
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A study on integrating distinct classifiers with

bidirectional LSTM for Slot Filling task

Author(s) Do, Khac Phong

Citation

Issue Date 2017-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/14179

Rights

Description Supervisor:NGUYEN, Minh Le, 情報科学研究科, 修士

A study on integrating distinct classifiers
with bidirectional LSTM for Slot Filling task

DO KHAC PHONG

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2017

Master’s Thesis

A study on integrating distinct classifiers
with bidirectional LSTM for Slot Filling task

1410220 DO KHAC PHONG

Supervisor : Associate Professor Nguyen Le Minh

Main Examiner : Associate Professor Nguyen Le Minh

Examiners : Professor Satoshi Tojo

Associate Professor Kiyoaki Shirai

School of Information Science
Japan Advanced Institute of Science and Technology

February, 2017

Abstract

In spite of being investigated for decades, slot filling task in Spoken Language Un-
derstanding has been still challenging and attractive to many researchers. This
task is simply perceived as sequential labeling in a specific domain. Previously, fea-
tures fed into a classifier such as Support Vector Machines (SVMs) or Conditional
Random Fields (CRFs), are generated manually, which is relatively expensive and
time-consuming. Fortunately, that costly work can be solved with a help of deep
learning technique which is able to generate and extract potential features automat-
ically during the training period. For sequential data, Recurrent Neural Network
(RNNs) are popular models in order to learn latent representations of data, which
are then utilized as input to a classifier Softmax.
Our proposed model, in contrast, employed a variant of RNNs, called Long Short-

Tem Memory Networks (LSTMs) which, more or less, tackle the downside of RNNs:
vanishing gradients. Additionally, apart from using Softmax for classification, we
also experimented integrations of LSTMs and other distinct classifiers, e.g. CRFs
and SVMs, which are all trained simultaneously in our model. The experimental
results show that these combinations are beneficial and worthing on both dataset
Airline Travel Information System (ATIS) and DARPA Communicator, compared
with the state-of-the-art model.

Keywords: LSTMs, CRFs, word embeddings, SVMs

Declaration

I hereby declare that this whole dissertation is my own work, and that it has not
been previously included any other thesis, dissertation or report.
Student: Do Khac Phong

i

Contents

Abstract i

Acknowledgements vi

1 Introduction 1
1.1 Research motivation . 1
1.2 Contributions . 3
1.3 Thesis outline . 3

2 Background 5
2.1 Slot Filling in Spoken Language Understanding 5
2.2 Support Vector Machines . 6
2.3 Recurrent Neural Networks . 7

2.3.1 Recurrent Neural Networks 7
2.3.2 Backpropagation through time 8

2.4 Long Short-Term Memory Networks 10
2.5 Conditional Random Fields . 11

2.5.1 Statistical Approaches for Slot Filling task 11
2.5.2 Forward-backward algorithm for CRFs 12
2.5.3 Viterbi algorithm for CRFs 13

2.6 Recurrent Conditional Random Field 14

3 Proposed Model 16
3.1 Overview . 16
3.2 Word Embedding layer . 17
3.3 Context Window Size . 18
3.4 Bidirectional Long Short-Term Memory Networks 19
3.5 Classification functions . 19

3.5.1 Softmax activation function 19
3.5.2 Sigmoid activation function 20
3.5.3 Conditional Random Fields 20
3.5.4 Support Vector Machines - One versus all 21

ii

4 Experimental results 22
4.1 Datasets . 22

4.1.1 ATIS . 22
4.1.2 DARPA Communicator . 22

4.2 Experimental Settings . 24
4.3 Evaluation Metrics . 24
4.4 Baselines . 25
4.5 Results and Discussion . 25

4.5.1 Distinct classifiers with and without Local Context Window . 25
4.5.2 Pre-trained and Randomly Initial Word Embedding 26
4.5.3 Compare to other methods . 27

4.6 Error Analysis . 29
4.6.1 Classification function errors 29
4.6.2 RNNs and Bidectional LSTM 29
4.6.3 DARPA dataset errors . 30

5 Conclusion and future work 33
5.1 Conclusion . 33
5.2 Future work . 34

References 35

Publications 38

This dissertation was prepared according to the curriculum for the Collaborative
Education Program organized by Japan Advanced Institute of Science and Tech-
nology (JAIST) and University of Engineering and Technology, Vietnam National
University, Hanoi (VNU-UET).

iii

List of Figures

1.1 An on-line shopping system . 2

2.1 SVMs classification . 6
2.2 Recurrent Neural Networks . 7
2.3 Backpropagation through time . 9
2.4 Long Short-Term Memory Network 10
2.5 CRF. 12
2.6 R-CRF. 14

3.1 The main architecture of our model 16
3.2 One-hot vector presentation matrix with size V × V 17
3.3 Word embedding layer for vector presentations of words. The size of

this layer is V ×M . 18

4.1 Length of sentences in two datasets 23
4.2 The Phoenix parser . 23

iv

List of Tables

2.1 IOB representation . 5

4.1 F1-score of various classification functions with and without context
window. The best context window size hyper-parameter is reported
as the number in the round brackets. Only lexical features were used. 26

4.2 PretrainedWord Embedding with and without tuning. Model BiLSTM-
CRF used lexical and named entity features on ATIS dataset. The
best performances were reported . 27

4.3 PretrainedWord Embedding with and without tuning. Model BiLSTM-
CRF used lexical feature on DARPA dataset. The best performances
were reported . 28

4.4 Comparison to previous methods on ATIS dataset 28
4.5 Comparison to previous methods on DARPA dataset 29
4.6 Forecast labels of four classification functions. Both lexical and named

entity features were used in this case. 30
4.7 Comparison of R-CRF and our models on ATIS dataset. Lexical and

named entity were used. 31
4.8 Examples of a mismatch between transcriptions and annotations . . . 32

v

Acknowledgements

I am forever grateful for the chance of joining Nguyen Laboratory, collaborating and
working with many excellent Master and PhD students who have helped me grow
up intellectually, and professionally. I would like to express my deepest gratitude to
my supervisor, A/Prof. Minh Le Nguyen for teaching me a great deal of research,
and supporting me whenever my life in Japan seemed to be hard to cope with. His
sharp view, critical thinking, and enthusiastic guidance are influential and keep me
on the right track of my research.

My special thanks go to my second supervisor A/Prof. Hirokazu Tanaka for his
insightful advice in a series of seminars which encourage me to make clearly my
statement and my work. I would like to express my gratitude to Prof. Jianwu
Dang, for his tremendous financial support during my first days in Japan.

I would also like to give a big thank to A/Prof. Ha Thanh Le with numerous
valuable instructions and advice during the first-year-master period in Vietnam.
My sincere thanks to Prof. Satoshi Tojo and A/Prof. Kiyoaki Shirai as committee
members of my midterm and final defenses. Their helpful questions and comments
help me greatly clarify and improve my research.

This thesis is dedicated to my family for their love, support, and encouragement
wherever I am.

vi

Chapter 1

Introduction

1.1 Research motivation

Unlike automatic speech recognition (ASR), which converts a speaker’s spoken ut-
terance into a text string, spoken language understanding (SLU) aims to extract
the meaning of the speech utterances. In other words, SLU is the interpretation of
signs conveyed by a speech signal, which, along with natural language understanding
(NLU), shares the goal of gaining a conceptual representation of natural language
sentences [7], [29]. In contrast to NLU that has been studied for the period of 60
years for general domains, SLU concentrates only on particular application domains
like airline travel, tourist, restaurant, or so. An example of an on-line shopping
system is shown in Figure 1.1 with three principal steps:

• Record a user’s voice and convert it into text

• Process text and extract semantics

• Search in database and give answers to a user

In this case study, nonetheless, we concentrate mainly on the second step with
respect to text processing and semantic extraction. For a specific domain, myriads of
constraints could be integrated into the understanding model [29] with the intention
that the machine could perceive a user’s purposes easier. Nevertheless, this issue
is till complicated and challenging due to the fact that spoken utterances often do
not follow rigid grammars of a language. It is obvious that repetitions, hesitations
and other irregular phenomena are inevitable in a real conversation. That is the
main reason why the spoken language is much more difficult to cope with than the
written one.
In general, there are three vital tasks in SLU with respect to semantic extraction

of input utterances namely domain detection, intent determination, and slot fill-
ing. Typically, whilst the two formers is treated as semantic utterance classification
problem, the latter is considered as a sequence classification task in order to assign
a semantic concept to each word in a sentence, e.g. person, city, etc. For instance,
in the sentence “I want to fly from Boston to New York today”, the word Boston

