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Abstract

This thesis proposes a design of lattices based on subcodes. In literature it is known
how to construct polar lattices, however construction of optimal lattices are still an
open problem. This work aims to form lattices from polar codes and study their
performance.

To obtain efficient polar lattices in terms of low error rate, we selected various polar
subcodes to compare which produces lower bit-error rate.

In this work, lattices are formed using construction A and construction D. Both
constructions require a binary linear code C. A lattice constructed with a single code
is called single-level lattice. A lattice constructed with two nested codes is called
two-level lattice. Multilevel refers to the number of nested codes chosen to form a
lattice.

Construction A produces lattices which, in general, are effective in lower dimen-
sions. Lattices Λ are obtained by using a single binary code C. Each codeword of the
binary code is assumed to be a lattice point in the real space RN .

Construction D is one of the various lattice constructions which produces lattices
from nested binary codes. In this work, lattices Λ are formed by selecting nested polar
codes Ci.

We selected polar codes as the binary code C denoted by Polar(N,K,F). Polar
codes are specified by the channel transition probabilities W (y|x), N is the block code
length (or the lattice dimension), K is the number of information bits and the index
vector F that has N −K elements, which in literature is commonly called frozen bits.

We are interested in the generator matrix GN of the polar code, because sub polar
codes can be obtained by using GN . The full rank generator matrix GN is defined by:
GN = RN(F ⊗ IN

2
) · (I2 ⊗ GN

2
), where RN is the reverse shuffle permutation matrix,

F = [ 1 0
1 1 ] and ⊗ is the Kronecker product. A given polar subcode contains some of

the basis row vectors as the generator matrix GN .
Polar codes were chosen because polar codes have a structured construction provid-

ing easier identification of subcodes required to build up polar lattice by construction
D.

Polar lattices ΛP are specified by ΛP (N,Ki), where N is the dimension of the lattice
and K is the dimension of the nested binary code i. In a few lines, the polar lattice
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construction is explained as follows. From the generator matrix GN , subcodes with
rate (Ki

N
) are chosen, following the polar code construction, such as the selection of

frozen bits by maximizing the symmetric capacity, which is explain in detail in section
3. To form polar lattices we use the polar subcodes and apply: (1) construction A
requires a single polar code. Details are explained in section 4.4.1. (2) construction D

requires nested polar codes. There is a restriction on the minimum distance di ≥ 4(i)

j

for the nested polar codes, where j is either 1 or 2, and in this work we used 2. i is
the number of nested polar codes.

To evaluate the best bit-error rate, symbol-error rate and word-error rate perfor-
mance for each lattice, Monte Carlo simulation were performed for:

1. Single-level lattice construction. Polar lattices are formed by a single code with
construction A and construction D. We investigated the best BER, SER and WER
performance for a give polar lattice under lower volume to noise ratio (VNR). VNR
is the metric for lattices which shows how dense a lattice is. We evaluate from
0dB to 5dB for the VNR.

2. Multilevel lattice construction. Polar lattices are formed by nested codes using
construction D. The objective of this simulation is to identify with how many
polar lattices levels the best BER, SER and WER under lower VNR (from 0dB to
5dB VNR).

For such simulations, the additive white Gaussian noise (AWGN) channel is consid-
ered. And at the receiver side, the decoding is done using a multilevel decoding and
successive cancellation decoding (SCD).

Simulation results show that single-level polar lattices outperform the two-level and
three-level polar lattices. Simulations also show that polar lattices with lower minimum
distance has lower error rate performance, this positive result occurs because the best
performance occurs when a higher amount of lattice points are packed on the same
volume.

In this work we also compared the performance of polar lattices with another code.
We chose BCH codes as another binary code to form lattices. BCH codes are powerful
random error-correcting cyclic codes.

Simulation where performed with single-level BCH lattices by construction A. Re-
sults show that at a lower VNR (1dB), BCH lattice performed worse than polar lattices
in terms of SER. However, on a little higher VNR (4dB), the best BCH lattice seems
improve the performance, but still lower than some polar lattices.
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Chapter 1
Introduction

1.1 Background, Motivation and Method

For reliable data transmissions there are still several problems to be solved. This thesis

focuses on wireless communication models, and specifically on the design of codes to

reliably transmit information through a noisy medium. The communication medium

on which data is transmitted is called a channel, and when distortion occurs on the

channel, it is called a noisy channel.

In 1948 C. E. Shannon developed a theorem for communication transmissions, to

transmit efficiently and reliably, that is called the the noisy channel coding theorem.

In his work, Shannon presented an analysis of coding theory for noisy communication

channels where he obtained an upper bound on the probability of error for an optimal

code on the discrete memoryless channel (DMC). The upper bound was obtained by

letting the information being as random as possible. Another important contribution

that Shannon presented was an expression for the capacity of a finite state channel.

He introduced the limits of reliable communications, however, he did not mention how

to achieve it practically.

In 1993 Claude Berrou et al. introduced turbo codes [1] which are recursive system-

atic convolutional codes that have lower bit error rates than the best non systematic

convolutional codes at any signal-to-noise ratio for high code rates. Moreover, the

performance of turbo codes in terms of bit-error rate is very close to Shannon’s limit.

Another efficient binary code is the so-called low-density parity-check code (LDPC).

LDPC codes are error correcting codes that have been proven to be capable of ap-

proaching the Shannon’s limit more closely than any other code. However, LDPC are
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not optimal codes, but LDPC codes have a simple decoding scheme.

Turbo codes and LDPC codes are efficient binary coding schemes when the message

is modulated in the binary domain {0, 1}. However, regarding the modulation of a real

communication channel, the noise and the transmission medium are functions of the

real domain RN and not binary. This is one of the main motivations to use lattices.

A lattice is a periodic arrangement of point in the N -dimensional real space. Using

lattice codes, an original message can be modulated in various dimensions in the real

space RN . For example pulse-amplitude modulation (PAM) or quadrature-amplitude

modulation (QAM), which correspond to one-dimensional and two-dimensional lattice-

like constellation, respectively. An approach to construct multi-dimensional lattice

constellations is by shaping (cutting a finite section from a lattice). Cubes and spherical

shapes are the most widely used.

Lattices are capable of solving geometric, coding or quantization problems with

a sphere-like codebook. Spherical-like codebook are constructed by taking a sphere

(sphere packing problem) and placing a codeword from a binary code in each center.

The sphere packing problem is to find the densest packing of spheres in a Euclidean

space RN .

To construct dense sphere packing Λ, error correcting codes can be used. In [2],

Conway and Sloane explained how to construct spherical codes using binary error

correcting codes for lower or higher dimension.

It is possible to perform packing in space by two methods. (1) Using a single error

correcting code, to produce packing in lower dimension; in [2] it is explained as “taking

cross-sections of the binary code”. And (2) building up packing by layers, producing

packing in higher dimensions; in [2] it is explained as “laminated lattices”.

Several techniques are known to construct lattices, such techniques are construction

A, construction B, construction C, Construction D, etc. In this work, we focus on

construction A and construction D using polar codes to evaluate its performance and

then to compare both constructions.

In order to form lattices by construction A, a cross-section packing of the error

correcting codes is performed. And, in order to use construction D, lattices are formed

by building up layer by layer, where a set of nested binary codes is required.

A very powerful code which has an easy identification of its nested codes is the

well-known Polar code. In [3], Arikan showed how to create a polar generator matrix

by removing some rows of the Plotkin generator matrix. With this method, the polar
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code generator matrix has a triangular form, which provides an easy construction of

lattices. Lattices formed by polar codes are called polar latices which are defined in 5

on detail.

Polar codes are known to have an explicit construction with low encoding and

decoding complexity [4]. Moreover, polar codes have a recursive structure that is

suitable for hardware implementation [5]. Research on polar codes has demonstrated

that their decoding with successive cancellation and short block lengths do not perform

as efficiently as low density parity check codes (LDPC). In [6], Ido Tal and Alexander

Vardy showed two possible causes of this performance variation. The first possible

cause might be because of the existence of a performance gap between successive

cancellation and maximum likelihood decoding. Or another possible cause might be

simple because polar codes themselves are weak at short block lengths.

It is well known that using long block length codes, it is possible to increase the

performance of polar codes. And also the performance of lattice codes. Combining

them seems to be an appealing idea regarding to efficiency, however, we are aware that

increasing the lattice dimension and so the length of the polar code leads to increase

the decoding complexity of the system.

