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Abstract. In Description Logics (DLs), concept similarity measures
(CSMs) aim at identifying a degree of commonality between two given
concepts and are often regarded as a generalization of the classical rea-
soning problem of equivalence. That is, any two concepts are equivalent
if their similarity degree is one, and vice versa. When two concepts are
not quite equivalent but similar, nevertheless, a problem may arise as to
which aspects of commonality should play more important role than oth-
ers. This work presents the so-called preference profile, which is design
guidelines for an agent’s preferences and points out to our preliminary
developing stage of simπ [1], in which an agent’s preferences can influence
the calculation of CSM in DL ELH.
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Reasoning Services, Description Logics

1 Introduction and Motivation

Preferences are used in a variety of related, but not identical, ways in human
beings’ daily life: to express what they like and dislike, to express their desired
goals when choosing routes for travelling [2], etc.. In psychology, preferences may
be conceived of as an individual’s attitude towards a set of objects when making
decisions [3]. Alternatively, it can be interpreted as a judgment in a sense of
liking or disliking an object [4].

In Description Logics (DLs), concept similarity measures (CSMs) aim at iden-
tifying a degree of commonality between two given concept names and are often
regarded as a generalization of the classical reasoning problem of equivalence.
That is, any two concepts are equivalent if their similarity degree is one, and
vice versa. To date, many elegant CSMs have been developed (cf. Subsection
2.2). These developments can induce efficient similarity-oriented DL reasoning
services, i.e., to measure if two concepts are similar, to check if an individual
is a relaxed instance of a concept, and to retrieve those individuals similar to a
given individual.



Unfortunately, those similarity measures may be counter-intuitive when it
comes to human perception. A counterexample could be the similarity between
animals in accordance with human beings’ preferences. A person may perceive
that Frog is similar to TreeLizard because they belong to the same class and
their skin colors are similar. On the other hand, another person may rather
perceive that Frog is similar to TreeLizard because they belong to the same class
and their natural habitation and current living environment are near. These
scenarios reveal that human beings always have bias or preferences when making
judgments about concepts in question.

Example 1. Aforementioned concepts could be modeled in DL as follows:

Frog v Reptile u ∃hasColor.Green u ∃hasHabitat.Forest
TreeLizard v Reptile u ∃hasColor.Yellow u ∃liveIn.Forest
hasHabitat v hasLocation

liveIn v hasLocation

Reasonable perception when considering on the DLs is that Frog and TreeLizard
are not much similar. However, in reality, the similarity value between each of
them could be varied, by an agent’s preferences as stated above.

In this paper, we study and formulate essential aspects of preferences which
can be expressed by an agent when measuring the similarity between two con-
cept descriptions. A numerical degree yielded from a computation of concept
similarity measures under an agent’s preferences will thereby comply more with
the agent’s intuition than that from the base measures do.

The structure of this paper is organized as follows. Section 2 reviews Descrip-
tion Logics, particularly ELH, and the definition of concept similarity measures
(CSMs). Section 3 presents potential aspects of preference expressions formal-
ized as guidelines for developing concept similarity measures under preferences in
DLs and discusses that, to the best of our knowledge, none of existing measures
for DLs satisfy all elements of the so-called preference profile. Note here that all
the proposed preference expressions are each represented as functions and are
considered collectively as the preference profile. Finally, section 4 presents the
conclusion and our future work.

2 Preliminaries

2.1 Description Logics

In Description Logics (DLs), concept descriptions are inductively defined by the
help of a set of constructors, a set of concept names CN, and a set of role names
RN. ELH concept descriptions are formed using the conjunction (u), existential
restrictions (e.g., (∃r.C) where r ∈ RN and C ∈ CN), and the top concept (>).
The set of concept descriptions, or simply concepts, for a specific DL L is denoted
by Con(L). For instance, Con(ELH) is the set of all ELH concept descriptions.



Conventionally, concept names are denoted by A and B, concept descriptions
are denoted by C and D, and role names are denoted by r and s.