1

Figure 1.1: An on-line shopping system

should be labeled as the departure-city of a trip, and New York as the arrival-city.
All the other words, which do not correspond to real slots, are then tagged with a
dummy class O. For this study, we only take into account slot filling task (SL).
Although slot filling in SLU has been researched for many years, it is still a

challenging issue. Fundamental approaches to dealing with slot filling task include
generative models such as hidden vector state (HVS) model [10], or discriminative
model like Conditional Random Fields (CRFs) [20] and support vector machines
(SVMs) [24]. However, the downside of those techniques is that features fed into
models need to be defined and prepared in advance. This manual process is rel-
atively expensive and time-consuming. Fortunately, deep learning in recent year
can solve this problem due to its capacity to drive new features from a limited set
of features contained in a training set. Deep learning with a bunch of variants re-
leases outstanding performance in a wide range of applications ranging from speech
recognition [9], computer vision [13], [14] to Natural Language Processing [16], [26],
[28]. Following the success of deep learning method, Yao et al. [31] and Mensil
et al. [20] investigated in Recurrent Neural Networks (RNNs) and its combination
with CRF (R-CRF) which is the state-of-the-art model for SL. In particular, the
output of RNN is the input of CRF, which aims to (1) generate automatically fea-
tures for CRF instead of feature engineering, and (2) make tight constraints among
output labels. Nevertheless, in practice, RNNs cannot afford to capture long-term
dependencies because the gradients tend to either explode or vanish.
To deal with those daunting problems, in our experiment, a more sophisticated

model, Long Short-Term Memory Networks (LSTMs) [11] is utilized for sequence
representation. Apart from CRFs merged with LSTM, we also pay our attention to
the incorporation of other classifiers to evaluate their potential for SL task. On both

2

distinct datasets: Airline Travel Information System (ATIS) and DARPA Commu-
nicator, our model overcomes the state-of-the-art approach for SL task.

1.2 Contributions

This research has two great contributions, including:
First of all, originally DARPA dataset consists of myriads pairs of sentence tran-

scription and abstract semantic annotation. This format makes it difficult for the
sequential classification problem. Consequently, we have mapped it into a more con-
venient format IOB (in/out/begin) for further processes by looking up a database
that goes along with DARPA dataset.
Second, the architecture we constructed contains three primary layers: word em-

beddings, recurrent neural networks, and classification. The word embedding layer
was initialized with random uniform values or pre-trained word vectors from other
studies. While RNNs have been used in previous research, we have exploited bidirec-
tional LSTM. Additionally, during training and test period, we investigate a variety
of classification functions ranging from logistic regression to graphical model. The
complete and careful evaluation of our models indicates that there is no an out-
standing classification function in both datasets. Our model with CRF classifier
achieved the highest performance on both datasets in case of using lexical features.
Meanwhile, with additional features on ATIS dataset, BiLSTM-Softmax gained the
best F1-score.

1.3 Thesis outline

The remainder of this thesis is organized as follows:
Chapter 2 describes background of our research with respect to support vector

machines (SVMs), recurrent neural networks (RNNs), Long Short-Term Memory
Networks (LSTMs) and conditional random fields (CRFs). In fact, SVMs is a su-
pervised learning method which is compatible with classification problem for discrete
objects. In contrast, CRFs is the statistical approach, and is really appropriate for
sequential tasks in which it discovers the most probable label sequence instead of
discrete labels. The strength and weakness of two kinds of neural networks RNNs
and LSTMs are also illustrated in this chapter.
In chapter 3, our architecture including four major layers is presented in detail.

The first layer - word embedding, takes the place of each word by a unique contiguous
vector. The weight of this layer can be uniformly random or using pre-trained
vectors. After that, we will describe two LSTM networks, one for forward, the other
for backward, that extract advantageous information from these vectors. Eventually,
we will give the full particulars of four classification functions and their formula.
The experimental results on two widely used datasets: ATIS and DARPA, are

located in chapter 4. Our models are evaluated completely and carefully in terms of
context window size, word embedding initialization, and classification function type.

3

The comparison and error analysis of our models with other previous methods are
conducted as well.
Finally, chapter 5 shows our conclusions and future work.

4

Chapter 2

Background

2.1 Slot Filling in Spoken Language Understand-

ing

In order to achieve a goal in a human-machine conversational understanding system,
automatically filling in a set of arguments or slots embedded in a semantic frame
plays a vital role in SLU. This is considered as semantic-concepts extractions as well.
The popular representation for extraction problem is IOB (in/out/begin) tags. An
example sentence is illustrated in Table 2.1, along with domain, slot annotations,
and special domain-independent named entity. It shows that Boston is the departure
city with a label B-fromloc.city name whilst the arrival city is New York with two
associated labels B-toloc.city name and I-toloc.city name that correspond to two
words New and York ; which reflect the user’s intention. The other words in a
sentence are assigned a dummy tag O.

Table 2.1: IOB representation

Domain Airline Travel

Sentence Slot Label Named Entity

show O O

flights O O

from O O

Boston B-fromloc.city name B-city name

to O O

New B-toloc.city name B-city name

York I-toloc.city name I-city name

today O O

5

2.2 Support Vector Machines

SVM is a supervised learning algorithm which is mostly used for classification prob-
lems, and its goal is to find the optimal separating hyperplane which maximizes
the margin of the training data. SVMs have been applied successfully by many
researchers in a wide range of applications, e.g. face detection, object recognition
or image retrieval [4]; text categorization [12]; or sequential labeling [24], [33].

(a) Binary classification (b) Multi-class classification

Figure 2.1: SVMs classification

Inherently, SVM is formulated for binary classification (Figure 2.1a). When the
two classes are linearly separable in RD, among the infinite number of possible
hyperplanes, a separating hyperplane which releases the smallest generalization error
would be chosen. In other words, that optimal hyperplane has maximal margin, in
particular, the maximal sum of the distances from the hyperplane to the closest
data points of each class. However, for practical application with real data, the
two classes are not perfectly separable, therefore, a positive slack variable ξ which
penalizes data points which violate the margin requirements is introduced. Given
n training data and its corresponding labels (xi, yi), xi ∈ RD, yi ∈ {−1, 1} for all
i = 1, . . . , n; SVMs learning optimize the following constraints:

min
w,ξi

1

2
∥w∥2 + λ

n∑
i=1

ξi (2.1)

s.t. wTxiyi ≥ 1− ξi ∀i
ξi ≥ 0 ∀i

where λ is a parameter that controls the trade-off between the margin and the
misclassification errors.
Many real applications require SVMs’ extension to multiclass to classify into more

than two classes. One basic strategy for this is One-versus-All (OVA) or One-to-
Others, in which all the training samples with the same label are considered as one
class while the others as the remaining class. It then becomes a binary classification

6

problem (see Figure 2.1b). For sophisticated issues that are hard to be solved
be a linear classifier, the data will be mapped from the input space into a higher
dimensional vector space by a nonlinear transformation. Notwithstanding, in our
study, we only focus on standard linear SVMs with recurrent neural networks for
the SL task.
SVMs are widely used as an alternative of softmax for classification in a disjoint

classifier. More precisely, the first step is using deep neural nets to learn good
invariant hidden latent representations which then are fed into linear or kernels
SVM as input [5], [17]. Nonetheless, those hidden representations are not fine-tuned
with respect to SVMs’ objective [27]. Other related works combined SVMs and deep
neural networks into a single model to identify individual objects [22], [27]. In our
research, we would like to extend this kind of model for sequence labeling problem
beyond particular objects.

2.3 Recurrent Neural Networks

2.3.1 Recurrent Neural Networks

It is obvious that in traditional neural networks, all inputs and outputs are assumed
independent of each other. Nevertheless, this assumption is not flexible in sequential
processing, e.g translation, text generation. A classic example for this is that if we
want to predict the next word in a sentence, it is worth understanding preceding
words or context. Undoubtedly, the idea behind RNNs is to exploit sequential
information, with the current output being dependent on the previous computations.
To do this, RNNs have a “memory” which is able to capture information about what
has already been calculated. Therefore, RNNs are popular models that release great
promise in myriads of NLP tasks [19], [20], [30], [31].

Figure 2.2: Recurrent Neural Networks

Figure 2.2 demonstrates the RNNs architecture. Given a sequence of vectors X =
(x1, x2, ..., xn) in which xi corresponds to the ith word of a sentence, the recurrent
hidden state ht is calculated based on the previous hidden state ht−1 and the current

7

input xt at time t as follows:

ht = f(Wxt + Uht−1) (2.2)

yt = softmax(V ht) (2.3)

where W,U are transformation matrices of the input and preceding hidden state
respectively; the function f could be a nonlinearity such as tanh. After that, V is
a matrix which transforms the current hidden state ht into the output yt under an
activation function (softmax in this case).
Our goal is to find the parameters U, V and W that minimize the loss (error)

function for our training data. The most common approach for this is Stochastic
Gradient Descent (SGD). The idea behind SGD is that for each training sample,
all parameters are adjusted smaller or greater whichever direction decreases error.
These directions are given by the gradients on the loss, and is computed by Back-
propagation through time algorithm which is described more detail in the following
parts.

