
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
On Automatic Cyber Range Instantiation for

Facilitating Security Training

Author(s) Pham, Cuong Duy

Citation

Issue Date 2017-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/14161

Rights

Description
Supervisor:BEURAN, Razvan Florin, 情報科学研究科,

修士

On Automatic Cyber Range Instantiation for
Facilitating Security Training

By Pham Duy Cuong

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Razvan Beuran

March, 2017

On Automatic Cyber Range Instantiation for
Facilitating Security Training

By Pham Duy Cuong (1510047)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Razvan Beuran

and approved by
Professor Mizuhito Ogawa
Professor Yoichi Shinoda

Associate Professor Ken-ichi Chinen

February, 2017 (Submitted)

Copyright c© 2017 by Pham Duy Cuong

Abstract

As cyber attacks are happening worldwide nowadays, cybersecurity training and education
become highly important. In modern training programs, controlled training environments,
so-called cyber ranges, appear as an efficient way for trainees to gain practical knowledge
through hands-on activities. However, creating an environment that contains all the
necessary features and settings, such as virtual machines, network topology and security-
related content, is not an easy task, especially for a large number of participants.
This thesis presents CyRIS (Cyber Range Instantiation System), which is an open-

source tool for facilitating cyber range creation. CyRIS provides a mechanism to automat-
ically prepare and manage cyber ranges for cybersecurity training based on specifications
defined by instructors. It contains both basic functions for setting up the infrastructure
of the cyber range, and security-related functions, which can be used to reproduce actual
incidents for the purpose of creating security content. This group of functions is the main
difference between CyRIS and other well-known automated environment configuration
tools, as it greatly reduces instructors’ time and effort in constructing a realistic training
environment.
In this thesis, we first describe the design and implementation of CyRIS, as well as

its utilization. We then present an evaluation of CyRIS in terms of feature coverage
compared to the “Technical Guide to Information Security Testing and Assessment” of
the U.S. National Institute of Standards and Technology, and in terms of functionality
compared to other similar tools. We also discuss the execution performance of CyRIS,
both on its own in regard to the running time for constructing representative cyber ranges
with large-scale scenarios, as well as in comparison with Alfons, which is a recent tool in
the field and developed by Japan National Institute of Information and Communications
Technology.

Keywords: Cybersecurity, cybersecurity training and education, cyber range, training
environment, network security.

Declaration: I hereby declare that this whole dissertation is my own work, and that it
has not been previously included in any other thesis, dissertation or report.
Student: Pham Duy Cuong

i

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Associate Professor Razvan
Beuran, School of Information Science, Area of Security Network, JAIST, for his extraor-
dinary support of my master, for his patience, motivation and immense knowledge. His
guidance has always been my inspiration and has helped me overcome numerous obstacles
I have been facing throughout my research. Without his persistent support this thesis
would not have been possible.
I would like to convey my special thank to Professor Xavier Defago, Department of

Computer Science, School of Computing, Tokyo Institute of Technology, as he was my
supervisor in the first year of my master, for his financial support, his insightful advices
and encouragement, not only in research but also in other aspects of life. My sincere
thanks are also due to Professor Yoichi Shinoda and Associate Professor Ken-ichi Chinen,
School of Information Science, Area of Security Network, JAIST, as committee members of
my midterm and final defenses, who provided instructive questions and helpful comments
to clarify and improve my research.
I would also like to thank Mr. Tang Thanh Dat, Mr. Bui Ha Duong and Mr. Ngo

Van Thuan, my master fellows at JAIST, as I am gratefully indebted to them for their
valuable comments and support during the time I conducted my research.
Finally, I owe my loving thanks to my parents for providing me with unfailing support

and continuous encouragement throughout my years of study and my life in general.
Thank you.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Motivation 4
2.1 Functionality Requirements . 4
2.2 Related Work . 5

3 Cyber Range Instantiation System 7
3.1 Overview . 7
3.2 CyRIS Working Flow . 8

3.2.1 Base Image Pool . 8
3.2.2 Cyber Range Description . 10
3.2.3 Cyber Range Creation Process . 10
3.2.4 Created Cyber Range . 12

3.3 CyRIS Functionality . 12
3.3.1 System Configuration . 13
3.3.2 Tool Installation . 14
3.3.3 Incident Emulation . 15

3.3.3.1 Attack Emulation . 15
3.3.3.2 Traffic Capture . 17
3.3.3.3 Malware Emulation . 17

3.3.4 Content Management . 17
3.3.5 Clone Management . 18

3.4 Discussion . 21

4 System Evaluation 23
4.1 Functionality Evaluation . 23

4.1.1 Feature Coverage . 23
4.1.2 Feature Comparison . 25

4.2 Performance Evaluation . 27
4.2.1 Large-scale Performance Evaluation 27

iii

4.2.1.1 Experimental setup . 27
4.2.1.2 Experimental Results . 28

4.2.2 Performance Comparison . 31
4.2.2.1 Experimental Setup . 31
4.2.2.2 Experimental Results . 32

5 Conclusion 34

References 36

Publications 39

A Cyber Range Description Example 40

iv

List of Figures

1.1 Overview of a cybersecurity training program using a cyber range for hands-
on activities [12]. 2

3.1 System architecture of the cybersecurity training framework CyTRONE [12]. 7
3.2 CyRIS working flow [13]. 8
3.3 Example of a cyber range description that provides all the necessary infor-

mation for CyRIS to construct the desired cyber range. 9
3.4 Architecture of the system running CyRIS. 11
3.5 Architecture of the system running CyRIS. 11
3.6 Training environment architecture. Each instance connects to its host via a

virtual bridge, and trainees from outside network access their environment
through SSH tunnels. 12

3.7 Overview of the system configuration functionality. 13
3.8 Tool installation functionality, which offers three ways of installing a pack-

age: from official repository, from source, and from custom script. 14
3.9 Sub-functions of the incident emulation category. 15
3.10 Sub-functions of the incident emulation category. 18
3.11 DMZ network topology and the corresponding cyber range description. . . 20

4.1 Network topology for performance evaluation. 27
4.2 Cyber range creation times in Level 1 and Level 2 for studying the effects

of distributed execution, which a fixed number of virtual machines (20) are
instantiated on 1, 2, 5, and 10 hosts. 29

4.3 Cyber range creation times in Level 1 and Level 2 for testing CyRIS perfor-
mance under large-scale creation scenarios. The number of virtual machines
per host is constant (20), and the total number is up to 600 VMs on 30 hosts. 29

4.4 DMZ network topology used in experiments for comparing CyRIS and Alfons. 31

v

List of Tables

3.1 Current functionality of CyRIS . 21

4.1 Summary of CyRIS functions required to support each security technique
in the U.S. NIST Technical Guide to Information Security and Testing
Assessment . 24

4.2 Functionality comparison between CyRIS and other similar tools 25
4.3 Performance comparison between CyRIS and Alfons 32

vi

Chapter 1

Introduction

Cybersecurity, also known as IT security, focuses on protecting networks, computers,
programs and data from attack, damage, unintended or unauthorized access. Currently
cyber-attacks are happening worldwide on a daily basis. In 2015, hackers breached the
systems of the health insurer Anthem Inc., the U.S., exposing nearly 80 millions personal
records with information of birthdays, addresses, social security numbers, and emails [1].
Also in the same year, the Japan Pension Service system was hacked, leading to 1.25
millions cases of personal data being leaked [2]. The method used in this attack was a
classical one: a targeted email attack, in which a virus-laced email attachment disguised
as a health ministry document was sent to and opened by employees. The same trend
has been observed in 2016: OVH, one of the world’s top hosting companies, reported
in September that its systems were hit by distributed denial-of-service (DDoS) attacks
that nearly reached one terabit per second (Tbps) [3]. This was considered as the largest
DDoS offensive ever seen so far on the Internet. Another incident recently happened in
Vietnam, when flight display screens at the country’s two largest airports were hacked to
show messages criticizing Vietnam’s claims of territory in the South China Sea [4].
In this context, cybersecurity education and training appear to be more and more

critical, as one of the best ways in which such cyber breaches can be prevented and handled
adequately. As a result, there are many available training programs nowadays. SANS
Institute [27], a trusted and by far the largest source for information security training in
the world, provides many training programs in the cybersecurity field, both as live and
online courses. Udemy, which is a famous online learning platform, offers a paid course
called “Cyber Security” [5] for introducing a wide-range overview of cybersecurity concepts
and practices, including threat analysis and risk management, encryption, firewalls, and
intrusion detection.
In Japan, CYDER [8] is a cybersecurity program coordinated by the Ministry of Internal

Affairs and Communications. Its purpose is to provide hands-on training to IT personnel
of government organizations and top companies. Hardening Project [7], on the other
hand, is a security contest organized by the Web Application Security Forum. A number
of teams, consisting of security experts and IT professionals, compete with each other in
respect of the security improvements they can provide in a realistic e-commerce company-
like network.

1

Figure 1.1: Overview of a cybersecurity training program using a cyber range for hands-on
activities [12].

