control system
are all defined as basic tasks. Fig. 5 shows the states switch of basic tasks.

Service APIs: Scheduler module can respond to three kinds of API invoca-
tion.

– TerminateTask(): a running task is moved to suspended state.
– ActivateTask(tid): task tid is moved from suspended state to ready state.
– ChainTask(tid): equivalent to the execution sequence ActivateTask(tid) +

TerminateTask().

When one of these three service APIs is invoked by a running task, scheduler
module will conduct corresponding operations to respond to the API invocation.
This will change tasks’ states according to the states switch rules shown in Fig.
5, and may lead to the context switch of tasks.

4.2 Design and Implementation as OSEK/VDX application

From the CDFD of requirement specification, shown in Fig. 2, each conditional
process in the CDFD achieves a specific function which is precisely defined in
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Name: SET_adjust

bool act_adjust;

TASK SET_adjust(){
if(act_adjust == true)

ActivateTask(SET_Up);
else

ActivateTask(SET_Down);
TerminateTask();

}

TASK SET_adjust{
TYPE=BASIC;
SCHEDULE=NON;
PRIORITY=2;
AUTOSTART=FALSE;

}

Fig. 6. Task SET adjust().

the corresponding c-process in the linked s-module shown in Fig. 3. Relations
between these processes are reflected via data flows (active data flow and control
data flow) and data stores. For example, process SET adjust() achieves a selec-
tion function, that is to active process SET up() or process SET down() based on
the value of input active data flow variable act adjust. The relations between
these three processes are reflected by control data flow col up and col down.

As an OSEK/VDX application is developed as a multi-threaded software,
the intuitive idea is to design each process in the CDFD as a task within the
application. Every active data flow variables can be implemented as a variable
that can be accessed by the related tasks, and the control data flow variable
can be treated as an invocation of service API ActivateTask(tid), where tid is
the identifier of the activated task. Based on this idea, the example of task
SET adjust() (i.e., the implementation of process SET adjust()) is shown in
Fig. 6. It consists of two files: source code and configuration file. The source
code file, show in the left side of the figure, is used to present the concrete
behaviors of the application. The configuration file, shown in the right side of
the figure, is used to indicate the configuration data of tasks (e.g., priority).

Let’s first focus on the source file of task SET adjust(). As shown in Fig. 6,
the source file is written in C + + programming language. The active data flow
variable act adjust is defined as a bool variable and that can be accessed by task
SET adjust(). The control data flow variables col up and col down are treated as
invocations of service APIs ActivateTask(SET up) and ActivateTask(SET down)

respectively, where task SET up() and SET down() are the implementation of
process SET up() and SET down() respectively. According to the post condition
of process SET adjust() in the s-module, when the value of act adjust is true,
process SET up() will be triggered. Reflected in the task SET adjust(), when
the variable act adjust is true, the service API ActivateTask(SET up) will be
invoked, which is to activate task SET up(). The TerminateTask() in the last
line is to move SET adjust() task itself to the suspended state. This service API
is invoked when a task has completed his operation.

For the configuration file of a task, there are four items:

– TYPE: type of tasks (BASIC or EXTENDED).
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– AUTOSTART: to indicate the initial states of tasks when system turns on
(TRUE: ready or FALSE: suspended).

– SCHEDULE: to indicate if the task can be preempted by another ready task
with higher priority (FULL: can or NON: cannot).

– PRIORITY: task priority (e.g., 1, 2 . . . ).

For the type of task, as mention in the last subsection, all the tasks in the
cruise control system are defined as basic tasks.

As the setting of AUTOSTART, it depends on if the task needs to be activated
by another task. Only task that do not need to be activated by another task is
set to has AUTOSTART as TRUE. Thus, according to CDFD in specification, only
task ECU() has AUTOSTART as TRUE.

For the setting of property SCHEDULE, it depends on task’s specific running
characteristic. For task ECU(), when system is running, it keeps on monitoring
the input of driver, and activates another tasks. For example, when no func-
tion button is pressed, task ECU() will activate task CRU control(). It hopes
CRU control() can run immediately to achieve the corresponding function. When
task CRU control() completes its operation, task ECU() goes on activating an-
other task according to the input of driver. If the setting of SCHEDULE is NON, the
activated task CRU control() can only run after task ECU() is terminated. As
task ECU() keeps on running after system turns on, it means task CRU control()

will never run, which is an obviously wrong setting. Thus, the setting of SCHEDULE
for task ECU() should be FULL.

For other tasks, e.g., SET adjust(), it activates task SET up() or SET down().
Then, it will be terminated by invoking service API TerminateTask(). To imple-
ment this running characteristic, both setting of property SCHEDULE can achieve
the requirement. As a FULL setting of SCHEDULE may lead to more frequent con-
text switch of tasks, we set SCHEDULE of all the tasks except task ECU() as NON.