2.3.2 Backpropagation through time

Basically, backpropagation is a popular and powerful technique for calculating deriva-
tives quickly. In other words, it is perceived as a primary algorithm that is capable of
training deep models efficiently. In feed-forward networks, backpropagation moves
backward from the final error through the outputs, weights, and inputs of each
hidden layer [3]. During the backpropagation period, those weights are assigned re-
sponsibility for a portion of the error by computing their partial derivatives, or the
relationship between their rates of change. Afterward, in order to adjust the weights
up or down towards error decrease, those derivatives are used by our learning rule
and gradient descent. RNNs rely on an extension of backpropagation named back-
propagation through time (BPTT) [1]. Apparently, the parameters are shared by
all time step in the network, the gradient at each output, therefore, is affected by
not only the current time step, but also the preceding ones.
First, let define the loss function to be cross entropy loss for one training sample

X:

L =
∑
t

Et(yt, ŷt) =
∑
t

−yt log ŷt (2.4)

where yt, ŷt correspond to the correct and forecast label at time t. The partial deriva-
tives with respect to those weights U, V,W in Equation 2.2 and 2.3 is summarized
at each time step for one training sample.

∂E

∂W
=
∑
t

∂Et

∂W
(2.5)

For each time t, the chain rule of differentiation is exploited to calculate the
gradient. Fundamentally, the gradient for V relies on values at current time step,

8

Figure 2.3: Backpropagation through time

and is calculated by simple matrix multiplication as follows:

∂Et

∂V
=

∂Et

∂ŷt

∂ŷt
∂V

=
∂Et

∂ŷt

∂ŷt
∂zt

∂zt
∂V

= (ŷt − yt)⊗ ht

(2.6)

where zt = V ht and ⊗ is the outer product of two vectors. In contrast, it is relatively
sophisticated to obtain the gradient in terms of U and W . The chain rule is applied
as well:

∂Et

∂U
=

∂Et

∂ŷt

∂ŷt
∂ht

∂ht

∂U
(2.7)

Due to the dependency of ht = tanh(Wxt + Uht−1) on ht−1, which depends on U
and ht−2, and so on, the Equation 2.7 is rewritten in a form:

∂Et

∂U
=

t∑
τ=0

∂Et

∂ŷt

∂ŷt
∂ht

∂ht

∂hτ

∂hτ

∂U
(2.8)

Since the weight U and W are shared all the time in RNNs, the gradient at time t
with regard to those weights is a summation of the contributions at each time step
back to t = 0 as shown in Figure 2.3. Since the layers and time steps of RNNs
relate to each other through multiplication, derivatives are susceptible to vanishing
with small values in the matrix or exploding with large ones [1]. While exploding
gradients can be tackled relatively easily by truncation or squash, vanishing gradients
is a more sophisticated issue that makes our networks learn harder. That is a reason
why though RNNs, in theory, can deal with long sequences, they face with a major
obstacle that only “remember” a few preceding steps. In order to overcome this
issue, a special kind of RNNs, Long Short-Term Memory Networks (LSTMs for
short) was introduced by Hochreiter et al. [11], which are capable of looking back a
plenty of steps. The more detail of LSTMs is described in the following section.

9

Figure 2.4: Long Short-Term Memory Network

2.4 Long Short-Term Memory Networks

LSTMs have been designed to combat the vanishing gradient obstacle by incorpo-
rating a memory-cell. Practically, LSTMs is one of the most popular networks which
is applied successfully in a wide range of applications such as speech recognition [9],
machine translation [26], image captioning [28], to name but a few.
Given a sequence of vectors (x1, x2, ..., xn), the hidden state ht of LSTM at time

t is calculated as follows:

ft = σ(Wfxt + Ufht−1 + bf) (2.9)

it = σ(Wixt + Uiht−1 + bi) (2.10)

ot = σ(Woxt + Uoht−1 + bo) (2.11)

C̃t = tanh(Wcxt + Ucht−1 + bC) (2.12)

Ct = it ⊙ C̃t + ft ⊙ Ct−1 (2.13)

ht = ot ⊙ tanh(Ct) (2.14)

where xt is the input at time t; i, f, o are input gate, forget gate and output gate
respectively; W and U are transformation matrices; σ is the element-wise sigmoid
function; and ⊙ denotes the element-wise product of two vectors. For simplification,
the above equations are abbreviated to ht = LSTM(xt, ht−1).
LSTMs contains information apart from the usual flow of the recurrent network in

a gated cell [2]. The cell makes a decision about what to store, and what to keep and
erase via its three gates that open or close [1]. These operations are controlled by
sigmoid functions, which are all in the range of [0, 1]. Firstly, the forget gate decides
which information is eliminated from the cell state (Equation 2.9). It observes ht−1

and xt, and outputs a filter between 0 and 1 for each number in the cell state Ct−1.
Secondly, new information is handled towards its storage in the cell state. This
step consists of two parts. The input gate (Equation 2.10) makes a decision which
values are updated, while a tanh layer generates a vector describing a new candidate

10

values, C̃t, that could be added to the state (Equation 2.12). The combination of
these two produces an update to the state. Then, the old cell state Ct−1 is updated
into the new cell state Ct. This is implemented by multiplying the old state by ft
and adding it ⊙ C̃t, resulting in a new candidate value which scales how much each
state value is updated (Equation 2.13). The final step is to decide what information
is released. The output gate (Equation 2.11) makes a decision which parts of the
cell state is emitted. It is worth putting the cell state Ct through tanh, followed by
a production with ot (Equation 2.14). On the other hand, the weighted matrices
W and U of each gate and hidden state are adjusted during the recurrent network
learning process.
In the transformation of input, addition and multiplication have different roles

given by LSTMs memory cells. The secrets of LSTMs is the central plus sign ⊕
in Figure 2.4, which is capable of preserving a constant error when it has to be
propagated back at depth. Indeed, the subsequent cell state is a summation of its
current state and new input instead of multiplying them.

2.5 Conditional Random Fields

2.5.1 Statistical Approaches for Slot Filling task

For the slot filling task, many researchers have employed statistical approaches in-
cluding generative models such as Hidden Markov Models (HMMs), Hidden State
Vector model (HVS) [10] or discriminative classification methods like CRFs [20],
[32]. Given an input sentence consisting of a sequence of word X = (x1, x2, ..., xn)
and the output label for each word is y = (y1, y2, ..., yn), the goal of SLU system
is to find the semantic representation of the slot sequence y that has a maximum
posterior probability P (y|X):

y∗ = arg max
y

P (y|X) = arg max
y

P (X|y)P (y)

The Bayes rule is applied in the generative model, so the objective function is to
maximize the joint probability P (X|y)P (y) = P (X, y). Nevertheless, in this day and
age, discriminative approaches have become more popular, and Conditional Random
Fields (CRFs) [15] are applied successfully in a plenty of circumstances. As shown in
Figure 2.5, the linear-chain CRF models the conditional probability P (y|X) based
on features hm(yt−1, yt, x

t+d
t−d) extracted from the current and preceding states yt−1

and yt respectively; along with a window of 2d surrounding words of the current
word xt as follows:

P (y|X) =
1

Z

n∏
t=1

exp

{
H(yt−1, yt, x

t+d
t−d)

}
(2.15)

where

H(yt−1, yt, x
t+d
t−d) =

M∑
m=1

λmhm(yt−1, yt, x
t+d
t−d) (2.16)

11

Figure 2.5: CRF.

Z =
∑
ỹ

n∏
t=1

exp

{
H(ỹt−1, ỹt, x

t+d
t−d)

}
(2.17)

In the rest of this section, let H(yt−1, yt) = H(yt−1, yt, x
t+d
t−d) to simplify notation.

The main disadvantage of these models is good feature engineering which requires
numerous manual work. As a result, one promising direction towards deep learn-
ing networks is incorporating both feature design and classification into learning
procedure.