1.2 Summary of Contributions

This thesis aims to provide a guideline for beginner researchers who are interested in

learning polar codes, lattices and polar lattices. This research provides a guideline to

design lattices from polar codes by choosing subcode rates of the polar code. Polar

lattices are formed by construction A and construction D with specific subcode rates.

Evaluation of these construction are provided in section 6. Additionally, numerical

results in terms of symbol error rate (SER), bit error rate (BER) and word error rate

(WER) are provided in section 6.

The achievements of this dissertation can be summarized as follows:

• Polar lattices are formed by two different methods: construction A for single

codes, and construction D for nested codes.

• It was found by computational simulation that polar lattices perform better on

the BER than polar codes itself.

• For construction A, it was obtained that the best SER performance for polar
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lattices is close a rate of (K
N

= 1
2
) for the polar code design-rate.

• For construction D, it was observed that increasing the minimum distance between

the nested polar codes decrease the SER performance of the polar lattice.

• Single-level lattices provides better SER performance than multilevel lattices.

• Polar lattices outperform BCH-Lattices on the lower VNR.



Chapter 2
Preliminaries

2.1 Source Coding and Channel Coding

The process of data transmission over a noisy channel is described by source coding

and channel coding. A sender, receiver and medium are the three basic elements in

this process. The sender is a source that produces encoded information vectors. The

receiver decodes the received sequences to obtain the same information vector that

was transmitted over the medium.

In source coding, the source generates symbols that are either discrete or for the

idealistic case real symbols. Let consider a source which produces only two possible

strings as outputs “No” and “Yes”. These two strings can be mapped into 0’s for No

and 1’s for Yes. Assuming noiseless reception of a transmitted bit, the receiver can

easily reconstruct the original message given that the receiver knows {No→ 0, Y es→
1}. In this easy example, the information strings are mapped to binary bits to represent

the message. Accordingly, a relevant question would be, how to map efficiently?

Shannon asked himself this question already. “Given a noiseless channel, what is

the most efficient way to communicate the source message to the receiver?”. Source

codes try to answer this question mathematically. The fundamental idea is that highly

probable symbols are assigned to the shortest coded transmissions. This ideal leads to

convey maximum and by sending shorter coded message reduce the information being

transmitted. Through reducing information (compression) and conveying maximum,

this approach tries to reach the goal of source coding.

On the other hand, we know that communication channels are noisy. And we also

know that noise can be modeled by using conditional probability distribution. Where



6

Encoder ChannelSource Decoder Destination

Sender Receiver
Noise

Figure 2.1. Basic communication system model.

the conditional probability distribution can be seen as a set of chances of getting

particular output given a particular input with a certain random noise that is typically

known.

Given the fact that communication channels are noisy, Shannon also asked the ques-

tion. “What is the maximum rate at which we can convey information with small

chance of getting an error through this probabilistic channel?”. The idea is to map the

source coded information symbols through the noisy channel such that communication

happens at the maximum possible rate as well as low error probabilities. This idea is

called channel coding.

2.2 System Model

The general block diagram of a communication system is shown in Figure 2.1. The

source message b is encoded by adding some redundancy to the original message to

obtain codewords x. The sender transmits the codeword x through a noisy channel

where error could occur due to noise in the channel. Generally the noise is modeled

for example with a Gaussian distribution. The noisy vector y is received so that the

decoder can make use of the redundancy on the message to detect and correct errors.

The estimate vector b̂ is then sent to the destination.

2.3 AWGN Channel

The noise in a physical wireless channels is commonly modeled as additive white Gaus-

sian noise (AWGN).
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y = x + z (2.1)

The Gaussian random variables in z are i.i.d. with zero-mean, with a variance of

σ2 = N0

2
.

The cross over probability e can be calculated as follows:

e = Q

(√
2Eb
N0

)
(2.2)

where Q(·) is the error probability function, Eb is the bit energy and N0 = 2σ2 is

called the double-side power spectral density. The ratio of the transmitted energy and

the power spectral density of noise Eb

N0
is called the signal-to-noise ratio (SNR).

2.4 Performance Measurements

Typically on digital communications systems the end-to-end performance measurement

is the bit-error rate (BER), which quantifies the reliability of the entire communication

system from how many “bits are in” to “bits are out,” of the system.

The BER is defined by:

BER =
Errors

Total number of bits
(2.3)

Another measurements for the communication systems are the symbol-error rate

(SER) which is defined as the number of symbol changes for waveform changes, or

signaling events, across the transmission medium. In this thesis we defined as:

SER =
Errors

Total number of symbols
(2.4)

And, when measuring the entire codeword that is transmitted the word-error rate

(WER) is used. We defined the WER as:

WER = any error on the codeword (2.5)

These computational performance measurements require to send a data sequence

through the system and compare the output with the input execution over an infinitely

long period of time, and further more, it is essential to assume that a data transmission
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is a random process. However, it is impossible to wait forever to make a BER, SER

or WER measurement. Instead of that a “pseudorandom” data process is used. This

process is called pseudorandom since it is not possible to truly randomize it, however

it is possible to use deterministic methods.



Chapter 3
Polar Codes

Polar codes were introduced by Arikan [7] in 2009. Recently, polar codes have gained

great interest due to its structured construction and its capability to achieve the ca-

pacity of symmetric binary-input of discrete memoryless channels. In [8] Huijun Li and

Jinhong Yuan introduced a method to calculate the Bhattacharyya parameter and a

construction of polar codes based on a Gaussian approximation. They evaluated the

code performance showing that the code using a Gaussian approximation have better

code performance with lower computational complexity than the code introduced by

Arikan.

Several researchers have great interest in using polar codes, not only in wireless

communications but also in other communication fields. From the field of wireless

physical layer security, in [9] Andersson et al. obtained the capacity of wiretap channels

for an specific setting. They used subcodes of the polar code to produce nested codes.

Their coding scheme achieved the capacity of the physically degraded relay channel.

In this work, we use polar codes to form lattices. Firstly, we use the Bhattacharyya

parameter to obtain a polar code and several subcodes. And secondly, we use the

subcodes to shape lattices.

3.1 Polar Codes Definition

A polar code is specified by Polar(N,K,F), where N is the code length in bits, K is

the number of information bits and F is a index vector which in literature is commonly

called frozen bits. F is a vector of length N −K. Occasionally we use F c to represent

the K information bits indexing. The input to the channel is x ∈ X and the output of
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Figure 3.1. Four independent W copies are combined to produce a channel W4.

the channel is y ∈ Y . The information vector u = UN is the original information, while

x = XN is the input to the channel when N -channels are used to encode a vector

message u, and the output of the channel is also denoted by y = Y N . Polar codes

are modeled by transition probabilities W (y|x) or WN(y|x) in vector form, which are

a set of outputs conditioned on a set of inputs. The transition probabilities WN(y|x)

represents what are called virtual channels denoted by W .

Definition 3.1.1. A symmetric binary discrete memoryless channel (B-DMC) WN

has binary input X = {0, 1}. WN is assumed to be symmetric if and only if there

exists a permutation over the outputs of the channel π : Y −→ Y such that π = π−1

and W (y|0) = W (π(y)|1).

The idea of polar codes is to create W
(i)
N from N -independent W -channels , where

1 ≤ i ≤ N , such that N goes through a linear transformation which leads the channels

to polarize. Figure 3.1 depicts a W4 channel, where four independent W copies are

combined (W
(1)
4 ,W

(2)
4 ,W

(3)
4 ,W

(4)
4 ) to produce the channel W4.
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3.2 Channel Polarization

Channel polarization consists of two operations, the channel combination phase and

the channel splitting phase.

Combination Two independent copies of WN
2

are combined to produce the channel

WN , which is represented by

WN : XN → Y N , (3.1)

exemplified on Figure 3.1.

Splitting WN is split back into a set of N binary-input coordinate channels, repre-

sented by

W
(i)
N : XN → Y N ×X i−1 (3.2)

When N grows large, the channels are polarized and so the symmetric capacity

I(W ) is close to either 0 or 1. The symmetric capacity is the highest rate at which

reliable communication is possible across W . Figure 3.2 is a plot of the symmetric

capacity of independent virtual channels W , where it is shown that the fraction of

indexes i for which I(W
(i)
N ) is close to 1 is I(W ) and close to 0 is 1− I(W ).

Definition 3.2.1. Frozen bits are the indices for which I(W
(i)
N ) are closer to 0.

