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Combined node and link partitions
method for finding overlapping
communities in complex networks
Di Jin1, Bogdan Gabrys2 & Jianwu Dang1,3

1School of Computer Science and Technology, Tianjin University, Tianjin 300073, P. R. China, 2Data Science Institute, Faculty of
Science and Technology, Bournemouth University, Poole, Dorset BH12 5BB, UK, 3School of Information Science, Japan Advanced
Institute of Science and Technology, Japan.

Community detection in complex networks is a fundamental data analysis task in various domains, and how
to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a
new unified model and method for finding the best overlapping communities on the basis of the associated
node and link partitions derived from the same framework. Specifically, we first describe a unified model
that accommodates node and link communities (partitions) together, and then present a nonnegative
matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping
communities based on the derived node and link communities, i.e., determine each overlapped community
between the corresponding node and link community with a greedy optimization of a local community
function conductance. Finally, we introduce a model selection method based on consensus clustering to
determine the number of communities. We have evaluated our method on both synthetic and real-world
networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental
results demonstrate the superior performance of our method over the competing ones in detecting
overlapping communities for all analysed data sets. Improved performance is particularly pronounced in
cases of more complicated networked community structures.

M
any complex systems in the real world exist in the form of networks, such as social networks, biological
networks, Web networks, etc., which are collectively referred to as complex networks. One of the main
problems in the study of complex networks is the detection of community structure1, a subject that keeps

attracting a great deal of interest. Although no common definition has been agreed upon, a community within a
network is usually defined as a group of nodes that are densely connected with respect to the rest of the network. In
the past few years, many different approaches have been proposed to uncover community structure in networks.
For good reviews, the interested readers can refer to Ref. 2, 3.

Among the existing community detection methods, the most popular ones belong to the group of methods
focusing on the partition of nodes, a.k.a., node communities, where communities are disjoint subsets of nodes
relatively densely connected within groups but sparsely connected across groups1. In this conventional com-
munity scheme, a node belongs to only one community. However, it is well known that many real-world networks
consist of overlapping communities i.e., nodes are members of more than one community4. One such example is
the numerous communities each of us belongs to, including those related to our scientific activities or personal life
(school, hobby, family, and so on). Another example from biology is that a large fraction of proteins simulta-
neously belong to several protein complexes. Thus, hard clustering is inadequate for the investigation of real-
world networks with such overlapping communities. Instead, one requires methods that allow nodes to be
members of more than one community in the network.

Various approaches for overlapping community detection have been recently proposed. One of such
approaches is based on the idea of clique percolation theory, i.e. that a cluster can be interpreted as the union
of small, fully connected subgraphs that share nodes4–6. Another type of methods discovers each natural com-
munity that overlaps with another by using some local expansion or optimization approaches7–10. The third type
of methods, namely the detection of link communities, partitions links instead of nodes to discover community
structures11–16. In link communities a node is considered to overlap with other nodes if the links connected to it
belong to more than one cluster. The fourth type of algorithms is based on dynamic label propagation17 which has
also been extended to overlapping community detection18–20. In the label propagation process, each node updates
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its community belonging coefficients by averaging the coefficients
from all its neighbors at each time step; and a parameter r is used to
control the maximum number of communities with which a node
can associate. Besides the above four primary classes of methods,
many model-based methods21–25, which maintain probabilistic com-
munity memberships, can also be extended to find overlapping com-
munities. However, this type of methods often requires a threshold
for the probabilistic memberships in order to get a community struc-
ture, which is difficult to determine for many real applications3.

Although there have been several types of algorithms for detecting
overlapping communities proposed, finding overlapping commun-
ity structures more effectively in real and complex networks still
poses a formidable challenge. The purpose of this work is to propose
a new, more efficient and robust method for finding overlapping
communities, the intuitive idea of which is as follows. In node com-
munities, a node belongs to only one community1. However, over-
lapping community structures are ubiquitous in real networks4.
Forcing a node into one community will fail to accommodate mul-
tiple relationships and functions that a node may have, resulting in
erroneous representation of the network structure. In link com-
munities, links with a similar relational property form communities
so that a node can inherit the community memberships of its adja-
cent links and, as a result, can naturally belong to multiple com-
munities11. However, the link partition typically generates a highly
overlapping community structure even though sometimes a network
has no overlapping structure at all26. This problem stems from the
fact that the link partition forces every link into a community while
there are real networks that have links that do not fit into any com-
munity. To better capture complex organizational structures in real
networks, an intuitive idea is that one should be able to find the best
overlapping communities between the associated node and link com-
munities. Here the node and link communities must correspond to
each other very well, and hence they should be derived from the same
framework.

