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Chapter 1

Introduction

This thesis is the contribution to the study of automata-theoretic theorem proving. Automata-
theoretic theorem proving checks the satisfiability / validity of a first-order formula under a
fixed interpretation. Elements in the universe are encoded into words and every predicate has a
corresponding automaton which accepts the support of the formula. A famous result is Büchi’s
theorem for Weak monadic second-order logic of one successor (WS1S) and S1S [18]. WS1S
(resp. S1S) has the set of predicates {⊆,Sing ,= {0}} and the set of function symbols {Succ, 0}.
Set variables in a WS1S formula are only instantiated to a finite set, while S1S allows an infinite
set. First-order terms are interpreted on N in a standard manner. Here Sing(X) means X is a
singleton and X = {0} means X is the constant {0}. Satisfiability / validity are decidable for a
WS1S formula. Suppose that φ has n free variables, then a set of strings over n-tuple of {0, 1}
is recognizable iff it is definable in WS1S.

Left to right direction of the statement is proved by constructing the automaton for each
atomic predicate of φ and for each logical connective, we conduct language operations. From
closure properties of these operations, the resulting automaton recognizes the support of the
formula φ. The same story holds for WSkS and SkS, by extending finite automata to tree
automata.

There are several existing tools for automata-theoretic theorem proving. MONA [6] trans-
lates formulas in weak monadic second-order logic of k successor (WSkS) to finite tree automata.
Recently FORT [15] is implemented for the first-order theory of term rewriting. It is based on
tree automata and ground tree transducers (GTT) for left-liner right-ground term rewriting sys-
tems. They determine not only whether a formula is valid, but also generate counter-examples
from the automata if the formula is not valid.

Difficulty of the automata construction comes from the state explosion problem. WS1S re-
quires tower of computation task corresponding to the height of quantifiers in the input formula.
The determinization of automata causes state explosion, which is necessary to translate the
complementation.

Antichain Algorithms The commonly used optimization to tackle the state explosion is the
on-the-fly state space generation [10]. Antichain algorithm, an additional technique originally
developed in the model checking, combines the on-the-fly determinization and minimization [19].
Abdulla, et al. [1] combined antichains and a simulation technique and further reduced the state
space of the universality/inclusion checking. These techniques are expanded to

1. tree automata [3],

2. Büchi automata on ω-language (implemented as ALASKA [20]) and

3. visibly pushdown automata [14, 16, 17, 12].
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A number of mitigation techniques have been devised: MONA adopts BDD and path com-
pression. MONA has been improved by the antichain algorithm [8]. The work extends the
antichain algorithm to handle the nested structure of the prenex normal form. Recently, FORT
started to introduce antichain algrorithms. However, antichain algorithms are mostly adopted
on a prenex normal forms. An interesting empirical observation of FORT is that the flattening
of a formula into a prenex normal form triggers further state explosion, which motivated our
work. This paper investigates a generalized antichain algorithms without flattening. We focus
on monadic first-order logic, which has neither set variables (as MONA) nor transitive closure
(as FORT), as the most simple case study.

As an optimization, we further introduce

• conversion rules of composition terms which preserve the accepted language and

• distributive laws of emptiness checking into a composition terms.

We evaluate them on randomly generated 3000 Presburger formulas. Generalized antichain
algorithm improves the performance for sufficiently large and complex problems. Due to the
overhead of calculating orderings, it does not work for small problems.
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Chapter 2

Preliminaries

We introduce notations on automata. We assume basic knowledge of set theory and automata
theory.

2.1 Finite automata and closure property

Definition 2.1.1. Let Σ be a finite alphabet. A finite automaton (FA)M on finite words over
Σ is a tuple 〈Q,Σ, δ, I, F 〉, where Q is a finite set of states, δ ⊆ Q×Σ×Q a transition relation,
and I, F ⊆ Q are the sets of initial and final states, respectively.

FAs are denoted by calligraphic symbols M,A, ... We use the subscript to refer each com-
ponent of the automaton M, e.g., the set of states of M is referred to as QM. We use these
letters a, b, c, τ to denote elements of Σ and x a string in Σ∗. We write xc for the concatenation
of x ∈ Σ∗ and c ∈ Σ. Small letters p, q, .. denote states and large letters S, T, U, V, .. denote sets
of states. We impose several assumptions on finite automata.

• A standard ε-elimination procedure ensures that δM has no ε -transition.

• Except for initial states, all states have an incoming transition edge.

• By adding the black-hole state, all states have outgoing transition edges.

• Among automata A, B, C, .., they share the same input alphabet Σ.

• For any different automata A and B, the state sets are mutually disjoint, i.e., QA∩QB = ∅.

Definition 2.1.2. A transition relation δM is deterministic if

∀ q ∈ QM. ∀ c ∈ Σ. |{q′ ∈ QM | (q, c, q′) ∈ δM}| = 1

For a non-deterministic automaton (NFA)M, reading one character on a state, it may have
multiple destination states in the transition relation δM. A transition function for NFA takes
a character and a state and maps to set of states in the transition relation. We define the
transition function ∆M as follows:

∆M : QM × Σ→ 2QM

∆M(q, c) := {q′ | (q, c, q′) ∈ δM}

∆M is extended to read a word on a set of states, inductively defined on a word length as
follows:

∆̂M : 2QM × Σ∗ → 2QM

∆̂M(S, ε) := S

∆̂M(S, cx) := ∆̂M(
⋃
q∈S

∆M(q, c), x)
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Note that set operator
⋃
i
commutes:

⋃
i

∆̂(Si, x) = ∆̂(
⋃
i
Si, x). Further,

⋃
p∈S

∆̂({p}, x) = ∆̂(S, x)

holds. For ∆̂, we prepare another inductive definition with respect to the word length.

Proposition 2.1.1. Let S ⊆ QM, x ∈ Σ∗, and c ∈ Σ. ∆̂M(S, xc) =
⋃

q∈∆̂M(S,x)

∆M(q, c).

We say that a string x is accepted byM if ∃q ∈ FM. q ∈ ∆̂M(IM, x). For c ∈ Σ, we denote
q

c−→ p if p ∈ ∆M(q, c). For x ∈ Σ∗, we denote q x−→ p if p ∈ ∆̂M({q}, x). The language ofM
is the set of words accepted byM and is denoted by L(M).

In order to collect a set of reachable states from S, we define the following functions.

postM(c, S) := {q′ ∈ QM | ∃ q ∈ S. (q, c, q′) ∈ δM}

PostM(S) :=
⋃
c∈Σ

⋃
q∈S

∆M(q, c)

Note that postM(c, S) =
⋃
q∈S ∆M(q, c) and that PostM(S) =

⋃
c∈Σ postM(c, S).

Definition 2.1.3. Let U be a set and f : 2U → 2U a set operator on U . We say f is
monotone if S ⊆ T ⇒ f(S) ⊆ f(T ) and f is finitary if f(S) consists of finite subsets of S, i.e.,
f(S) =

⋃
T ⊆

fin
S

f(T ) , where T ⊆
fin

S denotes that T is a finite subset of S. Let X be a set variable.

The notation µX. f(X) stands for the least fixpoint of f , the point where X = f(X) holds.

The fixpoint µX. f(X) does not necessarily exist for arbitrary f . Given that f is finitary,
then µX. f(X) exists and equals to ∅ ∪ f(∅) ∪ f2(∅) ∪ . . . ∪ fn(∅) for some n [9].

Lemma 2.1.1. LetM be an NFA. PostM is monotone.

Definition 2.1.4. Given a partially ordered set 〈U ,v〉, antichain is a subset S ⊆ U containing
only incomparable elements, i.e., ∀s, s′ ∈ S. s 6v s′.

Definition 2.1.5. An element s ∈ S is minimal with respect to v if ∀s′ ∈ S. s′ 6@ s. Let
minv(S) := {s ∈ S | s is minimal with respect to v in S}

Theorem 2.1.2. The class of regular languages is closed under union, intersection and comple-
ment operations.

