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Ameshless generalized finite difference time domain (GFDTD)method is proposed and applied to transient acoustics to overcome
difficulties due to use of grids or mesh. Inspired by the derivation of meshless particle methods, the generalized finite difference
method (GFDM) is reformulated utilizing Taylor series expansion. It is in a way different from the conventional derivation of
GFDM in which a weighted energy norm was minimized. The similarity and difference between GFDM and particle methods
are hence conveniently examined. It is shown that GFDM has better performance than the modified smoothed particle method in
approximating the first- and second-order derivatives of 1D and 2D functions. To solve acoustic wave propagation problems, GFDM
is used to approximate the spatial derivatives and the leap-frog scheme is used for time integration. By analog with FDTD, the
whole algorithm is referred to as GFDTD. Examples in one- and two-dimensional domain with reflection and absorbing boundary
conditions are solved and good agreements with the FDTD reference solutions are observed, even with irregular point distribution.
The developed GFDTD method has advantages in solving wave propagation in domain with irregular and moving boundaries.

1. Introduction

Partial differential equations (PDEs) modeling problems in
science and engineering, such as electromagnetics, acoustics,
and hydrodynamics, are usually solved by numericalmethods
that discretize the computational domain with mesh or grids.
Grid-basedmethods such as finite differencemethod (FDM),
finite elementmethod (FEM), and boundary elementmethod
(BEM) [1, 2] have had much achievements and still domi-
nate the field of scientific computing. However, numerical
difficulties originating from usage of grids often emerge.
For complicated and irregular geometry, implementation of
boundary conditions could be a big challenge for FDM.
Generation of grids with high quality is not an easy task in
FEM and BEM. Moreover, when free surface and moving
boundary/interface have to be treated, the transformation of
grids will turn the conventional grid-based methods into a
difficult, time-consuming process. Numerical accuracy often
degenerates and divergence problem occurs.

In recent 20 years, to overcome numerical difficulties due
to use of grids or mesh, meshless methods (MMs) based on

different techniques have been proposed and widely used
in many fields such as hydrodynamics [3], astrophysics [4],
and solid mechanics [3, 5]. Among the MMs, generalized
finite difference method (GFDM) is the one that evolved
from traditional FDM [6, 7] and many different forms
have been developed [8]. Benito and his coauthors made
great contribution to its recent development [9–11]. For heat
conduction problem, it has been compared with the element-
free Garlerkin (EFG) method (one of the most used MMs in
solid mechanics) and better performance has been observed
[10]. Recently, GFDM was used to solve the wave equations
[11] and Burgers’ equations [12] and simulate seismic wave
propagation problems in heterogeneousmedia [13]. An appli-
cation to the detonation shock dynamics [14] was also carried
out. Nevertheless, few work on computational acoustics has
been reported.

For acoustic wave propagation problems, the concentra-
tion is on the ones in confined domain, for which grid-
based methods like FDTD and TDFEM (time-domain finite-
element methods) [15], are mostly used. However, moving
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boundary exists in many acoustic problems like sound wave
propagation inside a deforming vocal tract. This problem is
hardly solved by conventional grid-based methods andMMs
provide a possibility. As one of the MMs, GFDM is extended
to transient acoustics in this paper, which is helpful to solve
wave propagation problems with moving boundary in the
future.

Inspired by the derivation of meshless particle methods,
we firstly formulated the GFDM in a way different from the
original one that minimizes an energy norm. Such that the
relationship between GFDM and meshless particle meth-
ods like smoothed particle hydrodynamics (SPH) and its
improvements can be conveniently examined. Compari-
son with the modified dmoothed particle hydrodynamics
(MSPH) method, which has better performances than SPH
and its corrections [16], shows higher approximation accu-
racy of the GFDM, especially at the boundary region. By
analog with FDTD, a method referred to as generalized finite
difference time domain (GFDTD) is proposed, in which
GFDM is used to discretize the spatial operators and the leap-
frog algorithm is used for time integration. To show its good
performance and efficiency, the GFDTD method is applied
to transient acoustics. Comparison with conventional FDTD
solutions is presented and discussed.

2. Generalized Finite Difference
Method (GFDM)

Other than conventional derivation of GFDM byminimizing
an energy norm [10], a different derivation of GFDM is pre-
sented in this section. Taylor series expansion of 𝑓(𝑥, 𝑦)
around point (𝑥

0
, 𝑦
0
) remaining up to second-order terms

yields

𝑓 ≈ 𝑓
0
+ ℎ
𝜕𝑓
0

𝜕𝑥
+ 𝑘
𝜕𝑓
0

𝜕𝑦
+
ℎ2

2

𝜕2𝑓
0

𝜕𝑥2
+
𝑘2

2

𝜕2𝑓
0

𝜕𝑦2
+ ℎ𝑘

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
, (1)

where 𝑓 = 𝑓(𝑥, 𝑦), 𝑓
0
= 𝑓(𝑥

0
, 𝑦
0
), ℎ = 𝑥 − 𝑥

0
, and 𝑘 =

𝑦 − 𝑦
0
.