2.5.2 Forward-backward algorithm for CRFs

During learning procedure, direct calculation of Equation 2.17 is impractical due to
exponential amounts of all possible sequences y. Consequently, forward-backward
algorithm is applied in order to compute Z. Let Gt(y1, y2) = exp{H(yt−1, yt)}, the
Equation 2.17 is rewritten as follows:

Z =
∑
ỹ

n∏
t=1

Gt(ỹt−1, ỹt) (2.18)

The forward partial sums up to time t, denoted α(y, t), represent the total score
of all sequences ending at label y at time t :

α(y, t) =
∑
ỹ

(t−1∏
τ=1

Gτ (ỹτ−1, ỹτ)Gt(ỹt−1, y)

)
(2.19)

and can be updated by the following forward recursion:

α(y, t) =
∑
ỹ

α(ỹ, t− 1)Gt(ỹ, y)) (2.20)

12

Similarly, the backward partial sums β(y, t) demonstrate the total score of all
sequences starting at label y at time t :

β(y, t) =
∑
ỹ

Gt+1(y, ỹt+1)
n∏

τ=t+1

Gτ+1(ỹτ , ỹτ+1) (2.21)

and can be updated with the backward recursion as well:

β(y, t) =
∑
ỹ

β(ỹ, t+ 1)Gt+1(y, ỹ) (2.22)

Then the normalization quantity Z is rewritten by:

Z =
∑
ỹ

α(ỹ, n) =
∑
ỹ

β(ỹ, 1) (2.23)

As usual, two special labels start and stop are added to avoid summation:

Z = α(stop, n+ 1) = β(start, 0) (2.24)

Apart from Z, the forward and backward partial sums can be utilized to estimate
the following marginal posterior probabilities:

p(yt|X) =
α(yt, t)β(yt, t)

Z
(2.25)

p(yt−1, yt|X) =
α(yt−1, t− 1)Gt(yt−1, yt)β(yt, t)

Z
(2.26)

2.5.3 Viterbi algorithm for CRFs

In theory, we can find the most probable label sequence by listing all possible ones
and calculating the probability of the label sequence for each of the combinations.
Afterward, the most likely label sequence is a combination that achieves the maximal
probability:

y∗ = arg max
ỹ

p(ỹ|X;λ) (2.27)

This approach is viable, however, it is computationally expensive due to exponential
numbers of all possible ỹ as when computing the quantity Z in Equation 2.17. As a
result, to reduce complexity, recursion is a wise choice. First, it is worth rewriting
2.27 by expanding the features from Equation 2.15 and 2.16 in a form:

y∗ = arg max
ỹ

n∏
t=1

exp

{
H(ỹt−1, ỹt)

}
(2.28)

= arg max
ỹ

n∑
t=1

H(ỹt−1, ỹt) (2.29)

13

Figure 2.6: R-CRF.

The partial maximum V (y, t) describes the highest score of all sequences obtaining
label y at time t and is defined as:

V (y, t) = max
ỹ

(t−1∑
τ=1

Hτ (ỹτ−1, ỹτ) +Ht(ỹt−1, y)

)
(2.30)

and it is can be computed in a recursive form:

V (y, t) = max
ỹ

(V (ỹ, t− 1) +Ht(ỹ, y)) (2.31)

Eventually, in order to obtain the most likely label sequence y∗, we can trace back
from V (y∗, T) in the trellis.

2.6 Recurrent Conditional Random Field

In order to avoid label bias problem in RNNs which release a position-by-position
distribution over output labels, the input features for a CRF is generated by an
RNN in the Recurrent Conditional Random Field (R-CRF) model [31], as shown in
Figure 2.6. In this scheme, RNN and transition probabilities parameters are jointly
trained according to the objective function of a CRF [20]. By this way, benefits of
the sequence-level discrimination ability of the CRF and the feature learning of the
RNN was taken in the R-CRF model. Even though the objective function of the
R-CRF is the same as Equation 2.15, the features hm(yt−1, yt, x

t+d
t−d) are generated by

the RNN and learned by employing error back-propagation to obtain gradients. In
contrast, in a CRF, only the weight λm is tuned, whereas features are unchanged and
are usually a binary vector. The features hm(yt−1, yt, x

t+d
t−d) now can be decomposed

14

into transition feature hm(yt−1, yt) and tag-specific feature hm(yt, x
t+d
t−d) output from

the RNN. Since features extracted from RNN are sensitive to all words from the
beginning of a sentence [20], the Equation 2.16 is modified as follows:

H(yt−1, yt) =
M∑

m=1

λmhm(yt−1, yt, x
t+d
0)

=
P∑

p=1

λphp(yt−1, yt) +

Q∑
q=1

λqhq(yt, x
t+d
0)

(2.32)

Note that, the features hm(yt, x
t+d
0) that R-CRF used are un-normalized before

softmax activation function with the intention that it is able to prevent the label
bias problem that motivated CRFs. To find the best sequence of label from R-CRF,
Viterbi algorithm is applied. Those work have inspired us to integrate CRFs with
bidirectional LSTMs to solve the label bias problem.

15

Chapter 3

Proposed Model

3.1 Overview

An overview of our architecture is shown in Figure 3.1. The input of a network is a
sentence S with length n, which consists of a sequence of words w1, w2, ..., wn. Four
main layers in our model have distinct purposes:

• Word embedding layer: maps word feature indices to feature vectors which
are fed into two LSTM layers.

• Forward LSTM layer: extracts beneficial information of each word in a sen-

Figure 3.1: The main architecture of our model

16

tence from left to right.

• Backward LSTM layer: extracts beneficial information of each word in a sen-
tence from right to left.

• Classification layer: labels word by word using one of four classification func-
tions, e.g. CRFs, SVMs, based on extracted information from forward and
backward LSTM layers.

In the rest of this chapter, we describe more detail about functionality and re-
sponsibility of each layer in our model.

3.2 Word Embedding layer

The traditional representation of the input word is a one-hot vector which, in fact,
explores a dimension in case of large vocabulary size. If the corpus has V words,
there will be a matrix with a size of V × V to represent all words as seen in Figure
3.2. An alternative approach for word representation is utilizing word embeddings
as a first-layer weight matrix which identifies a unique weighted vector for each input
word (Figure 3.3). If there are V words in our corpus and each word is represented
by a M-dimensional vector in a continuous space, the size of word embedding matrix
is V ×M . In practical, V is huge and much larger than M.
These word embeddings usually are trained in advance on a large external data

with various models, e.g. Mikolov et al. [21] exploited continuous skip-gram model

Figure 3.2: One-hot vector presentation matrix with size V × V

17

Figure 3.3: Word embedding layer for vector presentations of words. The size of
this layer is V ×M

from large amounts of unstructured data; Pennington et al. [23] used global log-
bilinear regression model; while SENNA word embeddings were trained by convo-
lutional neural network [6]. Nevertheless, Mesnil et al. [20] state that word embed-
dings can be also learned from initialized random values, which exerts same perfor-
mance compared to pre-trained word embeddings. Therefore, in our experiments as
in [8], the initial values for the weights of word embeddings, along with other layers,

were uniformly sampled from a symmetric interval

[
−
√

6
fin+fout

,
√

6
fin+fout

]
,

where fin and fout are the input and output dimension of a corresponding layer.

3.3 Context Window Size

In order to improve the performance of RNNs, a context word window which incor-
porates several surrounding words to represent a word of interest is introduced and
used as input for our models. The reason for this procedure is that it can enable
to capture short-term temporal dependencies [20]. In specific, each word is mapped
to an embedding vector. Afterward, the d-context window xd

t takes into account
d preceding words and d following words of a current word xt to describe xt as a
concatenation of (2d+ 1) word embedding vectors as follows:

xd
t = [e(wt−d), ..., e(wt), ..., e(wt+d)] (3.1)

where e(wt) is an embedding vector of word wt. The length of vector representation
for xd

t is now (2d + 1) × M . For the first or last words in sentences, to avoid

18

border effect problem, one special token was used to pad the beginning and ending
of sentences.

3.4 Bidirectional Long Short-Term Memory Net-

works

In sequence labeling, it is possible to extract beneficial information from not only
the past but also the future simultaneously, e.g bidirectional LSTM[16], bidirectional
Jordan RNN [19]. Subsequently, a bidirectional variant is utilized in our experiments
to describe the hidden layer.

First, we define the forward
−→
h t and the backward

←−
h t hidden layers:

−→
h t = LSTM(xt,

−→
h t−1) (3.2)

←−
h t = LSTM(xt,

←−
h t+1) (3.3)

where ← and → denote the forward and backward pass respectively. It is no-

ticeable that the initial hidden state for each network
−→
h 0 and

←−
h 0 was initialized

uniformly as discuss in section 3.2.

The bidirectional hidden layer
←→
h t at time t then takes the forward and backward

hidden layers as input which is fed to further classification procedure:

←→
h t =

[−→
h t,
←−
h t

]
(3.4)

It is importantly noted that our models are easy to adjust in case of having
additional features. One possible solution is to concatenate them with hidden layers←−
h t and

−→
h t to get a bigger and richer representation like:

←→
h t =

[−→
h t,
←−
h t, at

]
where at is an additional feature vector which supports for determining a unique
label for a particular word at time t.