2.2 Automata-theoretic theorem proving

In this section we explain our research aim and specify the target problem. Deciding Presburger
arithmetic only requires regular language operations on finite automata. For simplicity, among
automata theoretic theorem proving, we focus on Presburger arithmetic. Following the notation
in [8], we write x1 : a

x2 : b to denote the substitution for variables x1, x2. There are several existing
tools for automata-theoretic theorem proving. MONA [6] translates formulas in weak monadic
second-order logic of k successor (WSkS) to finite tree automata. Recently, FORT [15] is im-
plemented for First Order Theory of term rewriting. It is based on tree automata and GTT for
left-liner right-ground term rewriting systems. They determine not only whether a formula is
valid, but also generate counter-examples from the automata if the formula is not valid.

Difficulty of the automata construction comes from the state explosion problem. WS1S
requires tower of computation task corresponding to the height of quantifiers in the input for-
mula. Thus, in theory, its satisfiability / validity checking problem of is nonelementary [5].
The determinization of automata causes state explosion, which is necessary to translate the
complementation. We augment the regular operation with projection, which corresponds to an
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existential quantifier ∃. Let Σ denote Σ × . . . × Σ, n -tuple of Σ. The n-tuple
c1
.
.
cn

is the ele-

ment of Σ and we denote it by c. πi(a, c) substitutes the i-th element of a to c. We denote

πi(a, c) :=

.

.
ai−1
c

ai+1
.
.

.

Let A be a FA with the alphabet Σ. Let δ′A be
⋃

(q,τ,q′)∈δA
⋃
c∈Σ{(q, πi(τ, c), q′)}. Projection

is an automata operation which replaces δA with δ′A. Even though δA is deterministic, δ′A often
becomes non-deterministic.

Related work The commonly used optimization to tackle the state explosion is the on-the-fly
state space generation [10]. Antichain algorithm, another technique originally developed in the
model checking, combines the on-the-fly determinization and minimization [19]. [11] Abdulla,
et al. [1] combined antichains and a simulation technique and further reduced the state space
of the universality/inclusion checking. These techniques are expanded to

1. tree automata [3],

2. automata on ω-language (implemented as ALASKA [20]) and

3. visibly pushdown automata [14, 16, 17, 12].

A number of mitigation techniques have been devised: MONA adopts BDD and path com-
pression. MONA has been improved by antichain algorithm [8]. The work extends the antichain
algorithm to handle the nested structure of the prenex normal form. Recently, FORT started to
introduce antichain algorithms. However antichain algorithms are mostly adopted on a prenex
normal forms. An interesting empirical observation of FORT is that the flattening of a formula
into a prenex normal form triggers further state explosion. This observation motivated us to
directly handle the formulas of the nested structure without flattening. We focus on monadic
first-order logic which has neither set variables (as MONA) nor transitive closure (as FORT),
as the most simple case study. Instead, we aim to directly handle a nested formula with an
antichain algorithm (i.e., without flattening).

Our experiments are performed on Presburger arithmetic. Presburger arithmetic is a First-
Order theory, whose structure consists of constant symbols {0, 1}, a function symbol {+}, and
a predicate symbol{=}. Its interpretation is fixed on the domain N with the standard addition
and the equality of numbers. For each atomic formula in Presburger arithmetic, we construct an
automaton as described in [4]. For example, an equation φ : x0 + 2x1−3x2 = 2 is recognized by
the automatonR (Fig 1), where the set of positive solutions of φ are represented in words over Σ.
For instance, x0 = 9, x1 = 4 and x2 = 5 is one of the solutions of φ. We use binary representation
of base 2 for natural numbers. One of {0, 1} is assigned for each power of 20, 21, ..., 2i from left

to right e.g., 9 is 10010. The assignment
x0 : 9
x1 : 4
x2 : 5

is represented by
1 0 0 1 0
0 0 1 0 0
1 , 0 , 1 , 0 , 0

as the string in

the Σ
∗. We can confirm that the automaton R accepts the string.
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Figure 2.1: The automaton R which recognizes the solutions of x0 + 2x1 − 3x2 = 2
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Chapter 3

Conventional Antichain Algorithm

In this section, we recall and reformulate the antichain algorithms for the universality and
the inclusion problems of FAs [13]. Antichain algorithms reduce both of the problems to an
emptiness problem. Thus we first explain the emptiness problem and the on-the-fly emptiness
checking algorithm in detail. We introduce deduction rules of the emptiness checking for later
generalization of antichain algorithms.

3.1 Emptiness Checking

The emptiness problem is given an input automaton A, answer whether its language is empty,
i.e., L(A) = ∅. Let the function succA : 2QA → 2QA be succA(s) := IA ∪ PostA(s).

Definition 3.1.1. The on-the-fly algorithm of Emptiness Checking computes µX. (succA(X)).
If µX. (succA(X)) ∩ FA = ∅, then return "empty"; "non-empty", otherwise. Since succA is
finitary, the least fixpoint µX. (succA(X)) exists.

We show that the computation of the fixpoint actually solves the emptiness problem.

Lemma 3.1.1. Let x ∈ Σ∗ and let n be the length of x. For all S ∈ 2QA , ∆̂A(S, x) ⊆ PostnA(S).

Proof. By induction on the length n.

Base case. x = ε

∆̂A(S, ε) = S ⊆ Post0A(S) = S

Inductive step. x = x′c

Let k + 1 be the length of x′c. We have the I.H. ∆̂A(S, x′) ⊆ PostkA(S). By definition,
∆̂A(S, x′c) =

⋃
q∈∆̂A(S,x′)

∆A(q, c). On the other hand,

Postk+1
A (S) = PostA(PostkA(S)) =

⋃
c∈Σ

⋃
q∈PostkA(S)

∆A(q, c)

Postk+1
A (S) ⊇

⋃
q∈PostkA(S)

∆A(q, c)

By I.H. we have,
⋃

q∈∆̂A(S,x′)

∆A(q, c) ⊆
⋃

q∈PostkA(S)

∆A(q, c). Therefore we have ∆̂A(S, x′c) ⊆

Postk+1
A (S).

Lemma 3.1.2. µX. (succA(X)) ∩ FA = ∅⇔ L(A) = ∅.
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Proof. We only show the⇒ direction. We prove by contradiction. We suppose µX. (succA(X))∩
FA = ∅ and assume L(A) 6= ∅. Then we have x ∈ L(A), i.e., we have an accepting state q
such that q ∈ ∆̂A(IA, x) ∩ FA. On the other hand, from Lemma 3.1.1, we have ∆̂A(IA, x) ⊆
(PostA)n(IA), where n is the length of x. Since (PostA)n(IA) ⊆ µX. (succA(X)), we have
q ∈ µX. (succA(X)). This is a contradiction.

3.2 Forward antichain algorithms for universality/ inclusion

Given an input NFA A, the universality problem is to decide whether L(A) = Σ∗. Typically,
we first determinize A and then alternate final states to obtain the complement automaton. If
the resulting automaton A′ is empty, then the original A is universal. An antichain algorithm
performs on-the-fly determinization. Note that subsets of QA become the new state. The
antichain algorithm minimizes the state sets with exploiting an ordering. Subsets of QA are
ordered with the subset relation. The idea of the antichain algorithm is to minimize the search
space by removing the redundant branches, which are bigger w.r.t. ’⊆’, and by focusing only
on antichain [13]. Universality Checking computes µX. (min⊆({IA} ∪

⋃
S∈X

⋃
c∈Σ

{postA(c, S)})).