Based on the above idea, we propose a new method for overlapping
community detection. We first describe a stochastic model which
accommodates both node and link communities in the same frame-
work; we then present an optimization approach based on nonnega-
tive matrix factorization (NMF) to learn the parameters of the model.
Thereafter, we describe a method to infer the overlapping communit-
ies from the derived node and link communities of the model, i.e., by
determining each overlapped community between the correspond-
ing node and link community with a greedy optimization of a local
community function conductance27. Finally, we introduce a model
selection method based on consensus clustering to determine a suit-
able number of communities.

Results
In order to assess the performance of our NMF method (described in
the Methods section), we have evaluated it on synthetic benchmarks
and real-world networks. We also compared it with the following
seven state-of-the-art overlapping community detection methods:
i) CFinder4 which is the most prominent algorithm using clique
percolation theory; ii) LFM (Local Fitness Measure)7 which is a rep-
resentative method based on local expansion and optimization; iii)
LC (Link Community)11 which is the most well-known method for
link-community finding; iv) BigClam25 which is a recently proposed
model-based method which finds overlapping communities using
the soft community memberships; v) Oslom10 which is a local optim-
ization method with an excellent performance especially on the LFR
benchmarks; vi) SVI16 which is a very recently proposed model-based
method for detecting link communities and, according to the
authors, able to handle massive networks; and vii) SLPA19 which is
a representative algorithm based on a dynamic label propagation
process.

These methods have a number of parameters that need to be set.
For CFinder, we set the clique size k 5 4, which returns the best
overall results4. For LFM, we set a 5 1, which is a natural choice as it
is the ratio of the internal degree to the total degree of the commun-
ity7. For LC and BigClam, we use their default values for the para-
meters, which are also suggested by the authors11,25. For Oslom, we
use the default of 10 trial optimizations of the lowest hierarchical
level, and select the lowest hierarchical level as the resulting partition
as suggested by the authors10. For SVI, following the guidelines in the
paper introducing this method16, we assign a link to a community if
the approximate posterior probability of a link assignment to a com-
munity exceeds a threshold t. We take the best NMI values obtained
from thresholds t 5 0.5 and t 5 0.9. Especially, for experiments on
synthetic benchmark networks, we required at least three links of a
node to be assigned to a community before assigning the node to that
community. For SLPA, as suggested by the authors19, we set the
maximum number of iterations T 5 100 and vary parameter r from
0.01 to 0.1 for synthetic benchmark networks and from 0.02 to 0.45
for real networks in order to determine its optimal value. The source
codes and parameters settings of the methods used here are all
obtained from the respective authors.

The proposed NMF method requires two hyperparameters, the
balance parameter l and the number of communities c, to be pro-
vided. In all experiments we use l 5 Ak k2

F= Bk k2
F 5 1. Two alterna-

tive methods to determine l are described in ‘‘Supplementary
Information’’ and experimental results for all three approaches are
provided in order to justify our choice. Two different methods, i.e.
spectral method28 and modularity optimisation method29, have been
used for finding the initial number of communities required in our
model selection procedure for determining the number of com-
munities c. Please note that the results for synthetic networks (shown
in Figures 1 and 2 and discussed in the section below) are only
presented for the spectral method. The modularity optimisation
approach was also initially used but as it is know that it tends to
generate partitions with communities of very similar sizes it was
judged to be not suitable for our experiments with highly heterogen-
eous sizes of communities which our synthetic networks have (par-
ticularly those shown in Figure 2). Both spectral method and
modularity optimisation method have been used for the real-world
networks experiments.

Synthetic networks. A type of well-known synthetic benchmarks
with overlapping community structure has been proposed by
Lancichinetti, Fortunato & Radicchi (LFR)30. Here we use it to test
the ability of each algorithm to detect known communities under
controlled conditions. In the LFR benchmark graphs, both the degree
and the community size distributions are power law, which is a
statistical property that most real-world networks seem to share.