3.5 Classification functions

3.5.1 Softmax activation function

A conventional approach for classification problem is using softmax activation func-
tion. Given an input sentence X = (w1, w2, .., wn), considering a matrix of scores P
output by the bidirectional LSTM network, the size of P is n × k, where k is the
number of diverse labels; and Pi,j represents the score of the j

th label of the ith word
in a sentence. The probability to assign label j for each word wt is calculated by

p(yt = j|w1, ..., wt+d) =
ePt,j∑k
u=1 e

Pt,u

(3.5)

19

Due to using context window, the input of our model at time t is (t + d) words
from the beginning of the sentence. During training, we use stochastic gradient
descent with the parameters updated after computing the gradient for each segment
of a sentence S in the training set D, towards minimizing the following negative
log-likelihood:

L = −
∑

(S,W)∈D

T∑
t=1

log(p(yt|w1, ..., wt+d)) (3.6)

where T is the length of each sentence, and it can be flexible.
The predicted label for word tth in a sentence is

y∗t = arg max
j

p(yt = j|w1, ..., wt+d) (3.7)

3.5.2 Sigmoid activation function

Sigmoid function is considered as a simple case of CRFs without any constraints
among output labels like softmax function. However, in contrast to softmax function
which focuses on a single label, sigmoid function takes into account multiple top-
score labels [25]. We therefore replace the exponential function in equation (3.5) by
logistic sigmoid function σ

p(yt = j|w1, ..., wt+d) =
σ(Pt,j)∑k
u=1 σ(Pt,u)

(3.8)

The objective function is also negative log-likelihood as in equation (3.6). Mean-
while, an output label of a word is forecast as in equation (3.7)

3.5.3 Conditional Random Fields

The LSTM, the same as RNN, makes independent labeling decisions for single word
position yt, which is more prone to the label bias problem [15]. The reason is that
the labels in a sentence are mutually dependent on each other (e.g., I-fromloc.city
cannot follow B-time). Therefore, Conditional Random Fields (CRFs) were used to
model labeling decisions jointly [16].
Suppose that A is a transition matrix of scores in which Ai,j corresponds to the

scores of a transition from label i to label j. These scores are then fine-tuned during
the training time. It is noticeable that two special labels yo and yn+1 added to each
sentence are considered as the start and end labels which have already described in
section 2.5.2. Thus, A is a square matrix of size k + 2.
The score of a predicted sequential labels y = (y1, y2, .., yn), denoted as s(X, y),

consists of two elements: a score at each position i corresponding to label yi; and a
transition score of two neighboring labels yi and yi+1. The score s(X, y) is calculated
as following:

s(X, y) =
n∑

i=0

Ayi,yi+1
+

n∑
i=1

Pi,yi (3.9)

20

After obtaining score of all possible sequential label, a probability of each sequence
y is yielded using a softmax function:

p(y|X) =
es(X,y)∑

ỹ∈YX
es(X,ỹ)

(3.10)

The log-probability of the correct label sequence is maximized during training:

log(p(y|X)) = s(X, y)− log

(∑
ỹ∈YX

es(X,ỹ)

)
(3.11)

where YX denotes all possible label sequences given a sentence X.
Decoding from LSTM-CRF uses the Viterbi algorithm described in section 2.5.3,

and we anticipate the output sequence that releases the maximum score by:

y∗ = arg max
ỹ∈YX

s(X, ỹ) (3.12)

3.5.4 Support Vector Machines - One versus all

Tang [27] demonstrated a small but consistent advantage of replacing the top soft-
max layer with a linear support vector machine. For k class problems, k linear
SVMs will be trained independently, where the label from other classes form the
negative cases. In our experiment, we implemented the L1-SVM form for multiclass
problems. Firstly, we define a label matrix C with size n× k as follow:

Ci,j =

{
1 if yi = j

−1 otherwise
(3.13)

During training, the following loss objective function is minimized

L1 =
n∑

i=1

k∑
j=1

max(1− Pi,jCi,j, 0) (3.14)

The predicted label for word ith in a sentence is

y∗i = arg max
j

Pi,j (3.15)

21

Chapter 4

Experimental results

4.1 Datasets

4.1.1 ATIS

ATIS is a well-known dataset which was used extensively for SLU research. There
are several variants of this dataset, and in our experiment, we used the ATIS corpus1

utilized in [19] as well. The training set has 4978 sentences in the ATIS-2 and ATIS-
3 corpora, whilst the test set consists of 893 sentences from the ATIS-3 Nov93 and
Dec94 datasets. The number of distinct labels and named entities is 128 and 141
respectively.
We preprocessed the data as in [30]. In detail, a special symbol <UNK> was used

as an alternative of all words with only one occurrence in the training set. This
symbol was also utilized to represent those unseen words in the test set. Besides,
all sequences of numbers is converted to the string DIGIT, e.g. “320” is described
by “DIGIT*3”.
In ATIS dataset, additional features “Named Entity” (NE) are often used to

obtain better performance. Those features are marked via look-up table such as
city, dates, etc,.. which nearly determine the slot label. In our model, the NE
information feature is a one-hot vector which is concatenated with the output of
bidirectional LSTM and the classification layers.

4.1.2 DARPA Communicator

We also have evaluated the performance of proposed model on another more complex
dataset DARPA Communicator. Whilst the training set consists of 12702 utterances,
the test set contains 1178 utterances. As can be seen from figure 4.1, ATIS dataset
contains more long sentences, in particular, the average length of all sentences in the
training set and test set are approximate 11.37 and 10.3 respectively. In contrast,
the overwhelming minority in DARPA are short sentences, in which the average
length is around 4.36 for the training set and 4.04 for the test set.

1https://github.com/mesnilgr/is13

22

(a) ATIS training set (left) and test set (right)

(b) DARPA training set (left) and test set (right)

Figure 4.1: Length of sentences in two datasets

Figure 4.2: The Phoenix parser

Another noticeable distinction between two datasets is that while ATIS data is
tagged greatly in IOB form, the DARPA data includes utterance transcriptions and
the semantic parse results from the rule-based Phoenix parser. It, therefore, has to
be converted into IOB tags in advance. For example, the Phoenix parser tree of
the sentence “fly to Chicago on december tenth” and its abstract annotation is
TOLOC(CITY NAME) MONTH NAME(DAY NUMBER), is demon-
strated in Figure 4.2. Chicago will then be marked as B-toloc.city ; and december
and tenth will be labeled as B-month name and B-day number respectively. This

23

was carried out by using look-up database which comes up with DARPA Commu-
nicator dataset. Further processes were the same as dealing with ATIS dataset.

4.2 Experimental Settings

In this experiment, we have implemented our models with Python code and its
supported library Theano2. Our models with various settings then have been run
on High Performance Parallel Computing Servers CX2503.
As in several preceding work [19], [20], [30], [31], the dimension of word embedding

layer and forward/backward recurrent hidden states are both 100. Other parameters
are set as follows:

• Learning rate: 0.05 for lexical feature only, 0.1 for both lexical and named
entity features

• Context Window Size: 1, 3, 5, 7, 9

4.3 Evaluation Metrics

In statistical analysis of binary classification, the F1-score is a measure of accuracy
for a particular test set, and it controls the trade-off between precision and recall.
The F1-score can also be interpreted as a weighted average of the precision and
recall :

F1 = 2
precision ∗ recall
precision+ recall

where precision is the fraction of the number of correct positive results and the
number of all positive results; recall is the number of correct positive results and
the number of positive results that should be predicted. In case of multi-class
classification problem, this is the weighted average of the F1-score of each class.

Show me flights from Boston to New York.

Frame: FLIGHT

Slot/value: FROMLOC.CITY = Boston

TOLOC.CITY = New York

For ATIS dataset, the F1-score was used as evaluation metrics, and it was cal-
culated using CoNLL script4. A slot is perceived as a correction in case its range
and type are correct. For DARPA dataset, performance was measured in terms of
F1-score on slot/value pairs as in [33]. This is slightly different from CoNLL script
in a way that after obtaining IOB tags, slot/value pairs will be filled in advance.

2http://deeplearning.net/software/theano/
3https://www.jaist.ac.jp/iscenter/en/mpc/cx250-cluster/
4http://www.cnts.ua.ac.be/conll2000/chunking/output.html

24

4.4 Baselines

For ATIS dataset, our model was compared to the following baselines:
SVM: Raymond and Riccardi [24] utilized heuristic combinations of forward and

backward moving sequential SVMs classifiers for slot filling.
CRF: A CRF used n-gram as input and is considered as a baseline in [20]
RNN: Two RNNs models (Elman and Jordan) were employed in [20]. Here we

only report the best result of outstanding Elman model.
R-CRF: R-CRF was proposed in [31]. However, we use the result in [20] due to

the same configuration of the embedding layer.

For DARPA dataset, the comparison of our models to the following baselines:
HVS: He and Young [10] used HVS to model embedded structural context in

sentences.
CRF: Zhou and He [32] proposed an iterative learning approach based on expec-

tation maximization to train the CRFs from abstract semantic annotations.
HM-SVMs: Zhou and He [33] trained HM-SVMs model taking as input a train-

ing set of sentences labeled with abstract semantic annotations to map sentences to
semantic meaning representations.