If the least fixpoint contains S such that S ∩ FA = ∅ then L(A) is not universal.
Given input NFAs A and B, the inclusion problem is to decide whether L(A) ⊆ L(B). By

closure property of regular languages, typically the problem is reduced to check L(A)∩L(B) = ∅.
We first conduct complementation of the automaton B to obtain B′, and then perform product
construction of A and B′. Let C denote the resulting automaton. A state of C has a form of a
tuple: the left element is a state in QA and the right one is a subset of QB. The following ordering
over tuples are used to minimize the search space: (=,⊆) := {((q, S), (p, T )) | q = p ∧ S ⊆
T}. The antichain algorithm of Inclusion Checking computes µX. (min(=,⊆)(

⋃
q∈IA
{(q, IB)} ∪⋃

(q,S)∈X

⋃
c∈Σ

⋃
p∈∆A(q,c)

{(p, postA(c, S))})). If the least fixpoint contains (q, S) such that q ∈ FA

and S ∩ FB = ∅ then L(A) 6⊆ L(B).

3.3 Deduction rules for Emptiness Checking

From comparison of the 3 problems above, we observe that those procedures construct reachable
states, and that for each construction they check certain properties of the state. In Emptiness
Checking, the procedure visits the reachable states and checks the state is accepting or not. If
an accepting state is found, then the procedure terminates with the answer "non-empty". In
Universality Checking, on the other hand, performs the subset construction. Then the procedure
checks whether none of the member in the set of states is accepting. If such a state set is found,
then the procedure outputs "non-universal". Based on the observation above, we extract the
common part of these algorithms, namely the construction of the reachable states and property
checking at each extension of transition steps. We prepare the basic definitions in the deduction
style. Later in the paper, we extend the algorithm to make more general and efficient by replacing
rules with new ones.

Each time we collect the set of states S of a given automatonM, we check the property of
the members in S. The property varies among problems. We define the predicate SAT,UNSAT
for any subset S of QM to denote the property.

Definition 3.3.1. LetM be a NFA. S ⊆ QM.

SAT (S) := S ∩ FM 6= ∅
UNSAT (S) := S ∩ FM = ∅

9



We evaluate the predicate SAT (S) to true if some element of S is also a member of FM.
Note that given S, SAT (S) iff ¬UNSAT (S). In the context of Emptiness Checking, if we have
a set of reachable states T , then SAT (T ) allows us to conclude the language is "non-empty"
and to abort the search. Let us introduce a set of rules as a method to derive these predicates.

Definition 3.3.2. The OTF is the deduction system consisting of the following rules.

I ∩ F = ∅
UNSAT (succ1(∅))

I ∩ F 6= ∅
SAT (succ1(∅))

UNSAT (succn(∅))
Post(succn(∅)) ∩ F = ∅

UNSAT (succn+1(∅))

UNSAT (succn(∅))
Post(succn(∅)) ∩ F 6= ∅

SAT (succn+1(∅))

UNSAT (succn(∅))
succn(∅) = succn+1(∅)

UNSAT (µX. (succ(X)))

SAT (succn(∅))

SAT (µX. (succ(X)))

Definition 3.3.3. Given a NFAM, a derivation forM is a sequence of rules r0, r1, ..., rn such
that for each ri the side condition of ri instantiated toM is true.

Note that the i-th iteration of succiM(∅) corresponds to the i-th step reachable states. The
derivation forM begins from the initial states and explores the i-th reachable states ofM for
each i, until it reaches the least fixpoint µX. (succM(X)). It is stressed that the construction
of states is incremental, i.e., if the non-empty witness is found before reaching the fixpoint, then
the construction is aborted and the algorithm returns SAT (µX. (succM(X))).

Theorem 3.3.1. Let r0, r1, ..., rn be a derivation forM.

rn deduces UNSAT (µX. (succ(X)))⇔ L(M) = ∅.

Proof. We only show ⇒ direction. Suppose we have such a derivation r0, r1, ..., rn. First, we
have 3 observations:

1. UNSAT (µX. (succ(X))) is deduced only when the condition succn(∅) = succn+1(∅) is
met for some n.

2. Since succ is defined in terms of Post, there exists such n because of the property of Post.

3. The deduction rules correspond to the definition of succ. Apparently they compute the
n-th iteration of succM(∅) once instantiated.

From the above observation, we have that UNSAT (µX. (succ(X))) is deduced when
µX. (succM(X)) ∩ FM = ∅. By Lemma 3.1.2, we conclude that L(M) = ∅.

10



Chapter 4

Generalized Antichain Algorithm for
Composition Term

Similar to the Emptiness Checking, the forward antichain algorithms Universality Checking and
Inclusion Checking try to construct the set of reachable states. The differences of the forward
antichain algorithms from the Emptiness Checking are as follows:

1. States are obtained via the closure operations (the complementation for Universality prob-
lem, and the complementation and intersection for Inclusion problem).

2. Each time the antichain algorithm collects the state set, it minimizes the set with respect
to a certain ordering and keeps the search space minimal.

The idea is that the transition from a larger state (w.r.t. the specific ordering) is always simulated
by those from the smaller state. Thus we can safely minimize the search space, eliminating the
larger ones. In this section, we introduce an inductive definition of the regular operations and
the ordering. Recall that the regular language is closed under the complementation, the union,
and the intersection. We further add the projection. We denote the product automaton of A and
B by A⊗B, and the sum automaton by A⊕B. We decompose the complementation operation
into the determinization A.d and the alternation of the final states A.c. Projection to the i-th
element of an input is denoted by A.pi. For a monadic atomic predicate that has a regular set
of supports, we refer it as an atomic automaton A0.

Definition 4.0.1. Composition term ::= A0 | A.d | A.c | A.pi | A ⊕ B | A ⊗ B

Since the correspondence of composition terms to FAs is straightforward, we take over the
same notion as FAsM,A,B, .. to denote composition terms. Each symbol in a logical formula
is translated into a corresponding operator in a composition term. An automaton operation
for negation is not direct. When an automaton A representing ϕ is non-deterministic, we first
apply the determinization d before applying c to express ¬ϕ. We say a composition term is well
formed if every occurrence of ’c’ is associated to a deterministic automaton.

Definition 4.0.2. [2] LetM be a composition term. A set of positions ofM is a set of strings
over the alphabet {1, 2}. A set of position of M is denoted Pos(M) ⊆ {1, 2}∗ and defined as
follows:

Pos(A) := {ε}
Pos(A.u) := {ε} ∪ {1p | p ∈ Pos(A)} u ∈ {d, c, pi}
Pos(A b B) := {ε} ∪ {1p | p ∈ Pos(A)} ∪ {2p | p ∈ Pos(B)} b ∈ {⊗,⊕}

11



Definition 4.0.3. A subterm ofM at position p , denoted byM|p is:

M|ε :=M
A.u|1p′ := A|p′ u ∈ {d, c, pi}

(A1 b A2)|ip′ := Ai|p′ b ∈ {⊗,⊕}

The subterm relation over composition terms A,B, denoted by A ≤ B, is defined by ∃p ∈
Pos(B). B|p = A.

4.1 Interpretation of composition terms

We design composition terms to express the each closure operation. Each component of a FA
(a transition function, a set of initial and final states) is defined inductively along the structure
of the composition terms.

Definition 4.1.1.

∆ : QM × c→ 2QM

CaseM≡ A0 ∆A0 := ∆A0

CaseM≡ A⊗B ∆A⊗B((ql, qr), c) :=
⋃

q′l∈∆A(ql,c)

⋃
q′r∈∆B(qr,c)

{(q′l, q′r)}

CaseM≡ A⊕B ∆A⊕B := ∆A ∪∆B

CaseM≡ A.d ∆A.d(s, c) :=

{⋃
q∈s

∆A(q, c)

}
CaseM≡ A.pi ∆A.pi(q, a) :=

⋃
c∈Σ

∆A(q, πi(a, c))

CaseM≡ A.c ∆A.c := ∆A

The transition function ∆̂ for A0 is also defined forM without changes.

Definition 4.1.2.