Frozen bits are the set of N −K elements.

Definition 3.2.2. The symmetric capacity or mutual information of a B-DMC

with input X = {0, 1} is defined by

I(W )
.
=
∑
y∈X

∑
x∈X

1

2
W (y|x) log

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

(3.3)

where for reliable communications over a symmetric B-DMC at any rate is up to

I(W ).

Definition 3.2.3. The Bhattacharyya parameter is defined by

Z(W )
.
=
∑
y∈Y

√
W (y|0)W (y|1) (3.4)



12

Figure 3.2. Plot of I(W
(i)
N ) for a BEC.

The Bhattacharyya parameter is an upper bound on the probability of maximum-

likelihood decision error when a channel W is used to transmit a single symbol 0

or 1.

To compute the Bhattacharyya vector zN for a Polar(N,K,F) through recursion

is found by:

z2k,j =

{
2zk,j − z2

k,j : x ≤ j ≤ k

z2
k,j−k : k + 1 ≤ j ≤ 2k

for a polar code of block length N = 2n, 1 ≤ K ≤ N where k = 1, 2, 22, ..., 2n−1 and

initializing with z1,1 = 1
2
, where z1,1 is the so-called SNR-design or the “target block

error rate”.

By indexing each of the elements of the vector zN = {z1, z2, . . . , zN}, and by

arranging in ascending order according with the Bhattacharyya parameter value we

obtained a permuted vector called πN .

For example, when N = 16, the Bhattacharyya parameter provides a vector z16 =

{1, 0.8999, 0.9634, 0.2275, 0.9853, 0.3462, 0.5327, 0.0078, 0.9922, 0.4673, 0.6538,

0.0147, 0.7725, 0.0366, 0.1001, 0}. Now, index each of the elements of the vec-

tor z16 = {z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15, z16}, and arrange
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in ascending order according with the Bhattacharyya parameter. A permuted vector

π16 = {z16, z8, z12, z14, z15, z4, z6, z10,z7, z11, z13,z2, z3,z5, z9, z1} is obtained.

There exists a relation between the symmetric capacity and the Bhattacharayya

parameter which is: Z(W ) ∼= 1− I(W ).

3.3 Polar Encoder

For a Polar(N,K,F) polar code, in this section we describe the encoding operation

for a vector of information bits u of length K. The rate of the code is R = K
N

, and

we define n as n = log2(N).

3.3.1 Generator Matrix of Polar Codes

By using Plotkin construction, we are interested in obtaining a generator matrix GP

for polar codes defined by:

GP = BF⊗n. (3.5)

To clearly state the dimension of the matrix we write in the form GP
N and BN , where

N is the block length. Occasionally, we write GP
N,K to specify the block length N and

the information vector length K.

GP
N = BNF

⊗n (3.6)

where F⊗n is the Plotkin matrix, F = [ 1 0
1 1 ], N = 2n, ⊗ is the Kronecker product and

B is called the permutation matrix that has relation with the permutation matrix:

BN = RN(I2 ⊗BN
2

). (3.7)

where I2 is the 2 by 2 identity matrix and RN is the reverse shuffle permutation matrix.

The reverse shuffle permutation matrix RN is obtained by a shuffle on the matrix Sp,q

derived in Appendix A. GP
N can be expanded as

GP
N = RN(F⊗ IN

2
) · (I2 ⊗ GP

N
2

), (3.8)

where the I is the identity matrix. The polar code that uses the generator matrix has

complexity of O(N logN).
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3.3.2 Triangular Form

To obtain the generator matrix GP
N by equation (3.6) two steps are required. First

step is to use the Plotkin construction to get F⊗n. Secondly, perform the bit reversal

BN , which is a transformation the virtual channels that is produced by the channel

combination phase.

Before applying the transformation of the bit reversal, it is possible to obtain a polar

code in triangular form by simple using the Plotkin construction [3].

The following example shows a generator matrix in triangular form and followed

by polar code generator matrix. To obtain a polar code Polar(8, K,F) with block

length N = 8, first a triangular generator matrix is obtained by constructing the matrix

F⊗ log2(8):

F⊗3 =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


. (3.9)

Then F⊗3 is multiplied by the permutation matrix BN . The generator matrix for

Polar(8, K,F) is

GP
8 =



1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1


(3.10)

A full rank polar code generator matrix GP
8 is obtained. This generator matrix

implies that non frozen bits F = {∅} are used for this polar code.
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3.3.3 Subcodes by Plotkin Construction

By using the full rank polar code generator matrix and the Bhattacharyya parameter,

it is possible to obtain another subcode of the polar code. From the full rank generator

matrix, it is enough to remove as many rows as frozen bits F are desired to construct a

sub-polar code. The rows to be removed are obtained by selecting the Bhattacharyya

indexes z that have lower value F , a total of K − N elements are taken form the

vector z.

For example, let us select a polar code Polar(N,K,F) of N = 16 with 10 frozen

virtual channels, and a total of K = 6 information bits. A full rank generator matrix

F⊗4 is obtained, which is shown in (3.13), this matrix is in a lower triangular matrix

form:

F⊗4 =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1



. (3.11)

Finally, the polar subcode with N = 16 and K = 6 is obtained by removing some

rows of the full rank matrix. The indexes of the vector z16 arranged in ascending

order are π16 = {z16, z8, z12, z14, z15, z4,z6, z10,z7, z11, z13, z2, z3,z5, z9, z1 }. Where

the frozen bits F are F = {z16, z8, z12, z14, z15, z4}. The generator matrix GP
16,6 of

the subcode Polar(16, 6,F) is
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GP
16,6 =



1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1



z4

z8

z12

z14

z15

z16

(3.12)

The generator matrix for the full rank polar code is

GP
16 =



1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1



(3.13)

by equation (3.6).

To obtain another generator matrix GP
16,6 of the polar code Polar(16, 6,F), it is

possible to apply the permutation RN :
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GP
16,6 =



1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1


. (3.14)

Both generator matrix GP
16,6, shown by equation (3.12), and (3.14) are valid gener-

ator matrix for the polar code Polar(16, K,F). In fact, in [10], the authors demon-

strated that variation of the selection of frozen bits leads to a change in the polar code

performance.

3.3.4 Polar Encoder Using Generator Matrix GN

Codewords for a Polar(N,K) code are generated using GN as

x = uFcGFc + uFGF , (3.15)

where F are the frozen bits and F c corresponds to the non-frozen bits.

Or a simpler encoding expression

x = uGN (3.16)

knowing where are the frozen bits F located.

3.4 Polar Decoder

In the literature, various decoders have been proposed for polar codes. The first

decoders used for polar codes are the density evolution based designed polar codes,

and successive cancellation decoders (SCD) for polar codes. In [10] was introduced the

permuted successive cancellation (PSCD) decoder, which is a variant of the original

SCD for polar codes. And the most recent decoding approach is the so-called list

decoding for polar codes [?].

A polar decoder receives a noisy sequence y with probability WN(y|uN) from a

noisy channel. The successive cancellation decoder observes (yN ,F) and generates an

estimate ûN by computing LLRs given by:
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ûi =

{
0 if L

(i)
N (yN1 , û

i−1) ≥ 1

1 if otherwise

. LLRs are initialized with

L
(i)
N (y, ûi−1) = −4

√
Ec
N0

y (3.17)

where Ec = K
N
N010EbN0/10.

3.5 Polar construction

One of the important steps for polar coding is the construction by selecting the best K

bit-channels among N . The selection of K bit-channels is done by the Bhattacharyya

parameter or the symmetric capacity, explain in the previous section. The corresponds

to selection of best K bit-channels in terms of the bit error rate at a given value of

REb/N0 is defined as the design-SNR.

Algorithm 1 Frozen bit selection using Bhattacharyya parameter

procedure FrozenBitIndex(N , K, design−SNR EdB=(REb/N0 in dB))
S = 10EdB/10 and n = log2 N
z(0) ∈ RN , initialize z(0)[0] = exp(−S)
for j = 1 : n do

u = 2j

for t = 0 : u
2 − 1 do

T = z(0)[t]
z(0)[t] = 2T − T 2

z(0)[u/2 + t] = T 2

F= indices of greatest elements(z(0), N −K) \\ Find indices of the greatest N −K ele-
ments.