For the setting of PRIORITY, from the running characteristic of task ECU()

described above, we can see when a task is activated, it should preempt task
ECU(). Thus, the priority of task ECU() should be the lowest among all the tasks.
For other tasks, as the setting of SCHEDULE is NON, any settings of PRIORITY that
higher than the setting of ECU() are reasonable.

Based on the ideas described above, based on the SOFL specification, we
can implement the cruise control system as an OSEK/VDX application. The
complete implementation is shown in Fig. 7.

5 Simulation and Verification

To completely check OSEK/VDX applications, we employ model checking to
verify the developed application. As mentioned in section 2, the existing model
checking methods cannot be directly employed to precisely verify the OSEK/VDX
applications, since the execution characteristics of OSEK/VDX applications are
different from the sequential software and general multi-threaded software.

As described in section 4, an OSEK/VDX application is developed as a multi-
threaded software. When it runs on OSEK/VDX OS, the executions of tasks
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Name: CRU_control

TASK CRU_control(){
Controller(current_speed, set_speed);
TerminateTask();

}

TASK CRU_control{
TYPE=BASIC;
SCHEDULE=NON;
PRIORITY=2;
AUTOSTART=FALSE;

}

Name: SET_update

TASK SET_update(){
if (temp_speed  > max_sp)

cout<<“the set speed is too high”<<endl;
else if (temp_speed < min_sp)

cout<<“the set speed is too low”<<endl;
else{ 

set_speed = temp_speed;
ActivateTask(SET_control);

}
TerminateTask();

}

TASK SET_update{
TYPE=BASIC;
SCHEDULE=NON;
PRIORITY=4;
AUTOSTART=FALSE;

}

Name: ECU

Task ECU(){
while (true) {

/* Get the value of button by reading the   
data from the sensor equipped  on the
system control panel */
button = Read_Button_Sensor(); 
if (button == -1) // turn_off

break;  
switch (button) {

case 1: // speed_up
act_adjust = true;
ActivateTask(SET_adjust);
break;

case 2: // speed_down
act_adjust = false;
ActivateTask(SET_adjust);
break;

case 3: // confirm
ActivateTask(SET_update);
break;

default: // no function button pressed
ActivateTask(CRU_control);
break;

}
} 

TerminateTask();
}

TASK ECU{
TYPE=BASIC;
SCHEDULE=FULL;
PRIORITY=1;
AUTOSTART=TRUE;

}

Name: SET_adjust

TASK SET_adjust(){
if(act_adjust == true)

ActivateTask(SET_up);
else

ActivateTask(SET_down);
TerminateTask();

}

TASK SET_adjust{
TYPE=BASIC;
SCHEDULE=NON;
PRIORITY=2;
AUTOSTART=FALSE;

}

Name: SET_down

TASK SET_down(){
if (temp_speed - step_down < min_sp)

cout<<“the set speed is too low”<<endl;
else

temp_speed -= step_down;
TerminateTask();

}

TASK SET_down{
TYPE=BASIC;
SCHEDULE=NON;
PRIORITY=3;
AUTOSTART=FALSE;

}

// speed unit: km/h
const double min_sp = 30;
const double max_sp = 80;
const double step_up = 1;
const double step_down = 1;

bool act_adjust = false;

/* Use variable button to indicate which function button 
has been pressed by driver. The setting is: -1: trun_off; 1: 
speed_up; 2: speed_down; 3: confirm; other value: no 
function button is pressed*/
int button;

/* Get the value of current_speed by reading the data from 
the speed sensor equiped on the vehicle */
double current_speed = Read_Speed_Sensor();
double set_speed = current_speed;
double temp_speed = current_speed;

void Controller(double speed, double desired_speed){
/* This function operates actuators to control the speed to 
the desired_speed based on a control algorithm. The 
detail implementation is omitted. */
}

Definition of function, variables and initialization

Name: SET_up

TASK SET_up(){
if (temp_speed + step_up > max_sp)

cout<<“the set speed is too high”<<endl;
else

temp_speed += step_up;
TerminateTask();

}

TASK SET_up{
TYPE=BASIC;
SCHEDULE=NON;
PRIORITY=3;
AUTOSTART=FALSE;

}

Name: SET_control

TASK SET_control(){
Controller(current_speed, set_speed);
TerminateTask();

}

TASK SET_control{
TYPE=BASIC;
SCHEDULE=NON;
PRIORITY=5;
AUTOSTART=FALSE;

}

Fig. 7. Implementation of cruise control system as an OSEK/VDX application.

within the application are dispatched by scheduler module, and the running
task is explicitly determined by the scheduler according to the task priorities
and configuration data. Moreover, tasks can invoke service APIs supported by
OSEK/VDX OS to dynamically change the states of tasks defined in the appli-
cation, and the changed states will affect the scheduling of tasks.