FM ⊆ QM IM ⊆ QM
CaseM≡ A0 FA0 := FA0 IA0 := IA0

CaseM≡ A⊗B FA⊗B := FA × FB IA⊗B := IA × IB
CaseM≡ A⊕B FA⊕B := FA ∪ FB IA⊕B := IA ∪ IB
CaseM≡ A.d FA.d := {s | ∃ q ∈ s. q ∈ FA} IA.d := {IA}
CaseM≡ A.pi FA.pi := FA IA.pi := IA

CaseM≡ A.c FA.c := {q | q /∈ FA} IA.c := IA

4.2 Ordering on states

The composition term give rise to states with a complex structure, e.g., S ∈ Q(A⊗B).d consists
of a states in QA⊗B, whereas a member of QA⊗B is a tuple whose left element is a state in QA
and whose right element is a state in QB. In the previous section, we see that the key part
of antichain algorithms is minimization with respect to the certain orderings. We introduce an
inductive definition of ordering on states for the composition terms.
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Figure 4.1: The NFA E and composition term E .p2.d.c.p1.d.c

Definition 4.2.1.

vM ⊆ QM ×QM
CaseM≡ A0 vA0 := {(q, q) | q ∈ QA0}
CaseM≡ A⊗B vA⊗B := {((qa, qb), (pa, pb)) | qa vA pa ∧ qb vB pb}
CaseM≡ A⊕B vA⊕B :=vA ∪ vB
CaseM≡ A.d vA.d := {(U, V ) | ∀v ∈ V. ∃u ∈ U. u vA v}
CaseM≡ A.c vA.c := {(p, q) | q vA p}
CaseM≡ A.pi vA.pi :=vA

4.3 Generalized antichain algorithm for composition term

The satisfiability checking algorithm consists of two steps.

1. The automata construction described by a composition term t.

2. The emptiness checking EC described by deduction rules.

It can be understood as EC(t) when we apply the on-the-fly algorithm, it becomes (EC(t))OTF =
(EC)OTF (tOTF ), when (EC(t))OTF and are performed step-by-step on the length of words. The
generalized antichain algorithm is described as (EC(t))GAC = ECGAC(tOTF ), in which the au-
tomaton construction is amalgamated with the minimization following to inductively defined
orderings. Further optimizations,

• the conversion of the compositional term to a minimally quantified form(preserving lan-
guage equivalence)

• the distributive laws of the emptiness checking (preserving equisatisfiability)

are presented in Chapter 6.
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Definition 4.3.1.

I ∩ F = ∅
UNSAT ((succ ◦minv)1(∅))

I ∩ F 6= ∅
SAT ((succ ◦minv)1(∅))

UNSAT ((succ ◦minv)n(∅))
Post((succ ◦minv)n(∅)) ∩ F = ∅

UNSAT ((succ ◦minv)n+1(∅))

UNSAT ((succ ◦minv)n(∅))
Post((succ ◦minv)n(∅)) ∩ F 6= ∅

SAT ((succ ◦minv)n+1(∅))

UNSAT ((succ ◦minv)n(∅))
(succ ◦minv)n(∅) = (succ ◦minv)n+1(∅)

UNSAT (µX. (succ ◦minv(X)))

SAT ((succ ◦minv)n(∅))

SAT (µX. (succ ◦minv(X)))

Example 4.3.1. Let us demonstrate the construction for composition terms through an exam-
ple. Let ψ be a Presburger formula

¬(∃x0. ∃x2. x0 + 2x1 − 3x2 = 2) ∧ ∃x0. 3x0 + x1 + 2x2 = 1

. The automaton R in the previous chapter accepts the set of solutions for x0 + 2x1 − 3x2 = 2.
We give another automaton G for 3x0 +x1 + 2x2 = 1. A composition term which corresponds to
ψ is (R.p2.p0.d.c⊗ G.p0). Let E denote the term. The initial state of E is computed as follows:

IE = IR.p2.p0.d.c⊗G.p0 = {IR.p2.p0.d.c × IG.p0} =

. . .

= {{IR} × IG} = {({r2}, g1)}

For instance,

∆E

(
({r2}, g1),

0
1
0

)
= {∆R.p2.p0.d.c

(
{r2},

0
1
0

)
×∆G.p0

(
(g1),

0
1
0

)
} =

. . .

= {({r0, r1, r_}, g0), ({r0, r1, r_}, g−1)}

PostE , succE are computed based on the ∆E . We can also find the ordering between the
states of E . According to the definition of vE , the ordering is the subset relation for the left
hand side of the tuple and the equality for the right hand side.

The figure 3 depicts the difference between E →EC Empty and E →ECv Empty. The initial
state ({r2}, g1) is located in the left of the picture. E →EC Empty computes all reachable states
within i step. As i proceeds, the new states are added to the right direction in the picture. This
algorithm generates 31 states until reaching the fixpoint. On the other hand, the generalized
antichain algorithm only maintains minimal states w.r.t. vE . The generated states are circled
in the yellow line in the picture. The antichain algorithm constructs just 15 states until reaching
the fixpoint.
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Chapter 5

Composition Terms to Solve Problems

In this section, we prove that the generalized antichain algorithm is complete and sound. For the
universality and the inclusion, our approach is identical to the conventional antichain algorithms.
We observe closely on the universality, the inclusion, and a general case, step by step. The key
is an inductive construction of the orderings following to the structure of composition terms.

5.1 Universality problem

Lemma 5.1.1. Let A.d be a composition term and S, T ∈ QA.d. Let c ∈ Σ.

∀U ∈ ∆A.d(S, c), V ∈ ∆A.d(T, c). S ⊆ T ⇒ U ⊆ V.

Proof. Let M = T \S. By definition 4.1.1, U ∈
{⋃

p∈S ∆A(p, c)
}
. We have U =

⋃
p∈S ∆A(p, c).

Similarly,V =
⋃
p∈T ∆A(p, c). Then we have V =

⋃
p∈M ∆A(p, c) ∪

⋃
p∈S ∆A(p, c). Therefore

U ⊆ V .

Lemma 5.1.2. Let x ∈ Σ∗. ∀U ∈ ∆̂A.d({S}, x), V ∈ ∆̂A.d({T}, x). S ⊆ T ⇒ U ⊆ V .

Proof. By induction on the length of the word x.

Base case. x = ε

∆̂A.d({S}, ε) = {S}. We have U = S. Similarly V = T . Thus U ⊆ V .

Inductive step. x = x′c

we have the I.H.

∀U ∈ ∆̂A.d({S}, x′), V ∈ ∆̂A.d({T}, x′). S ⊆ T ⇒ U ⊆ V.

We also have ∆̂A.d({S}, cx′) =
⋃

S′∈∆̂A.d({S},x′)

∆A.d(S
′, c)

Similarly we have ∆̂A.d({T}, cx′) =
⋃

T ′∈∆̂A.d({S},x′)

∆A.d(T
′, c)

By I.H., ∀S′ ∈ ∆̂A.d({S}, x′), T ′ ∈ ∆̂A.d({T}, x′). S ⊆ T ⇒ S′ ⊆′ T , which implies, by Lemma
5.1.1, ∀U ∈ ∆A.d(S

′, c) ∀V ∈ ∆A.d(T
′, c). U ⊆ V . Finally we have

∀U ∈
⋃

S′∈∆̂A.d({S},x′)

∆A.d(S
′, c) ∀V ∈

⋃
T ′∈∆̂A.d({S},x′)

∆A.d(T
′, c). U ⊆ V.
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Lemma 5.1.3. ∀U, V ∈ QA.d.c. U ⊆ V ⇒ (U ∈ FA.d.c ⇐ V ∈ FA.d.c)

Proof. Suppose V ∈ FA.d.c. By definition 4.0.1 of composition terms, it is equivalent to ¬(V ∈
FA.d), and to ¬(∃q ∈ V. q ∈ FA). Equivalently, ∀q ∈ V. q /∈ FA. Since U ⊆ V , ∀q ∈ U. q /∈ FA.
We conclude U ∈ FA.d.c.

