
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Deep df-pn and Its Application to Connect6

Author(s) Song, Zhang; Iida, Hiroyuki; van den Herik, Jaap

Citation
ゲームプログラミングワークショップ2016論文集,

2016: 6-12

Issue Date 2016-10-28

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/14076

Rights

社団法人　情報処理学会, Zhang Song, Hiroyuki

Iida, Jaap van den Herik , ゲームプログラミングワ

ークショップ2016論文集, 2016, 6-12.　ここに掲載し

た著作物の利用に関する注意: 本著作物の著作権は

（社）情報処理学会に帰属します。本著作物は著作権

者である情報処理学会の許可のもとに掲載するもので

す。ご利用に当たっては「著作権法」ならびに「情報

処理学会倫理綱領」に従うことをお願いいたします。

Notice for the use of this material: The

copyright of this material is retained by the

Information Processing Society of Japan (IPSJ).

This material is published on this web site with

the agreement of the author (s) and the IPSJ.

Please be complied with Copyright Law of Japan

and the Code of Ethics of the IPSJ if any users

wish to reproduce, make derivative work,

distribute or make available to the public any

part or whole thereof. All Rights Reserved,

Copyright © Information Processing Society of

Japan.

Description The 21st Game Programming Workshop (GPW2016)

Deep df-pn and Its Application to Connect6

Zhang Song1,a) Hiroyuki Iida1,b) Jaap van den Herik2,c)

Abstract: Depth-first proof-number search (df-pn) is a powerful variant of proof-number search algorithms,
widely used for AND/OR tree search or solving games. However, it suffers from the seesaw effect, which
can be concluded as frequently going back to the ancestor nodes for selecting the most proving node. It
works strongly against the efficiency in some situations. This paper proposes a new proof number algorithm
called Deep depth-first proof-number search (Deep df-pn) to reduce the seesaw effect in df-pn. The only
difference between Deep df-pn and df-pn is the proof number or disproof number of unsolved nodes. The
proof number or disproof number of unsolved nodes is 1 in df-pn, while it is a function of depth with two
parameters in Deep df-pn. By adjusting the value of parameters, Deep df-pn changes its behavior from
searching broadly to searching deeply. Moreover, this paper proves that Deep df-pn enables to reduce the
seesaw effect. Experiments performed in the domain of Connect6 show its effectiveness in searching efficiency.

1. Introduction

Proof-Number Search (PN-search) [1] is one of the most

powerful algorithms for solving games and complex endgame

positions. PN-search focuses on AND/OR tree and tries to

establish the game theoretical value in a best-first manner.

Each node in PN-search has a proof number (pn) and dis-

proof number (dn). This idea was inspired by the concept

of conspiracy numbers, the number of children that need

to change their value to make a node change its value [6].

A proof (disproof) number shows the scale of difficulty in

proving (disproving) a node. PN-search expands the most-

proving node, which is the most efficient one for proving

(disproving) the root.

Although PN-search is an effective AND/OR-tree search

algorithm, it still has problems. One is that PN-search uses

a lot of memory space because it is a best-first algorithm,

and the other is that it is not efficient enough because of

frequently updating the proof and disproof number. So Na-

gai [5] proposed a depth-first algorithm using both proof

number and disproof number based on PN-search, which is

called depth-first proof-number search (df-pn). The proce-

dure of df-pn can be concluded as selecting the most proving

node, updating thresholds of proof number or disprove num-

ber in a transposition table, multiple iterative deepening un-

til satisfy the end condition. Nagai proved the equivalence

between PN-search and df-pn that df-pn always selects the

most proving node as pn-search does in the searching path.

But for its depth-first manner and the use of transportation

1 Graduate School of Information Science, Japan Advanced In-
stitute of Science and Technology
Nomi, Japan

2 Leiden Institute of Advanced Computer Science
Leiden, The Netherlands

a) zhangsong@jaist.ac.jp
b) iida@jaist.ac.jp
c) jaapvandenherik@gmail.com

table, df-pn saves more storage and is more efficient than

PN-search.