Return F



Chapter 4
Lattices

In this chapter, a general description and some definitions of lattices are provided. First

we introduce the concept of lattice and its Voronoi region. Then we describe another

important concept to measure the density of a lattice, which is the volume-to-noise

ratio. We introduce the concept of nested lattices which are used to form lattices layer

by layer. Finally, the construction of lattices is provided in detail.

We formed lattices with two different constructions. Construction A uses a single

binary code, and construction D uses nested binary codes. It is known that construction

A produces lattices which are effective in lower dimensions. On the other hand, con-

struction D is effective in higher dimensions. The effectiveness usually increases with

the dimension; good lattices tend to be “perfect” as the dimension goes to infinity.

4.1 Definition of Lattices

Lattices are effective structures which solves various geometric, coding and quantization

problems. A lattice Λ is a linear additive subgroup of the N -dimensional Euclidean

space RN [2]. A lattice Λ is formed by all integer combinations of basis vectors.

The generator matrix GΛ for a lattice Λ is created by N -dimensional basic vectors.

In this work, row basis vectors are used.

GΛ =


g1

g2
...

gN

 (4.1)
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Figure 4.1. Representation of a 2-dimensional periodic linear arrangement of points. This hexagonal
lattice is formed by g1 and g2 basis vectors.

A lattice point x ∈ Λ in a N -dimensional RN space is defined by

x = b · GΛ, (4.2)

where b ∈ Zn is a row vector. The lattice point x has the form x = {x1, x2, . . . , xN}.
The elements of the vector x can be computed by

xj =
n∑
i=1

gi,jbi. (4.3)

A 2-dimensional hexagonal lattice Λ is formed with the generator matrix

GΛ =

[
g1

g2

]
, (4.4)

where g1 = [ 1 0.5 ] and g1 = [ 0 1 ]. The hexagonal lattice Λ is represented graphically

in Figure 4.1. Lattice points of this lattice Λ are created by equation (4.2). Once the

set of lattice points are created, it is possible to perform coding by using the generator

matrix. However, before beginning with encoding of lattices, let us introduce the

Voronoi region.

Definition 4.1.1. The Voronoi region of a lattice Λ is defined as the set of all

points in Rn that are closer to a lattice point than to any other lattice point.

Mathematically, the volume of the Voronoi region V (Λ) is given by
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Figure 4.2. Each lattice point of the 2-dimensional lattice has a Voronoi region of hexagonal shape.
Each lattice point shares 6 neighbors lattice points. Each Voronoi region, 3 neighbors edges are chosen
arbitrary to be part of a particular lattice point.

V (Λ) = |det(G)|. (4.5)

Figure 4.2 shows the Voronoi region of the hexagonal lattice Λ forming an hexagonal

shape as well. In any lattice, points that are located on borders of the Voronoi region

have the same Euclidean distance to two or more lattice points. In such case, lattice

points are arbitrarily chosen to be part of which Voronoi region.

For example, in the 2-dimensional hexagonal lattice, there exists 6 neighbor edges.

Arbitrary 3 edges are chosen to form a single Voronoi region for each lattice point.

4.2 Volume-to-Noise-Ratio

Usually the notation of signal-to-noise ratio is used for power-constrained channels

where only a finite number of codewords or signals are transmitted. However, for the

lattices case, the code has an infinite number of lattice points, leading to use of a

different metric, called the Volume to Noise Ratio (VNR).

Definition 4.2.1. The VNR of an N-dimensional lattice in the presence of AWGN

with variance σ2, is defined as

V NR =
V

2
N (Λ)

σ2
(4.6)
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Figure 4.3. VNR is the relation between the volume of the lattice and the noise sphere. This figure
shows a 2−dimensional lattice and the representation of a N−dimensional AWGN channel.

The VNR is the measure of the density of the lattice. Figure 4.3 shows the relation

between the Voronoi region and the noise sphere. The normalized VNR (NVNR) is

calculated by

NVNR =
|V(Λ)|2/N

2πeσ2
(4.7)

The VNR and NVNR are dimensionless numbers which are invariant to scaling or

rotation of the lattice.

When a V NR = 1 corresponds to the capacity, and reliable decoding is only possible

if

σ2 6
V (Λ

2
N )

2πe
(4.8)

4.3 Nested Lattices

Consider the example of the ruler which has two scales. A large scale (in “cm”) and

another fine scale (in “mm”). Now, if we consider two marks of the large scale (cm),

and take all the points in between using the fine scale. This new set can be thought

to be a finite codebook. The union of all such finite codebooks gives the whole ruler.

Nested lattices follow a similar same idea. Consider two lattices Λ and Λfine, where

Λ is a lattice with higher scale than the lattice Λfine with a fine scale. This pair of
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N -dimensional lattices are nested if

Λ ⊂ Λfine. (4.9)

Λ is a sublattice of Λfine denoted by:

Λ/Λfine. (4.10)

It follows that each basis vector g1,i of Λ is an integer combination of the basis

vector gfine,1, gfine,2, . . . , gfine,n of Λfine

g1,i =
n∑
k=1

jk,igfine,k. (4.11)

4.4 Lattice Construction

In this work, lattices are formed based on linear binary codes. To produce lattices, two

different types of construction are used. To construct efficient lattices by: crossing-

sections of an error correcting code, construction A is used; or by building-up packing

by layers construction D is used.

4.4.1 Construction A

The packing constructed by cross-sections is called construction A, this construction

is effective in up to 15 dimensions. Conway and Sloane [2] defined construction A as

the construction which specifies a set of centers for a sphere packing in RN . A point

x = (x1, ..., xN) is a center if and only if x is congruent modulo 2 to a codeword from

the binary code C of (N,M, dmin), N -dimensional packing with M codewords (or M

spheres) and minimum distance dmin apart.

Definition 4.4.1. Construction A is a method for generating a lattice by lifting a

linear binary code C to the Euclidean space. We use x mod 2 = (x1 mod 2, ..., xn

mod 2) to denote a modulo-2 reduction of each of the components of x ∈ RN .

The mathematical expression for a sphere packing Λ(C) in RN is given by

ΛC =
√

2x(mod 2) ∈ C (4.12)
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With this expression, the origin is always a center. The centers consist of all vectors

which can be obtained from the codewords of C by adding arbitrary even numbers to

the components and then dividing by
√

2

However, if we are interested in constructing lattices which always produces integral

lattices. The
√

2 needs to be omitted from equation (4.12). That is,

ΛC = x(mod 2) ∈ C (4.13)

ΛC is spanned by an extended N × (N +K) generator matrix

GΛC = [G|qIN ], (4.14)

where G is the generator matrix of C and IN is the N × N identity matrix, q is the

q-ary linear code C, which induces a modulo-q lattice given by

ΛC = x ∈ RN : (mod q) ∈ C (4.15)

The generator matrix can be reduced to a standard N × N matrix. Where the C
has a systematic representation:

GΛC =

[
IK | 0

P | qIN−K

]
, (4.16)

and P is an (N − K) × K matrix. That is, each codeword c = Gw consist of the

information vector w itself (the systematic part), concatenated with Pw (the parity

symbols).

4.4.2 Construction D

Construction D was introduced in [11] by Barnes and Sloane. Construction D works

with a set of generator matrices, and more precisely, it requires a set of nested binary

linear codes C0 ⊇ C1 ⊇ ... ⊇ Ca with parameters [N,Ki, di] for each binary linear code

Ci. C0 is the universe code [N,N, 1]. There exists a restriction given by the minimum

distance di ≥ 4i

γ
, where γ = 1 or 2, for i = 1, ..., a.

To form lattices with construction D, first a basis C1, . . . , CN is chosen from Ci for

i = 1, . . . , a such that a generator matrix GΛ
N,N is obtained for the universal code C0.

C1, . . . , CN spanCi → GΛ
N,N (4.17)
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for i = 1, . . . , a.

Secondly, permute rows C1, . . . , CN . If the permuted matrix is an upper triangular

matrix, a map should be defined by

πi : G2 → Q (4.18)

by πi(x) = x
2i−1 when x = {0, 1} and for i = 1, . . . , a. And letting the same symbol

πi denotes the map

πi : GN
2 → QN (4.19)

by πi(x1, . . . , xN) = (πi(x1), . . . , πi(xN)) and Ka+1 = 0.

The obtained lattice Λ is

Λ = l +
a∑
i=1

ki∑
j=1

α
(i)
j πi(Cj) (4.20)

where l ∈ (2Z)N and α
(i)
j = 0, 1.