Theorem 5.1.4. ∀U ∈ ∆̂A.d.c({S}, x), V ∈ ∆̂A.d.c({T}, x). S ⊆ T ⇒ (U ∈ FA.d.c ⇐ V ∈ FA.d.c)

Proof. Note that ∆̂A.d = ∆̂A.d.c. From Lemma 5.1.2, S ⊆ T ⇒ U ⊆ V . From Lemma 5.1.3,
U ∈ FA.d.c ⇐ V ∈ FA.d.c

5.2 Inclusion problem

Lemma 5.2.1. LetM = A⊗ B.d.c , a composition term and (sl, sr), (tl, tr) ∈ QM. Let c ∈ Σ.

∀(vl, vr) ∈ ∆M((tl, tr), c). ∃(ul, ur) ∈ ∆M((sl, sr), c). sl = tl ∧ sr ⊆ tr ⇒ (ul = vl ∧ ur ⊆ vr) .

Proof. Let (vl, vr) ∈
⋃

ql∈∆A(tl,c)

⋃
qr∈∆B.d.c(tr,c)

{(ql, qr)}. Let ur ∈ ∆B.d.c(sr, c). Since sr ⊆ tr,

from Lemma 5.1.1, ur ⊆ vr. We have vl = vl ∧ ur ⊆ vr. Since sl = tl, vl ∈ ∆A(sl, c), we
conclude that (vl, ur) ∈ ∆M((sl, sr), c).

Lemma 5.2.2. LetM = A⊗ B.d.c , and (sl, sr), (tl, tr) ∈ QM. Let x ∈ Σ∗.

∀(vl, vr) ∈ ∆̂M({(tl, tr)}, x). ∃(ul, ur) ∈ ∆̂M({(sl, sr)}, x). sl = tl∧sr ⊆ tr ⇒ (ul = vl ∧ ur ⊆ vr) .

Proof. By induction on the length of x.

Base case. x = ε

∆̂M({(sl, sr)}, ε) = {(sl, sr)} and ∆̂M({(tl, tr)}, ε) = {(tl, tr)}. (sl, sr) and (tl, tr) satisfy the
condition.

Inductive step. x = x′c

We have I.H.

∀(vl, vr) ∈ ∆̂M({(tl, tr)}, x′). ∃(ul, ur) ∈ ∆̂M({(sl, sr)}, x′). sl = tl∧sr ⊆ tr ⇒ (ul = vl ∧ ur ⊆ vr)

Let (vl, vr) ∈ ∆̂M({(tl, tr)}, cx′) =
⋃

q∈∆̂M({(tl,tr)},x′)
∆M(q, c). We suppose (vl, vr) ∈ ∆M((t′l, t

′
r), c),

for arbitrary (t′l, t
′
r) ∈ ∆̂M({(tl, tr)}, x′). By I.H., we have (s′l, s

′
r) ∈ ∆̂M({(sl, sr)}, x′) such that

s′l = t′l ∧ s′r ⊆ t′r. By Lemma 5.2.1, there exists (ul, ur) ∈ ∆M((s′l, s
′
r), c) and (ul = vl ∧ ur ⊆ vr)

holds. Since (ul, ur) ∈ ∆̂M({(sl, sr)}, cx′), the statement holds for the inductive case.

Lemma 5.2.3.

∀(ul, ur), (vl, vr) ∈ QA⊗B.d.c. ul = vl ∧ ur ⊆ vr ⇒ ((ul, ur) ∈ FA⊗B.d.c ⇐ (vr, vl) ∈ FA⊗B.d.c) .

Proof. Suppose (vl, vr) ∈ FA⊗B.d.c. By definition of composition terms, it is equivalent to vl ∈
FA ∧ vr ∈ FB.d.c. Since ul = vl ∧ ur ⊆ vr, by using Lemma 5.1.3, ul ∈ FA ∧ ur ∈ FB.d.c. We
conclude (ul, ur) ∈ FA.d.c.

Theorem 5.2.4. ∀(vl, vr) ∈ ∆̂M({(tl, tr)}, x). ∃(ul, ur) ∈ ∆̂M({(sl, sr)}, x). sl = tl ∧ sr ⊆ tr ⇒
((ul, ur) ∈ FA⊗B.d.c ⇐ (vr, vl) ∈ FA⊗B.d.c).

Proof. Suppose (vl, vr) ∈ ∆̂M({(tl, tr)}, x) and (vl, vr) ∈ FA⊗B.d.c. Since we have sl = tl∧sr ⊆ tr
and from Lemma 5.2.2, there exists (ul, ur) ∈ ∆̂M({(sl, sr)}, x) such that ul = vl ∧ ur ⊆ vr.
From Lemma 5.2.3, we have (ul, ur) ∈ FA⊗B.d.c.
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5.3 Generalized antichain algorithm for emptiness checking

Lemma 5.3.1. ∀q, p ∈ QM.q vM p⇒ (q ∈ FM ⇐ p ∈ FM).

Proof.

Base case. M≡ A0

We have q = p by q vA0 p. Assume p ∈ FA0 and we have q ∈ FA0 .

Case. M≡ A⊗B

Suppose (qa, qb), (pa, pb) ∈ QA⊗B with (qa, qb) vA⊗B (pa, pb). The I.H. is as follows:

• ∀qa, pa ∈ QA.qa vA pa ⇒ (qa ∈ FA ⇐ pa ∈ FA)

• ∀qb, pb ∈ QB.qb vB pa ⇒ (qa ∈ FB ⇐ pb ∈ FB)

We have qa vA pa and qb vB pb by the definition of vA⊗B. Assume (pa, pb) ∈ FA⊗B, i.e.,
pa ∈ FA and pb ∈ FB. Then by qa vA pa, qb vB pb and I.H., we have qa ∈ FA and qb ∈ FA, i.e.,
(qa, qb) ∈ FA⊗B.

Case. M≡ A⊕B

If q, p ∈ QA, then by I.H., the statement holds. If q ∈ QA and p ∈ QB, since (q, p) /∈vA⊕B,
the statement trivially holds.

Case. M≡ A.d

I.H. is as follows: ∀q, p ∈ QA.q vA p ⇒ (q ∈ FA ⇐ p ∈ FA). Suppose U, V ∈ QA.d and
U vA.d V . Assume V ∈ FA.d. By definition of FA.d, we have p ∈ V such that p ∈ FA.d. By
definition of vA.d, we have q ∈ U such that q vA p. Since p ∈ FA, by I.H., q is also in FA. We
have U ∈ FA.d.

Case. M≡ A.c

Suppose q, p ∈ QA.c with q vA.c p. Then we have p vA q. Suppose p ∈ FA.c, then p /∈ FA.
By I.H., p ∈ FA ⇐ q ∈ FA , and by taking contraposition, q /∈ FA.c ⇐ p /∈ FA.c also holds. We
have q ∈ FA.c.

Lemma 5.3.2. LetM be a composition term and q, p ∈ QM Let c ∈ Σ.

∀p′ ∈ ∆M(p, c). ∃q′ ∈ ∆M(q, c). q vM p⇒ q′ vM p′.

Proof. By induction on the structure ofM.

Base case. M≡ A0

Assume q vA0 p and let p′ ∈ QA0 with p′ ∈ ∆A0(p, c). By definition, q = p. Hence we have
p′ ∈ ∆A0(q, c) and p′ vA0 p

′.

Inductive step.

Case. M≡ A⊗B

Let (qa, qb), (pa, pb) ∈ QA⊗B and we assume (qa, qb) vA⊗B (pa, pb). We have the I.H.

• ∀p′a ∈ ∆A(p, c). ∃q′a ∈ ∆A(q, c). q vA p⇒ q′ vA p′

• ∀p′b ∈ ∆B(p, c). ∃q′b ∈ ∆B(q, c). q vB p⇒ q′ vB p′
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Let (p′a, p
′
b) ∈ ∆A⊗B((pa, pb), c). By definition of vA⊗B, we have qa vA pa and qb vB pb.