A terminology or TBox T is a finite set of concept definitions (e.g., A v D or
A ≡ D where A,D ∈ CN) and role hierarchy axioms (e.g., r v s where r, s ∈ RN).
A TBox is called unfoldable if it contains at most one concept definition for each
concept name in CN and does not contain cyclic dependencies. Concept names
occurring on the left-hand side of a concept definition are called defined concept
names (denoted by CNdef), the other concept names are primitive concept names
(denoted by CNpri). Primitive concept definitions are commonly found in realistic
terminologies in which necessary conditions of concepts are merely known. Such
a primitive definition A v D can easily be transformed into a semantically
equivalent full definitions A ≡ X uD where X is a fresh concept name. When a
TBox T is unfoldable, concept names can be expanded by exhaustively replacing
all defined concept names by their definitions until only primitive concept names
remain. Such concept names are called fully expanded concept names. In this
work, we assume that concepts are fully expanded since TBox can be completely
disregarded from decision procedures. Furthermore, a set of statements about
the characteristics of roles can be axiomatized by a role hierarchy. Like primitive
definitions, a role hierarchy axiom r v s can be transformed in to a semantically
equivalent role definition r ≡ t u s where t is a fresh role name. Role names
occurring on the left-hand side of a role definition are called defined role names
(denoted by RNdef).

In order to defined a formal semantics for a specific DL L, we consider an
interpretation I = 〈∆I , ·I〉, which consists of a nonempty set ∆I as the domain
of the interpretation and an interpretation function ·I which assigns to every
concept name A a set AI ⊆ ∆I and to every role name r a binary relation
rI ⊆ ∆I ×∆I (cf. [5, 6] for more details). An interpretation I is a model of a
TBox T if, for each axiom in T , the conditions corresponding to their semantics
are satisfied. One of the main classical reasoning problems is the subsumption
problem. That is, given two concept descriptions C and D and a TBox T , C is
subsumed by D w.r.t. a TBox T (written as C vT D) if CI ⊆ DI in every model
I of T . Furthermore, C and D are equivalent w.r.t. T (written as C ≡T D) if
C vT D and D vT C. When a TBox T is empty or is clear from the context,
we omit to denote T , i.e. C v D and C ≡ D.

2.2 Concept Similarity Measure

Concept similarity measure (CSM) is one of non-standard DL reasoning services.
It determines how similar two concepts are. Formally, given C,D ∈ Con(L)
be two concept descriptions for a specific DL L. Then, a concept similarity
measure w.r.t. a TBox T is a function ∼T : Con(L) × Con(L) → [0, 1] such
that C ∼T D = 1 iff C ≡T D (total similarity) and C ∼T D = 0 indicates total
dissimilarity between C and D. When a TBox T is empty or is clear from the
context, we simply write C ∼ D.

There exist many state-of-the-art measures and those can be seen as actual
instances of CSMs. For instance, two elegant measures, viz. ∼s and ∼c, based on



an automata-theoretic characterization of subsumption in FL0 are defined in [7]
to calculate the similarity degree between two FL0 concept descriptions w.r.t.
different levels of strongness. The measure sim from [5] for EL concept descrip-
tions is defined based on a characterization of subsumption by tree homomor-
phism. The work from [5] is continued to define the similarity-based instance
checking [8] and to define for measuring the similarity between ELH concept
descriptions [9, 6] together with two concrete algorithms for implementing the
proposed measure. Another measure for DL ELH is the parameterizable measure
called simi [10] which allows calibrating via various parameters of the measure
to fit the expectation. A set of well-defined properties for CSMs is also collected
and introduced in [10]. Those formally defined properties are believed to desir-
able properties for CSMs, i.e., actual instances of CSMs complying with those
properties can produce predictable outcomes for CSM users. Fortunately, sim
[9, 6] and simi [10] are theoretically proven to fulfill most of those properties.
To illustrate an application of CSMs, applying sim [9, 6] on concepts given in
Example 1 yields sim(Frog,TreeLizard) = 0.475 (See more details in [1]).

3 Preference Profile

A numerical degree value obtained by CSMs indicates the similarity degree value
between two concept descriptions. For instance, sim(Frog, TreeLizard) = 0.475
indicates that the similarity between Frog and TreeLizard is 47.5%. Unfortunately,
the finding reported by CSMs might not be intuitive and reasonable concerning
different perceiving agents. Consider two aforementioned agents from Section 1:

Agent 1: Frog is similar to TreeLizard due to classes and skin color;
Agent 2: Frog is similar to TreeLizard due to classes and surrounding.

Most modern CSMs including sim reveal Frog and TreeLizard are not quite
similar. Hence, they per se are not appropriate to be used in our scenario. In
this section, we explore various aspects of preference expressions which can be
seamlessly captured in CSMs and then formalize them as guidelines for CSMs
under preferences. These aspects of preferences are compiled together as the
preference profile π. Any CSMs which expose a syntax and satisfy semantics of
these aspects are appropriate to be used under an agent’s preferences.

In the following, we present five aspects of preference expressions, which can
be adopted in and thereby influencing the calculation of CSMs. The syntax and
semantics for each aspect of a preference profile are given in term of partial
functions since the exact domain of each aspect is varied from agents to agents.