On the one hand, if we directly apply the existing model checking methods
for general multi-threaded software to verify OSEK/VDX applications, it is too
imprecise because a lot of unnecessary interleavings of tasks will be checked by
existing methods, and these unnecessary interleavings may result in a spuri-
ous bug in the verification. This is because, in the existing works for the general
multi-threaded software (e.g., systemC programs), since the running thread can-
not be explicitly determined, all of the possible interleavings of runnable threads
are taken into account in the verification in order to completely check the target
software. However, in OSEK/VDX applications, the running task is explicitly
determined by OSEK/VDX scheduler. The difference of scheduling policy be-
tween the general multi-threaded software and OSEK/VDX applications makes
it is not unsuitable to employ existing model checking methods for the general
multi-threaded software to check OSEK/VDX applications.

On the other hand, if we want to employ the model checking methods for
sequential software to verify OSEK/VDX applications, the developed target ap-
plication has to be translated into sequential software in advance. To achieve this,
a sequentialization approach proposed in our previous work [5] can be applied.
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5.1 Sequentialization

The key idea of the sequentialization approach is to use a directed graph to
represent the sequential program of an OSEK/VDX application. To construct the
directed graph, a directed graph constructor as a simulator has been developed.
A simplified OSEK/VDX OS model is included in the constructor to respond to
the invoked service APIs. A tool named autoC has also been developed based
on this approach. More details about the approach can be found in [5].

Through the sequentialization approach, based on the implementation shown
in Fig. 7, the directed graph for cruise control system is shown in Fig. 8. The
definition of directed graph is as follows.

DEFINITION: The directed graph is a tuple G = (V, v0, ve, E, L). V is the
set of nodes, and a node v ∈ V is a tuple v = (pcs, osd), pcs = [n1, . . . , nm] is a
array used to record the current locations of tasks t1, . . . , tm (m is the number
of tasks), osd is the set of values used to store the data within D of OS model,
where D = {runTask, readyQueue, suspendList} is the set of data structures
used to store the states of tasks. In the data structure set D, runTask which
is a variable is used to store the tid of running task (tid is task identifier). The
readyQueue is composed of queues with different priorities and used to store
the tids of tasks in the ready state. The data structures suspendList are used to
store the tids of tasks in the suspended state. v0 ∈ V is the start node, ve ∈ V
is the end node. E ⊆ V × V is the set of directed edges. L : E →

⋃
Σtid is

the labeling function from an edge (v, v′) ∈ E to a task statement α ∈
⋃
Σtid,

where tid is the identifier of tasks, Σtid is the set of statements of tasks tid, the
expression of a statement α ∈ Σ is as follow:

α ::= condition | assignment | goto | assertion | API
Note that, the invocation of service APIs are replaced as goto statement in

Fig. 8.

5.2 Verification

Before verify the program, we should first extract checking properties from the
requirement specification. We can easily extract checking properties from two
parts of the SOFL specification. The first part is the pre and post condition of
a c-process in s-module. A pre (post) condition in a c-process can be translated
as assertions, and inserted into the directed graph at the locations before (after)
the execution of the corresponding task.

For example, from the post condition of process SET adjust(), we can know
that task SET adjust() will activate task SET up if the value of act adjust is
true, otherwise, it will activate task SET down. Because each step of constructing
the directed graph, the data within D which stores the states of tasks has been
translated into the directed graph. This makes we can know which task is running
(in running state), and can also check whether a task is activated (in ready

state) or not (in suspended state) at any node of the directed graph. Through
searching the directed graph, we can know task SET adjust() runs following
nodes 〈v27, v28, v29, v30〉 (act adjust is true) or 〈v27, v35, v36, v37〉 (act adjust
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Fig. 8. Directed graph for cruise control system.

is false). Thus, we can insert assert(SET up@readyQueue) after node v30 and
assert(SET down@readyQueue) after node v37, where tid@readyQueue means
task tid is in the ready queue.

The second part is the part inv in s-module. Part inv indicates the properties
that must be sustained throughout the entire specification. Thus the translated
assertion can be inserted into any locations from node v0 to node ve of the
directed graph. Specific to the s-module shown in Fig. 3, from the inv part,
we can get four assertions: assert(set speed <= max speed), assert(set speed

>= min speed), assert(temp speed <= max speed), and assert(temp speed >=

min speed). These assertions can be inserted into any locations from node v0 to
ve. Note, assign a value in interval [min speed, max speed] to current speed is
needed to check these assertions.

After inserts the assertions, as cruise control system has been translated into
a sequential program, now we can employ existing model checkers (e.g., SPIN,
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CBMC) to verify the program. The checking results indicate the application
satisfies the checking properties discussed above.

6 Concluding Remarks

Through developing the cruise control system, we can see that SOFL speci-
fication can effectively help developer to develop an OSEK/VDX application
throughout the development process. SOFL requirement specification can pre-
cisely defines the behavior of the software. From the specification, the design and
implementation of cruise control system is fairly intuitive. A developer can easily
develop and implement an OSEK/VDX application based on SOFL specification.
Moreover, checking properties can be easily extracted from SOFL specification,
which helps a lot for employing model checking technique to verify the developed
applications.

For the future work, an important direction is to develop a tool to auto-
matically generate assertions from SOFL specification and insert them into the
translated directed graph.
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