By definition of ∆A⊗B, we also have p′a ∈ ∆A(pa, c) and p′b ∈ ∆B(pb, c). By I.H., we have
q′a ∈ ∆A(qa, c) such that q′a vA p′a. Also by I.H., we have q′b ∈ ∆B(qb, c) such that q′b vB p′b. By
definition of ∆A⊗B, (q′a, q

′
b) ∈ ∆A⊗B((qa, qb), c), and by definition ofvA⊗B, (q′a, q

′
b) vA⊗B (p′a, p

′
b).

Case. M≡ A⊕B

Let q, p ∈ QA⊕B. There are 2 cases: 1. q ∈ QA and q ∈ QB (or q ∈ QB and q ∈ QA). 2.
q ∈ QA and q ∈ QA (or q ∈ QB and q ∈ QB). If case 1, then (q, p) /∈vA⊕B. The statement
trivially holds. If case 2, the I.H. satisfies the statement.

Case. M≡ A.d

Let U, V ∈ QA.d. We assume U vA.d V . Let V ′ ∈ ∆A.d(V, c) and U ′ ∈ ∆A.d(U, c). Since
V ′ ∈ {

⋃
p∈V

∆A(p, c)}, V ′ =
⋃
p∈V

∆A(p, c). Similarly U ′ =
⋃
q∈U

∆A(q, c). We show U ′ vA.d V ′. Let

p′ ∈ V ′. Then we have p ∈ V such that p c−→ p′ since V ′ =
⋃
p∈V

∆A(p, c). By definition of vA.d,

∀p ∈ V. ∃q ∈ U. q vA p. Hence we can take q ∈ U such that q vA p. Since q ∈ U , we have
q′ ∈ ∆A(q, c) with q′ ∈ U ′. By I.H., we have q′ vA p′. For arbitrary p′ ∈ V ′, we can find the
element q′ ∈ U ′ such that q′ vA p′. We conclude U ′ vA.d V ′.

Case. M≡ A.c

We have 2 cases: 1. A is non-deterministic. 2. A is deterministic. If case 1, then A.c is not
well formed. The statement trivially holds since the assumption is not satisfied, If case 2, ∆A.c
returns singleton of a state. We have single p′ ∈ ∆A.c(p, c). Assume q vA.c p. By definition of
vA.c, we have p vA q. Let q′ ∈ ∆A.c(q, c). Since p′ is taken from the singleton ∆A.c(p, c), by
I.H., p′ vA q′. Then we have q′ vA.c p′.

Lemma 5.3.3. Let x ∈ Σ∗,M be a composition term. ∀q ∈ ∆̂M(IM, x). q is minimal w.r.t. vM
in ∆̂M(IM, x)⇒ ∃q′ ∈ µX. (succM ◦minvM(X)). q′ vM q.

Proof. By induction on the length of x.

Base case. x = ε

Suppose q ∈ ∆̂M(IM, ε) = IM and minimal w.r.t. vM in IM. If q ∈ µX. (succM ◦
minvM(X)), the statement holds for the base case. Otherwise we have minvM(IM) ⊆
µX. (succM ◦minvM(X)) and there exists q′ ∈ minvM(IM) such that q′ vM q.

Inductive step. x = x′c

We have I.H., ∀q ∈ ∆̂M(IM, x
′). q is minimal w.r.t. vM in ∆̂M(IM, x

′) ⇒ ∃q′ ∈
µX. (succM ◦ minvM(X)). q′ vM q. Let q ∈ ∆̂M(IM, x

′c) and suppose q is minimal
w.r.t. vM in ∆̂M(IM, x

′c). Since q ∈
⋃

p∈∆̂M(IM,x′)

∆M(p, c), let p ∈ ∆̂M(IM, x
′) such that

q ∈ ∆M(p, c). Then we have p is minimal w.r.t. vM in ∆̂M(IM, x
′) . It is because, other-

wise there exists p′ ∈ ∆̂M(IM, x
′) with p′ vM p. By Lemma 5.3.2 there exists q′ ∈ ∆M(p′, c)

such that q′ ⊆M q. This contradicts q being minimal in ∆̂M(IM, x
′c). By I.H., we have

p′ ∈ µX. (succM ◦minvM(X)) with p′ vM p. By Lemma 5.3.2 there exists q′ ∈ ∆M(p′, c) such
that q′ ⊆M q.

q′ ∈ PostM({p′}) ⊆ IM ∪ PostM(µX. (succM ◦minvM(X))

⇔ q′ ∈ succM(µX. (succM ◦minvM(X))
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If q′ ∈ succM ◦ minvM(µX. (succM ◦ minvM(X))), then q′ ∈ µX. (succM ◦ minvM(X)).
Otherwise we have q′′ ∈ minM(succM(µX. (minM(succM(X))))) such that q′′ v q′ v q and
q′′ ∈ µX. (minM(succM(X))).

Lemma 5.3.4. µX. (succM ◦minM(X)) ∩ FM = ∅⇔ L(M) = ∅.

Proof. We only show the ⇒ direction. We show by contradiction. We suppose µX. (succM ◦
minM(X)) ∩ FM = ∅ and assume L(M) 6= ∅. Then we have x ∈ L(M), i.e., we have an
accepting state q such that q ∈ ∆̂M(IM, x) ∩ FM. We have 2 cases based on the minimality of
q in ∆̂M(IM, x).

Case. q is minimal with respect to vM in ∆̂M(IM, x).

From Lemma 5.3.3, we have q′ in µX. (succM ◦minM(X)) such that q′ vM q holds. Since
q ∈ FM, from Lemma 5.3.1, we have q′ ∈ FM. µX. (succM ◦minM(X)) contains an accepting
state. This is a contradiction.

Case. q is not minimal.

We can find another element q′ that is minimal w.r.t. vM in ∆̂M(IM, x), and that q′ vM q
holds. By Lemma 5.3.1, we have q′ ∈ FM. The rest of the discussion is similar to that of the
above case. Since q′ is the minimal element in ∆̂M(IM, x), by Lemma 5.3.3, we have q′′ in
µX. (succM ◦ minM(X)) such that q′′ vM q′ holds. By Lemma 5.3.1, q′′ is accepting, and
therefore yields the contradiction.

In the same way as Theorem 3.3.1, we have the following statement.

Theorem 5.3.5. Let r0, r1, ..., rn be a derivation forM.

rn deduces UNSAT (µX. (succ ◦minv(X)))⇔ L(M) = ∅.
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Chapter 6

Conversion Rules

Before constructing an automaton for a given input formula, there are chances to decompose a
problem into smaller sub-problems. It is natural to apply the distributive laws of ∧,∨, and ¬.
Those conversions preserve the logical equivalence of the formula. On the other hand, since it
is enough to maintain the satisfiability of the formula, we can further convert the composition
terms, i.e., equisatisfiable conversions. The use of "language terms" and the rewriting rules over
the terms are proposed and applied to WS1S [7]. They observed that

1. Anti-prenexing moves an existential quantifier down in the AST of a formula. This tech-
nique is the most effective among others.

2. ¬ is pushed down to bottom of the AST. Since the size of an automaton is smaller in the
bottom part than upper part, its determinization costs less.

Although our motivation is quite similar, the main difference is that our target normal form is
not a prenex normal form, but a minimally quantified form, which optimizes the generalized
antichain algorithm. We further introduce the distributive laws of the emptiness checking which
respect the equisatisfiability.

6.1 Logically equivalent conversions

Since the language remains unchanged, we regard certain sequences of symbols as a single symbol.
A.d.c is regarded as A.dc and A.pi.pj . . . . .pk is regarded as A.pipj . . . pk.

Definition 6.1.1. Logically equivalent rules correspond to distributive law of negation, con-
junction and disjunction and quantifiers.