To quantify the accuracy of community detection methods by
evaluating the level of correspondence between detected and
ground-truth communities, we employ the widely used normalized
mutual information (NMI) index which has been extended to over-
lapping communities as the accuracy measure7. The NMI index,
which makes use of information theory, is regarded as a relatively
fair metric compared with the other existing metrics31 and has there-
fore been adopted in our study.

Like in the experiment designed by Lancichinetti et al30, the para-
meters settings for the first set of LFR benchmarks are as follows. The
network size n is 1000, the minimum community size cmin is set to
either 10 or 20, the mixing parameter m (each vertex shares a fraction
m of its edges with vertices in other communities) is set to either 0.1 or
0.3, the fraction of overlapping vertices (on/n) varies from 0 to 1 with
interval 0.1. The remaining parameters which we keep fixed include:
the average degree d 5 20, the maximum degree dmax 5 2.5 3 d, the
maximum community size cmax 5 5 3 cmin, the number of com-
munities each overlapping vertex belongs to om 5 2, and the expo-
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nents of the power-law distribution of vertex degrees t1 and com-
munity sizes t2 are 22 and 21, respectively. This design space leads
to four sets of benchmarks.

Figure 1 shows the results that compare our NMF method with
CFinder, LFM, LC, BigClam, Oslom, SVI and SLPA in terms of NMI
accuracy on the above described LFR benchmark data. As we can see,
NMF and Oslom outperform the other 6 methods in all four cases
with NMF being even slightly better than Oslom overall. The third
most consistently performing method is BigClam. With an increas-
ing fraction of overlapping nodes we can observe a dramatic fall in
performance in all the other methods. It is particularly pronounced
in case of SLPA which can be quite competitive for small fractions of
overlapping nodes but cannot cope with larger fractions of overlap-
ping nodes. Notice that LC and SVI methods do not perform well
here. This is because they often find the highly overlapped com-
munities by partitioning links, and fail to detect the communities
defined in this benchmark.

To further test the performance of our NMF method, in the second
set of experiments, we have increased the size of the networks and
increased the ratio of the maximum to minimum sizes of possible
communities in the LFR benchmark. To be specific, we first use
networks with 5000 nodes and extend the range of community sizes
to the interval [105500] i.e. cmax 5 50 3 cmin, and then we further
increase the size of the networks to 10000 nodes and extend the range

of community sizes to the interval [1051000] i.e. cmax 5 100 3 cmin.
All other graph parameters are the same as in the first set of experi-
ments. This design space has also lead to four sets of benchmarks.

As shown in Figure 2, NMF and Oslom still perform better than
the other 6 algorithms in terms of the NMI index on the larger
benchmark networks with more heterogeneous sizes of communit-
ies. In fact the gap in performance between the proposed NMF
method and all the other methods (apart from Oslom) has become
wider with a dramatic decrease in performance of CPM, LFM, LC
and SVI methods and significant decrease of Bigclam as the size of
the network increased (see Figure 2c and 2d in particular). As in the
case of the smaller networks (i.e. with 1000 nodes), for the larger
networks shown in Figure 2, the SLPA is only competitive for small
fractions of overlapping nodes and cannot cope at all with networks
with larger fraction of overlapping nodes. Our NMF method has
shown particularly good performance and consistently outper-
formed all the other methods (including Oslam) for smaller value
of the mixing parameter m (i.e. m 5 0.1), larger networks and higher
fraction of overlapping nodes. Only for the higher value of the mixing
parameter m (i.e. m 5 0.3) and fraction of overlapping nodes above
0.8 Oslom performed slightly better then NMF (see Figure 2b and
2d).