4.5 Results and Discussion

4.5.1 Distinct classifiers with and without Local Context
Window

Table 4.1 illustrates the performance of distinct architectures with a variety of
context-window size and without local context window. Overall, a model using
a context window performs considerably better than the model does not, ranging
frequently from 1 to 2.6% on both datasets. Undoubtedly, an effective represen-
tation of a current word could derive from not only its embedding vector but also
vector representations of preceding and following words, which reflects the context a
word immersing in. As a consequence, this information is beneficial on label forecast
of the word of interest.
On the other hand, there is a small gap in the performance of four classifiers. While

BiLSTM-CRF shows the highest F1-score for ATIS dataset (95.29), BiLSTM-SVM
with 94.86 F1-score outperforms other models with different classification functions
for DARPA dataset. We believe the reason is that the DARPA dataset has a great
number of short sentences, hence SVMs are able to determine easily a precise label
of each word. For longer and more complex sentences, CRFs shows its potential
when taking into account tight constraints between contiguous labels in order to
eliminate false cases.

25

Table 4.1: F1-score of various classification functions with and without context
window. The best context window size hyper-parameter is reported as the number
in the round brackets. Only lexical features were used.

Model Local Context Window
Datasets

ATIS DARPA

BiLSTM, sigmoid
NO 92.62 93.14

YES 94.53(7) 94.36(3)

BiLSTM, softmax
NO 93.28 92.9

YES 94.98(7) 94.5(7)

BiLSTM, SVM
NO 93.45 92.23

YES 94.89(7) 94.86(7)

BiLSTM, CRF
NO 95.08 94.54

YES 95.29(3) 94.77(9)

4.5.2 Pre-trained and Randomly Initial Word Embedding

In our experiment, we deployed a variety of initial word embeddings, ranging from
random values to pretrained vectors Senna, Glove or Structured Skipngram (S-
Skip)[18]. As can be seen from Table 4.2 and Table 4.3, while SENNA was trained
and released 130000-word vectors with 50 dimensions, Glove and S-Skip published
100-dimensional vector representations on larger vocabulary, 400000 and 243003 re-
spectively. Generally speaking, all models in which the word embedding parameters
were tuned during the training period exert better results in contrast to those with
static parameters.
On ATIS dataset, as demonstrated in Table 4.2, the Glove corpus shares the most

words with the ATIS corpus with only 10 Out-Of-Vocabulary (OOV) words, slightly
less than SENNA one (20 OOV words). There are, however, 98 OOV words in S-
Skip. Interestingly, the more words are OOV, the higher performance is. Obviously,
directly learning the embedding vectors initialized from random values leads to
higher results on the ATIS dataset (about 96.51 F1-score), even though pretrained
word embeddings were tuned or static. Notwithstanding, such pre-trained vector
representations are advantageous on DARPA dataset as illustrated in Table 4.3.
In fact, the performance enhanced steadily and reached to the highest F1-score,
approximately 95.17, when it comes to Glove corpus with the least OOV words
(50). This outcome is slightly greater than the counterpart initializing with SENNA
and S-Skip corpus: 95.05 and 94.96 respectively. These two corpora contain more
OOV words, especially, 406 OOV words in S-Skip. Meanwhile, the word embedding
weights initializing with uniformly random values gives the lowest F1-score, at 94.77.

26

Table 4.2: Pretrained Word Embedding with and without tuning. Model BiLSTM-
CRF used lexical and named entity features on ATIS dataset. The best performances
were reported

Word Embedding Dimension Vocabulary OOV F1-score

Senna – tuning
50 130000 20

96.24

Senna – static 96.2

Glove – tuning
100 400000 10

96.22

Glove – static 96.27

S-Skip – tuning
100 243003 98

96.39

S-Skip – static 96.41

Random – tuning 100 572 – 96.51

Consequently, in our experiment, the word embedding weights were initialized
with uniformly random values on ATIS dataset, and with pre-trained Glove vectors
on DARPA dataset.

4.5.3 Compare to other methods

The results on ATIS dataset are summarized in Table 4.4. Obviously, CRF outper-
forms SVM due to its objective function is compatible with sequence labeling task.
Notwithstanding, RNN releases better performance than CRF’s due to (1) the abil-
ity of capturing long-term dependencies, and (2) automatically generating features
instead of feature engineering in CRF. The state-of-the-art model is the combina-
tion of RNN and CRF, in which the output of RNN is used as features for CRF,
whilst CRF makes solid constraints among final labels. Our model BiLSTM-CRF
beats R-CRF due to the fact that LSTM can solve the vanishing gradient problem
of RNN. Other classification functions (sigmoid, SVM, and softmax) obtain lower
results than RNN (95.06 F1-score) in [20] since that RNN variant used information
from the previously predicted label when forecasting the label of the current word.
It looks like a way to create a constraint between the labels of contiguous words.
When named entity features were integrated into all models, generally speaking, the
performances increase significantly due to the high relevance of named entity and
slot labels. Our model with a bunch of different classification functions outperforms
the state-of-the-art model R-CRF (94.46), in particular, BiLSTM-Softmax gains the
highest F1-score (96.62).
For the DARPA Communicator dataset, only lexical features were used as input

to our model and word embedding weights were initialized with Glove pre-trained
vectors. To the best of our knowledge, HM-SVMs is the state-of-the-art model

27

Table 4.3: Pretrained Word Embedding with and without tuning. Model BiLSTM-
CRF used lexical feature on DARPA dataset. The best performances were reported

Word Embedding Dimension Vocabulary OOV F1-score

Senna – tuning
50 130000 58

95.05

Senna – static 94.43

Glove – tuning
100 400000 50

95.17

Glove – static 94.74

S-Skip – tuning
100 243003 406

94.96

S-Skip – static 94.59

Random – tuning 100 1069 – 94.77

Table 4.4: Comparison to previous methods on ATIS dataset

Model Feature F1-score

SVM
W 89.76

W + NE –

CRF
W 92.94

W + NE 95.16

RNN
W 95.06

W + NE 96.24

R-CRF
W –

W + NE 96.46

BiLSTM

sigmoid
W 94.53

W + NE 96.5

softmax
W 94.98

W + NE 96.62

SVM
W 94.87

W + NE 96.56

CRF
W 95.29

W + NE 96.51

28

Table 4.5: Comparison to previous methods on DARPA dataset

Model F1-score

HVS 87.97

CRF 92.37

HM-SVMs 93.18

BiLSTM

sigmoid 94.29

softmax 94.61

SVM 94.83

CRF 95.17

on this dataset with 93.18 F1-score (see Table 4.5). It is obvious that all of our
architectures gains considerably higher results ranging from 1.11% to nearly 2%, in
which BiLSTM-CRF yields the best performance, 95.17. Using SVMs as a classifier
at the final layer exerts the second highest F1-score with 94.83. Such results prove
that deep learning, particularly, bidirectional LSTM in our model, outperforms other
conventional approaches in SL task with a significant improvement.

4.6 Error Analysis

4.6.1 Classification function errors

Given an input sentence “Please list the ground transportation from <UNK> into
New York City”, Table 4.6 demonstrates the output of four distinct classifica-
tion functions. All methods predicted a label B-fromloc.airport code for a word
<UNK>, even though the ground truth label is B-airport code. However, we be-
lieve that since its previous word is from, the predicted label B-fromloc.airport code
is more reasonable than the ground truth one. About three continuous words New
York City, only Softmax and SVM could classify correctly, whereas Sigmoid pre-
dicted definitely incorrect. The forecast labels of CRF, from our point of view, are
also compatible with this context because the passenger want to travel to New York
city. Personally, the labels for three words New York city should contain an indica-
tor toloc. Consequently, this ambiguity influences more or less on the performance
of the CRF model (see Table 4.4).

4.6.2 RNNs and Bidectional LSTM

As mentioned before, the advantage of LSTMs is that it is able to capture long
dependency. Table 4.7 illustrates an instance in which BiLSTM outperform RNNs on
ATIS dataset. Given a sentence “Find me a flight from Cincinnati to any airport in

29

Table 4.6: Forecast labels of four classification functions. Both lexical and named
entity features were used in this case.

Sentence Ground truth
Classification functions

Sigmoid Softmax SVM CRF

Please O O O O O

list O O O O O

the O O O O O

ground O O O O O

transportation O O O O O

from O O O O O

<UNK> B-airport code
B-fromloc. B-fromloc. B-fromloc. B-fromloc.

airport code airport code airport code airport code

into O O O O O

new B-city name
B-fromloc.

B-city name B-city name
B-toloc.

city name city name

york I-city name
I-fromloc.

I-city name I-city name
I-toloc.

city name city name

city I-city name
I-fromloc.

I-city name I-city name
I-toloc.

city name city name

the New York city area”, our models and R-CRF are all forecast precisely Cincinnati
as a departure city with the label B-fromloc.city name. It is a straightforward
circumstance because the word Cincinnati appears immediately after the word from.
However, there is an enormous difference in predicted labels for the arrival city New
York city. Whilst R-CRF model anticipates incorrectly New York city as a departure
city, our models using Softmax and CRF classification can recognize it exactly as
an arrival city. Intuitively, the word to is far from the phrase New York city so that
it is a complex case for R-CRF. On the other hand, our models using LSTMs can
tackle that situation and give proper anticipations.