1. Primitive concept importance; 2. Role importance;
3. Primitive concepts similarity; 4. Primitive roles similarity; and
5. Role discount factor.

Definition 1 (Primitive Concept Importance). Let CNpri(T ) be a set of
primitive concept names occurring in T . Then, a primitive concept importance
is a partial function ic : CN→ R≥0, where CN ⊆ CNpri(T ).



For any A ∈ CNpri(T ), ic(A) = 1 captures an expression of normal impor-
tance for A, ic(A) > 1 (and ic(A) < 1) indicates that A has higher (and lower,
respectively) importance, and ic(A) = 0 indicates that A is entirely ignored by
an agent. For example, suppose both agents consider heavily whether the two
concepts are in the same class, i.e., Reptile. Therefore, they might express as
ic(Reptile) = 2 for their own preference profiles.

Practically, many primitive concept names might be not assigned the impor-
tant values by agents, i.e. those concept names are not mapped to the correspond-
ing values. Hence, we assign the default importance value of 1 for A ∈ CNpri(T )
in case ic(A) is not defined. Furthermore, the total function ic0(A) = 1 for all
A ∈ CNpri(T ) is called the default primitive concept importance.

Definition 2 (Role Importance). Let RN(T ) be a set of role names occurring
in T . Then, a role importance is a partial function ir : RN → R≥0, where
RN ⊆ RN(T ).

For any r ∈ RN(T ), ir(r) = 1 captures an expression of normal importance
for r, ir(r) > 1 (and ir(r) < 1) indicates that r has higher (and lower, re-
spectively) importance, and ir(r) = 0 indicates that r is entirely ignored by an
agent. For example, Agent 1 may consider heavily on their skin colors, i.e.,
ir(hasColor) = 2. In addition, Agent 2 may consider heavily on their surround-
ing, i.e., ir(hasHabitat) = 2 and ir(liveIn) = 2.

Practically, many role names might be not assigned the important values
by agents, i.e. those role names are not mapped to the corresponding values.
Hence, we use the default importance value of 1 for r ∈ RN(T ) in case ir(r) is
not defined. Furthermore, the total function ir0(r) = 1 for all r ∈ RN(T ) is called
the default role importance.

Definition 3 (Primitive Concepts Similarity). Let CNpri(T ) be a set of
primitive concept names occurring in T . For A,B ∈ CNpri(T ), a primitive con-
cepts similarity is a partial function sc : CN×CN→ [0, 1], where CN ⊆ CNpri(T ),
such that sc(A,B) = sc(B,A) and sc(A,A) = 1.

For A,B ∈ CNpri(T ), sc(A,B) = 1 captures an expression of total similarity
between A and B and sc(A,B) = 0 captures an expression of total dissimilar-
ity between A and B. For example, Agent 1 may feel that there is similarity
between Green and Yellow. Hence, sc(Green,Yellow) = 0.5.

Practically, many pairs of primitive concept names might be not assigned the
similarity values by agents, i.e. those pairs of concept names are not mapped to
the corresponding values. Hence, we assign the default similarity value of 0 for
(A,B) ∈ CNpri(T ) × CNpri(T ) in case sc(A,B) is not defined. Furthermore, the
total function sc0(A,B) = 0 for all (A,B) ∈ CNpri(T ) × CNpri(T ) is called the
default primitive concept similarity.

Definition 4 (Primitive Roles Similarity). Let RNpri(T ) be a set of primi-
tive role names occurring in T . For r, s ∈ RNpri(T ), a primitive roles similarity
is a partial function sr : RN × RN → [0, 1], where RN ⊆ RNpri(T ), such that
sr(r, s) = sr(s, r) and sr(r, r) = 1.



For r, s ∈ RN(T ), sr(r, s) = 1 captures an expression of total similarity
between r and s and sr(r, s) = 0 captures an expression of total dissimilarity
between r and s. For example, Agent 2 may feel that there is similarity between
knowing the natural habitat of the animals, i.e., hasHabitat, and knowing the
living environment of the animals, i.e., liveIn. Hence, expressing the similarity
between their corresponding new primitive role names can be exploited, i.e.,
sr(t, u) = 0.1.

Practically, many pairs of primitive role names might be not assigned the
similarity values by agents, i.e. those pairs of role names are not mapped to
the corresponding values. Hence, we assign the default similarity value of 0 for
(r, s) ∈ RNpri(T )×CNpri(T ) in case sr(r, s) is not defined. Furthermore, the total
function sr0(r, s) = 0 for all (r, s) ∈ RNpri(T ) × RNpri(T ) is called the default
primitive role similarity.