To sum up, in comparison and contrast to the existing methods on
the LFR synthetic benchmarks, the performance of our NMF method

Figure 1 | NMI accuracy of each algorithm as a function of the fraction of overlapping nodes. Error bars show the standard deviations estimated

from 20 graphs. (a) Comparison on networks with small mixing parameter and small communities (n 5 1000, m 5 0.1, cmin 5 10, cmax 5 50),

(b) Comparison on networks with larger mixing parameter and small communities (n 5 1000, m 5 0.3, cmin 5 10, cmax 5 50), (c) Comparison on

networks with small mixing parameter and larger communities (n 5 1000, m 5 0.1, cmin 5 20, cmax 5 100), and (d) Comparison on networks with larger

mixing parameter and larger communities (n 5 1000, m 5 0.3, cmin 5 20, cmax 5 100).
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is stable and almost not affected by the change of the network size, the
heterogeneity in the sizes of communities, the fraction of overlapping
vertices, and the ratio of the external degree of each node. The exact
reasons for such a good performance are currently under further
investigation but we believe that it may be partialy attributed to the
proposed approach for overlapping community detection, i.e., find-
ing the best overlapping communities between the associated node
and link communities derived from a unified model.

Real-world networks. As real networks may have some different
topological properties that distinguish them from the synthetic
ones, we now consider the real-world networks to further compare
these methods.

A practical issue in network structure analysis is the lack of the
ground-truth of a network. This issue is exacerbated on networks of
overlapping structures since overlapping nodes often render
ambiguous explanations. Fortunately, there are six real networks
with known community structures having been published recently
by the Stanford Network Analysis Project32. These include four
online social networks (LiveJournal, Friendster, Orkut and
Youtube), one collaboration network (DBLP) and one information
network (Amazon), where the communities, including overlapping

ones, in each of these networks are explicitly labeled (see Table 1 for
details). Again, we employ the NMI index for overlapping com-
munities as the accuracy measure, so as to consistently evaluate the
performance of these algorithms.

The networks used here are very large (see Table 1 for details),
which exceeds the capacities of almost all currently available com-
munity detection methods. We thus adopted a sampling method to
obtain a large set of networks with manageable sizes. Similarly to
what was suggested by Yang & Leskovec25, we randomly picked a
node u in the given graph G which belongs to at least two communit-
ies; we then take the subnetwork to be the induced subgraph of G
consisting of all the nodes that share at least one known community
membership with u. Besides, in order to obtain credible subnetworks
with well-defined overlapping community structures, for each net-
work we disregard the subnetworks whose values of extended mod-
ularity (EQ)5 under the ground-truth are less than a threshold of e 5

0.1, which can be considered as having no well-defined community
structure5. Finally, we generated 500 networks with overlapping
communities for each of the 6 datasets in our experiments.

For these real world networks we have also evaluated the impact of
two different ways of determining the initial number of communities
required by our model selection method (see further details in sec-

Figure 2 | NMI accuracy of each algorithm as a function of the fraction of overlapping nodes on larger networks with more heterogeneous sizes of
communities. Error bars show the standard deviations estimated from 20 graphs. (a) Comparison on medium sized networks with small mixing

parameter and increased heterogeneity of the sizes of communities (n 5 5000, m 5 0.1, cmin 5 10, cmax 5 500), (b) Comparison on medium sized networks

with larger mixing parameter and increased heterogeneity of the sizes of communities (n 5 5000, m 5 0.3, cmin 5 10, cmax 5 500), (c) Comparison on the

largest networks with small mixing parameter and the largest heterogeneity of the sizes of communities (n 5 10000, m 5 0.1, cmin 5 10, cmax 5 1000),

and (d) Comparison on the largest networks with the largest mixing parameter and the largest heterogeneity of the sizes of communities (n 5 10000,

m 5 0.3, cmin 5 10, cmax 5 1000).
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tions on ‘‘Parameter learning’’ and ‘‘Model selection’’). In the results
below NMFSpec and NMFMod denote versions of the proposed NMF
method for which the initial approximate number of communities in
the model selection procedure has been determined by using the
spectral method28 and modularity optimisation method29,
respectively.

Quantified by NMI as the performance metric, our NMF method
outperformed all the other methods on all six networks (see Table 1).
In particular, NMFSpec is 8.99%, 16.03%, 0.60%, 17.16%, 8.27% and
11.51% more accurate and NMFMod is 10.63%, 15.36%, 2.53%,
14.36%, 10.43% and 15.65% more accurate in terms of NMI values
than the second best result from any other non-NMF benchmarked
methods on LiveJournal, Friendster, Orkut, Youtube, DBLP and
Amazon, respectively. Real-world networks are often known to have
more complicated organizational structures than synthetic networks.
Given that our method (both NMFSpec and NMFMod) exhibited even
better relative performance to all the other methods on the analysed
real networks than that reported on synthetic networks, it provides
further experimental evidence for the effectiveness of our new idea
based on finding the trade-off between and using the complementary
information from the node community and link community detec-
tion approaches combined in a unified framework. This has resulted
in a new approach particularly suitable for complex overlapping
structures.