In these cybersecurity training programs, most of the content requires participants to
deal with challenging and hands-on problems in real world scenarios. A cyber range is
a training environment that the participants can access and investigate to find answers
to questions, and to acquire practical skills (Figure 1.1). It is specifically designed for
cybersecurity training, as it contains all the required infrastructure (machines, networks,
tools, etc.) and security settings (vulnerability, flaws, trace, etc.). The cyber range also
needs to be well controlled in a networking perspective: isolated from the outside to avoid
traffic leakage, and separated among trainees to prevent them from accessing each other’s
environment.
However, many of the current training programs rely on manual setup and configuration

of the training environments, which is time consuming, lots of efforts are required, and is
error-prone. Although some training programs might make use of specific tools to facilitate
the preparation task, such tools are undisclosed, therefore they do not benefit the society
at large. Moreover, a recent analysis made by Beuran et al. about the best practices and
methodologies in cybersecurity training [11], which surveys and presents in detail major
training programs in Japan, has shown that only one of them, the Hardening Project,
is currently employing tools for automating the setup task. The mentioned automation,
however, refers only to the environment construction, and not to the security content
creation inside, which is still done manually.
Being aware of these issues, in this thesis, we propose CyRIS [13] (Cyber Range In-

stantiation System), as a solution for reliably and repeatably creating and managing
cybersecurity training environments. CyRIS is a component of CyTrONE (Cybersecu-
rity Training and Operation Network Environment), which is being developed at JAIST
(Japan Advanced Institute of Science and Technology), as an integrated framework for
automating the content generation and environment setup tasks for cybersecurity training
programs [12].
In CyRIS, a cyber range description is created by the instructors to specify in detail the

cyber range for the training. This description, on one hand, provides the instructors with a
means to thoroughly review the security content and the environment specifications which

2

are going to be used in their course. The description, on the other hand, serves as input
for CyRIS to automatically create the desired environment without human interaction.
CyRIS offers both basic setup functions that are commonly found in other automated
configuration management tools, and security-related functions, which can be used to
reproduce actual incidents for the purpose of creating security content. This group of
functions is unique in CyRIS compared to other tools, and they play a key role in creating
realistic cyber ranges.
The main contributions of this thesis are as follows:

• The design and implementation of CyRIS as an automated open-source tool for
cybersecurity training environment creation. CyRIS contains functions to help in-
structors prepare security-related content for the cyber range. Moreover, it offers a
module for configuring a cyber range with arbitrary network topology and services
in a convenient and flexible manner.

• The evaluation of CyRIS in terms of both feature coverage and performance. By
using the U.S. NIST Technical Guide to Information Security Testing and Assess-
ment as a reference [24], we show that CyRIS has functionality to create complex
cyber range environments with sophisticated security-related content for cybersecu-
rity training programs. The evaluation of CyRIS performance demonstrated that it
meets the reasonable time for creating large-scale cyber range construction.

The remainder of this thesis discusses related work (Chapter 2), presents CyRIS in
detail (Chapter 3), evaluates our system in several perspectives (Chapter 4), and ends
with conclusions and future work (Chapter 5).

3

Chapter 2

Motivation

Various tools have been published that provide users an automated way to configure
both physical and virtual environments for general purposes. In this chapter, we first
define the functions that are required for a tool to be able to construct a complete cyber
range environment. After that, we discuss in detail about well-known tools in both their
advantages and drawbacks.

2.1 Functionality Requirements

As having said briefly in Chapter 1, a cyber range is a well-defined virtual environment
used in a cybersecurity training program. After having surveyed and analyzed current
available training programs, we found several characteristics that a cyber range should
possess. It, first of all, needs to contain all the content and configuration needed for
the program (machines, tools, vulnerability, network topology, etc.). Secondly, it should
be well controlled regarding the networking perspective, in which it has to be isolated
from the outside to prevent traffic leakage for the safety purpose, as well as separated
among participants for the fairness purpose during the training. Given these conditions,
an orchestrating tool, in order to be able to construct a complete cyber range, needs to
satisfy several requirements described below:

• Individual node content management. A cyber range environment consists of a
number of machines, each of them plays a different role in the network, and therefore
contains a different content compared to the others. Moreover, various topics can
be taught in cybersecurity training, such as forensics analysis, penetration testing,
encryption, etc. The corresponding security-related content, such as attack traces,
vulnerability, logs, etc., for each of these topics also vary. It is therefore essential
for the orchestrating tool to have a means for creating those content automatically
in a flexible and convenient manner, as that instructors of the programs no longer
have to generate them manually.

• Network service configuration. A cyber range reflects a practical network, which con-
sists various services and topology. For example, the network might have a complex

4

topology that are divided into several segments, and a number of forwarding rules
are needed for those segments to communicate with each other. The orchestrating
tool, as a result, should be able to handle this by having a function for configuring
the network services, again, in a flexible manner.

• Environment isolation. A cyber range is an environment for the participants to
access and practice various technical skills during the training, including “dangerous”
activities such as attacking. These activities, if not being controlled well, might
potentially lead to nasty circumstances with serious consequences. Therefore, it is
one of the most important requirements from the orchestrating tool to be able to
isolate the environment from the outside network, as making sure that no traffic
leakage could possibly happen. Moreover, as the fact that the participants might
look over others’ environments for copying answers, it is also necessary to apply
some certain methods to separate and prevent them from doing so.

• Open-source product. Last but not least, it is important that the tool would be
published as an open-source product. With the current status that cyber attacks
are happening worldwide, cybersecurity training is now important not only in top
organizations, companies, and in the military, but also to ordinary people who are
interested in the topic and would like to defense themselves from such attacks.
Having an orchestrating tool as an open-source product is one of the best solutions
to have large-scale education and training programs that reach everybody in the
society, including young people in universities, colleges, and even high schools.

2.2 Related Work

Currently, various tools have been published that provide users an automated way to
configure the environment on an individual node, including installing and configuring
applications, setting up the system, and so on. Ansible [14], Vagrant [16], and Chef [17]
are well-known tools in this area. They allow users to specify settings and content in
a “recipe” and create a desired environment from a clean node. However, none of these
tools has the function of configuring network service and topology among nodes, and it
also gets harder when users have to create multiple recipes for circumstances that involve
setting up a large environment with many nodes.
For network management configuration tools, we have cloud controllers such as Open-

Stack [15] and VMWare vSphere [18]. These tools are able to create and manage a cloud
system with multiple virtual machines and network service among them. Another tool is
SpringOS [19] that is currently in use at StarBED facility [20] for managing physical nodes
and network experiments. It has the functionality of controlling network topology among
nodes, which is missing on the other tools. Moreover, it offers a function for installing an
operating system in a physical machine from scratch. Nevertheless, these tools lack the
ability of setting content and configuration on individual nodes. In addition, SpringOS is
designed only for StarBED use purpose.

5

Shingo Yasuda et al. introduce Alfons [21] as a recent tool that can be used to create
environments for cybersecurity training and malware analysis. In short, to the best of
our knowledge, this is the tool which has open information and fits the context the most.
They consider an original node as a clean operating system with unique data files inserted.
Therefore, copying files and executing scripts are two main mechanisms Alfons uses to
create a required environment in an individual node. Besides, by using SpringOS’ API,
Alfons has functions for creating various network topology in the cyber range, as well
as for isolating it from the outside network. However, while the implementation appears
simple and highly efficient, Alfons falls short in the purpose of helping instructors easily
create security-related content in the cyber range. In other word, in order to use Alfons to
create a desired environment, the instructors themselves have to somehow, and by some
tools, generate in advance their content, such as an attack trace, a log file, etc, and copy
them to the cyber range. This work is, again, boring and tedious. Besides, Alfons’ source
code is closed.
Recently, Facebook has introduced its own CTFs platform to open source [22]. Face-

book’s CTF provides users a free platform that takes care of the maps, team registration,
and scoring. It offers a way to make security education easier and more accessible for peo-
ple who are interested in information security and technical skills. It also brings schools,
organizations, and others who lack resources a chance to host their competition and teach
students and employees about hacking skills. On the contrary, it is limited in the range
of security knowledge, when only a small set of challenges is publicly available in the
competition and mainly focuses on hacking ability.
The SANS Information Security Institute [27] and CERT of the Software Engineering

Institute [28] are two of the most famous and trustworthy organizations in the world
regarding cybersecurity training. They offer hands-on, interactive and practical courses
for a large number of trainees in different important topics about cybersecurity. However,
their cyber range creation processes are not made public.
Compared to these tools, CyRIS is an open-source tool for creating cyber range envi-

ronments in a flexible and efficient manner. It is implemented in the Python language.
CyRIS has both functions for installing content on a large environment with many nodes,
and for configuring the network service among them. Moreover, CyRIS offers built-in
features for creating specific security-related content by launching real incidents, which
greatly facilitates the preparation work for the instructors.

6

Chapter 3

Cyber Range Instantiation System

This chapter presents the design and implementation of the Cyber Range Instantiation
System, so-called CyRIS, which is an open-source tool for automatic preparing and man-
aging cyber ranges for cybersecurity training. The first section describes the overview
of our approach, the second and the third goes into detail about the working flow and
functionality, and the last section summarizes the characteristics of CyRIS.

3.1 Overview

CyRIS is the core component of the cybersecurity training framework CyTrONE [12],
which is being developed at JAIST. The system architecture of CyTrONE is described in
Figure 3.1. It consists of three main parts, which are:

• Training Specification. Based on user inputs and the training database (includ-
ing training scenarios, well-known security incidents and vulnerability information,
etc.), this module creates a content description and a cyber range description that
define the content and activity of the training.

• Content Definition. This module takes the content description and generates the
corresponding training content for an LMS (Learning Management System), cur-
rently using Moodle [23].

Figure 3.1: System architecture of the cybersecurity training framework CyTRONE [12].

7

Figure 3.2: CyRIS working flow [13].

• Cyber Range Instantiation. This module is using CyRIS, which takes the cyber
range description and automatically creates the corresponding cyber range.

The traditional approach for practical cybersecurity training is to use a dedicated and
isolated physical computer infrastructure as the training environment. Such infrastruc-
tures are expensive in terms of creation and maintenance, and inefficient in terms of
scalability for serving large number of trainees. Because of these significant drawbacks,
using virtualization technology is a solution towards those issues, as it provides a way
to create a comprehensive and realistic security training environment at a low-cost and
in a scalable manner. We adapt this direction in CyRIS, as it is currently using KVM
virtualization platform [25], [26] for constructing virtual cyber ranges.

3.2 CyRIS Working Flow

The working flow of CyRIS is described in Figure 3.2. The inputs, creation process and
output are respectively discussed below.

3.2.1 Base Image Pool

The base image pool contains a set of virtual machine images, which are in the RAW for-
mat for KVM virtualization. They contain a pre-installed operating system and several
basic system configurations (e.g., IP address, etc.). A program is created for automating
the task of setting these configurations. Large companies and organizations nowadays
often choose RedHat Enterprise Linux as the operating system for their servers because
of the platform’s performance, stability and security, which let them build their IT infras-
tructure across the enterprise. For this reason, CentOS 7, which is the latest community

8

- host_settings:
- id: host_1

mgmt_addr: 172.16.1.2
account: crond

- guest_settings:
- id: desktop

basevm_host: host_1
basevm_config_file: /home/images/desktop.xml
basevm_type: kvm
tasks:
- install_package:

- pacakge_manager: yum
name: wireshark

- emulate_traffic_capture_file:
- format: pcap

file_name: /home/trainee/traffic.pcap
attack_type: ssh_attack
attack_source: 2.95.120.235
noise_level: medium

- emulate_malware:
- name: spyeye

cpu_utilization: 40
mode: dummy_calculation

- clone_settings:
- range_id: 123242

hosts:
- host_id: host_1

instance_number: 1
guests:
- guest_id: desktop

number: 1
topology:
- type: custom

networks:
- name: office

members: desktop.eth0

Figure 3.3: Example of a cyber range description that provides all the necessary informa-
tion for CyRIS to construct the desired cyber range.