The set of sub-lattices Λ1 ⊂ . . . ⊂ Λa induces a partition of Λ into equivalence

classes module definition Λ′ denoted by Λ/Λ′. The order is denoted by |Λ/Λ|, an

example is the binary partition denoted by Λ/Λ′ = 2. A n-dimensional lattice partition

chain is denoted by Λ/Λ1/.../Λr−1/Λ
′ for r ≥ 1. For each partition Λl−1/Λl, a code

Cl selects a sequence of representative coset of Λl.



Chapter 5
Polar Lattices

The optimal input distribution for a lattice Λ is uniform distribution, and to achieve

the channel capacity over an AWGN channel, AWGN-good lattices are needed. In [12],

multilevel construction of AWGN-good lattices is shown. In this work, we will follow the

idea to construct lattices by single levels (construction A) and multilevel (construction

D) for polar lattices.

5.1 Polar Lattices

A polar lattice ΛP is specified by [N,K], where N is the code length in bits and K is

the number of information bits. Frozen bits F are used to select subcodes of the polar

code Polar(N,K,F). F is a subset of N −K. The transition probabilities W (y|x)

is given by the polar code.

An information vector b = (b1, . . . , bN) is the original information. A polar lattice

enocode the sequence b to obtain a lattice point x = (x1, . . . , xN), which is the input

of the channel when N -channels are used. A received sequence y = (y1, . . . , yN) is

the input of the polar lattice decoder. b̂ = (b̂1, . . . , b̂N) is the estimated b sequence

which is pass to the final destination.

A sequence x̂ = (x̂1, . . . , x̂N) is the estimate vector of the lattice point, which is

the output of the decoder for construction A or the decoder for multilevel lattices..
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Figure 5.1. Block diagram of Polar Lattices.

5.2 Proposed Communication System Model

The proposed model for this work is depicted on Figure 5.1. A sequence b is encoded

by a polar lattice encoder, the output of the encoder is a lattice point x which is

transmitted over a noisy channel. A received sequence y is decoded by a Polar lattice

decoder to obtain an estimated sequence b̂.

The polar lattice decoder comprehend a binary decoder and an integer decoder. The

binary decoder uses a code C to obtain and sequence x̂ that is passed to the integer

decoder to obtain a final b̂ sequence. Any binary decoder that can decode polar codes

is suitable. In this work, a successive cancellation decoder (SCD) is used. The integer

decoder is simple the inverse of the polar lattice generator matrix.

To build lattices by construction A, a single polar code is required. However, to

build a lattice by construction D, a set of nested lattices is required.

5.3 Polar Lattices Formed by Construction A

In this thesis, polar lattices formed by construction A are represented by ΛP [N,K].

Where K is a vector of just one element K = K Construction A requires a binary polar

code Polar(N,K,F). For polar lattices, any polar code is suitable. However, in order

to easily form a lattice by construction A, equation (3.6) is used. A generator matrix
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for polar codes GP is obtained, in this matrix the Plotkin construction operation is

performed first, and then the permutation matrix RN is apply.

A polar lattice ΛP is then obtained by

ΛP = C + 2(Z)N , (5.1)

and its generator matrix GΛP is obtained as

GΛP = replace {F c}from
[
2IN

]
to
[
GP
]

(5.2)

where GΛP is a square matrix. It is obtained by concatenating the generator matrix

GP of the polar code with an identity matrix of length N . The index of the frozen bits

are replaced by the identity matrix.

5.3.1 Encoder

The polar lattice ΛP has as encoder a generator matrix GΛP constructed with equation

(5.1). The generator matrix GΛP produces lattice points x, which are the input of the

channel.

x = b · GΛP , (5.3)

where b is a binary vector and x is a integer vector.

5.3.2 Construction A Polar Lattice Decoder

To find the closest lattice point from the noisy received sequence y ∈ RN . The

following algorithm is used for construction A.

1. Reduce the receive sequence y to a range of mod 2 and denote it as yp.

2. Subtract all yi with the vector ypi and denote it as a vector zi.

3. Denote S as the set of i for which ypi > 1.

4. Replace yi with 2− yi for i ∈ S.

5. Because y is now in the Voronoi region, apply the decoder for the polar code

Polar(N,K,F) to y. The obtained vector denote it as t.

6. Replace ti with 2− ti for i ∈ S.
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7. The closest lattice point to y is denoted by x̂ = ti + 2zi.

5.3.3 Example of the Construction A

Let construct a 15-dimensional polar lattice ΛP (K) with a binary code C1 which is a

polar code Polar(N = 16, K = 5). The generator vectors for C1 are the rows of the

following matrix

GP
16,5 =


1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


z8

z12

z14

z15

z16

(5.4)

We have a total of K = 5 independent rows obtained from the full rank generator

matrix that was shown in previous chapter in the matrix (3.13).

The indexes of the vector z16 obtained by the Bhattacharyya parameter and arranged

in ascending order are π16 = {z16, z8, z12, z14, z15, z4,z6, z10,z7, z11, z13, z2, z3,z5, z9, z1

}. Where the frozen bits F are dashed by a horizontal line. The polar code used is

denoted as Polar(16, 5, {z4,z6, z10,z7, z11, z13, z2, z3,z5, z9, z1}) with generator matrix

GP
16,5 formed with the information bits F c = {z16, z8, z12, z14, z15}. The rate is R = 5

16
.

To form a polar lattice with construction A, let us use the equation (5.1). A genera-

tor matrix GΛP is obtained by (5.2). The rows (frozen bits F) of the generator matrix

GP
16,16 are replace by two times the same rows of the identity matrix IN . Obtaining

the following shape
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GΛP
16 =



2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 2 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1



(5.5)

5.4 Polar Lattices Formed by Construction D

Polar lattices formed by construction D are represented by ΛP (K1, K2, . . . , Ki), which

are lattices formed by a group of nested binary codes, Ca ⊆ Ca−1 ⊆ · · · ⊆ C1. In this

work, polar lattices ΛP are constructed using construction D and selecting different

nested polar codes Ci, where 1 ≤ i ≤ a.

Construction D is one of the various lattice constructions which produces lattices

from a group of nested binary codes. Each subcode of the polar code is obtained by

choosing rows from the full rank generator matrix.

Rows from the subcode are the information bits of a polar code, meaning that the

frozen bit index where removed from the full rank generator matrix. Once subpolar

codes are identified, a construction D is used with the following equation

ΛP = Ca + 2Ca−1 + ...+ 2a−1C1 + 2a(Z)N , (5.6)

where 1 ≤ i ≤ a, and it is a N -dimensional real lattice.

Polar lattices constructed by construction D are represented by ΛPi
(K1

i , K
2
i ), where



31

GΛ =

Figure 5.2. Polar lattices generator matrix GΛP . This generator matrix form a three-level polar lattice.

i is the polar lattice with polar code Ci. K1 and K2 are the information bits for the

first and second polar sub-code respectively.

For construction D, the restriction is on the minimum distance of the code dmin(a) ≥
4a

j
, where j is either 1 or 2, and a is the level of the lattice. All levels contribute equality

to the Lattice d2
min.

5.4.1 Minimum Distance dmin of the Polar Code

A very important and computationally demanding problem is to find the minimum

distance of a code. An approach to find the minimum distance for polar lattices is the

use of the minimum distance for the Plotkin construction. In [13], authors obtained the

minimum distance of the additive Reed-Muller (ARM) code constructed using Plotkin

construction.

They showed that the minimum distance for any ARM(r,m) code obtained by

applying the Plotkin construction with length N = 2m; size 2K codewords given by

K =
r∑
i=0

(
m

i

)
, (5.7)

the minimum distance is 2m−r.

In [3] it was shown that Reed-Muller codes are constructing by using Plotkin con-

struction and then remove from the generator matrix the row vectors with Hamming

weights ≥ 2n−r. The difference with polar codes constructed with Plotkin construction

is the selection of row vectors, in polar codes row vectors are removed according to the

Bhattacharyya parameter or the symmetric capacity.

To construct polar lattices we set the minimum distance to be dΛ
min = 4(a)

2
, where

a is the level of the polar lattice. Assuming the minimum distance, then we can set

the number of information bits K given by
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K =

r≤m−log( 4(a)

2
)∑

i=0

(
m

i

)
, (5.8)

where the inequality is obtained by

2m−r = dΛ
min ≥

4(a)

2
. (5.9)

5.4.2 Multilevel Encoder

Multilevel refers to the number of nested codes selected to construct lattices. When

only one code is selected is called single level lattice. When two nested codes are used,

the lattice is called two level lattice, and continuing in the same way.