However, both PN-search and df-pn suffer from the see-

saw effect which can be concluded as frequently going back

to the ancestor nodes for selecting the most proving node,

as described in [8], [10], [11]. They showed that the see-

saw effect works strongly against the efficiency in some sit-

uations. This paper then proposes called Deep depth-first

proof-number search algorithm (Deep df-pn) to reduce the

seesaw effect in df-pn. The only difference between Deep

df-pn and df-pn is the proof number or disproof number

of unsolved nodes. In df-pn the proof number or disproof

number of unsolved nodes is 1, while in Deep df-pn it is a

function of depth with two parameters. By adjusting the

value of parameters, Deep df-pn changes its behavior from

searching broadly to searching deeply. This paper proves

that Deep df-pn can help reduce the seesaw effect. Exper-

iments of solving endgame positions in Connect6 [12] also

show its good performance in searching efficiency.

The rest of the paper is as follows. We briefly summa-

rize the details of PN-search and df-pn in Section 2, and

introduce the seesaw effect in Section 3. Definitions of Deep

df-pn and its characteristics are presented in Section 4. In

Section 5, we conduct experiments on Connect6 to show its

better performance in reducing seesaw effect. Finally, con-

cluding remarks are given in Section 6.

2. PN-Search and Its Depth-First Vari-

ant

In this section, we introduce the original proof-number

search (PN-search) and depth-first proof-number search (df-

pn), a depth-first variant with advantages on space saving

and efficiency.

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 6 -

2.1 PN-Search

Proof-Number Search (PN-search) [1] is a native best-first

algorithm, using proof numbers and disproof numbers, al-

ways expanding one of the most-proving nodes. This idea

was inspired by the concept of conspiracy numbers [6], the

number of children that need to change their value to make

a node change its value, usually applied in a minimax tree

to indicate the stability of the root value.

To apply this concept into AND/OR tree where nodes

have a binary value (win or not win), Allis et al. [1] reformed

conspiracy numbers as a proof number and a disproof num-

ber, showing the scale of difficulty in proving and disproving

a node respectively. For all nodes, proof and disproof num-

bers are stored to indicate which frontier node will be ex-

panded, and updated after expanding. The expanded node

is called the most-proving node, which is the most efficient

one for proving (disproving) the root.

It is found by exploiting two characteristics of the search

tree [7]: (1) its shape (determined by the branching factor of

every internal node), and (2) the values of the leaves. Basi-

cally, unenhanced pn-search is an uninformed search method

that does not require any game-specific knowledge beyond

its rules [3]. The detail of proof number, disproof number

and most-proving node are given as follows.

Let n.pn and n.dn be the proof number and disproof num-

ber of a node n, respectively.

1. When n is a leaf node

(a) When n is a win of the attacker

n.pn = 0

n.dn = ∞

(b) When n is a loss of the attacker

n.pn = ∞

n.dn = 0

(c) When the value of n is unknown

n.pn = 1

n.dn = 1

2 When n is an internal node

(a) When n is an OR node

n.pn = Min
nc ∈ children of n

nc.pn

n.dn =
∑

nc ∈ children of n

nc.dn

(b) When n is an AND node

n.pn =
∑

nc ∈ children of n

nc.pn

n.dn = Min
nc ∈ children of n

nc.dn

A most-proving node is a leaf node that is selected by

tracing nodes from the root node in the following way.

• For each OR node, trace the child with the minimum

proof number.

• For each AND node, trace the child with the minimum

disproof number.

Note that Allis et al. [1] defined the most-proving node as

the left-most one, if there is arbitrariness.

2.2 Df-pn

Although PN-search is an ideal AND/OR-tree search al-

gorithm, it still has two problems. One is that PN-search

uses a lot of memory space because of its best-first man-

ner, and the other is that it is not efficient enough for its

frequently updating the proof and disproof number. To

solve the first problem, Nagai [5] proposed a depth-first like

algorithm using both proof number and disproof number

based on PN-search, which is called df-pn (depth-first proof-

number search). The procedure of df-pn can be concluded

as selecting the most proving node, updating the thresholds

of proof number or disprove number in a transposition ta-

ble, multiple iterative deepening until the end condition is

satisfied. It is a depth-first like search but has a same be-

havior as PN-search. The equivalence between PN-search

and df-pn was proved in [5].

In df-pn, proof number and disproof number are renamed

as follows.

n.φ =







n.pn
(

n is an OR node
)

n.dn
(

n is an AND node
)

n.δ =







n.dn
(

n is an OR node
)

n.pn
(

n is an AND node
)

Moreover, each node n has two thresholds: one for the proof

number thpn and the other for the disproof number thdn.