Discussion
In this work, we propose a novel overlapping community detection
method from a new viewpoint that finds the best overlapping com-
munities between the associated node and link communities derived
from the same framework. As described in the Methods section, we
first describe a unified model that accommodates node and link
communities together, and then present a nonnegative matrix fac-
torization method to learn the parameters of the model. Thereafter,
in order to infer overlapping communities, we determine each nat-
ural community between the corresponding node and link commun-
ity with a greedy optimization of a local community function
conductance27. Finally, we use consensus clustering as model selec-
tion to determine the number of communities.

We have evaluated our NMF method on both synthetic and real-
world networks with ground-truths, and compared it with seven
state-of-the-art overlapping community detection methods. The
experimental results have demonstrated the superior performance
of the NMF over the competing approaches in detecting overlapping
communities on the LFR synthetic networks with different network
sizes, different heterogeneities of the sizes of communities, different
fractions of overlapping vertices, and different ratios of the external
degree of each node. Considering real-world networks, a practical
issue in the network structure analysis is often the lack of the ground-
truth of a network. This issue is exacerbated on networks of over-

lapping structures since overlapping nodes often render ambiguous
explanations. Fortunately, there have been six real networks (includ-
ing four online social networks, one collaboration network and one
information network) with known overlapping community struc-
tures published, and thus we have used them to further test our
NMF method. Real-world networks are often known to have more
complicated organizational structures than synthetic networks, and
yet our method exhibited even better relative performance in com-
parison to all the other evaluated competitive solutions on the exam-
ined real networks than that on the synthetic networks. This provides
further experimental evidence for the effectiveness of the proposed
concept and methods for finding overlapping communities. In the
future, we intend to use our NMF method to analyze networks in
other fields, but in an attempt to find a balance between the experi-
mental results and not to detract from the main proposed concept,
which is the combination of node and link community paradigms
within a unified framework, in this paper we have concentrated only
on the real networks with available ground truth.

Most community detection methods only make use of informa-
tion of network topology. Our method as presented in this paper is
also an example of such an approach. However, a lot of content on
nodes and links is often available in real applications, e.g. Flickr,
Facebook and Blog in social media. It is stipulated that the commun-
ity detection may be significantly improved if one considers this
content information, especially when the network has complicated
structures or it contains some noise. Several approaches on combin-
ing structure and content have already been proposed. Some of
them33–36 focused on the incorporation of node content, and some
others37,38 focused on the incorporation of link content. But none of
them, to our knowledge, have the ability to make use of all available
information. Needless to say, the community structure identification
is likely to be greatly benefited by considering both the network
topology and node/link content but this seems to be a challenge
because if one wants to incorporate the content on both nodes and
links one would have to accommodate the community memberships
of nodes and links together. Our proposed model is perfectly and, at
the moment, uniquely suited for such a task. Thus in the future, we
will extend our unified model to incorporate node and link content,
so as to even more accurately identify the overlapping communities.

Methods
In this section, we first describe a stochastic model to accommodate both node and
link communities; we then use nonnegative matrix factorization to learn its para-
meters; thereafter, we describe a method to infer the overlapping communities from
the derived node and link communities of the model; and finally, we introduce a
model selection method to determine the number of communities.