9

version of RedHat Linux, is our choice as the main operating system for cyber range
environments that CyRIS will prepare security-related content on.

3.2.2 Cyber Range Description

The cyber range description file is for instructors to describe the compositions and content
of the cyber range. It can be created manually or by automated tools. This description is
currently written in YAML, a text-file format; the reason we choose this format and not
the well-known XML is because it is similar in terms of functionality, but much better in
respect of readability. It defines all the necessary information needed for creating a cyber
range. Figure 3.3 gives an example of how a description file looks like. It is divided into
three parts as follows:

• host_settings contains information about the hosts that the cyber range is de-
ployed on, including an id, a management address, and a management account.

• guest_settings provides information about the base images. The keyword tasks
defines all the content of the cyber range that CyRIS needs to prepare. In this
example, the cyber range consists of several settings, including installing the tool
wireshark, emulating a DDoS attack, capturing traffic and deploying an emulated
malware in the calculation mode.

• clone_settings gives details about the cloning phase. It has a unique range id,
and information about hosts, guests, and network topology.

3.2.3 Cyber Range Creation Process

After having those two inputs above, CyRIS starts constructing the required cyber range.
There are three main stages involved in this process, which are:

• Preparation of the base images. In this stage, based on the global information of
guest_settings in the description file, CyRIS starts up the corresponding base im-
ages. It then performs some other necessary system configurations, such as copying
SSH keygen, setting host name, etc., for the next step.

• Content installation into the base images prepared above. Here, CyRIS installs secu-
rity content which is specified under the keyword tasks in the description file. The
features that CyRIS uses in this stage will be discussed in detailed in Section 3.3.

• Cloning of the VMs. After finishing these two previous phases, CyRIS launches this
module with the information from clone_settings to create a number of virtual
machines and setup the network service. The details of this module will be discuss
in Section 3.3.5. When the environment is constructed successfully, CyRIS sends
an email notification to the instructor when the process is finished to inform them
about detailed information of the environment. Figure 3.4 gives an example of how
it looks like.

10

Figure 3.4: Architecture of the system running CyRIS.

Figure 3.5: Architecture of the system running CyRIS.

11

Figure 3.6: Training environment architecture. Each instance connects to its host via a
virtual bridge, and trainees from outside network access their environment through SSH
tunnels.

The system running CyRIS has the architecture presented in Figure 3.5. A collection
of hosts, each of them is equipped with a virtualization platform (QEMU/KVM), connect
to LAN network, and one is designated as a master host. This master host has CyRIS
service running. This host processes the content of the description file, prepares the base
images and installs security content into them, and clones virtual machines on other hosts.

3.2.4 Created Cyber Range

The architecture of a complete training environment is described in Figure 3.6. A number
of cyber range instances are created, based on the requirement of the instructor, for serving
multiple participants simultaneously. Each instance connects to its host via a virtual
bridge, which leads to nowhere outside the host for the isolation purpose. Moreover,
each instance has one SSH tunnel created during the clone phase, which connects to the
outside network. Because of this, participants can easily access their environment without
manually entering the host.

3.3 CyRIS Functionality

There are five main categories of functionality that CyRIS uses to install the security
content into the base images and configure the network for cyber ranges: (i) system

12

Figure 3.7: Overview of the system configuration functionality.

configuration, (ii) tool installation, (iii) incident emulation, (iv) content management
and (v) clone management. Each of them has a different keyword, which is specified
under tasks in the description file. This section describes in detail the functionality, the
implementation, and the usage of each of them.

3.3.1 System Configuration

As being said in Section 3.2.1, basic system configuration (host name, ssh keys, ip ad-
dress, etc.) in base images has been taken care in advance. Thus, CyRIS tasks about
system configuration, which are about creating settings for security training, are limited
to managing accounts and modifying firewall rules (Figure 3.7).
Managing accounts is used to create new accounts and edit information of existing

accounts. These settings can be used for practicing penetration testing techniques, when
trainees identify potential weak passwords in the system and learn how to crack them.
Another function in this category is modifying firewall ruleset. In practice, firewalls

provide a critical layer of security that protects a system against threats, in which it
filters the incoming and outgoing traffic, controls the list of opening ports, and keeps a
close watch on running softwares and tools. In cybersecurity training, it is essential to
teach participants the importance of firewall systems, as well as common security mistakes
that people often make when configuring the ruleset.
One way for instructors to prepare hands-on activity exercises for this topic is to have

a firewall set up in the cyber range, which has a mixture of good and bad rules. Trainees
then can move on to understanding the meaning of each rule, and trying to spot if there
is any potential security hole in this setup. In this perspective, CyRIS can help the
instructors by providing the function of setting up and modifying firewall ruleset. The
implementation at the current stage is using iptables [29] software, which is pre-installed
in Linux operating systems. The instructors simply specify an absolute path to a script
that contains a list of rules. This provides them with an automated way for adding and

13

Figure 3.8: Tool installation functionality, which offers three ways of installing a package:
from official repository, from source, and from custom script.

modifying firewall rules, so that they can have a realistic training environment in a flexible
manner.
One typical question that might be raised in this context is why the instructors are

required to write down a list of rules to a script in advance, and not be able to specify
them directly in the description file. Note that in many cases, it requires a number of
firewall rules to protect a complex infrastructure. Giving them directly in the description
file might make it long and difficult to read afterwards. Therefore, putting firewall rules
into a separate script is our option, as it becomes convenient for the instructors to manage
their rules, for example when they want to separate good and bad rules for some purpose.

3.3.2 Tool Installation

In cybersecurity, tools are essential. Various tools are well-known and indispensable in
the security world, such as wireshark and tcpdump for network sniffing related jobs, or
aircrack-ng suite and john-the-ripper for penetration testing. Knowing how to use
them is a must for people working in this field, and therefore it is one of the main topics
of training sessions.
This function provides the instructors with a mechanism to install such tools automat-

ically. As described in Figure 3.8, this function contains three main types of installation
manner, which are:

• Package installation, in which CyRIS installs tools from the official Linux reposito-
ries using package managements (apt-get, yum, etc.). Instructors specify the type
of package management, the name of software and its version, then the module
automatically downloads and installs it on the machine.

• Source installation, which builds tools directly from source. Instructors provide an
absolute path that leads to the source and a version of the compiler, then the system

14

Figure 3.9: Sub-functions of the incident emulation category.

installs it by make install commands. However, before using this function, the
instructors need to make sure that all dependencies needed are probably installed
in advance, as CyRIS has no function to solve those automatically. Therefore, it is
recommended for instructors to try to install the tool on a local machine first, so
that they know a list of dependencies. After that, they can ask CyRIS to install
those using the previous function, and everything will be set for their custom tool.

• Custom installation, which gives instructors freedom to install any tools in any ways
they want. They basically give a script containing all of the necessary commands,
and CyRIS then executes and builds tools from there. The details of this function’s
implementation will be discussed in Section 3.3.4

In the cybersecurity world, there are many tools that are customized, and it is difficult
to install them via package managements. Moreover, in many cases that instructors want
to have an older version of a tool that contains a vulnerability, and it no longer exists in
official repositories due to the security policy. Therefore, having the two latter installation
methods helps the instructors facilitate the task of installing tools in special situations.

3.3.3 Incident Emulation

This group includes three main functions, which are (i) attack, (ii) traffic capture and (iii)
malware emulation (Figure 3.9). They have the ability of launching actual incidents to
prepare security-related content for cyber ranges, and they stand as the main differences
between CyRIS and other well-known automated environment configuration tools. This
section describes in detail these functions’ designs and implementations.

3.3.3.1 Attack Emulation

Recognizing attack patterns is one of the main activities during cybersecurity training. It
helps trainees improve the ability of detecting whether any attack is taking place, and of

15

defending the system against attacks. Two kinds of attack that are usually deployed in a
training environment: static and dynamic attacks.
Static attacks are actions that take place before the training session starts to produce

logs, traces, or files that correspond to the attacks. These evidences, throughout the
actions, are recorded and left in the system, so that trainees can try to investigate and find
out what kind of attacks has been performed. The purpose of this activity is to improve
trainee ’s knowledge in forensic techniques (log and ruleset review, network sniffing and
file integrity checking), as well as to help them understand patterns of different types of
attack. On the other hand, dynamic attacks are usually deployed live during the training
session to enhance trainees’ instant response. For example, white-hat experts perform a
DoS attack in order to reduce the performance of the system, and trainees have to know
how to recognize they are being under attack and how to defend against it.
CyRIS is capable of emulating static attacks of specific types, including:

• SSH dictionary. A python package, which is called paramiko [30], is being used in
the current implementation. To trigger this kind of attack, the instructors specify
an account name as a victim and a number of attempts. CyRIS, after having those
inputs, creates a bunch of threads, starts attacking the victim, and automatically
generates logs as consequences.

• DoS and DDos. A tool called hping3 [31] is involved in the current implementation.
Similarly to the previous case, a victim needs to be given for performing the attack.

Besides, CyRIS offers the instructors an option for capturing traces of these attacks,
which can prepare settings for related questions. This will be discussed in the next
section 3.3.3.2.
We decided to start CyRIS with emulating these two kinds of attack is because they

are among the most popular network attacks in 2016, as the first type took 19 percent
the total number of attacks having taken place, while the second were 16 percent [10].
Therefore, they are often a topic in cybersecurity training, which is to teach participants
the attack patterns and the methods to deal with them. Moreover, they requires simple
tools (paramiko and hping3) for emulating. Regarding other types, such as browser, SSL,
back door attacks, etc., as they are more complex, CyRIS has no function to emulate
them in the current stage. It however could help the instructors create vulnerability
corresponding to those attacks in the cyber range by deploying the content management
functionality (Section 3.3.4), and participants are able to practice with the vulnerability
by launching an attack by themselves, or defending against white-hat hackers or their
opponents during the training.
We plan to extend this function to be able to emulated other types of attack, as well as

to perform them dynamically. Regarding wireless connection, because of having no way
to mimic a wireless network among virtual machines in KVM platform, emulating attacks
in this kind of connection is out of CyRIS’ reach at the current stage.