Similarly, they are renamed thpn and thdn as follows.

n.thφ =







n.thpn

(

n is an OR node
)

n.thdn

(

n is an AND node
)

n.thδ =







n.thdn

(

n is an OR node
)

n.thpn

(

n is an AND node
)

Df-pn expands the same frontier node as PN-search in

a depth-first manner guided by a pair of thresholds

(thpn,thdn), which indicates whether the most-proving node

exists in the current subtree [4]. The procedure is described

below [5].

Procedure Df-pn.

For the root node r, assign values for r.thφ and r.thδ as

follows.

r.thφ = ∞

r.thδ = ∞

Step 1. At each node n, the search process continues to

search below n until n.φ ≥ n.thφ or n.δ ≥ n.thδ is satisfied

(we call it ending condition).

Step 2. At each node n, select the child nc with minimum

δ and the child n2 with second minimum δ. (If there is an-

other child with minimum δ, that is n2.) Search below nc

with assigning

nc.thφ = n.thδ + nc.φ−
∑

nchild.φ

nc.thδ = min (n.thφ, n2.δ + 1).

Repeat this process until the ending condition holds.

Step 3. If the ending condition is satisfied, the search pro-

cess returns to the parent node of n. If n is the root node,

then the search is totally over.

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 7 -

3. Seesaw Effect and DeepPN

In this section, we introduce the seesaw effect and

DeepPN, a variant of proof-number search focusing on re-

ducing the seesaw effect.

3.1 Seesaw Effect

PN-search and df-pn are highly efficient in solving games.

However, there are still some problems with them. One of

such drawbacks were pointed out [8] [10] [11] and named as

seesaw effect [9]. It can be concluded as frequently going

back to the ancestor nodes for selecting the most proving

node.

To explain it precisely, we show, in Fig. 1, an example

where the root node has two subtrees. The size of both sub-

trees is almost the same. Assume that the proof number of

subtree L is larger than the proof number of subtree R. In

this case, pn-search or df-pn will continue search in subtree

R, which means that the most proving node is in subtree R.

After pn-search or df-pn expands the most-proving node, the

shape of the game tree changes as shown in Fig. 1(b). By ex-

panding the most-proving node, the proof number of subtree

R becomes larger than the proof number of subtree L. So

pn-search or df-pn changes its searching direction from sub-

tree R to subtree L. Similarly, when the search expands the

most-proving node in subtree L, the proof number of subtree

L becomes larger than subtree R. Thus, the search changes

its focus from subtree L to subtree R. This change keeps

going back and forth, which looks like a seesaw. Therefore,

it is named as seesaw effect.

The seesaw effect happens when the two trees are almost

equal in size. If the seesaw effect occurs frequently, the per-

formance of PN-search and df-pn deteriorates significantly

and cannot reach the required searching depth. In games

which need to reach a large fixed searching depth, the see-

saw effect works strongly against efficiency.

The seesaw effect is mostly caused from two points: the

shape of game tree and the way of searching. Concerning

the shape of game tree, there are two characteristics: (1)

a tendency for the children size becoming equal and (2)

many nodes with equal values exist deep down in a game

tree. In (1), if the children size of each node becomes al-

most the same, then the seesaw effect may occur easily. For

(2), it is common in games such as Othello and Hex which

need to search a large fixed number of moves before settling.

It is also common in connect-type games such as Gomoku

and Connect6 which have a sudden death in the game tree.

Therefore, it is necessary to design a new search algorithm

to reduce the seesaw effect in these games.

3.2 DeepPN

To tackle the seesaw effect problem, Ishitobi et al. [2] pro-

posed Deep Proof-Number Search (DeepPN), a variant of

PN-search while focusing on reducing the seesaw effect. It

employs two important values associated with each node,

PN = 999PN = 1000

L R L R

Most-Proving Node

PN = 1001PN = 1000

(a) (b)

Fig. 1: An example of seesaw effect: (a) An example game tree (b)
Expanding the most-proving node

the usual proof number and a deep value. The deep value

is defined as the depth of a node which shows the progress

of the search in the depth direction. After mixing the proof

numbers and the deep value, the DeepPN can change its

behaviors from the best-first manner (equal to the original

proof-number search) to the depth-first manner by adjust-

ing a parameter R. Compared to the original ON-search,

DeepPN shows better results when R comes to a proper

value which makes the search between best-first like and

depth-first like. The formal definitions of DeepPN are de-

scribed below.