A.dc.dc V R−→ A (V R1)

(A⊗ B).dc V R−→ A.dc⊕ B.dc (V R2)

(A⊕ B).dc V R−→ A.dc⊗ B.dc (V R3)

(A⊕ B).pi
V R−→ A.pi ⊕ B.pi (V R5)

((A⊕ B)⊗ G) V R−→ (A⊗ G)⊕ (B ⊗ G) (V R6)

In addition, we can derive the rule from V R, (A⊗ B).dc.pi.dc
V R

−→∗ A.dc.pi.dc⊗ B.dc.pi.dc.
The normal form of a composition term M is called a minimally quantified form. We confirm
that the minimally quantified form always exists for any composition terms by Proposition 6.1.1.

Proposition 6.1.1. V R is terminating.
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Proof. V R−→ is terminating by AC-RPO with the precedence d, c, pi,� ⊗ � ⊕.

Lemma 6.1.1. LetM be a composition term andM′ be a normal form of V R, i.e.,M
V R

−→∗M′.

∀p ∈ Pos(M′). ∀i ∈ {1, 2}.M′|pi = (_⊕_)⇒M′|p = (_⊕_).

Proof. By contradiction. SupposeM′|pi = (_⊕_) and assumeM′|p 6= (_⊕_). ForM′|p we
have the following 3 cases; For the case M′|p = (_ ⊗ _), we have M′|p = ((_ ⊕ _) ⊗ _) and
M′|p has a redex, which contradicts the fact that M′ is a normal form of V R. In other cases
whereM′|p = (_⊕_).dc, andM′|p = (_⊕_).pi, we also find the redex of V R. We conclude
that our assumption is wrong.

Lemma 6.1.2. ∀p, p′ ∈ Pos(M′). p ≤ p′ ∧M′|p′ = (_⊕_)⇒M′|p = (_⊕_).

Proof. For arbitrary p, let l, l′ be length of p, p′, respectively. By induction on n = l′ − l.

Base case.

n = 0, we have p = p′, andM′|p′ = (_⊕_)⇒M′|p = (_⊕_).

Inductive step.

n = k + 1, we have I.H. that M′|pi1i2...ik = (_ ⊕ _) ⇒ M′|p = (_ ⊕ _). We suppose
M′|pi1i2...ikik+1

= (_⊕ _). Then from Lemma 6.1.1,M′|pi1i2...ik = (_⊕ _). By applying I.H.,
we haveM′|p = (_⊕_).

6.2 Equisatisfiable conversions

In addition, we define equisatisfiable rules for answering the Emptiness Checking. The appli-
cation of these rules may change the language of composition terms, whereas its emptiness is
preserved.

Definition 6.2.1.

A →EC Empty
CR1 A.d→EC Empty

A →EC Empty
CR2 A.pi →EC Empty

A →EC Empty B →EC Empty
CR3

(A⊕ B)→EC Empty

Lemma 6.2.1. L(A) = ∅⇔ L(A.d) = ∅.

Proof. By L(A) = L(A.d).

Lemma 6.2.2. L(A) = ∅⇔ L(A.pi) = ∅.

Proof. Equivalently, we show µX. (succA(X))∩ FA = ∅⇔ µX. (succA.pi(X))∩ FA.pi = ∅. By
definition, FA = FA.pi and IA = IA.pi . Also we have PostA = PostA.pi since,

PostA.pi(s) =
⋃
c∈Σ

⋃
q∈s

∆A.pi(q, c)

=
⋃
c∈Σ

⋃
q∈s

⋃
c∈Σ

∆A.pi(q, πi(c, c))

=
⋃
c∈Σ

⋃
q∈s

∆A(q, c) = PostA(s)

Thus we have µX. (succA(X)) = µX. (succA.pi(X)). We conclude that L(A) = ∅ ⇔ L(A.pi).
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Lemma 6.2.3. L(A⊕ B) = ∅⇔ L(A) = ∅ ∧ L(B) = ∅.

Proof. By L(A⊕ B) = L(A) ∪ L(B).

Example 6.2.1. Let us demonstrate the conversion rules. We take over the first-order formula
ψ from the previous chapter. For clarity, we replace the atomic predicates with R,G and B.

ψ := ∃x0. ¬∃x1. R(x0, x1, x2) ∧ ∃x2. (G(x0, x1, x2) ∨B(x0, x1, x2))

First, we translate ψ into a composition term (R.p1.d.c ⊗ (G⊕B).p2).p0. In the conversion,
we highlighten the redexes by the underline.

(R.p1.d.c⊗ (G⊕B).p2).p0

V R−→(R.p1.d.c⊗(G.p2⊕B.p2)).p0

V R−→((R.p1.d.c⊗ G.p2)⊕(R.p1.d.c⊗ B.p2)).p0

V R−→(R.p1.d.c⊗ G.p2).p0 ⊕ (R.p1.d.c⊗ B.p2).p0

Further the converted composition term is decomposed into smaller problems. Note that the
derivation is bottom-up. We put the composition term at the bottom of the derivation and we
put the applicable rules on it.

R.p1.d.c⊗ G.p2 →EC bool
CR2

(R.p1.d.c⊗ G.p2).p0 →EC bool

R.p1.d.c⊗ B.p2 →EC bool
CR2

(R.p1.d.c⊗ B.p2).p0 →EC bool
CR3

(R.p1.d.c⊗ G.p2).p0⊕(R.p1.d.c⊗ B.p2).p0 →EC bool

As a result of the conversion, we have smaller 2 problems R.p1.d.c⊗ G.p2 and R.p1.d.c⊗ B.p2.
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Chapter 7

Implementation and Experiments

In this section, we explain the implementation and describe the experimental results. The tool
takes a First-Order Presburger formula and answers whether there exist satisfiable assignments
for the free variables in the formula. We do not restrict the formula to be closed. The syntactical
height of the formula represents repetition of the closure operations on the automata, while the
number of variables represents the size of Σ. Since we have 4 approaches, we compare the
running time of those 4 cases.

7.1 Implementation

We implemented those algorithms in OCaml. A user specifies one of 4 algorithms;

• On-the-fly construction without any other techniques (OTF)

• Term conversion only (Ct)

• Generalized antichain algorithm only (Ac)

• Both of these techniques (CtAc)

The user gives the number of variables in addition to a Presburger formula. Below is an
example of the input form;

p 3 and ( not ( e x i s t s ( x0 , e x i s t s ( x2 , eq ( r , 1x0 + 2x1 −3x2 = 2) ) ) ) ,
e x i s t s ( x0 , eq (g , 3x0 + 1x1 + 2x2 = 1) ) )

The code size is approximately 1300 lines. Each state of an automaton is indexed by a natural
number. A set is implemented by the sorted list. Thus ⊆ is computed by single traversal of
lists, whereas v, which appears in ⊆M.d, requires multiple traversals.

7.2 Data set and the experiment method

Our experimental data are First-Order Presburger formulas. The formulas are classified under
2 characteristics:

1. The syntactical height in terms of their abstract syntax tree (We denote H3 for the formula
with the height 3.)

2. The number of distinct variables occurring in the formula (We denote V4 for the formula
with the 4 kinds of variables.)

We generate Presburger formulas in the following manner. For an atomic formula:
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Figure 7.1: Generalized Ac vs Conventional Ac/ Generalized Ac vs OTF, H3V3

1. Each coefficient ai is randomly taken from 0 < ai ≤ 20 and cannot be 0, while right hand
side of the equation is also a random constant c with 0 ≤ c ≤ 100.

2. Falsey atomic formulas are excluded.

In order to make a formula out of the set of atomic formulas, we first randomly generate ASTs
with the specified height, then fill each node with one of ¬,∃ for unary nodes, and ∧,∨ for
binary nodes. The variable bounded by ∃ is also randomly chosen. We prepare 500 problems
for each class of the syntactical height 3 or 4, and the number of variables 2, 3 or 4. Timeout is
set to 5 minutes. We collect the running time, the size of the generated set of states, and the
result Empty or NonEmpty. Our experiments are performed on an Intel Xeon-X5690@3.47GHz
processor with 15 GiB RAM.