Stochastic model. Let G(V, E) be an undirected and unweighted network. The vertex
set V contains n nodes {v1, v2, … , vn}, and the edge set E contains m edges {e1, e2, … ,
em}. Usually, we use the adjacency matrix A to represent G, where aij equals to 1 if
there is a link between vertices vi and vj, and otherwise, it is 0. Besides, we can also use

Table 1 | Comparison of the NMIs accuracy of different methods on six large Stanford networks with ground-truth of overlapping com-
munities32. Here, n is the number of nodes, m the number of links and c the number of communities. M denotes one million and k one
thousand. The larger the NMI the better the detected overlapping community structure matches the ground truth available for these
networks. The best NMIs for these networks are shown in bold. NMFSpec and NMFMod represent two versions of NMF method with two
different approaches for determining initial approximate number of communities in the NMF model selection procedure

Datasets/NMIs (%) n m c

Methods

CFinder LFM LC BigClam Oslom SVI SLPA NMFSpec NMFMod

LiveJournal 4.0 M 34.9 M 310 k 14.73 14.49 13.84 18.45 22.05 12.22 21.07 31.04 32.68
Friendster 120 M 2,600 M 1.5 M 25.26 26.77 18.70 23.30 29.07 17.12 28.96 45.10 44.43
Orkut 3.1 M 120 M 8.5 M 14.93 15.60 13.21 18.76 22.92 16.03 25.71 26.31 28.24
Youtube 1.1 M 3.0 M 30 k 9.34 13.92 15.81 12.34 13.83 12.98 18.31 35.47 32.67
DBLP 0.43 M 1.3 M 2.5 k 13.73 10.84 12.92 14.96 12.16 10.29 12.02 23.23 25.39
Amazon 0.34 M 0.93 M 49 k 15.54 14.65 16.28 18.49 17.32 13.65 19.83 31.34 35.48
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the bipartite graph matrix B to denote G, where bij equals to 1 if vj and ei are incident,
and 0 otherwise. We use c probabilistic communities to model the network.

Our model will have a set of parameters H, where hik represents the propensity of
vertex vi belonging to community k. We then use H to generate the expected adja-
cency matrix Â of network G. To be specific, hikhjk is used to denote the expected
number of links that lies between vertices vi and vj in community k. Summing over
communities k, the expected number of links between vi and vj in the network is:

âij~
Xc

k~1
hikhjk, for i,j~1 � � � n ð1Þ

Furthermore, in order to incorporate link communities in the model, we consider
another set of parameters W, where wik represents the propensity of edge ei belonging
to community k. We then use W and H to generate the expected bipartite graph
matrix B̂. Specifically, wikhjk is used to denote the expected number of links between ei

and vj in community k in the bipartite graph. Summing over the communities, the
expected number of links between ei and vj in the bipartite graph is:

b̂ij~
Xc

k~1
wikhjk, for i~1 � � �m and j~1 � � � n ð2Þ

The logistic representation of the entire model is shown in Figure 3, which integrates
node and link communities in the same framework. Note that multigraphs and
hypergraphs are both allowed here, which is typical for random graph models for
simplicity14,38,39.

By using squared loss to measure the relaxation error, our model can be learned by
minimizing the following objective function:

O(H ,W )~ A{HH T
�� ��2

F
zl B{W H T
�� ��2

F
ð3Þ

where jj.jjF is the Frobenius norm, and H and W are nonnegative matrices. The first
term denotes the fitting between the expected and actual adjacency matrix of the
network; the second term denotes the fitting between the expected and actual bipartite
graph matrix of the network; and they are regulated with the use of the balancing
parameter l.

Parameters learning. According to (3), the learning of the model parameters can be
cast as the following optimization problem:

~H , ~W~ arg min H ,W§0O(H ,W ) ð4Þ

which can be regarded as a problem of nonnegative matrix factorization (NMF). To
derive the multiplicative update rule, we adopt a block coordinate descent approach.
In particular, the objective function is alternately minimized with respect to H and W,
each time optimizing H while fixing W and optimizing W while fixing H. This way,
we decompose the non-convex optimization problem of (4) into two sets of convex
subproblems, which are much easier to solve.

Firstly, we derive the update rule of H while keeping W fixed. The gradient of (4)
with respect to H can be computed as:

LO
LH

~4HH THz2lHW TW{4AH{2lBTW ð5Þ

The gradient can be decomposed into a set of positive components and a set of
negative components as follows:

LO
LH

~½:�z{½:�{

½:�z~4HH THz2lHW TW

½:�{~4AHz2lBTW

ð6Þ

Then, we use the results in Ref. 40 in order to define an iterative learning based update
rule with the use of [?]1 and [?]2 as follows:

hij~hij{gij
LO
LH

� �
ij

~hij{gij ½:�z{½:�{
� �

ij ð7Þ

Here gij is a positive learning rate. One can choose gij~
hij

½:�z
� �

ij

, and the update rule

becomes a multiplicative update rule:

hij~hij{
hij

½:�z
� �

ij

½:�z{½:�{
� �

ij~hij

½:�{
� �

ij

½:�z
� �

ij

~hij

2AHzlBTW
� �

ij

2HHTHzlHW TW
� �

ij

ð8Þ

According to the analysis of Ref. 40, H can be initialized to a nonnegative matrix, and
the above multiplicative update rule can be used to maintain nonnegativity. The
multiplicative rule converges in the case when ([?]1)ij 5 ([?]2)ij, which implies that
LO
LH

~0 is the stationary point of the objective function.

A similar discussion can be applied to derive the update rule of W while keeping H
fixed. The gradient of (4) with respect to W can be calculated as:

LO
LW

~½:�z{½:�{~2lW HTH{2lBH ð9Þ

where [?]1 and [?]2 are respectively the set of positive components and the set of
negative components in the gradient. As in the previous case, these can be used in
conjunction with the results in Ref. 40 in order to define the following multiplicative
update rule:

wij~wij

½:�{
� �

ij

½:�z
� �

ij

~wij

BHð Þij
W HTH
� �

ij

ð10Þ

As in the previous case, W can be initialized to be nonnegative, and the update rule
subsequently maintains it. The iterative update of wij converges whenever a stationary

point
LO
LW

~0 is achieved.

Now, the optimization of (4) is to simultaneously solve (8) and (10), which can be
done iteratively by choosing a set of nonnegative initial values and alternating
between the two equations. This approach maintains the nonnegativity of the para-
meters, and monotonically converges to a local minimum of the objective function

(corresponding to
LO
LH

~
LO
LW

~0).

Besides, our model requires two hyperparameters, the balance parameter l and the
number of communities c, to be provided. There are a number of possible ways to
determine l. An intuitive approach is based on the fact that the first and the second
terms in the proposed model should have comparable effect on the objective function,
if there is no a priori information available to the contrary. Thus in the main part of
this paper and comparative analysis with other state-of-the-art methods we set l 5

Ak k2
F= Bk k2

F 5 1. Two alternative methods to determine l are described in
‘‘Supplementary Information’’ and experimental results for all three approaches are
provided in order to justify our choice. In order to determine the number of com-
munities c, we will introduce the model selection method in the following sections. In
order to avoid potentially intractable and certainly computationally very expensive
exhaustive search for the optimal number of communities as part of our model
selection procedure, a heuristic has been proposed and employed which requires an
initial approximate number of communities to be given. The spectral method28 and
the modularity optimisation method29 have been used for finding this initial,
approximate number of communities and both options have been evaluated and the
results presented in the experiments with the real world networks with overlapping
communities (see Table 1).

Please take a note that the time to calculate AH, BTW, H(HTH) and H(WTW) in (8)
are 2mc, 2mc, 2nc2 and nc2 1mc2 , respectively, where n is the number of nodes, m is
the number of links and c is the number of communities. Thus, the time of evaluating
(8) once is O(mc2 ). The time to calculate BH and W(HTH) in (10) are 2mc and nc2

1mc2 , respectively, and hence the time of evaluating (10) once is also O(mc2 ).
Therefore, the time complexity of our NMF method is O(Tmc2 ), where T is the
iteration number for convergence.

Inference of overlapping communities. After obtaining the community
membership of nodes H and community membership of links W, the hard partition
of nodes (node communities) and hard partition of links (link communities) can be
derived as follows. Let S 5 {S1, S2,…,Sc} be the hard partition of nodes, in which Sk

denotes the k-th node community. Sk will be the node set consisting of all nodes i
satisfying argmaxz{hiz j z 5 1,2,…,c} 5 k. Similarly, Let R 5 {R1, R2,…,Rc} be the hard
partition of links, in which Rk denotes the k-th link community. Rk will be the node set
consisting of all links ei (denoted by its two endpoints ,p,q. 5 ei) satisfying
argmaxz{wiz j z 5 1,2,…,c} 5 k.