The generator matrix for polar lattice codes GΛP is constructed based on equation

(5.6) and it is depicted graphically on the figure 5.2. The generator matrix on figure

5.2 forms a three-level polar lattice, because three different polar codes are used.

The generator matrix GΛP produces lattice points x, which are the input to the

channel.

x = b · GΛP , (5.10)

where b are integers and x are binary vectors.

5.4.3 Multilevel Decoder

In [14], a multilevel decoding is used. The decoding is done on each independent

subpolar code and passes the decoded sequence to the next level. Each level is treated

as construction A, once the decoder for the code C obtained the vector v, it is passed

to the next level.

Figure 5.3 shows the block diagram of a polar lattice constructed with two levels.

A multistage soft decision decoder is used to find the closest lattice point from

the noisy received sequence y ∈ RN . The algorithm of the multistage lattices with

construction D is shown as follows.

Lattices are constructed by ΛP = Ca+ 2Ca−1 + ...+ 2a−1C1 + 2a(Z)N , with a-binary

codes.

1. Checking if it is already the a-time that the algorithm is performed. If so, round(y)
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Figure 5.3. A polar lattice with two levels.

and denote it as v, return to the previous step to continue with the algorithm. If

it is not the a-time, proceed with the algorithm to step 2.

2. Reduce the receive sequence y to a range of (y mod 2)− 1 and denote it as yp.

3. For the closest even (e) and odd (o) integers to ypi, denote b as

bi = 2(
ei + oi

2
− ypi) : ei < oi (5.11)

bi = 2(−ei + oi
2

+ ypi) : otherwise (5.12)

4. Because b is now in the Voronoi region, apply the decoder for the polar code

Polar(N,K,F) to b. The obtained vector denote it as t.

5. Replace yi with yi−ti
2

. Repeat the algorithm with this new value of y. The value of

the variance σ is now consider as half for the Polar(N,K,F) decoder. Continue

the algorithm with new value of v.

6. Because it is a recursive algorithm, return t+ 2v and denote it as v.

7. The closest lattice point to y is denoted by x̂ = round(y).
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5.4.4 Two Level Polar Lattice Example

For the coding polar lattice of two levels, the nested binary codes C1 and C2 should

satisfy C2 ⊆ C1. Let us construct a polar lattice Λ(N = 16, K1 = 15, K2 = 5) code

with nested polar codes. C1 is the polar code polar(16, 15,F1) and C2 is the polar code

polar(16, 5,F2). Where the frozen bits are F1 = {z1} and F2 = {z4, z6, z10,z7, z11, z13,

z2, z3,z5, z9, z1}.
The generator matrix for the polar(16, 15) code is:

GP
16,15 =



1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1



(5.13)

and the generator matrix for the polar(16, 5) code is:

GP
16,5 =


1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

 (5.14)

Basically, Construction D is used to embed binary numbers in the real space. By

follow the formula (5.6), that can be reduced to

ΛP = C2 + 2C1 + 4(Z)N , (5.15)
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a generator matrix for this polar lattice is:

GΛP
N=16,K1=15,K2=5 =



4 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0

2 0 2 0 0 0 0 0

2 2 2 2 0 0 0 0

2 0 0 0 2 0 0 0

2 2 0 0 2 2 0 0

2 0 2 0 2 0 2 0

0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0

2 0 2 0 0 0 0 0

1 1 1 1 0 0 0 0

2 0 0 0 2 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0

2 0 2 0 0 0 0 0

1 1 1 1 0 0 0 0

2 0 0 0 2 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1



(5.16)



Chapter 6
Numerical Results

In this thesis we show the performance simulation of various polar lattices formed by

construction A and construction D. To find which lattice produces the lowest bit error

rate on certain VNR, polar lattices are designed by variation of the designing rate. In

other words, the block length of the polar lattice is fixed and the information bits K

are variable.

Results on this thesis are aim to be used as a guideline to construct efficient polar

lattices, not only for small dimension (construction A) but also higher dimension using

construction D.

Simulation results are showed in four different plots:

• SER vs VNR. Comparison of the integer lattice point x and the estimated real

lattice point x̂.

• WER vs VNR. Comparison of the integer lattice point x and the estimated real

lattice point x̂.

• BER vs VNR. Comparison of the binary information vector b and the binary

estimated information vector b̂.

• WER vs VNR. Comparison of the binary information vector b and the binary

estimated information vector b̂.
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Figure 6.1. Various half rate polar codes Polar(128, 64) of block length N = 128 are generated. Each
polar code is constructed with different Bhattacharyya parameter according to a different SNR-design.
SNR-design chosen arbitrary are 0dB, 1dB, 2dB, 3dB, 4dB and 5dB. The horizontal axes of the plot are
Eb/N0 in [dB]. N0 is assume to be 2σ. The vertical axes are BER.
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6.1 Polar Codes

The first simulation result shows the polar code constructed with a block code of N =

128. Figure B.1 shows the BER performance of a half rate polar code Polar(128, 64).

Each line on the plot is design with different SNR-design of 0dB, 1dB, 2dB, 3dB,

4dB and 5dB for a polar code. We observe in Figure B.1 that the best BER perfor-

mance is obtained by an SNR-design of 0dB since it is the lowest error rate target

(SNR−design=target−error).

6.1.1 Polar Codes under VNR

Figure B.2 also shows the plot of the BER performance of the Polar(128, 64) polar

code with half rate. However, this time the horizontal axes are in terms of VNR

[dB]. This is calculated by assuming that the polar code generator matrix is a lattice

generator matrix. The variance used for the nose is obtained by

σ2 = V (Λ)10−(Cch+V NR[db])/10 (6.1)

where the capacity of the channel is Cch = 10 log2(2πe). And the volume V (Λ) is the

volume of the polar code generator matrix obtained by equation (4.5).

We can observe that this transformation does not modify the performance of the

polar itself. Now the objective is to improve the performance of a polar code by using

a polar lattices.

In the next section polar lattices are constructed by a SNR-design of 0dB and

we compare the results of the polar lattices with results of this section (polar codes

constructed by SNR-design of 0dB).

6.2 Polar Lattice Construction A

In this sections, polar lattices simulation are done with an SNR-design of 0dB, N=128

and N=1024. Several polar lattices are constructed by changing the rate but the block

length N is fixed with 128 or 1024 according to the simulation.
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Figure 6.2. Bit error rate performance of polar codes under VNR. The horizontal axes of the plot are
the VNR in [dB]. The vertical axes are BER. Various polar codes of block length is N = 128, and rate= 1

2

Polar(128, 64) are generated with different Bhattacharyya parameter according with the SNR-design.
The SNR-designs are 0dB, 1dB, 2dB, 3dB, 4dB and 5db.
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K 10 16 20 30 40 64 80 96 112 127
rate 0.08 0.13 0.16 0.23 0.31 0.5 0.63 0.75 0.88 0.99

best performance 8 9 7 6 5 3 2 best 4 10

Table 6.1. 128-dimensional lattices. Performance comparison of polar lattices constructed by selecting
various polar subcode rates. Kset = {10, 16, 20, 30, 32, 40, 45, 64, 80, 96, 100, 112, 127}

6.2.1 128-Dimensional Polar Lattice ΛP (1)

By using construction A, we design several polar lattices Λ
P

(1)
Ki

, with dimension N =

128. For each lattice several rates (K
N

) are chosen to compare its SER performance.

Ki is chosen arbitrary from the set of K information bits to be tested. Kset =

{10, 16, 20, 30, 32, 40, 45, 64, 80, 96, 100, 112, 127}, i represent distinct polar lattices

Λ
P

(1)
Ki

formed with the Ki information bit.

Figure B.3 shows the performance of the polar lattice ΛP (1) [N,Ki]. The plot on the

left side shows the symbol error rate (SER) obtained by the comparison between the

lattice point transmitted x and the estimated lattice point received x̂. While on the

right side of Figure B.3, a plot of the BER is showed. This plot shows the comparison

between the information sequence b and the estimated received sequence b̂.

We can observed that the best performance at VNR of 4dB is obtained with a rate

of 96
128

. The four highest best performance are reached when Kset = {96, 80, 64, 100}.
When performing encoding, it is expected that when the dimension Ki of the subcode

is increased, the SER performance is shift to the higher VNR region, as it happens on

any correcting code.