16

3.3.3.2 Traffic Capture

Alongside with attack emulation is the traffic capture function. With this, CyRIS is
able to prepare traces for various kinds of attack in both wired and wireless connection
networks.
For wired connection, users define what kind of attack traces they want in the cyber

range (SSH dictionary, DoS, DDoS) and CyRIS deploys the corresponding attack emu-
lation. Simultaneously, it uses tcpdump to sniff the network traffic and capture traces of
the attack under the pcap format. These traces can be given to trainees so that they can
practice their forensic skills by trying to find out the pattern of the attack. Moreover,
CyRIS offers instructors an option of mixing the attack traces with usual network traffic,
making the capture file more realistic, and also making the problem more challenging to
participants.
Regarding wireless connection, because of the problem that has been said in the previous

paragraph, we prepare in advance traffic capture files that contain traces of attacks that
are normally performed in real world, which are replay attack and DoS attack. In addition,
we prepare files related to WEP wireless network security protocol, so that trainees can
investigate and learn how to crack passwords using tools like aircrack-ng. We also
produce files of other types of protocol (WPA, WPA2) for reference purposes.

3.3.3.3 Malware Emulation

Detecting malicious programs is another important technique for cybersecurity profession-
als. It is essential to know the methodologies to discover whether any unusual application
is running under the hood.
With the malware emulation function, CyRIS offers the ability of launching an emulated

malware running in the system. This dummy malware is totally unharmful and can run
under two modes at the current stage: performing a calculation or listening to a port.
In the first mode, the dummy malware is able to run with a certain amount of CPU
consuming, neither too low to avoid being invisible from trainees, nor too high to appear
obvious. The second mode allows the malware to run as a service that listens to the
network traffic via an arbitrary port. To deploy this dummy malware, instructors give
it a name and a mode. It then appears in the list of background processes, creating a
security threat in the system.
Besides, instead of using the dummy malware, there are cases when instructors want

to deploy their custom malware for training participants about particular security topics.
CyRIS helps them satisfy this need by having the content management group of functions
(which will be discussed in the Section 3.3.4), in that instructors simply use an executing
scripts mechanism to launch their custom malicious programs in the cyber range.

3.3.4 Content Management

This category offers three mechanisms to modify the content of an environment, including
(i) copying content and (ii) executing scripts (Figure 3.10).

17

Figure 3.10: Sub-functions of the incident emulation category.

Basically an OS is a collection of files in a file system. In other words, it is possible to
have every setting by inserting the correct files into the correct place [21]. CyRIS adopts
this method by having the copy content function. It allows instructors to copy files and
data from outside to the cyber range to create a setting. For example, if they want to
set the host name of a machine, they simply use this function to copy a text file named
hosts with the host name inside and copy it to the /etc/ directory.
The second mechanism is the ability of letting instructors execute scripts in cyber

ranges. It needs two parameters, which are program and compiler. The program tells
CyRIS the location of the script and arguments needed, while the latter one specifies the
script language, including shell script, Perl, Python and Ruby.

3.3.5 Clone Management

After finishing preparing settings for cybersecurity training on base images, the clone
management functionality takes place to clone a set of virtual machines from the above
base images, and set up other configurations to construct a complete cyber range. This
section describes in detail the design and implementation of this function.
For a cybersecurity training organization, it is common to have multiple training pro-

grams running in parallel. Each program is about a different topic, and therefore the
security content needed in the cyber ranges also vary from one to the other. Hence, it
is important to have a unique name for each of them for the ease of managing purpose.
In CyRIS, each cyber range is assigned a unique ID number by the instructors. This ID,
beside the purpose of differentiating among cyber ranges, is also used for naming related
configurations of that cyber range, such as names of virtual machines, virtual bridges, etc.
Moreover, the IP addresses of the virtual machines, during the cloning phase, will be set
automatically from the ID, based on a list of pre-defined rules in CyRIS. Two purposes of
this design are: (i) to reduce the work of the instructors that they need not to manually
set IP addresses for each virtual machine in the cyber range, and (ii) avoid as much as

18

possible human mistake, as the instructors can accidentally specify the same IP address
for multiple virtual machines.
In cybersecurity training, there are many topics related to network security which cor-

respond to many kinds of network topology. In this function, CyRIS provides instructors
the ability to create various network topologies, from the simple ones such as bus, ring,
star, to the complex ones as DMZ topology. Moreover, in complicated topologies , it
often requires to have a gateway or a firewall in the system, in which it is assigned the
task of filtering and forwarding traffic among different network segments. CyRIS satisfies
this need by allowing the instructors to specify a set of necessary forwarding rules to any
machines in the environment. The current implementation, however, only allows simple
rules, which contains basic parameters such as the source and destination machines, and
the source and destination ports.
The working flow of cloning a cyber range is as below:

1. Cyber range directory creation. Based on the ID of the cyber range, CyRIS creates
a directory in all the physical hosts. The name of the directory is made unique by
associating with the ID. After that, all of data which relates to the cyber range will
be stored in its corresponding directory.

2. Base image copy. After the first two stages finish in which all the security content
have been installed on the base images, CyRIS starts copying them from the master
host to others into the corresponding directory, using parallel-scp [32] commands
for parallelizing the process. Note that if the cyber range contains more than one
base image, then they are also copied in parallel.

3. Parallel clone execution. CyRIS first in parallel creates necessary scripts for the
cloning process in the hosts, using parallel-ssh [32]. These scripts are used for
tasks of creating virtual bridges to connect the cyber range to its hosts, cloning
virtual machines from the base images, generating SSH tunnels from the outside
network to the cyber range, and configuring forwarding rules on any machine if
they are specified. CyRIS then executes these scripts in a pre-defined order, and
also in parallel on multiple hosts, to construct the complete cyber range.

An example of an DMZ network topology clone is described in Figure 3.11. Five types
of virtual machines are involved in this scenario, which are divided into three network
segments: an dnsmail server in external segment, a file server and a database server in
internal segment, and a desktop in office segment. The gateway server plays the role of a
network monitor, in which it helps segments communicate with each other by forwarding
traffic among them based on pre-defined rules. These rules are listed under the keyword
forwarding_rules. For example, servers from the external segment only able to send
traffic to the database server and the file server via port 3306 and 139 respectively, etc.

19

(a)

(b)

Figure 3.11: DMZ network topology and the corresponding cyber range description.

20

Table 3.1: Current functionality of CyRIS

Categories Basic functions Security functions

System Configuration Manage accounts Modify firewall ruleset

Tool Installation

Install package

Install from source

Custom install

Incident Emulation

Emulate attacks

Capture traffic

Emulate malware

Content Management
Copy content

Execute script

Clone Management
Configure network

Clone virtual machines

3.4 Discussion

We summarize all CyRIS functions in Table 3.1, in which they are divided into two
groups that are basic and security ones. The first group contains common functions
for environments configuration tasks, while the second group are to use from a security
perspective. These security functions are the main differences in CyRIS compared to
other well-known tools. In conclusion, there are several requirements that CyRIS meets
for constructing a realistic cyber range:

• Content installation. By offering a set of functions, which covers both basic op-
erations (installing tools, copy data, etc.) to advanced ones (emulating attacks,
capturing network traffic, etc.), CyRIS greatly facilitates the task of preparing re-
alistic content for a cybersecurity training program.

• Network topology. A cyber range consists of a set of connected virtual machines
that mimics a real network environment, and its topology can be various. In the
current implementation, CyRIS allows instructors to specify many types of topology,
in an easy and convenient manner. Moreover, CyRIS offers an option to configure
forwarding traffic rules on any machine in the environment, which is often the need
in complicated network topology.

• Environment separation. Cyber ranges are places for trainees to practice all kinds
of security techniques, and it is possible to have traffic leakage to the outside net-
work. To avoid this problem, it is important to isolate the training environment.
In CyRIS, cyber range instances connect to the host through virtual bridges that
lead to nowhere outside the host. Moreover, to improve the fairness during the

21

training, these virtual bridges have no connection between each other, and an ac-
count and a password are generated randomly for each trainee to access their cyber
range instance via SSH connection, making sure that no one is able to access others’
environments.

• Parallel execution. For large cybersecurity training program which involves hun-
dreds participants, it is required to create the corresponding number of cyber ranges
in a reasonable amount of time. For achieving this requirement, CyRIS provides
the ability of cloning virtual machines on multiple hosts in parallel, using the tool
called parallel-scp [32]. The details about its efficiency is discussed in Chapter 4.

• Informative notification. As being shown in Figure 3.4, after the creation process
is finished successfully, an email is sent to the instructors for informing them the
information about the total number of instances that they have created, alongside
the details how to access each of them.

We provide a full sample of the cyber range description file in Appendix A, in which it
contains all functions that CyRIS offers at the current stage, along with their usage and
keywords. Please refer to that for more information.

22

Chapter 4

System Evaluation

In this section, we first evaluate the coverage that CyRIS is able to offer in terms of prepar-
ing security content for cybersecurity training. For this purpose we use the U.S. NIST
Technical Guide to Information Security and Testing Assessment [24] as a reference. We
then discuss about the feature comparison between CyRIS and other tools. In addition,
we present results of CyRIS performance in creating representative cyber ranges.

4.1 Functionality Evaluation

This section describes our evaluation of CyRIS about feature coverage in preparing content
for cybersecurity training, and the comparison between CyRIS and other similar tools in
respect of functionality.

4.1.1 Feature Coverage

The NIST guideline [24] states a number of techniques in information security testing and
assessment, which are categorized into three main groups:

• Review techniques relate to manual inspections and reviews to evaluate applications,
architecture designs of network and systems in the purpose of discovering vulnera-
bilities. This group of techniques consists of documentation, log, ruleset, and system
configuration review; network sniffing; and file integrity checking.