In DeepPN, the proof number and disproof number of

node n are calculated as follows.

n.φ =







n.pn
(

n is an OR node
)

n.dn
(

n is an AND node
)

n.δ =







n.dn
(

n is an OR node
)

n.pn
(

n is an AND node
)

When n is a terminal node

(a) When n is proved (disproved) and n is an OR (AND)

node, i.e., OR wins

n.φ = 0

n.δ = ∞

(b) When n is disproved (proved) and n is an AND (OR)

node, i.e., OR does not win

n.φ = ∞

n.δ = 0

(c) When n is unsolved, i.e., its value is unknown

n.φ = 1

n.δ = 1

(d) When n is terminal node, then n has deep value

n.deep = 1
n.depth

Definition 1 When n is an internal node

(a) The proof and disproof number are defined as follows

n.φ = Min
nc ∈ children of n

nc.δ

n.δ =
∑

nc ∈ children of n

nc.φ

(b) The deep values, DPN(n) and n.deep are defined as

follows.

n.deep = nc.deep

where

nc = arg min

ni ∈ unsolved children of n

DPN (ni)

and

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 8 -

Fig. 2: Relationship between PN-search, df-pn, DeepPN and Deep
df-pn

DPN(n) =
(

1− 1
n.δ

)

R + n.deep (1−R)

Definition 2 In DeepPN, an expanding node in each

iteration is defined as follows.

select expanding node (n) :=

arg min

nc ∈ unsolved children of n

DPN (nc)

According to the definitions, the proof and disproof num-

ber are the same with the original PN-search. The only

difference is the deep value which is designed to decrease in-

versely with depth. For the terminal nodes, the deep value

is the reciprocal of depth. For the internal nodes, the deep

value is decided by a child node nc which has the smallest

DPN(nc). DPN is a function defined with two features:

(a)
(

1− 1
n.δ

)

is normalized and designed to become larger as

n.δ grows. (b) a fixed parameter R is given between 0.0 and

1.0. If R is 1.0, DeepPN works the same with PN-search and

the expanding node is the most-proving node. If R is 0.0,

DeepPN works the same with a primitive depth-first search.

Therefore, by changing the value R, the ratio of best-first

and depth-first search of DeepPN can be adjusted.

4. Deep df-pn

The main idea of DeepPN is to improve the original

PN-search by using a parameter which mixes the best-first

search and depth-first search, which has been verified with

better performance on reducing the seesaw effect. However,

it still has some drawbacks. Firstly, DeepPN is still a best-

first like search in essence. So it surfers from a big cost

of storage as pn-search. Secondly, DeepPN spends much

time on updating the proof and disproof number, which

makes DeepPN not efficient enough. In this section, we

propose a new proof-number algorithm based on df-pn to

cover the shortage of DeepPN, named as Deep Depth-First

Proof-Number Search or Deep df-pn in short. It not only

extends the improvements of df-pn on saving storage and ef-

ficiency, but also reduces the seesaw effect. Fig. 2 shows the

relationship between PN-search, df-pn, DeepPN and Deep

df-pn.

Similar to DeepPN, the proof number and disproof num-

ber of unsolved nodes in Deep df-pn is a function of depth

Table 1: Behaviors changing by parameters

E = 0 E > 0

D = 0 Depth-first Df-pn
D > 0 Depth-first Intermediate

but with two parameters. By adjusting the values of the two

parameters, Deep df-pn changes its behavior from searching

broadly to searching deeply. Definitions of Deep df-pn are

given below.

In Deep df-pn, the proof number and disproof number of

node n are calculated as follows.

n.φ =







n.pn
(

n is an OR node
)

n.dn
(

n is an AND node
)

n.δ =







n.dn
(

n is an OR node
)

n.pn
(

n is an AND node
)

When n is a terminal node

(a) When n is proved (disproved) and n is an OR (AND)

node, i.e., OR wins

n.φ = 0

n.δ = ∞

(b) When n is disproved (proved) and n is an AND (OR)

node, i.e., OR does not win

n.φ = ∞

n.δ = 0

(c) When n is unsolved, i.e., its value is unknown

n.φ = DPN (n.depth)

n.δ = DPN (n.depth)

(d) When n is an internal node, the proof and disproof

number are defined as follows

n.φ = Min
nc ∈ children of n

nc.δ

n.δ =
∑

nc ∈ children of n

nc.φ

Definition 3 DPN (x) is a function from N to N, which

DPN (x) =











ED−x (D > x ∧ E > 0)

1 (D ≤ x ∧ E > 0)

0 (E = 0)

where E and D are parameters on N.