We observe that higher design-rate has better BER performance and SER perfor-

mance.

6.2.2 Variation of the Polar Lattice ΛP (1)

A slightly different construction was also tested. Instead of simple doing a replacement

of the linear independent vector of the code C into the identity matrix, see equation

(5.2). We constructed a generator matrix GΛP not only replacing the vectors, but also

adding them.

GΛP = sum {
[
2IN

]
,
[
GP
]
}fromF c ⇐⇒ F c ∈ F c (6.2)

We observe that some integers on the generator matrix GΛP have value of 3 instead
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Figure 6.3. Symbol error rate performance (left plot) of polar codes under VNR, and Bit error rate
performance (right plot). Polar Lattice are generated by construction A. 128-dimensional lattice. Various
polar codes C are tested, each polar code is constructed by selecting K linear independent vectors. Polar
lattices are constructed with Kset = {10, 16, 20, 30, 32, 40, 45, 64, 80, 96, 100, 112, 127} linear independent
vectors. The first polar code C has a total of K1 = 10 linear independent vector, the second polar code
has K2 = 16 linear independent vector, etc.
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of 2, as it happens using equation (5.2) that output values of 2. The performance

improved only for the BER when comparing the transmitted information vector b and

the estimated information vector b̂. However, the performance for the following three

test perform is the same. 1) Performance of the SER for the lattice point x compared

with the estimated codeword x̂, 2) WER between x and x̂, and 3) the WER between

b and b̂. Shown on Figure B.4. An interesting observation was found in this test.

The lattice with highest rate K = 127, improved by 3dB, a short hypothesis is given,

however, further investigation is reserved for future work.

A higher noise is presented on lower VNR rates. In this work, errors are generated

randomly with certain σch, which is obtained by the volume of the lattice and the VNR

used.

σch = V (Λ)
2
N · 10−

(cap[dB]+V NR[db])
10 (6.3)

And the fundamental volume of the lattice is given by

V (Λ) = |det(Λ)| (6.4)

V (Λ) can also be obtained by the expression given in [14]

V (Λ) = (2a−1)N · 2N−
∑a

l=1 kl (6.5)

This expression has a relation with the information bits K. Higher the K’s, smaller

the volume, providing smaller noise. a is the number of subcodes used, in this case we

are using only 1 subcode for construction A. Let us assume K1=64, the volume of this

lattice is VΛ = 1.8447 × 1019, which gives a high σch. On the other hand, selecting

K1=127, provides VΛ = 2, leading to a small error rate.

6.2.3 ΛP (1) Known Frozen Bits on the Codeword

On the previous simulation, the information sequence b does not know which frozen

bits were selected to form the polar lattice ΛP (1) . For this subsection, et assume b

knows which are the frozen bits and do not transmit information on those bits. After

that encode b with GΛP . Decode the noisy sequence with the construction A algorithm

and compare the estimate sequence b̂ with the information sequence b. The results of

the simulation are shown in Figure B.5.

With this plot we can observe that neither few or many independent row codevectors
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Figure 6.4. Bit error rate performance of a 128-dimensional polar lattice generated by construction A.
Generator matrix of the polar lattice is obtained by adding the integer matrix with the polar generator
matrix. Various polar codes C are tested, each polar code is constructed by selecting K linear independent
vectors. Polar lattices are constructed with Kset = {10, 16, 20, 30, 32, 40, 45, 64, 80, 96, 100, 112, 127}
linear independent vectors.
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Figure 6.5. Polar Lattice generated by construction A. The information vector b knows the location of
the frozen bits and it allocate information only in the non-frozen bits. N=128 dimensional lattice. Various
polar codes C are tested, each polar code is constructed by selecting K linear independent vectors. The
first polar code C has only one linear independent vector K1 = 1, the second polar code has K2 = 10
linear independent vector, ... the following lattices are constructed with K = {1, 10, 32, 64, 96, 112, 127}
linear independent vectors.

on the generator matrix outperform. This is expected since with few independent row

codevectors means that we are encoding with only an identity matrix. On the other

hand, with too many independent row vectors, we are encoding with only the polar

code generator matrix, which does not provide any extra gain.

The best performance is obtained with the polar lattice [N = 128, K = 64], and

the second best is obtained with [N = 128, K = 112].

Another similar simulation was performed. The information sequence encoder and

decoder knows which are the frozen bits. We let the decoder of the polar lattice assing

the frozen bits to the estimated sequence b̂. The simulation results show a similar

performance as the Figure for SER vs VNR, and WER vs VNR for the comparison

between x and x̂. And for BER vs VNR, and WER vs VNR for the comparison between

b and b̂ the result outperform as expected.

6.2.4 Longer block code length, N = 1024 ΛP (4)

A longer, N = 1024 dimensional lattices ΛP (4) are constructed with construction A.

In this design we are increasing the block length. Figure B.6 shows the performance
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Figure 6.6. Polar lattice generated by construction A. N=1024 dimensional lattice. Polar lattices ΛP (4)

are generated with information bits K = {20, 225, 430, 512, 840, 1000}. Lattices are listed as follows
Λ

P
(4)
1

(20), Λ
P

(4)
2

(225), Λ
P

(4)
3

(430), Λ
P

(4)
4

(512), Λ
P

(4)
5

(840), Λ
P

(4)
6

(1000).

of polar lattices of 1024-dimensional lattices. Lattices are constructed as Λ
P

(4)
1

(20),

Λ
P

(4)
2

(225), Λ
P

(4)
3

(430), Λ
P

(4)
4

(512), Λ
P

(4)
5

(840), and Λ
P

(4)
6

(1000); where K was se-

lected arbitrary. The best performance for the SER at V NR = 3 is given by Λ
(4)
5 . This

performance is measured between the lattice point x and the expected lattice point x̂.

6.3 Polar Lattice construction D

6.3.1 Single Level Polar Lattice ΛP (3)

Polar lattices were constructed by using construction D and only a subcode. It implies

that we are forming another lattice similar as construction A. However, the decoding

algorithm for construction D is employed. This design is plot on figure 6.8. No relevant

interest in this design since the performance of construction A and construction D are

the same as expected. However, it is interesting to mention that the highest K do not

provide the best WER. The best WER is given by Λ
P

(3)
10

followed by Λ
P

(3)
11

.
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Figure 6.7. Polar Lattice generated by construction D. N = 128 dimensional lattice. Each polar lattice
ΛP (2) has two polar subcodes, each subcode is constructed by selecting k linear independent vectors. The
first polar lattice Λ

P
(2)
1

(k1, k2) has C1 with a total of k1 = 25 linear independent vector and C2 with k2 =

40. The second polar lattice polar lattice Λ
P

(2)
2

(k1, k2) has k1 = 25 and k2 = 65 linear independent vector,

the following lattices are constructed as Λ
P

(2)
3

(25, 110), Λ
P
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4

(20, 120), Λ
P
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more than half rate for the first code are Λ
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7

(80, 120), Λ
P

(2)
8

(100, 120), Λ
P
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9

(110, 127).
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Figure 6.8. Single level Polar Lattice generated by construction D. N = 128 dimensional lattice.
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Figure 6.9. Performance of 6 different lattices with dimension 128: Three single-level lattices Λ1,
Λ2 and Λ3; two different two-level lattices Λ4 and Λ5; and finally a three-level lattice Λ6. Λ1 is a
PolarLattice(128, 29), Λ2 is a PolarLattice(128, 99), Λ3 is a PolarLattice(128, 127). Λ4 is a two-level
PolarLattice(128, 99, 29) lattice, and Λ5 is a two-level PolarLattice(128, 127, 99) lattice. And Λ6 is a
three-level lattice defined by PolarLattice(128, 127, 99, 29).

6.3.2 Two Level 128-Dimensional Polar lattice, ΛP (2)

Polar Lattices ΛP (2) are constructed by using construction D. Since construction D re-

quires nested codes, we selected polar codes by choosing linear independent codewords

systematically by the equation (5.6).

As it was mention before, the indexing of frozen-bit provides the polar construction.

And frozen-bits also provides the construction of polar lattice. For lattice generator

matrix, frozen bits index are used to replaced rows with the same index of the identity

matrix rows.

In this simulation we are interested to show the behavior of the SER performance

when a pair of polar codes are chosen to form a polar lattice. In this construction, we

do not take into consideration the minimum distance. Regardless it is not a formal

polar lattice with construction D, we want to study the behavior of the rate pair chosen.