• Target identification and analysis techniques are testing techniques that can identify
systems, ports, services, and potential vulnerabilities, and may be performed either
manually or using automated tools. They include network discovery, network port
and service identification, vulnerability scanning, wireless canning, and application
security examination.

• Target vulnerability validation techniques are testing techniques that corroborate the
existence of vulnerabilities, and may be performed manually or by using automatic
tools, depending on the specific technique used and the skill of the test team. Target

23

Ta
bl
e
4.
1:

Su
m
m
ar
y
of

C
yR

IS
fu
nc
ti
on

s
re
qu

ir
ed

to
su
pp

or
t
ea
ch

se
cu
ri
ty

te
ch
ni
qu

e
in

th
e
U
.S
.N

IS
T

Te
ch
ni
ca
lG

ui
de

to
In
fo
rm

at
io
n
Se
cu
ri
ty

an
d
Te

st
in
g
A
ss
es
sm

en
t

N
IS
T

S
ec
u
ri
ty

T
ec
h
n
iq
u
e

B
as
ic

Fu
n
ct
io
n
s

S
ec
u
ri
ty

Fu
n
ct
io
n
s

M
an

ag
e

A
cc
ou

nt
s

In
st
al
l

T
oo

ls

C
op

y

F
il
es

E
xe
cu
te

S
cr
ip
ts

C
on

fi
gu

re

N
et
w
or
k

G
en

er
at
e

L
og

s

M
od

if
y

F
ir
ew

al
l

E
m
u
la
te

M
al
w
ar
e

E
m
u
la
te

A
tt
ac
ks

C
ap

tu
re

T
ra
ffi
c

L
og

R
ev
ie
w

x
x

x
x

R
u
le
se
t
R
ev
ie
w

x
x

x

S
ys
te
m

C
on

fi
gu

ra
ti
on

R
ev
ie
w

x
x

x
x

x

N
et
w
or
k
S
n
iffi

n
g

x
x

x
x

x

F
il
e
In
te
gr
it
y
C
h
ec
ki
n
g

x
x

x

N
et
w
or
k
D
is
co
ve
ry

x
x

x

N
et
w
or
k
P
or
t
an

d

S
er
vi
ce

Id
en
ti
fi
ca
ti
on

x
x

x
x

V
u
ln
er
ab

il
it
y
S
ca
n
n
in
g

x
x

x
x

x
x

x
x

W
ir
el
es
s
S
ca
n
n
in
g

x
x

x
x

P
as
sw

or
d
C
ra
ck
in
g

x
x

P
en

et
ra
ti
on

T
es
ti
n
g

x
x

x
x

x
x

x
x

S
oc
ia
l
E
n
gi
n
ee
ri
n
g

x
x

24

Table 4.2: Functionality comparison between CyRIS and other similar tools

Tools
Content installation Network setup

Basic

functions

Security

functions

Physical

host

Virtual

machine

Ansible, Chef, Vagrant 4 4

Openstack, Spring OS 4

Alfons 4 4 4

CyRIS 4 4 4

vulnerability validation techniques include password cracking, penetration testing,
social engineering, and application security testing.

Table 4.1 shows in detail about how combined CyRIS functions are used to create
content for different security techniques. Basically, all realistic content needed for each
security technique in the NIST guideline is covered by CyRIS. Basic functions like install
tools and so on play the role of preparing the infrastructure for the system, and the
security group prepares specific content that corresponds to each and every technique.
One example is training regarding the network sniffing technique. Normally to train for

mastering this technique, a traffic capture file with some attack pattern is given to trainees.
CyRIS first creates the required file by combining the attack emulation and traffic capture
functions. It then provides a way for trainees to investigate the file by installing tcpdump
or wireshark, depending on the specification of the instructors. Another example is about
vulnerability scanning technique, in which trainees learn how to identify vulnerabilities
in the system (e.g., malware applications, open ports, etc.). In this case, CyRIS either
executes a script to start an application or deploys the dummy malware that has an
unusual name and listens to an arbitrary port.

4.1.2 Feature Comparison

Table 4.2 shows a comparison in terms of functions between CyRIS and other recent
similar tools. We divided them into two categories, which are content installation and
network setup functionality. The first group reflects the ability of performing operations
to creating content in individual nodes in order to create a desired environment. These
operations, however, exclude the function of installing an OS in a node from scratch,
as it is a pre-prepared step in advance. The network setup functionality includes two
main types of functions, which are physical and virtual configuration. While the first one
refers to tasks that relates to configure network service on a physical node, such as setting
up physical interfaces, VLANs, etc., the second type mentions about tasks on a virtual
machine, such as setting up its interfaces, constructing virtual bridges, and so on.

25

Content Installation
Regarding this category, while basic functions are common in automated environment
configuration tools, we find that security functions are unique to CyRIS. There are many
security settings Alfons can prepare by executing pre-prepared scripts or copying data
files from outside to the cyber range, but this process is costly and requires instructors to
generate such files manually in advance. With the security functions, CyRIS allows them
to create these settings by launching real actions, in a convenient and flexible manner.
This characteristic is extremely important and helpful in creating a realistic environment
for cybersecurity training.
One example of its usefulness is preparing logs for unsuccessfully login attempts in Cen-

tOS 7. Alfons or Ansbile can simulate this situation by replacing the file /var/log/secure
with another one containing logs for this incident that instructors have created in advance.
This method is inefficient, for two main reasons. Firstly, it requires instructors to perform
such an attack and generate logs by themselves. Since they have many courses running
one after another, the timestamp in the logs they have created, at a certain time, will
run out of date. As the result, they have to do the procedures again and again, which is
a tedious and error-prone task. Secondly, this method works only with people who have
the habit of investigating the file /var/log/secure in the system. In CentOS 7, one may
use a command called lastb to check for such attempts, and none of this trace is shown
at the output. In contrast, by emulating the ssh attack, CyRIS automatically generates
real logs for the incident and the information appears in both places.
Another example is creating necessary content for training participants about network

sniffing technique. Again, Alfons is able to do this by having a pre-prepared traffic capture
file that contains an attack pattern, such as a DDoS attack, and then copying it into the
cyber range. However, the same problem appears as before, that this approach requires
instructors to, somehow and by some tools, host a DDoS attack and capture the traffic.
This preparation is complicated and dangerous, especially with people who have little
experience, as it might cause serious problems if the attack is not controlled carefully.
However, CyRIS, with the built-in functions for emulating attacks including DDoS type,
lets instructors to produce such files automatically in an easy manner. Moreover, CyRIS
provides some additional modules, that allow to combine this specific captured attack
pattern with normal traffic. By doing this, the attack pattern will be more difficult to
detect, as it will make the problem more challenging for the participants.

Network Setup
In the network setup functionality, CyRIS is able to create virtual machines in cyber range
environment and configure network among them. The network topology module is able
to mimic wide range of topology, such as bus, ring, or DMZ. Moreover, CyRIS makes the
environment isolated from the outside network to avoid potential traffic leakage or bad
incidents. It then can generate a random account and password for each trainee so that
they cannot access others’ information, enhancing the security and fairness during the
training.

26

Figure 4.1: Network topology for performance evaluation.

4.2 Performance Evaluation

This section describes our evaluation in respect of CyRIS performance. These experiments
are conducted in StarBED testbed of National Institute of Information and Communica-
tion Technology [20]. Our evaluation is divided into two parts, which are:

• Large-scale performance evaluation. We firstly use CyRIS to construct several rep-
resentative cyber ranges for large-scale scenario, in order to measure the execution
time for each phase. By this, we are able to analyze CyRIS performance ability in
detail.

• Comparison to Alfons. We, after the first experiments, use CyRIS to construct a
cyber range, which is similar to the environment Alfons used for its system eval-
uation [21]. We then compare the creation time between the two, and give our
analysis.

4.2.1 Large-scale Performance Evaluation

4.2.1.1 Experimental setup

We construct an environment as shown in Figure 4.1 for the evaluation. The physical
facility consists of 30 servers (from dev01 to dev30), connected to a global router. Each
server has the specifications of two 4-core Intel Xeon R©E5504 2GHz CPUs, 72GB memory,
400GB HDD hard drive, and 1Gbps network interface. The first server dev01 is designated
as the master host for running CyRIS.

27

As having mentioned before in CyRIS working flow, the cyber range instantiation pro-
cess is divided into three main stages:

• Preparation of the base images for VMs, which is conducted in one host, the master
host dev01;

• Content installation into the base images above, also conducted on the master host;

• Cloning of the VMs on multiple hosts, which includes the tasks of copying base
images from the master host to others, cloning VMs from those base images, con-
figuring the network service, and starting up the VMs.

Cyber Range Organization and Design (CROND), an NEC Corporation endowed chair
at JAIST, has been developing a cybersecurity training for information security profes-
sionals. Its content has multiple difficulty levels, covering all the essential security tech-
niques mentioned in the NIST guideline. Based on this training, we consider two typical
levels for our experiments. The first level’s topic is about the security of a desktop com-
puter. Its cyber range includes one desktop, and contains content for review and analysis
techniques training, such as log and system configuration review, network sniffing, vul-
nerability scanning, etc. The second level is designed towards advanced security people,
in that it concentrates on more sophisticated security knowledge about networking. Its
cyber range reflects a small company’s network, which has one web server and one desk-
top connected to each other, and contains content for skills including network discovery,
password cracking, penetration tesing, and social engineering techniques.
We use these two models of cyber range in the first part of our performance evaluation.

Two aspects of CyRIS we would like to study, which correspond to two scenarios, are
described as below:

• Effects of parallel execution. As being described in the cloning function implementa-
tion, we use several techniques for parallelizing the execution of CyRIS on multiple
hosts. To evaluate its efficiency, we conduct experiments with a fixed number of
virtual machines (20) that are instantiated on 1, 2, 5, and 10 hosts (with 20, 10, 4,
and 2 VMs per host, respectively).

• Effects of large-scale execution. In this series of measurements, we keep the number
of VMs per host constant (20), and assess performance for a large-scale scenario
with up to total of 600 VMs on 30 hosts (representing 600 cyber ranges for Level 1,
or 300 cyber ranges for Level 2).