According to the definitions, the difference between Deep

df-pn and df-pn is the proof and disproof number of unsolved

nodes. The proof and disproof number of an unsolved node

is 1 in df-pn, while it is a function DPN (n.depth) in Deep

df-pn, which is relevant with parameters E and D. Here, E

and D denotes a threshold of branch size and threshold of

depth, respectively. The complete algorithm of Deep df-pn

is presented in Algorithm 1 and Algorithm 2.

Table 1 shows the behavior of Deep df-pn with different

values of E and D. When E = 0, Deep df-pn is a depth-first

search. When E > 0 and D = 0, Deep df-pn is the same

with df-pn. When E > 0 and D > 0, Deep df-pn is an

intermediate one between depth-first search and df-pn. In

other words, if E or D becomes smaller, Deep df-pn tends

to search more broadly. While if E or D becomes larger, it

tends to search more deeply.

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 9 -

Algorithm 1 Deep df-pn (part I)

1: // At the root

2: procedure Deepdfpn(r)

3: r.φ = ∞; r.δ = ∞;

4: MID(r);

5: end procedure

6:

7: // Exploring node n

8: procedure MID(n)

9: // 1. Look up transposition table

10: LookUpTranspositionTable(n,φ,δ);

11: if n.φ ≤ φ || n.δ ≤ δ then

12: n.φ = φ; n.δ = δ;

13: return ;

14: end if

15:

16: // 2. Generation of legal moves

17: if n is a terminal node then

18: if (n is an AND node && Eval(n) = true) ||

19: (n is an OR node && Eval(n) = false) then

20: n.φ = ∞; n.δ = 0;

21: else

22: n.φ = 0; n.δ = ∞;

23: end if

24: PutInTranspositonTable(n,n.φ,n.δ);

25: return ;

26: end if

27:

28: GenerateLegalMoves();

29:

30: // 3. Avoidance of cycle by using transposition table

31: PutInTranspositonTable(n,φ,δ);

32:

33: // 4. Multiple Iterative Deepening

34: while 1 do

35: // Stop searching if φ or δ is above or equal to

36: its threshold

37: if n.φ ≤ ∆Min(n) || n.δ ≤ ΦSum(n) then

38: n.φ = ∆Min(n); n.δ = ΦSum(n);

39: PutInTranspositonTable(n,φ,δ);

40: return ;

41: end if

42: nc = SelectChild(n,φc,δc,δ2);

43: nφ = nδ + φc − ΦSum(n);

44: nδ = min(n.φ, δ2 + 1);

45: MID(nc);

46: end while

47: end procedure

48:

49: // Record into the transposition table

50: procedure Putintranspostiontable(n,φ,δ)

51: Table[n].φ = φ; Table[n].δ = δ;

52: end procedure

Algorithm 2 Deep df-pn (part II)

53: // Look up the transposition table

54: procedure Lookuptranspostiontable(n,&φ,&δ)

55: if n is already recorded then

56: φ =Table[n].φ; δ =Table[n].δ;

57: else

58: // In df-pn φ = 1, δ = 1

59: if E = 0 then

60: φ = 0; δ = 0;

61: else if D ≤ n.depth then

62: φ = 1; δ = 1;

63: else

64: φ = ED−n.depth; δ = ED−n.depth;

65: end if

66: end if

67: end procedure

68:

69: // Selection of the child

70: procedure Selectchild(n,&φc,&δc,&δ2)

71: δc = ∞; δ2 = ∞;

72: for each child node nchild do

73: LookUpTranspositionTable(nchild,φ,δ);

74: if δ < δc then

75: nbest = nchild;

76: δ2 = δc; φc = φ; δc = δ;

77: else if δ < δ2 then

78: δ2 = δ;

79: end if

80: if φ = ∞ then

81: return nbest;

82: end if

83: end for

84: return nbest;

85: end procedure

86:

87: // Calculate the minimum δ among all the children

88: procedure ∆Min(n)

89: min = ∞

90: for each child node nchild do

91: LookUpTranspositionTable(nchild,φ,δ);

92: min = min(min, δ);

93: end for

94: end procedure

95:

96: // Calculate the summation of φ among all the children

97: procedure ΦSum(n)

98: sum = 0

99: for each child node nchild do

100: LookUpTranspositionTable(nchild,φ,δ);

101: sum = sum+ φ;

102: end for

103: return sum;

104: end procedure

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 10 -

It can be proved that Deep df-pn can help reduce the

seesaw effect in df-pn.