Those 4 algorithms are compared in terms of Success or Timeout as well as the consumed
time. The results are shown in Table 7.1. When at least one of the 4 algorithms failed as timeout,
the time record of the problem is excluded from "Total Time" shown in the right column of Table
7.1.

We compare our generalized antichain algorithm Ac and the conventional antichain algorithm.
The conventional antichain algorithm only uses the subset relation as the minimizing ordering.
We also compare the generalized antichain algorithm and on-the-fly algorithm OTF. The results
are shown in Figure 7.1 to Figure 7.4, respectively. In the figures, the generalized antichain
algorithm is shown in the x-axis, while the conventional antichain and on-the-fly algorithm is
shown in the y-axis. If the point is plotted above the diagonal, we observe that the generalized
antichain outperforms the other. Timeout records are plotted at the 300 sec. point in the figure.
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Figure 7.2: Generalized Ac vs Conventional Ac/ Generalized Ac vs OTF, H3V4
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Figure 7.3: Generalized Ac vs Conventional Ac/ Generalized Ac vs OTF, H4V3
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Figure 7.4: Generalized Ac vs Conventional Ac/ Generalized Ac vs OTF, H4V4
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Table 7.1: Results in frequency distribution table.
H3V2 Success/ Timeout Total Time
Size OTF Ct Ac CtAc OTF Ct Ac CtAc
0 - 488/ 0 488/ 0 488/ 0 488/ 0 51.04 51.3 77.32 77.38
1000 - 6/ 0 6/ 0 6/ 0 6/ 0 70.91 72.36 123.37 123.41
2000 - 3/ 0 3/ 0 3/ 0 3/ 0 254.66 256.45 405.6 409.24
3000 - 1/ 0 1/ 0 0/ 1 0/ 1 0 0 0 0
4000 - 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0
5000 - 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0
H3V3 Success/ Timeout Total Time
Size OTF Ct Ac CtAc OTF Ct Ac CtAc
0 - 438/ 0 438/ 0 438/ 0 438/ 0 242.16 242.98 277.97 277.81
1000 - 27/ 0 27/ 0 27/ 0 27/ 0 585.33 595.97 776.89 782.1
2000 - 8/ 0 8/ 0 8/ 0 8/ 0 628.57 636.62 986.76 996.65
3000 - 8/ 0 8/ 0 6/ 2 6/ 2 715.71 736.69 935.34 946.03
4000 - 2/ 0 2/ 0 1/ 1 1/ 1 269.3 266.09 262.06 263.05
5000 - 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0
H3V4 Success/ Timeout Total Time
Size OTF Ct Ac CtAc OTF Ct Ac CtAc
0 - 422/ 0 422/ 0 422/ 0 422/ 0 3084.79 3087.87 3148.38 3148.04
1000 - 23/ 0 23/ 0 23/ 0 23/ 0 461.22 454.08 604.3 605.52
2000 - 9/ 0 9/ 0 9/ 0 9/ 0 854.78 835.41 1154.07 1149.84
3000 - 5/ 1 5/ 1 5/ 1 5/ 1 642.62 657.05 867.93 848.87
4000 - 1/ 0 1/ 0 1/ 0 1/ 0 142.64 144.8 150.5 151.76
5000 - 1/ 0 1/ 0 0/ 1 0/ 1 0 0 0 0
H4V2 Success/ Timeout Total Time
Size OTF Ct Ac CtAc OTF Ct Ac CtAc
0 - 376/ 0 376/ 0 376/ 0 376/ 0 119.07 119.47 179.59 179.8
1000 - 33/ 0 33/ 0 33/ 0 33/ 0 732.08 742.84 1248.84 1254.29
2000 - 26/ 0 26/ 0 24/ 2 24/ 2 2025.78 2011.47 3333.26 3358.61
3000 - 9/ 0 9/ 0 4/ 5 4/ 5 734.73 705.19 781.75 796.62
4000 - 1/ 0 1/ 0 1/ 0 1/ 0 297.99 296.31 252.98 271.37
5000 - 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0
H4V3 Success/ Timeout Total Time
Size OTF Ct Ac CtAc OTF Ct Ac CtAc
0 - 328/ 0 328/ 0 328/ 0 328/ 0 348.25 348.34 389.68 386.65
1000 - 32/ 0 32/ 0 32/ 0 32/ 0 417.92 412.44 844.14 838.03
2000 - 17/ 0 17/ 0 17/ 0 17/ 0 966.0 950.76 1304.76 1299.88
3000 - 10/ 0 10/ 0 9/ 1 9/ 1 926.39 892.39 1046.68 1047.38
4000 - 5/ 0 5/ 0 3/ 2 3/ 2 577.3 577.74 565.36 562.13
5000 - 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0
H4V4 Success/ Timeout Total Time
Size OTF Ct Ac CtAc OTF Ct Ac CtAc
0 - 302/ 0 302/ 0 302/ 0 302/ 0 4999.64 5009.72 5049.68 5053.81
1000 - 34/ 0 34/ 0 34/ 0 34/ 0 794.41 789.95 832.62 824.57
2000 - 20/ 0 20/ 0 19/ 1 19/ 1 1089.36 1082.96 1116.32 1124.41
3000 - 11/ 0 10/ 1 11/ 0 11/ 0 1123.95 1090.03 1120.65 1132.61
4000 - 7/ 1 7/ 1 7/ 1 7/ 1 783.53 781.5 684.94 681.76
5000 - 5/ 1 5/ 1 5/ 1 5/ 1 954.08 910.19 818.73 821.85
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7.3 Experimental results

From Table 7.1, we observe that Ct and OTF is better than Ac or CtAc. However, the generalized
antichain algorithm Ac enjoys the performance improvement for sufficiently large and complex
problems (Table 7.1, H4V4, size 4000 - ). Due to the overhead of calculating orderings, it does
not work for small problems. The threshold would be the formulas with height 4, 4 variables
and more than 4000 state size. Ac requires additional computation of states comparison, which
becomes overhead for small problems. For problems with variables 2 or 3, the overhead is
not compensated and affect the performance (from Table 7.1). We cannot maintain that the
generalized antichain algorithm immediately leads to the universal performance improvement.

The same hold for the comparison of the generalized antichain and the conventional antichain
algorithm. Through Figure 7.1 to 7.4, most of the points are plotted below the diagonals.
That is, the conventional one is better. However, there are more cases where the generalized
antichain succeeds while the conventional timeouts than the cases where the generalized timeouts
while the conventional succeeds. Except H4V4, the generalized covers the problems that the
conventional successfully solves within the timeout. As previously observed, the generalized
antichain algorithm could work when the problem structure is complex.

In spite of the efforts to minimize the search space smaller and smaller, we could not ob-
serve the performance improvements from the results. Additional experiments are required: the
present data set is not sufficiently large nor complex.
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Chapter 8

Conclusion

We have presented a generalized approach to solve the problems in the automata theoretic theo-
rem proving. We developed the generalized antichain algorithm expanding the forward antichain
algorithms for Universality and Inclusion problems. One of our aim was to directly handle a
nested formula with an antichain algorithm (i.e., to avoid flattening the input formula). The aim
was achieved by introducing the composition terms that represent the automata construction
and by finding ordering inductively. So that the generalized antichain algorithm is inductively
defined for the structure of composition terms. As an optimization, we further introduced

1. the conversion rules of composition terms which preserve the accepted language, and

2. the distributive laws of emptiness checking into the composition terms.

We performed experiments on randomly generated 3000 Presburger formulas. We could not
observe that the generalized antichain algorithm improved the performance. Due to the overhead
of calculating orderings, it did not work for small problems. In the most cases, conversion of the
composition term performed better than the generalized antichain algorithm. Still, there were
some cases where the generalized antichain algorithm outperformed other algorithms, when the
problem was sufficiently large.
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