As discussed earlier, node communities force each node into one community, and
hence fail to accommodate multiple roles that a node may play. Link communities, on
the other hand, force every link into a community while there are background links

Figure 3 | Plate representation of the unified model. We describe node

communities H and link communities W by fitting the model to network G

in terms of the adjacency matrix A and bipartite graph matrix B,

respectively.
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that should not fit into any community, and thus link based community detection
methods typically generate a highly overlapping community structure of nodes. In
order to better describe the true community structures, an intuitive idea is that one
should be able to find the best overlapping communities between the associated node
and link communities such as those derived from our unified model.

In order to infer the overlapping communities O 5 {O1, O2,…,Oc} based on the
derived node communities S 5 {S1, S2,…,Sc} and link communities R 5 {R1, R2,…,Rc},
we adopt the following method. We first select a local community function which is
suitable for assessing a single community. We then find each natural community Ok

between Sk and Rk based on the greedy optimization of this objective function. In
particular, to detect each community Ok, we make Sk as the seed (Ok 5 Sk) and takeDk

5 Rk 2 Sk as the candidate node set. We then iteratively add the node which will bring
the highest increase of the community quality of Ok from Dk to Ok. This process stops
when there is no node in Dk that will increase the community quality of Ok when
adding this node to it. A summarization of the above method is included in the
‘‘Supplementary Information’’.

We adopt a well-known local community function, namely conductance27, as the
metric to assess a single community. The conductance of a community C can be
considered as the ratio between the number of edges within the community and the
number of edges between the community nodes and those outside of the community.
Formally, the conductance of a community C is

w(C)~
Q(C)

min (Vol(C), Vol(V\C))
, ð11Þ

where Q(C) 5 j{(i, j): igC, j1C}j, Vol(C)~
X

i[C
di , and di is the degree of node i.

Thus, the lower the conductance of a community, the better it is.
We used conductance here due to the fact that it can be efficiently calculated and its

good performance in general. However, one may find other community metrics
which may be more suitable for specialized applications. Thus in the future, we intend
to evaluate and include in our software different community quality metrics.

Model selection. Recall that our model and NMF method need the number of
communities c as a hyperparameter to be determined. This is the so-called model
selection problem. Similarly to the method proposed by Brunet et al41, we determine
this parameter by exploiting the idea of consensus clustering.

Depending on the random initial conditions our NMF method may or may not
converge to the same solution on each run. If a clustering into k overlapping com-
munities is strong, we would expect that node assignment to communities would vary
only a little from run to run. For each run, the node assignment can be defined by a
connectivity matrix Ck of size n 3 n, with entry Ck(i,j) 5 1 if nodes i and j may belong
to the same community, and Ck(i,j) 5 0 if they never belong to the same community,
where k is the given number of communities. We can then compute the consensus
matrix, {Ck , defined as the average connectivity matrix Ck over a number of runs (50
runs is generally sufficient to stabilize {

Ck). The entries of {
Ck range from 0 to 1 and

reflect the probability that nodes i and j cluster together. If a structure of overlapping
communities is stable, we would expect that Ck would tend not to vary among runs,
and that the entries of {Ck will be close to 0 or 1. Consequently, the general consistency
quality of {

Ck is summarized by the dispersion coefficient defined as

rk~
1

n2

X
ij

4 {
Ck(i,j){

1
2

� �2

ð12Þ

where 0 # rk # 1, and rk 5 1 represents a perfectly consistent assignment.
A straightforward way to find the best number of communities is to enumerate all

possible k to get the one with the maximum rk value41. This exhaustive search may
become computationally expensive for large networks. Here we offer an alternative to
this problem by using an effective heuristic. We first use an assistant community
detection method, such as the spectral method28 suggested by Darst et al42, or the
widely used though often criticised modularity optimization method29 to determine
an approximate number of communities cs. Thereafter, we decrease k starting from cs

until rk , rk 1 1 and set cd 5 k 1 1, and then increase k starting from cs until
rk , rk 2 1 and set cu 5 k 2 1. Finally, we determine the best number of communities
c 5 argmaxk {rkjk 5 cd,…,cu}.

Please note that despite wide criticisms in the literature of the modularity opti-
misation method when used on its own, we have found that it worked well as a
method for determining the initial number of communities cs in the procedure
described above and resulted in the best NMI accuracy for four out of six analysed
large real world networks.
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