4.6.3 DARPA dataset errors

In contrast to ATIS dataset which is labeled greatly for both training and test
set, DARPA dataset is more complicated. The label of a training utterance is in
hierarchical semantic relationship form [10]. Although IOB annotation is simply
associating the appropriate semantics with each training utterance and does not
require any linguistic skills, some of the relationships have not matched as two

30

Table 4.7: Comparison of R-CRF and our models on ATIS dataset. Lexical and
named entity were used.

Sentence Ground truth

Methods

R-CRF
BiLSTM

Softmax CRF

find O O O O

me O O O O

a O O O O

flight O O O O

from O O O O

cincinnati
B-fromloc. B-fromloc. B-fromloc. B-fromloc.

city name city name city name city name

to O O O O

any O O O O

airport O O O O

in O O O O

the O O O O

new
B-toloc. B-fromloc. B-toloc. B-toloc.

city name city name city name city name

york
I-toloc. I-fromloc. I-toloc. I-toloc.

city name city name city name city name

city
I-toloc. I-fromloc. I-toloc. I-toloc.

city name city name city name city name

area O O O O

31

instances shown in Table 4.8. For instance, the 11084th abstract annotation has an
only DAY NUMBER label whilst there are three possible tokens corresponding to
this label such as second, twenty or twenty second. In our case, we only recognize the
first word second as B-DAY NUMBER. For this reason, the IOB tags for several
training utterances were not annotated perfectly. However, we still kept them in
training set to ensure the objectivity.

Table 4.8: Examples of a mismatch between transcriptions and annotations

Index Sentence (upper) and Abstract (lower)

4261

i would like to fly from denver to san diego and then from san diego to
new york and from new york back to denver starting from on the

FROMLOC(CITY NAME) TOLOC(CITY NAME CITY NAME)
CITY NAME FROMLOC(CITY NAME) TOLOC(CITY NAME)

11084
november second twenty second

MONTH NAME(DAY NUMBER)

32

Chapter 5

Conclusion and future work

5.1 Conclusion

In this paper, we have proposed LSTMs which can be merged successfully with a
set of classification functions for SLU slot filling task. Word Embedding is the first
layer of our model, and its purpose is to map each word in a sample sentence into a
contiguous representation in contrast with a traditional one-hot vector. Afterward,
bidirectional LSTMs are utilized for capturing implicit features of that sentence in
both forward and backward path. The reason for using LSTMs is that they can
tackle the detrimental issue in RNNs: vanishing gradients. Finally, the top classifi-
cation function namely Sigmoid, Softmax, SVMs or CRFs, takes those features as
its input in order to anticipate all sequential words accordingly.
We carried out the experiments on two common datasets ATIS and DARPA Com-

municator. In contrast to the relatively good labeled ATIS dataset in IOB tags,
DARPA data is in a more sophisticated form (utterance transcriptions and the se-
mantic parse). It is, hence, essential to transform it into a simpler format IOB before
tagging. Besides, the word embedding parameters were initialized with pre-trained
word vectors on the latter dataset and with uniformly random values on the former
one.
The results indicate that our model architectures obtain higher performance than

that of the state-of-the-art model though there is a small difference among four
classification functions. In particular, BiLSTM-CRF yields the highest performance
on both datasets if using only lexical features. This reflects the benefits of the
sequence-level discrimination ability of CRF and the feature engineering of bidi-
rectional LSTM networks. On the other hand, auxiliary features in ATIS dataset
contributes greatly to performance since those features nearly identify a label for an
individual word. In this case, BiLSTM-Softmax is the best model.

33

5.2 Future work

For future work, it is worth taking into account several errors when converting to IOB
tasks for the training set, which is more likely to improve performance considerably.
Furthermore, beyond sequence tagging for all words in discrete sentences, we would
focus more on slot filling task in a dialog system, which is, without doubt, more
appealing and challenging. In that system, the content of a conversation and the
intent of customers are two vital points which should be captured precisely. To do
this, it is essential to investigate other crucial aspects of NLP accordingly such as
textual entailment, texture extraction. Besides, other supported techniques namely
Part-Of-Speech Tagging, chunking, to name but a few, more or less could accelerate
the performance of our model.

34

References

[1] A beginners guide to recurrent networks and lstms. URL https://

deeplearning4j.org/lstm.

[2] Understanding lstm networks, 2015. URL http://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

[3] Recurrent neural networks tutorial, part 3 - backpropagation through time and
vanishing gradients, 2015. URL http://www.wildml.com/2015/10/.

[4] Hyeran Byun and Seong-Whan Lee. Applications of support vector machines
for pattern recognition: A survey. In Pattern recognition with support vector
machines, pages 213–236. Springer, 2002.

[5] Adam Coates, Honglak Lee, and Andrew Y Ng. An analysis of single-layer
networks in unsupervised feature learning. Ann Arbor, 1001(48109):2, 2010.

[6] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12(Aug):2493–2537, 2011.

[7] Renato De Mori, Frédéric Bechet, Dilek Hakkani-Tur, Michael McTear,
Giuseppe Riccardi, and Gokhan Tur. Spoken language understanding. IEEE
Signal Processing Magazine, 25(3):50–58, 2008.

[8] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

[9] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recogni-
tion with deep recurrent neural networks. In 2013 IEEE international confer-
ence on acoustics, speech and signal processing, pages 6645–6649. IEEE, 2013.

[10] Yulan He and Steve Young. Semantic processing using the hidden vector state
model. Computer speech & language, 19(1):85–106, 2005.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

35

https://deeplearning4j.org/lstm
https://deeplearning4j.org/lstm
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.wildml.com/2015/10/

[12] Thorsten Joachims. Text categorization with support vector machines: Learn-
ing with many relevant features. In European conference on machine learning,
pages 137–142. Springer, 1998.

[13] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neu-
ral networks. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1725–1732, 2014.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[15] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Pro-
ceedings of the eighteenth international conference on machine learning, ICML,
volume 1, pages 282–289, 2001.

[16] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360, 2016.

[17] Quoc V. Le, Jiquan Ngiam, Zhenghao Chen, Pang We i Koh Daniel Chia, and
Andrew Y. Ng. Tiled convolutional neural networks. In Advances in neural
information processing systems, pages 1279–1287, 2010.

[18] Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso. Two/too simple
adaptations of word2vec for syntax problems. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1299–1304, 2015.

[19] Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua Bengio. Investigation of
recurrent-neural-network architectures and learning methods for spoken lan-
guage understanding. In INTERSPEECH, pages 3771–3775, 2013.

[20] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek
Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu, et al. Using
recurrent neural networks for slot filling in spoken language understanding.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(3):
530–539, 2015.

[21] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111–3119, 2013.

[22] Jawad Nagi, Gianni A Di Caro, Alessandro Giusti, Farrukh Nagi, and Luca M
Gambardella. Convolutional neural support vector machines: hybrid visual

36

pattern classifiers for multi-robot systems. In Machine Learning and Applica-
tions (ICMLA), 2012 11th International Conference on, volume 1, pages 27–32.
IEEE, 2012.

[23] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In EMNLP, volume 14, pages 1532–43,
2014.

[24] Christian Raymond and Giuseppe Riccardi. Generative and discriminative al-
gorithms for spoken language understanding. In INTERSPEECH, pages 1605–
1608, 2007.

[25] Sheng-syun Shen and Hung-yi Lee. Neural attention models for sequence clas-
sification: Analysis and application to key term extraction and dialogue act
detection. arXiv preprint arXiv:1604.00077, 2016.

[26] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

[27] Yichuan Tang. Deep learning using linear support vector machines. arXiv
preprint arXiv:1306.0239, 2013.

[28] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3156–3164, 2015.

[29] Ye-Yi Wang, Li Deng, and Alex Acero. Spoken language understanding. IEEE
Signal Processing Magazine, 22(5):16–31, 2005.

[30] Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang, Yangyang Shi, and Dong Yu.
Recurrent neural networks for language understanding. In INTERSPEECH,
pages 2524–2528, 2013.

[31] Kaisheng Yao, Baolin Peng, Geoffrey Zweig, Dong Yu, Xiaolong Li, and Feng
Gao. Recurrent conditional random field for language understanding. In 2014
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4077–4081. IEEE, 2014.

[32] Deyu Zhou and Yulan He. Learning conditional random fields from unaligned
data for natural language understanding. In European Conference on Informa-
tion Retrieval, pages 283–288. Springer, 2011.

[33] Deyu Zhou and Yulan He. A novel framework of training hidden markov
support vector machines from lightly-annotated data. In Proceedings of the
20th ACM international conference on Information and knowledge manage-
ment, pages 2025–2028. ACM, 2011.