Polar lattice codes are constructed with dimension N = 128, and a set of K values

were taken arbitrary.

Figure 6.7 shows the performance of polar lattice ΛP (2) . For SER vs VNR of for the

comparison between b and b̂. The best SER performance is obtained with Λ
P

(2)
1

(K1 =

25, K2 = 40) followed by Λ
P

(2)
9

(K1 = 110, K2 = 127).
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Figure 6.10. Performance of 6 different lattices with dimension 128: Three single-level lattices Λ1,
Λ2 and Λ3; three different single-level BCH-Lattices Λ4, Λ5 and Λ6. The single-level lattice Λ1 is a
PolarLattice(128, 29), Λ2 is a PolarLattice(128, 99), Λ3 is a PolarLattice(128, 127). The single-level
BCH-Lattice Λ4, Λ5 and Λ6 have information bits K = {120, 85, 8} respectively.

Performance of the polar lattice Λ
P

(2)
9

was not expected to obtain such a low BER

since Λ
P

(1)
13

got the worst SER performance with construction A.

On the other hand, Λ
P

(2)
1

and Λ
P

(2)
2

got even better performance than construction

A, at VNR of 3dB, Λ
P

(2)
1

has SER of 10−4 and the best polar lattice Λ
P

(2)
10

constructed

with construction A has SER of 0.29× 10−4.

6.4 Comparison performance for Multilevel Polar Lattice

We constructed 6 different lattices with dimension N = 128. Three single-level lattices

Λ1, Λ2 and Λ3; two different two-level lattices Λ4 and Λ5; and finally a three-level lattice

Λ6.

The single-level polar lattice Λ1, Λ2 and Λ3 are formed by a polar codes C3 =

Polar(N = 128, K = 29), C2 = Polar(N = 128, K = 99) and C1 = Polar(N =

128, K = 127) code. The desired minimum distance for each code is ≥ 32, ≥ 8 and

≥ 2, respectively.

The two-level polar lattices Λ4 and Λ5 are formed as Λ4 = C3 + 2C2 + 22ZN ,

Λ3 = C2 + 2C1 + 22ZN .

The three-level polar lattice Λ6 is formed as Λ6 = C3 + 2C2 + 4C1 + 8ZN .
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From simulation on Figure 6.9, we observed that a polar lattice with lower minimum

distance outperform. These results are intuitive, because considering a fix lattice vol-

ume, the best performance happens when a higher amount of lattice points are packed

on the same volume. On this simulation, we can also conclude that this specific single-

level polar lattice perform better than a three-level polar lattice. Figure 6.10 also shows

the comparison of single-level polar lattice codes with single-level BCH lattice codes.

Simulation results show that polar lattice outperform BCH lattice for low VNR. It is

interesting question to know if on higher VNR it has the same performance?. Looking

at the BCH − Lattice(128, 85), it seems that it tents to reduce its SER for higher

VNR. This question is left for future work.



Chapter 7
Conclusions

In this work, we constructed polar lattices by two methods, construction A and con-

struction D. Construction A is requires only a single binary code. Whereas, construction

D requires nested binary codes. In this work we chose polar code as the binary code.

By simple comparing the VNR performance of the polar code and the lattice code,

we can observed that the polar lattice outperform the polar code itself.

For construction A, we conclude that the best polar lattice is obtained by selecting

a polar code closer to half rate. Simulation on section 6.2.1 shows that the best rate

is 96
128

assuming that we transmit N-bits of information. However, section 6.2.3 shows

that the best rate for the polar codes is 64
128

, when it is assume that K-bits of information

are transmitted.

For construction D, we conclude that the selection of multilevel do not improve the

SER performance for the polar lattice. A single-level lattice outperform on the SER

for the same N -dimensional lattice. It is also conclude that lattices with multilevel

perform better in terms of SER when the minimum distance is lower, we expect this

result since considering a fix lattice volume, the best performance happens when a

higher amount of lattice points are packed on the same volume.

And finally we conclude that polar lattices perform better on the lower VNR for the

SER than BCH-Lattices.



Appendix A
Bit Reversal Permutation Matrix BN

For matrices A = {ai,j} and B = {bi,j}, A ⊗ B represent the Kronecker product

defined by

A⊗B .
=


a1,1B a1,2B · · ·
a2,1B a2,2B · · ·

...
...

. . .

 (A.1)

And the Kronecker powers are defined as A⊗n , A⊗ A⊗n−1 = A⊗n−1 ⊗ A.

The reverse shuffle permutation matrix is obtained by the matrix “ mod −p perfect

shuffle” ST2,N/2 defined by

ST
2,N

2
(s1, s2, . . . , sN)T = (s1, s3, . . . , sN−1, s2, s4, . . . , sN)T (A.2)

where RN = ST
2,N

2

denotes the N ×N revere shuffle permutation matrix defined by

(s1, s2x . . . , sN)RN = (s1, s3, . . . , sN−1, s2, s4, . . . , sN)T (A.3)

RN reorders the vector in the way that the index experiences a left circular shift. It

leads that the least significant bit of the index now become the most significant bit of

the index.

The N by N bit reversal permutation matrix BN can be defined recursively in terms

of RN given by
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BN = RN

[
BN

2
0

0 BN
2

]
(A.4)

BN = RN(I2 ⊗BN
2

) (A.5)

This holds because applying RN reorders the vector so that the least significant bit

of the index becomes the most significant bit of the index. Multiplying by I2 ⊗ BN
2

separately reorders the first and last halves of the vector according to bit reversal of

length N
2

.



Appendix B
Plot results

B.1 Polar Codes
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Figure B.1. Various half rate polar codes Polar(128, 64) of block length N = 128 are generated. Each
polar code is constructed with different Bhattacharyya parameter according to a different SNR-design.
SNR-design chosen arbitrary are 0dB, 1dB, 2dB, 3dB, 4dB and 5dB. The horizontal axes of the plot are
Eb/N0 in [dB]. N0 is assume to be 2σ. The vertical axes are BER.
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B.1.1 Polar Codes under VNR
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Figure B.2. Bit error rate performance of polar codes under VNR. The horizontal axes of the plot are
the VNR in [dB]. The vertical axes are BER. Various polar codes of block length is N = 128, and rate= 1

2

Polar(128, 64) are generated with different Bhattacharyya parameter according with the SNR-design.
The SNR-designs are 0dB, 1dB, 2dB, 3dB, 4dB and 5db.
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B.1.2 128-Dimensional Polar Lattice ΛP (1)
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Figure B.3. Symbol error rate performance (left plot) of polar codes under VNR, and Bit error rate
performance (right plot). Polar Lattice are generated by construction A. 128-dimensional lattice. Various
polar codes C are tested, each polar code is constructed by selecting K linear independent vectors. Polar
lattices are constructed with Kset = {10, 16, 20, 30, 32, 40, 45, 64, 80, 96, 100, 112, 127} linear independent
vectors. The first polar code C has a total of K1 = 10 linear independent vector, the second polar code
has K2 = 16 linear independent vector, etc.



56

B.1.3 Variation of the Polar Lattice ΛP (1)
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Figure B.4. Bit error rate performance of a 128-dimensional polar lattice generated by construction A.
Generator matrix of the polar lattice is obtained by adding the integer matrix with the polar generator
matrix. Various polar codes C are tested, each polar code is constructed by selecting K linear independent
vectors. Polar lattices are constructed with Kset = {10, 16, 20, 30, 32, 40, 45, 64, 80, 96, 100, 112, 127}
linear independent vectors.
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B.1.4 ΛP (1) Known Frozen Bits on the Codeword
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Figure B.5. Polar Lattice generated by construction A. The information vector b knows the location of
the frozen bits and it allocate information only in the non-frozen bits. N=128 dimensional lattice. Various
polar codes C are tested, each polar code is constructed by selecting K linear independent vectors. The
first polar code C has only one linear independent vector K1 = 1, the second polar code has K2 = 10
linear independent vector, ... the following lattices are constructed with K = {1, 10, 32, 64, 96, 112, 127}
linear independent vectors.
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B.1.5 Longer block code length, N = 1024 ΛP (4)
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Figure B.6. Polar lattice generated by construction A. N=1024 dimensional lattice. Polar lattices
ΛP (4) are generated with information bits K = {20, 225, 430, 512, 840, 1000}. Lattices are listed as
follows Λ
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