4.2.1.2 Experimental Results

We first discuss the effect of distributed execution in CyRIS, and then analyze its perfor-
mance in constructing large-scale cyber range environments.

28

0 2 4 6 8 10

Number of hosts

100

200

300

400

500

600

700

800

900

1000

C
y
b
e
r

ra
n
g
e
 c

re
a
ti
o
n
 t
im

e
 [
s
e
c
o
n
d
]

Level 1 [total]

Level 1 [clone]

Level 1 [install]

Level 1 [prepare]

0 2 4 6 8 10

Number of hosts

100

200

300

400

500

600

700

800

900

1000

C
y
b
e
r

ra
n
g
e
 c

re
a
ti
o
n
 t
im

e
 [
s
e
c
o
n
d
]

Level 2 [total]

Level 2 [clone]

Level 2 [install]

Level 2 [prepare]

Figure 4.2: Cyber range creation times in Level 1 and Level 2 for studying the effects of
distributed execution, which a fixed number of virtual machines (20) are instantiated on
1, 2, 5, and 10 hosts.

0 200 400 600

Number of virtual machines

200

400

600

800

1000

1200

1400

C
y
b
e
r

ra
n
g
e
 c

re
a
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

Level 1 [total]

Level 1 [clone]

Level 1 [install]

Level 1 [prepare]

0 200 400 600

Number of virtual machines

200

400

600

800

1000

1200

1400

C
y
b
e
r

ra
n
g
e
 c

re
a
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

Level 2 [total]

Level 2 [clone]

Level 2 [install]

Level 2 [prepare]

Figure 4.3: Cyber range creation times in Level 1 and Level 2 for testing CyRIS perfor-
mance under large-scale creation scenarios. The number of virtual machines per host is
constant (20), and the total number is up to 600 VMs on 30 hosts.

29

Effects of parallel execution
Figure 4.2 shows the average time required to instantiate the cyber ranges in the first
series of experiments, for each step (preparation, content installation, clone) and in total.
It is understandable that the preparation time for Level 1 is nearly as half as for Level
2, since there are one virtual machine is needed in the former whereas two are used in
the latter. The content installation phase, similarly, observes the same trend when the
time spent for Level 2 is higher, even though not double as the previous case, than for
Level 1. This result, in fact, is expected because the content necessary for Level 2 is more
sophisticated and complex than for the other.
Regarding the result of the cloning phase, it is interesting to observe that the spent

time for Level 1 and Level 2 are quite similar, except for the right-most case. As having
described in Section 3.3.5, two main tasks, which are copying base images from the master
host to others and cloning virtual machines from the base images, are included in this
phase. Note that the task of copying the base images is done in parallel among hosts,
and if there are more than one base image, then their copy processes are also done in
parallel. The same appears in the latter task, as the process of cloning virtual machines
on multiple hosts, and among multiple virtual machines on one hosts, are proceeded in
parallel.
In the first experiment when only one host, which is the master host itself, is involved in

the scenario, there is no need to copy the base images. Thus, the times needed for this case
in both levels are rather low, with roughly 1 minutes. When it comes to more hosts, even
done in parallel, the copy process starts showing its effect. In case of 2 and 5 hosts, the
clone time in Level 2 are about 4.5 and 4.9 minutes respectively, which are slightly longer
than in Level 1 with roughly 4 minutes in both the cases. The most significant effect is
observed in the case involving 10 hosts, which the clone time in Level 2 (6 minutes) is
considerably higher than in Level 1 (4.5 minutes). These are expected results due to the
fact that two images are required to copy simultaneously in Level 2, which leads to the
problem of decreasing the throughput because the network bandwidth and NIC (network
interface card) capability on the master host are overloaded.
The total construction time, following the results that are discussed above, yells no

surprise in both Level 1 and Level 2. Note, however, that after the cloning phase, there
are several tasks CyRIS has to do in order to construct a complete cyber range: creating
SSH tunnels from the network outside to the cyber ranges, generating random passwords
for each instance, and sending out the detailed information to the instructor. The total
time, therefore, is slightly larger than the sum of the three previous phases. In most cases
the total construction process finishes in a reasonable time of under 10 minutes, and only
in the worst case (Level 2, 10 hosts) the time reaches about 12 minutes.

Effects of large-scale execution
Figure 4.3 shows the results from the second series of measurements. Regarding the
preparation and content installation phases, basically no difference is presented compared
to the lower-scale experiments shown before, since the operations are similar in both the
cases.

30

Figure 4.4: DMZ network topology used in experiments for comparing CyRIS and Alfons.

The cloning phase, however, yells an exponential increase for the required time, with
a higher exponent for Level 2, which requires copying a double number of the base im-
ages. This is, again, explained by the similar problem appeared before: the throughput
decreased when too much amount of data are transmitted across the network at the same
time, as the network bandwidth and NIC capability are overloaded.
Nevertheless, the total time results show that, in a setup for 100 participants, the

construction can be finished in under 10 minutes for Level 1 (100 VMs), and in under 15
minutes for Level 2 (200 VMs), which are reasonable durations in our opinion given the
size of the program is relatively large. In the extreme case of using 600 VMs, for Level
1 (600 trainees) the setup is completed in under 15 minutes, and even for Level 2 (300
trainees) the setup is completed in about 22 minutes.

4.2.2 Performance Comparison

As having said in Chapter 2, Alfons is the closest tool to CyRIS, as it is equipped with
functions for the same purpose of facilitating the cyber range preparation task for cy-
bersecurity training. We have compared these two tools in terms of functionality in
Section 4.1.1, and this comparison is conducted in respect of performance.

4.2.2.1 Experimental Setup

The environment for this evaluation is shown in Figure 4.4. Four physical machines
are involved in this situation, and they have the same specs as described before. Each
physical machine contains a training environment, which reflects a small DMZ topology
with three network segments, namely the client, internal server, and DMZ. There are

31

Table 4.3: Performance comparison between CyRIS and Alfons

Virtual Machine
Disk Image Size [MB]

Alfons CyRIS

Gateway 1387 2048

Dns/mail 3303 3383

File server 4989 5109

Database 4699 4812

Desktop 9987 10227

Total Size 24365 25579

CREATION TIME 6507.6s 793.6s

totally five virtual machines in the environment: a firewall, a desktop, a file server, a
database, and a DNS/mail server.
Note that, however, the Alfons paper, while gives details about the network topology,

provides no information about the content inside the training environment. Thus, we
assume that the content only includes basic setup for the system, including necessary
tools for each server to function properly, and a number of forwarding rules as the means
of communication among them. In detail, we put (i) MySQL Server for the database,
(ii) Samba for the file server, (iii) BIND and Postfix for the DNS/mail server, and (iv)
Iptables for the firewall server. Besides, we create an administration account in each
server, and an user account on the client desktop. The traffic forwarding rules configured
in the firewall server including the rules for (i) the client and DMZ segments to reach the
database via port 3306, (ii) the client and DMZ segments to reach the file server via port
139 and 445, and (iii) the client segments to reach DMZ segments via port 25 and 53.

4.2.2.2 Experimental Results

Table 4.3 shows the result about our comparison between Alfons and CyRIS. As we can
see, even though the total size of our environment is slightly larger, CyRIS is able to
construct the complete cyber range in roughly 13 minutes, whereas Alfons takes more
than 100 minutes to do so. This result, on one hand, indicates that CyRIS works more
efficiently than Alfons in preparing cyber ranges for cyber security training.
However, on the other hand, as having mentioned before, we have no way to clarify if

the contents we put in our training environment are matched with what Alfons authors
did with theirs. Moreover, they mentioned nothing about how they measure the creation
time for the environment. Since 100 minutes is too long, we suspect that this measured
time includes the task of creating the base images from scratch. This is different from
CyRIS as it constructs the cyber range based on the base images which have been created

32

in advance. Another difference is that for setting up topology in a cyber range, Alfons
configures VLAN on switches whereas CyRIS creates virtual interfaces and bridges on
physical hosts. Alfons method, although appears efficient in many cases, takes longer
due to the delay in response from the switches. In addition, from the detail they give
in the paper, we notice that their total amount of time is exactly equal to the sum of
the times Alfons spends on creating the cyber range in each physical machine. This,
from our perspective, indicates that Alfons does not have an efficient parallel mechanism
for creating cyber ranges on multiple hosts. This disadvantage might result to poor
performance, or even failure, when it comes to large-scale construction scenarios.

33

Chapter 5

Conclusion

We started this thesis by surveying available training programs in order to study the
current status of cybersecurity training and education. Along the way, we found that
using cyber ranges was one of the best ways not only for practicing hands-on skills, but
also for improving the training, to make it more interactive and engaging. Nonetheless,
we saw the time and effort required to construct such environments manually was high,
as very few open-source tools could help, even partially, facilitate this process. We also
became well aware that this kind of training is mainly conducted in military environments,
and that mostly only proprietary products are available. Given that cyber attacks occur
daily basis, we realized that an orchestrating tool, which could be accessed and used by
anyone, and would facilitate the job of preparing cyber ranges for cybersecurity training,
would be of the utmost importance. Thus, we designed and implemented CyRIS, as an
open-source tool, to provide instructors with an automated way in the task of creating
cybersecurity training environments.
In some ways, CyRIS is similar to other well-known tools in the automated environment

configuration area, as it supports basic functions, such as managing accounts, installing
tools, executing scripts, cloning virtual machines, etc., for preparing the general infras-
tructure needed for a cyber range. The main difference regarding CyRIS, however, lies in
a set of security functions for configuring sophisticated security-related content in the cy-
ber range, such as emulating various types of attacks, producing capture traffic data, and
emulating dummy malware. These novel security functions offer the instructors a new way
of constructing realistic training environments in an efficient and flexible manner. In addi-
tion, CyRIS has the ability to setup the network service among virtual machine instances,
and is able to isolate the environment from the outside network for safety purposes.
CyRIS is well-suited for use in practical cybersecurity training programs. Our evalua-

tion has shown that by combining different functions, CyRIS is able to prepare the content
needed for all the security testing and assessment techniques discussed in the relevant U.S.
NIST guideline. Moreover, its execution performance has been proved sufficient enough to
meet a reasonable target time for cyber range construction. Our results have shown that
it took under 10 minutes to construct an environment for 200 participants, when each of

34

them is provided a VM containing basic setups, and under 15 minutes for a scenario of
a class including 100 participants, two machines with more sophisticated security-related
content are assigned for each of them.
Beside all the advantages that CyRIS possesses over other similar well-known tools,

there exists several incomplete points in its implementation, which need to be improved.
The first one is its limitation in terms of host OS support. At the current stage, CyRIS is
only able to run on a host using Ubuntu Server as hypervisor (either 14.04 LTS or 16.04
LTS). There are various other OSes available, such as Mac OS, Windows, RedHat, etc.,
and it is highly important that CyRIS can operate on all of them.
The second limitation of CyRIS is that it can only install security-related content on

individual nodes using Centos7 OS. The reason we chose Centos7 for CyRIS to start
with, as having said in Chapter 3, is that this is the latest community version of RedHat
Enterprise Linux, which is usually the first choice of large companies and organizations
for their servers because of the OS performance, stability and security. However, other
OSes, such as Windows, often appear in company networks as well, but CyRIS is unable
at the moment to install content on the OSes.
Another improvement we would like to have in CyRIS is about IoT security support.