Theorem 1 Deep df-pn outperforms df-pn in reducing

the seesaw effect.

Proof Assume that node n is a most proving node in a

seesaw effect like Fig. 1. Without loss of generality, n is

an AND node in subtree L. According to the feature of

seesaw effect, after extending n, its proof number becomes

larger, which makes the proof number of subtree L larger.

Then df-pn changes its focus on subtree R and seesaw effect

happens.

From the definitions of Deep df-pn, the proof number of

n is given by

DPN (n.depth) .

After extending n, its proof number is given by

∑

children of n

DPN (n.depth+ 1) =

E
′

·DPN (n.depth+ 1) .

where E
′

denotes the number of children of n. If E
′

≤ E

and n.depth+ 1 < D, then we have

E
′

·DPN (n.depth+ 1) = E
′

· E
D−(n.depth+1)

and

E
′

· E
D−(n.depth+1)

≤ E
D−depth

.

So we obtain the inequation.

∑

children of n

DPN (n.depth+ 1) ≤ DPN (n.depth) .

Therefore, Deep df-pn continues focusing on subtree R

and seesaw effect dose not happen. As a result, Deep df-pn

outperforms df-pn in reducing the seesaw effect.

�

5. Experiments

In this section we evaluate the performance of Deep df-

pn. For this purpose, the game of Connect6 is chosen as a

benchmark. We first introduce the game of Connect6, then

present the experimental design, and experimental results

are shown to discuss.

5.1 Connect6

Experiments with Deep df-pn are performed on Connect6

[12] which is a two-player strategy game similar to Gomoku.

Black (first player) puts one stone on the board for the first

move. Then both players put two stones for each move.

The one who gets six or more stones in a row (horizontally,

vertically or diagonally) first wins the game. Connect6 has

an infinite board, so both state-space and game-tree com-

plexities are infinite too. In order to make it countable, we

use a Go board (19 × 19) for Connect6. Both state-space

Fig. 3: An example position of Connect6 (White is to move)

Fig. 4: Deep df-pn and df-pn compared in solving time with various
threshold depth D (Df-pn when D = 0)

Fig. 5: Deep df-pn and df-pn compared in game-tree size with
various threshold depth D (Df-pn when D = 0)

and game-tree complexities for it are still much higher than

those in Gomoku and Renju, in the sense that two stones

per move make the branch factor increase by a factor of

half of the board size. Based on the standard used in [13],

the state-space complexity of Connect6 is 10172, the same

as that in Go. If a larger board is used, the complexity is

much higher. Threat-based strategy is a common strategy

used to play Connect6 [12]. As a result, there exists sudden

death in its game tree.

5.2 Experimental Design

To solve the endgame positions of Connect6, we use a com-

bination of relevance zones and Deep df-pn. Each time Deep

df-pn expands the defender’s moves, the relevance zones gen-

erator generates a relevance zone to indicate the most pos-

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 11 -

Fig. 6: Deep df-pn and df-pn compared in frequency of seesaw
effect with various threshold depth D (Df-pn when D = 0)

sible moves which the defender should apply on the board.

And each time Deep df-pn expands the attacker’s moves,

the relevance zones generator only generates the most pos-

sible 10 moves to reduce the complexity. For measuring the

frequency of seesaw effect, we count the number of seesaw

effect, which is initialized by 0 and added by 1 when a node

in the game tree is traced again during the search.

5.3 Results and Discussion

In the position of Fig. 3 where Black is to move (which

means that White puts two stones out of the region in

Fig. 3), if E = 0, Deep df-pn is a depth-first search where

frequency of seesaw effect is 0. If E = 3, three changing

curves by parameter D can be obtained as shown in Fig. 4,

Fig. 5 and Fig. 6, which implies that the performance of

Deep df-pn changes by D for a specific position. If D = 0,

Deep df-pn is the same with df-pn. If D > 0, Deep df-pn

takes cost less both in time and frequency of seesaw effect

than df-pn. By finding the suitable values of E and D, we

can obtain the optimum performance of Deep df-pn for the

position.