37

Publications

Minor research

[1] Do, K. P., Nguyen, B. T., Nguyen, X. T., Bui, Q. H., Tran, N. L., Nguyen, T. N.
T., Vuong, V. Q., Nguyen, H. L. and Le, T. H., 2015. Spatial Interpolation and
Assimilation Methods for Satellite and Ground Meteorological Data in Vietnam.
Journal of Information Processing Systems. 11, 4, 556–572.

[2] Nguyen, X. T., Nguyen, B. T., Do, K. P., Bui, Q. H., Nguyen, T. N. T., Vuong,
V. Q. and Le, T. H., 2015. Spatial Interpolation of Meteorological Variables in
Vietnam using the Kriging Method. Journal of Information Processing Systems.
11, 1, 134–147.

Other research

[3] Do, P.K., Nguyen, H.T. , Tran, C.X., Nguyen, M.T., and Nguyen, M.L. (2016).
Legal Question Answering using Learning to Rank and Deep Learning. Accepted
at International Workshop on Juris-informatics (JURISIN)

[4] Nguyen, M.T., Lai, V.D., Do, P.K., Tran, D.V., and Nguyen M.L. (2016).
VSoLSCSum: Building a Vietnamese Sentence-Comment Dataset for Social
Context Summarization . Accepted at the 26th International Conference on Com-
putational Linguistics (COLING)

38

Appendix

Our model is modified greatly from this source1 and this source2. In this section,
we provide codes of three main layers implemented in Theano: a word embedding
layer, a hidden layer and a LSTM layer. Intuitively, it is easy to construct a model
by stacking such layers.

import theano

import theano.tensor as T

def shared(shape, name):

"""

Create a shared object of a numpy array.

"""

if len(shape) == 1:

value = np.zeros(shape) # bias are initialized with zeros

else:

drange = np.sqrt(6. / (np.sum(shape)))

value = drange * np.random.uniform(low=-1.0, high=1.0, size=shape)

return theano.shared(value=value.astype(theano.config.floatX),

name=name)

class EmbeddingLayer(object):

"""

Embedding layer: word embeddings representations

Input: tensor of dimension (dim*) with values in range(0, input_dim)

Output: tensor of dimension (dim*, output_dim)

"""

def __init__(self, input_dim, output_dim, name=’embedding_layer’):

"""

Typically, input_dim is the vocabulary size,

and output_dim the embedding dimension.

"""

self.input_dim = input_dim

self.output_dim = output_dim

self.name = name

Randomly generate weights

self.embeddings = shared((input_dim, output_dim), self.name +

’__embeddings’)

Define parameters

self.params = [self.embeddings]

def link(self, input):

"""

Return the embeddings of the given indexes.

1https://github.com/glample/tagger
2https://github.com/mesnilgr/is13

39

Input: tensor of shape (dim*)

Output: tensor of shape (dim*, output_dim)

"""

self.input = input

self.output = self.embeddings[self.input]

return self.output

class HiddenLayer(object):

"""

Hidden layer with or without bias.

Input: tensor of dimension (dims*, input_dim)

Output: tensor of dimension (dims*, output_dim)

"""

def __init__(self, input_dim, output_dim, bias=True, activation=

’sigmoid’, name=’hidden_layer’):

self.input_dim = input_dim

self.output_dim = output_dim

self.bias = bias

self.name = name

if activation is None:

self.activation = None

elif activation == ’tanh’:

self.activation = T.tanh

elif activation == ’sigmoid’:

self.activation = T.nnet.sigmoid

elif activation == ’softmax’:

self.activation = T.nnet.softmax

else:

raise Exception("Unknown activation function: " % activation)

Initialize weights and bias

self.weights = shared((input_dim, output_dim), name + ’__weights’)

self.bias = shared((output_dim,), name + ’__bias’)

Define parameters

if self.bias:

self.params = [self.weights, self.bias]

else:

self.params = [self.weights]

def link(self, input):

"""

The input has to be a tensor with the right

most dimension equal to input_dim.

"""

self.input = input

self.linear_output = T.dot(self.input, self.weights)

40

if self.bias:

self.linear_output = self.linear_output + self.bias

if self.activation is None:

self.output = self.linear_output

else:

self.output = self.activation(self.linear_output)

return self.output

class LSTM(object):

"""

Long short-term memory (LSTM). Can be used with or without batches.

Without batches:

Input: matrix of dimension (sequence_length, input_dim)

Output: vector of dimension (output_dim)

With batches:

Input: tensor3 of dimension (batch_size, sequence_length, input_dim)

Output: matrix of dimension (batch_size, output_dim)

"""

def __init__(self, input_dim, hidden_dim, with_batch=True,

name=’LSTM’):

"""

Initialize neural network.

"""

self.input_dim = input_dim

self.hidden_dim = hidden_dim

self.with_batch = with_batch

self.name = name

Input gate weights

self.w_xi = shared((input_dim, hidden_dim), name + ’__w_xi’)

self.w_hi = shared((hidden_dim, hidden_dim), name + ’__w_hi’)

Forget gate weights

self.w_xf = shared((input_dim, hidden_dim), name + ’__w_xf’)

self.w_hf = shared((hidden_dim, hidden_dim), name + ’__w_hf’)

Output gate weights

self.w_xo = shared((input_dim, hidden_dim), name + ’__w_xo’)

self.w_ho = shared((hidden_dim, hidden_dim), name + ’__w_ho’)

Cell weights

self.w_xc = shared((input_dim, hidden_dim), name + ’__w_xc’)

self.w_hc = shared((hidden_dim, hidden_dim), name + ’__w_hc’)

Initialize the bias vectors, c_0 and h_0 to zero vectors

self.b_i = shared((hidden_dim,), name + ’__b_i’)

self.b_f = shared((hidden_dim,), name + ’__b_f’)

self.b_c = shared((hidden_dim,), name + ’__b_c’)

41

self.b_o = shared((hidden_dim,), name + ’__b_o’)

self.c_0 = shared((hidden_dim,), name + ’__c_0’)

self.h_0 = shared((hidden_dim,), name + ’__h_0’)

Define parameters

self.params = [self.w_xi, self.w_hi,

self.w_xf, self.w_hf,

self.w_xo, self.w_ho,

self.w_xc, self.w_hc,

self.b_i, self.b_c, self.b_o, self.b_f,

self.c_0, self.h_0]

def link(self, input):

"""

Propagate the input through the network and return the last hidden

vector. The whole sequence is also accessible via self.h, but

where self.h of shape (sequence_length, batch_size, output_dim)

"""

def recurrence(x_t, c_tm1, h_tm1):

i_t = T.nnet.sigmoid(T.dot(x_t, self.w_xi) + T.dot(h_tm1,

self.w_hi) + self.b_i)

f_t = T.nnet.sigmoid(T.dot(x_t, self.w_xf) + T.dot(h_tm1,

self.w_hf) + self.b_f)

o_t = T.nnet.sigmoid(T.dot(x_t, self.w_xo) + T.dot(h_tm1,

self.w_ho) + self.b_o)

Ce_t = T.tanh(T.dot(x_t, self.w_xc) + T.dot(h_tm1, self.w_hc)

+ self.b_c)

c_t = i_t * Ce_t + f_t * c_tm1

h_t = o_t * T.tanh(c_t)

return [c_t, h_t]

If we use batches, we have to permute the first and second

dimension.

if self.with_batch:

self.input = input.dimshuffle(1, 0, 2)

outputs_info = [T.alloc(x, self.input.shape[1],

self.hidden_dim)

for x in [self.c_0, self.h_0]]

else:

self.input = input

outputs_info = [self.c_0, self.h_0]

[_, h], _ = theano.scan(

fn=recurrence,

sequences=self.input,

outputs_info=outputs_info,

n_steps=self.input.shape[0])

42

self.h = h

self.output = h[-1]

return self.output

43

	Abstract
	Acknowledgements
	Introduction
	Research motivation
	Contributions
	Thesis outline

	Background
	Slot Filling in Spoken Language Understanding
	Support Vector Machines
	Recurrent Neural Networks
	Recurrent Neural Networks
	Backpropagation through time

	Long Short-Term Memory Networks
	Conditional Random Fields
	Statistical Approaches for Slot Filling task
	Forward-backward algorithm for CRFs
	Viterbi algorithm for CRFs

	Recurrent Conditional Random Field

	Proposed Model
	Overview
	Word Embedding layer
	Context Window Size
	Bidirectional Long Short-Term Memory Networks
	Classification functions
	Softmax activation function
	Sigmoid activation function
	Conditional Random Fields
	Support Vector Machines - One versus all

	Experimental results
	Datasets
	ATIS
	DARPA Communicator

	Experimental Settings
	Evaluation Metrics
	Baselines
	Results and Discussion
	Distinct classifiers with and without Local Context Window
	Pre-trained and Randomly Initial Word Embedding
	Compare to other methods

	Error Analysis
	Classification function errors
	RNNs and Bidectional LSTM
	DARPA dataset errors

	Conclusion and future work
	Conclusion
	Future work

	References
	Publications