With the quick development of IoT technology, people are also now at risk because of IoT
security issues. It is worth mentioning that the world “record” for the biggest DDoS attack
is 1 Tbps, which was performed mainly from compromised IoT devices [9]. Being aware
of this trend, current training programs have started including topics of IoT security in
their content. The current implementation of CyRIS only allows installing content and
vulnerability in a desktop-like machine, but not in IoT devices, such as Raspberry Pi,
Android phone, etc.
With the quick increase in the number of cyber attacks happening nowadays, we believe

that cybersecurity training and education become more and more important, as they
help strengthen people’s knowledge and educate IT security professionals to protect the
society. This thesis aims to design and implement CyRIS, an open-source tool which
can help facilitate the task of preparing environments in cybersecurity training. Our
plan is to release public the source code of CyRIS at the end of this fiscal year (March
2017). We hope that CyRIS will serve as a good means in the future, both for instructors
in constructing cyber ranges for their courses, and for individuals in creating custom
environments for practicing hands-on activities.

35

References

[1] The Wall Street Journal - Health Insurer Anthem Hit by Hackers. Retrieved on Dec
22, 2016 from http://www.wsj.com/articles/health-insurer-anthem-hit-by-hackers-
1423103720.

[2] Reuters - Japan pension system hacked, 1.25 million cases of personal data leaked.
Retrieved on Dec 22, 2016 from http://www.reuters.com/article/us-japan-pensions-
attacks-idUSKBN0OH1OP20150601.

[3] SECURITYWEEK NETWORK: Information Security News - Hosting Provider
OVH Hit by 1 Tbps DDoS Attack. Retrieved on Dec 22, 2016 from
http://www.securityweek.com/.

[4] BBC - South China Sea: Vietnam airport screens hacked. Retrieved on Dec 22,
2016 from http://www.bbc.com/news/world-asia-36927674.

[5] Cyber Security: Protect and Defend. Retrieved on Jan 10, 2017 from
https://www.udemy.com/cyber-security/.

[6] Cybrary - Free and Open Source Cyber Security Learning. Retrieved on Jan 10,
2017 from https://www.cybrary.it/.

[7] Web Application Security Forum. Hardening Project (in Japanese). Retrieved on
Jan 10, 2017 from http://wasforum.jp/hardening-project/.

[8] Ministry of Internal Affairs and Communications, Japan. Cyber Defense Exercise
with Recurrence (CYDER) Training Program (press release). Retrieved on Jan 10,
2017 from http://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/Releases/
Telecommunications/130925_02.html.

[9] World’s largest 1 Tbps DDoS Attack launched from 152,000 hacked Smart Devices.
Retrieved on Jan 12, 2017 from http://thehackernews.com/2016/09/ddos-attack-
iot.html.

[10] Top 7 Network Attack Types in 2016. Retrieved on Jan 25, 2017 from
http://www.calyptix.com/top-threats/top-7-network-attack-types-2016/.

36

[11] R. Beuran, K. Chinen, Y. Tan, and Y. Shinoda. Towards Effective Cybersecurity
Education and Training. Technical Report IS-RR-2016-003, Japan Advanced Insti-
tute of Science and Technology (JAIST), October 2016.

[12] R. Beuran, C. Pham, D. Tang, K. Chinen, Y. Tan, Y. Shinoda. CyTrONE: An
Integrated Cybersecurity Training Framework. International Conference on Infor-
mation Systems Security and Privacy (ICISSP 2017), Porto, Portugal, February
19-21, 2017.

[13] C. Pham, D. Tang, K. Chinen, R. Beuran. CyRIS: A Cyber Range Instantiation
System for Facilitating Security Training. International Symposium on Information
and Communication Technology (SoICT ACM 2016), Ho Chi Minh, Vietnam, De-
cember 8-9, 2016.

[14] Ansible is Simple IT Automation. Retrieved on March 22, 2016 from
http://www.ansible.com.

[15] OpenStack - OpenStack Open Source Cloud Computing Software. Retrieved on
March 22, 2016 from https://www.openstack.org.

[16] Development Environments Made Easy. Retrieved on August 3rd, 2016 from
https://www.vagrantup.com.

[17] Chef | IT Automation for Speed and Awesomeness | Chef. Retrieved on August 4th,
2016 from https://www.chef.io/chef.

[18] Server Virtualization with VMware vSphere. Retrieved on August 4th, 2016 from
http://www.vmware.com/pruducts/vsphere.html.

[19] Toshiyuki Miyachi, Takeshi Nakagawa, Ken-ichi Chinen, Shinsuke Miwa and Yoichi
Shinoda. StarBED and SpringOS Architectures and their Performance. 7th Inter-
national ICST Conference, TRIDENTCOM 2011.

[20] National Institute of Information and Communication Technology, Japan.
Hokuriku StarBED Technology Center. Retrieved August 1st, 2016 from
http://starbed.nict.go.jp/.

[21] Shingo Yasuda, Ryosuke Miura, Satoshi Ohta, Yuuki Takano, Toshiyuki Miyachi.
Alfons: A Mimetic Network Environment Construction System. 11th EAI Interna-
tional Conference on Testbeds and Research Infrastructures for the Development of
Networks & Communities, TridentCom 2016.

[22] GitHub - facebook/fbctf: Platform to host Capture the Flag competitions. Retrieved
on August 4th, 2016 from https://github.com/facebook/fbctf.

[23] Moodle - Open-source learning platform. Retrieved on August 3rd, 2016 from
https://moodle.org/.

37

[24] Murugiah P. Souppaya, Karen A. Scarfone. Technical Guide to Information Se-
curity Testing and Assessment. Special Publication 800-115. National Institute of
Standards and Technology, 2008.

[25] Fabrice Bellard. (2011) QEMU - Open Source Processor Emulater homepage. [On-
line]. Retrieved on November 18th, 2016 from http://www.qemu.org/.

[26] Red Hat, Inc. (2011) Kernel-based Virtual Machine (KVM) homepage. [Online].
Retrieved on November 18th, 2016 http://www.linux-kvm.org/.

[27] SANS Information Security Training | Cyber Certifications | Research. Retrieved
on August 4th, 2016 from https://www.sans.org/.

[28] The CERT Division | SEI | CMU. Retrieved on August 4th, 2016 from
www.cert.org/.

[29] Netfilter: Firewalling, NAT, and Packet Mangling for Linux - The
netfilter.org "iptables" project. Retrieved on December 25th, 2016 from
http://www.netfilter.org/projects/iptables/.

[30] Paramiko - A Python implementation of SSHv2. Retrieved on December 25th, 2016
from http://www.paramiko.org/.

[31] HPING 3. Retrieved on December 26th, 2016 from
http://www.hping.org/hping3.html.

[32] Ubuntu Manpage: parallel-scp - parallel versions of scp. Retrieved on December
27th, 2016 from http://manpages.ubuntu.com/manpages/trusty/man1/parallel-
scp.1.html.

38

Publications

[1] R. Beuran, C. Pham, D. Tang, K. Chinen, Y. Tan, Y. Shinoda, "CyTrONE: An Inte-
grated Cybersecurity Training Framework", International Conference on Information
Systems Security and Privacy (ICISSP 2017), Porto, Portugal, February 19-21, 2017.

[2] C. Pham, D. Tang, K. Chinen, R. Beuran, "CyRIS: A Cyber Range Instantiation
System for Facilitating Security Training", International Symposium on Information
and Communication Technology (SoICT 2016), Ho Chi Minh, Vietnam, December
8-9, 2016

[3] D. Tang, C. Pham, K. Chinen, R. Beuran, "Interactive Cyber Attack Emulation for
Facilitating Security Training", poster, Internet Conference (IC 2016), Tokyo, Japan,
October 11-12, 2016.

39

Appendix A

Cyber Range Description Example

This appendix shows an example of a cyber range description, in which it includes all key
words that could be used in CyRIS.