Definition 5 (Role Discount Factor). Let RN(T ) be a set of role names
occurring in T . Then, a role discount factor is a partial function d : RN→ [0, 1],
where RN ⊆ RN(T ).

For any r ∈ RN(T ), d(r) = 1 captures an expression of total importance on a
role (over a corresponding nested concept) and d(r) = 0 captures an expression
of total importance on a nested concept (over a corresponding role). This notion
is inspired by [6] in which sim is used with different values of the discount factors
in the similarity application on Snomed ct (cf. Section 5 of [1]). For example,
Agent 2 may believe that knowing actual surrounding information is more
important. Thus, d(hasHabitat) = 0.3 and d(liveIn) = 0.3 might be expressed
this situation.

Like others, many role names might be not assigned the discount values by
agents, i.e. those role names are not mapped to the corresponding values. Here,
we use the default discount value of 0.4 for r ∈ RN(T ) in case d(r) is not defined.
This amount of fixed value is influenced by sim [5] where the value of 0.4 is used
for the discount factor when the similarity between two existential restrictions is
considered. The total function d0(r) = 0.4 for all r ∈ RN(T ) is called the default
role discount factor.

Hence, we now conclude that a preference profile π is a quintuple of preference
functions, viz. ic, ir, sc, sr, and d. When a preference profile π is given, π can
thereby influence the calculation of CSMs (cf. Section 5 of [1]).

Definition 6 (Preference Profile). A preference profile, in symbol π, is a
quintuple 〈ic, ir, sc, sr, d〉 where ic, ir, sc, sr, and d are as defined above and the
default preference profile, in symbol π0, is the quintuple 〈ic0, ir0, sc0, sr0, d0〉 where
ic0, i

r
0, s

c
0, s

r
0, and d0 are as defined above.

For example, let denote a preference profile of the Agent 1 and the Agent
2 by π1 and π2, respectively. We conclude that π1 = 〈ic, ir, sc, sr, d〉, where
ic(Reptile) = 2, ir(hasColor) = 2, and sc(Green,Yellow) = 0.5 indicating
1. Reptile is important; 2. Having skin color is important; and
3. Green and Yellow are similar, respectively.



Table 1: State-of-the-art CSMs intrinsically use a preference profile

CSM ic ir sc sr d

simπ 4 4 4 4 4

sim [6] 4

simi [10] 3 4

In addition, we conclude that π2 = 〈ic, ir, sc, sr, d〉, where ic(Reptile) = 2,
ir(hasHabitat) = 2, ir(liveIn) = 2, sr(t, u) = 0.1, d(hasHabitat) = 0.3, and
d(liveIn) = 0.3 indicating
1. Reptile is important; 2. Having habitat is important; and
3. Having living environment is important, respectively.

Concept Similarity Measures under Preferences

Preference profile π intends to be a generic guideline for a development of con-
cept similarity measures used under an agent’s preferences. It suggests concept
similarity measures for any DLs (e.g., FL0, ELH, ALC, and so on) which permit
an agent’s preferences to influence the calculation should expose all elements of
π. Given an arbitrary CSM ∼, a concept similarity measure under preference
profile π is a function

π∼ : Con(L)× Con(L)→ [0, 1]. A CSM ∼ is called prefer-

ence invariant w.r.t. equivalence if C
π∼ D = 1 iff C ≡ D for any π (cf. Section

4 of [1] for its formal definition and properties).
Developing such functions can be done from scratch or by generalizing ex-

isting CSMs. For example, we have generalized sim as a function called simπ

and published our theoretical development in [1]. Our simπ is also preference in-
variant w.r.t. equivalence, meaning that similarity between two equivalent ELH
concepts is always one regardless of agents’ preferences. When π0 (cf. Definition
6) has been used as the value of a preference profile, simπ0(C,D) = sim(C,D) for
C,D ∈ Con(ELH). Table 1 shows our investigation on existing CSMs and found
that none of them, to the best of our knowledge, comply with our preference
profile.

4 Conclusion and Future Work

We present the preference profile π as design guidelines for a development of
concept similarity measures under preferences in DLs. CSMs which exposes all
elements of preference profile will be appropriate to use when human perceptions
are involved (See more details in [1]). This work is still in preliminary stage. We
have intended to explore the possibility of implementations on realistic ontologies
formulated in DLs, especially DL ELH. We are also interested to investigate
deeply desirable properties concept similarity measures under preference profiles
must have. It would also interesting to investigate preference profile π when used
beyond other kinds of similarity-based reasoning services. i.e., relaxed instance
checking and relaxed instance retrieval.
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