6. Concluding Remarks

In this paper, we proposed a new proof-number algorithm

called Deep Depth-First Proof-Number Search (Deep df-pn)

to improve df-pn by reducing the seesaw effect. Deep df-pn is

a natural extension of Deep Proof-Number Search (DeepPN)

and df-pn. The relation between PN-search, df-pn, DeepPN

and Deep df-pn was discussed. The main difference between

Deep df-pn and df-pn is the proof number or disproof num-

ber of unsolved nodes. In df-pn, the proof number or dis-

proof number of unsolved nodes is 1, while in Deep df-pn it

is a function of depth with two parameters. By adjusting the

values of parameters, Deep df-pn changes its behavior from

searching broadly to searching deeply. Moreover, this paper

has shown the theoretical proof that Deep df-pn can help

reduce the seesaw effect. Experiments performed in solving

endgame positions of Connect6 also show the effectiveness

of Deep df-pn with better performance.

In this paper, Connect6 was chosen as a benchmark to

evaluate the performance of Deep df-pn. Connect6 is a game

with an unbalanced game tree. Further investigations will

be made using other type of games with a balanced game

tree such as Othello and Hex.

Acknowledgement

This research is funded by a grant from the Japan Soci-

ety for the Promotion of Science, in the framework of the

Grant-in-Aid for Challenging Exploratory Research (grant

number 26540189).

References

[1] L V. Allis, M. van der Meulen, H J. van den Herik. “Proof-
number search,” Artificial Intelligence, vol. 66, no. 1, pp.91–
124, 1994.

[2] T. Ishitobi, A. Plaat, H. Iida, J. van den Herik. “Reducing the
seesaw effect with deep proof-number search,” Advances in
Computer Games, Lecture Notes in Computer Science 9525,
Springer International Publishing, pp.185–197, 2015.

[3] A. Kishimoto, M H M. Winands, M. Mller, JT. Saito.
“Game-tree search using proof numbers: The first twenty
years,” ICGA Journal, vol. 35, no. 3, pp.131–156, 2012.

[4] T. Kaneko. “Parallel depth first proof number search,” Pro-
ceedings of the 24th AAAI Conference on Artificial Intelli-
gence, pp.95–100, 2010.

[5] A. Nagai. “Df-pn algorithm for searching AND/OR trees and
its applications,” PhD Thesis, Department of Information
Science, University of Tokyo, 2002.

[6] D A. McAllester. “Conspiracy numbers for min-max search,”
Artificial Intelligence, vol. 35, no. 3, pp.287–310, 1988.

[7] H J. Van Den Herik, M HM.Winands. “Proof-number search
and its variants,” Oppositional Concepts in Computational
Intelligence, Springer Berlin Heidelberg, pp.91–118, 2008.

[8] J. Pawlewicz, L. Lew. “Improving depth-first pn-search: 1+
trick,” International Conference on Computers and Games,
Lecture Notes in Computer Science 4630, Springer Berlin
Heidelberg, pp.160–171, 2006.

[9] J. Hashimoto. “A study on game-independent heuristics in
game-tree search,” PhD Thesis, School of Information Sci-
ence, Japan Advanced Institute of Science and Technology,
2011.

[10] A. Kishimoto, M. Mller. “Search versus knowledge for solv-
ing life and death problems in Go,” Proceedings of the 20th
AAAI Conference on Artificial Intelligence, pp.1374–1379,
2005.

[11] A. Kishimoto. “Correct and efficient search algorithms in the
presence of repetitions,” PhD Thesis, University of Alberta,
2005.

[12] I C. Wu, D Y. Huang. “A new family of k-in-a-row games,”
Advances in Computer Games, Lecture Notes in Computer
Science 4250, Springer Berlin Heidelberg, pp.180–194, 2005.

[13] H J. Van den Herik, J W H M. Uiterwijk, J. Van Rijswijck.
“Games solved: Now and in the future,” Artificial Intelli-
gence, vol. 134, no. 1, pp.277–311, 2002.

The 21st Game Programming Workshop 2016

© 2016 Information Processing Society of Japan - 12 -