###
This is a sample cyber range definition description for the CyRIS
cyber range instantiation system. The description is written in
YAML format and contains three main sections, as follows:
- host_settings: Contains information about the hosts the cyber
range is to be deployed on, including an id, a
management address, a virtual bridge address,
and a management account.
- guest_settings: Provides information about the base images. It
defines the entire content of the cyber range
that CyRIS needs to prepare.
- clone_settings: Gives details about the cloning phase. It has a
unique range id, and information about hosts,
guests, and network topology.
###
###
Start of the host_settings section. For each host, it consists of 4 fields:
@param id The id of the host.
@param mgmt_addr The management address used to access the host.
@param virbr_addr The virtual bridge address that the host uses
to communicate with the virtual machines that
will be created on it. On installation KVM
typically creates a default virtual bridge
virbr0 with default IP address 192.168.122.1.
@param account The account name on the host that is to be
used by CyRIS. It accesses the host by SSH
public key, which needs to be prepared in
advance by the user.
#
The number of hosts specified in this section is not limited. In this

40

example, it consists of one host with id "host_1".
###
- host_settings:

- id: host_1
mgmt_addr: 172.16.24.1
virbr_addr: 192.168.122.1
account: cyuser

###
Start of the guest_settings section. For each base image, it consists
of 7 fields:
@param id The id of the base image, which by
convention reflects its role in the
cyber range (desktop, web server,
database, etc.).
@param ip_addr The IP address of the base image, so
so that CyRIS can access it from
the host.
@param basevm_host The host that the base image is
located on.
@param basevm_config_file The path to the configuration file
of the base image, for KVM to be able
to define and start it.
@param basevm_type The virtualization type of the base
image. Currently CyRIS supports only
KVM virtualization.
@param tasks The definition of all the setup tasks
that CyRIS needs to do on the base
image. Specific parameters needed for
each kind of task are presented in the
section below.
#
The number of base images specified in this section is also not limited.
This example includes three of them, a desktop, a web server, and a
firewall server.
###
- guest_settings:

- id: desktop
ip_addr: 192.168.122.50
basevm_host: host_1
basevm_config_file: /home/cyuser/basevm_desktop_dev.xml
basevm_type: kvm
basevm_name: basevm_desktop_dev
tasks:
The add_account task is for adding a new account to the base image.
It needs two parameters, which are:
@param account Name of the new account.

41

@param passwd Password of the new account.
- add_account:

- account: daniel
passwd: JamesBond

The modify_account task is for changing the information of an
existing account. Depending on the need to modifying only the
name, only the password, or both, it needs two or three parameters,
which are:
@param account Name of an existing account.
@param new_account New name for the specified account.
@param new_passwd New password for the specified account.
- modify_account:

- account: root
new_passwd: theroot

The install_package account task is for installing a package
from a repository, by using some package manager (yum, apt-get,
and so on, depending on the OS of the base image). It has three
parameters:
@param package_manager yum, apt-get, etc., depending
on the OS.
@param name Name of the package to be installed.
@param version Version of the package (optional). By
default CyRIS will install the latest
version.
- install_package:

- package_manager: yum
name: wireshark
version: 1.8.10

- package_manager: yum
name: GeoIP

The emulate_attack task is for deploying an attack in the cyber range
, which is used to create logs and other traces. In the current stage,
CyRIS supports emulating actual ssh dictionary attacks. The needed
parameters are presented below:
- SSH dictionary attack:
@param attack_type Type of the attack (ssh_attack).
@param target_account The account that is targeted in the attack.
@param attempt_number Number of login attempts in the attack.
- emulate_attack:

- attack_type: ssh_attack
target_account: daniel
attempt_number: 200

The emulate_traffic_capture_files task is for generating pcap files
that contain specific network traffic traces. In the current stage,
CyRIS supports generating traffic traces for ssh dictionary attack,
DOS attack, and DDOS attack.

42

For each traffic pattern, it needs different parameters, as follows:
- SSH dictionary attack:
@param format Format of the traffic file (pcap).
@param filename Name of the traffic file.
@param attack_type Type of the traffic pattern (ssh_attack).
@param attack_source The IP address from which the attack is
initiated.
@param noise_level How much normal traffic needs to be added
into the file, to make it more challenging
to detect the attack pattern. The level can
be low, medium, high.
- DOS attack and DDOS attack:
@param format Format of the traffic file (pcap).
@param file_name Name of the traffic file.
@param attack_type Type of the traffic pattern (dos_attack,
ddos_attack).
@param noise_level How much normal traffic needs to be mixed
into the file, so as to make it more
challenging to detect the attack pattern.
The level can be low, medium, high.
- emulate_traffic_capture_files:

- format: pcap
file_name: /home/trainee/traffic1.pcap
attack_type: ssh_attack
attack_source: 2.95.120.235
noise_level: medium

- format: pcap
file_name: /home/trainee/traffic2.pcap
attack_type: dos_attack
noise_level: medium

The emulate_malware task is for starting a dummy malware process. It can
run under two modes at the current stage: performing a calculation or
listening to a specified port. Depending on the execution mode, the task
takes different parameters:
- Dummy calculation mode:
@param name Name of the dummy malware process.
@param mode Running mode of the malware (dummy_calculation).
@param cpu_utilization Percent of CPU the malware will consume.
#
- Port listening mode:
@param name Name of the dummy malware process.
@param mode Running mode of the malware (port_listening).
@param port Port number the malware listens to.
- emulate_malware:

- name: spyeye
mode: dummy_calculation

43

cpu_utilization: 40
The copy_content task is for copying some data (files, etc.) to the cyber
range. This task needs two parameters:
@param src The absolute path (on the host) of the data to be copied.
@param dst The absolute path (on the guest) of the location where to
copy the data to.
- copy_content:

- src: /home/cyuser/cyris-development/database/penetration_testing
dst: /bin/cyberrange

- src: /home/cyuser/cyris-development/database/flag.txt
dst: /root

The execute_program task is for executing scripts/programs (python, bash,
ruby, etc.), which have been copied to the cyber range in the copy_content
tasks. This function needs three parameters:
@param program The absolute path of the location of the program.
@param interpreter The required shell/interpreter/compiler (python,
bash, ruby, gcc, etc.).
@param execute_time This parameter is optional, indicating the time
that CyRIS will executes the program, whether
before or after cloning phase. If users want to
execute it before the cloning phase, then this
parameter is not needed to specified. In case of
after-cloning-phase execution, the value for it
should be "after_clone".
- execute_program:

- program: /bin/cyberrange/database/penetration_testing/install_pip.sh
interpreter: bash

- program: /bin/cyberrange/database/penetration_testing/prepare.sh
interpreter: bash
execute_time: after_clone

The firewall_rules task is for specifying and setting up firewall rules.
CyRIS will automatically set up the firewall rules specified in the
provided file(s). Only the iptables tool is currently supported.
@param rule The file which contains a list of firewall rules.
- firewall_rules:

- rule: /home/cyuser/database/firewall_ruleset_forwarding
- rule: /home/cyuser/database/firewall_ruleset_inputoutput

###
Specify information for the base image named "webserver".
- id: webserver

ip_addr: 192.168.122.51
basevm_host: host_1
basevm_config_file: /home/cyuser/kvm/basevm_webserver.xml
basevm_type: kvm
basevm_name: basevm_webserver_dev
tasks:

44

- add_account:
- account: daniel

passwd: JamesBond
- install_package:

- package_manager: yum
name: httpd

- emulate_traffic_capture_files:
- format: pcap

file_name: /home/traffic.pcap
attack_type: ddos_attack
noise_level: medium

###
Specify information for the base image named "firewall".
- id: firewall

basevm_host: host_1
basevm_config_file: /home/cyuser/images/gateway.xml
basevm_type: kvm
tasks:
- add_account:

- account: robot.abc
passwd: abcrb1357

###
Start of the clone_settings section. All the settings are done inside
one field:
@param range_id The unique ID of the cyber range, which is used
to differentiate between cyber ranges created on the same host.
###
- clone_settings:

- range_id: 112
hosts is for specifying a list of hosts that the cyber range is
deployed on.
@param host_id The ID of the host (as specified in the
host_settings section located in the
beginning of this file).
@param instance_number The number of instances of the cyber range
that are going to be deployed on the host.
@param guests Specify a list of virtual machines which
are cloned from the base images included
in the guest_settings section.
@param topology The network topology among virtual machines
in the cyber range.
hosts:
- host_id: host_1

instance_number: 2
guests is for specifying a list of virtual machines which are cloned
from the base images specified in the guest_settings section. For

45

each guest, it takes several parameters:
@param guest_id The ID of the base image that the virtual
machine is cloned from.
@param number The number of the virtual machines that
will be cloned.
@param firewall_rules The forwarding rules for communication
done between network segments. This field
is optional, and it is only specified
when the virtual machine plays the role of
forwarding traffic in the network (such as
a firewall machine, gateway machine, etc.).
guests:
Specify the virtual machines which are to be cloned from the
"desktop" base image. No firewall rules are included for these
virtual machines.
- guest_id: desktop

number: 1
Specify the virtual machines which are to be cloned from the
"webserver" base image. No firewall rules are included for these
virtual machines.
- guest_id: webserver

number: 1
Specify the virtual machines that are to be cloned from the
"firewall" base image.
- guest_id: firewall

number: 1
forwarding_rules:
These rules are for forwarding traffic in the network. They
contain several parameters:
@param src The source segment for the traffic. If
there are multiple source segments, they
are separated by the character ",".
@param dst The destination segment of the traffic.
Same "," separation rule is applied when
multiple destinations are specified.
@param sport The source port of the traffic.
@param dport The destination port of the traffic.
- rule: src=office,external_servers dst=internal_servers.database dport=3306
- rule: src=office,external_servers dst=internal_servers.fileserver dport=139
- rule: src=office dst=external_servers dport=25,53

Topology is for the network topology among virtual machines in
the cyber range. It has several parameters:
@param type The type of the network in the cyber range
(custom type, ring type, dumbbell type, etc.).
At the current stage, only the custom type is
supported.

46

@param networks A list of network segments in the cyber range,
including name of the segment, members, and
gateway.
topology:
- type: custom

The list of network segments in the cyber range.
@param name Name of the network segment.
@param members A list of members in the network segment.
They are specified as
<guest_id>.<network_interface> values.
@param gateway A gateway for members in this segment to
communicate with other segments.
networks:
A network segment named office.
- name: office

members: desktop.eth0
gateway: firewall.eth0

A network segment named servers.
- name: servers

members: webserver.eth0
gateway: firewall.eth1

47

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Functionality Requirements
	Related Work

	Cyber Range Instantiation System
	Overview
	CyRIS Working Flow
	Base Image Pool
	Cyber Range Description
	Cyber Range Creation Process
	Created Cyber Range

	CyRIS Functionality
	System Configuration
	Tool Installation
	Incident Emulation
	Attack Emulation
	Traffic Capture
	Malware Emulation

	Content Management
	Clone Management

	Discussion

	System Evaluation
	Functionality Evaluation
	Feature Coverage
	Feature Comparison

	Performance Evaluation
	Large-scale Performance Evaluation
	Experimental setup
	Experimental Results

	Performance Comparison
	Experimental Setup
	Experimental Results

	Conclusion
	References
	Publications
	Cyber Range Description Example