By multiplying both sides of (1) with 𝑤2ℎ and 𝑤2𝑘 (𝑤 is
a weighting function with compact support) and integrating

the resulted equations over the support domainΩ, we get two
equations, and the following, as an example, is the result for
𝑤2ℎ:

∫
Ω

𝑓𝑤2ℎ dV ≈ ∫
Ω

𝑓
0
𝑤2ℎ dV + ∫

Ω

𝜕𝑓
0

𝜕𝑥
𝑤2ℎ2dV

+ ∫
Ω

𝜕𝑓
0

𝜕𝑦
𝑤2ℎ𝑘 dV + 1

2
∫
Ω

𝜕2𝑓
0

𝜕𝑥2
𝑤2ℎ3dV

+
1

2
∫
Ω

𝜕2𝑓
0

𝜕𝑦2
𝑤2ℎ𝑘2dV + ∫

Ω

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
𝑤2ℎ2𝑘 dV,

(2)

where dV is a volume measure.
Repeating the same procedure with 𝑤2ℎ2/2, 𝑤2𝑘2/2, and

𝑤2ℎ𝑘 instead of 𝑤2ℎ and 𝑤2𝑘, we get other three equations
and the following is the result for 𝑤2ℎ2/2:

∫
Ω

𝑓
𝑤2ℎ2

2
dV ≈ ∫

Ω

𝑓
0

𝑤2ℎ2

2
dV + ∫

Ω

𝜕𝑓
0

𝜕𝑥

𝑤2ℎ3

2
dV

+ ∫
Ω

𝜕𝑓
0

𝜕𝑦

𝑤2ℎ2𝑘

2
dV + 1

2
∫
Ω

𝜕2𝑓
0

𝜕𝑥2
𝑤2ℎ4

2
dV

+
1

2
∫
Ω

𝜕2𝑓
0

𝜕𝑦2
𝑤2ℎ2𝑘2

2
dV + ∫

Ω

𝜕2𝑓
0

𝜕𝑥𝜕𝑦

𝑤2ℎ3𝑘

2
dV.

(3)

To approximate the integrations byRiemann sum, the volume
of the support domain Ω is divided into 𝑁 points with
associated volumes dV

𝑖
, (𝑖 = 1, 2, . . . , 𝑁). Equations (2),

(3), and the other three constitute a system of five equations
written in matrix form as

APDfP = bP, (4)

with

AP =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
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ℎ
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∑
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ℎ
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ℎ
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∑
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∑
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𝑖
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𝑖
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ℎ
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∑
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ℎ
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∑
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∑
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∑
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ℎ
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ℎ
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𝑘
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∑
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ℎ
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)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,
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DfP =

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝜕𝑓
0

𝜕𝑥

𝜕𝑓
0

𝜕𝑦

𝜕2𝑓
0

𝜕𝑥2

𝜕2𝑓
0

𝜕𝑦2

𝜕2𝑓
0

𝜕𝑥𝜕𝑦

}}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}}}
}

, bP =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ
𝑖
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖
ℎ
𝑖
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖
𝑘
𝑖
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖
𝑘
𝑖
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖

ℎ2
𝑖

2
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖

ℎ2
𝑖

2
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖

𝑘2
𝑖

2
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖

𝑘2
𝑖

2
dV
𝑖

−𝑓
0

𝑁

∑
𝑖=1

𝑤2
𝑖
ℎ
𝑖
𝑘
𝑖
dV
𝑖
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑤2
𝑖
ℎ
𝑖
𝑘
𝑖
dV
𝑖

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

(5)

where𝑤
𝑖
= 𝑤(𝑑

𝑖
, 𝑑
𝑚
)with 𝑑

𝑖
= √(𝑥

𝑖
− 𝑥
0
)2 + (𝑦

𝑖
− 𝑦
0
)2, ℎ
𝑖
=

𝑥
𝑖
− 𝑥
0
, and 𝑘

𝑖
= 𝑦
𝑖
− 𝑦
0
, and 𝑑

𝑚
is a measure of the support

size.
The conventional derivation of GFDM is presented in

appendix. It is clear that the difference between the conven-
tional and the current derivation is not only the procedure but
also the final form. The conventional derivation loses term
dV
𝑖
(see (A.5)). If all the points in the domain have the same

volume, dV
𝑖
at both sides of (4) will be cancelled, and the two

final forms will be the same. However, dV
𝑖
can hardly be the

same when points are irregularly spaced. From this point of
view, our derived final form is more general and takes point
irregularity into account.

3. Modified Smoothed Particle
Hydrodynamics (MSPH)

As a modification to SPH, the MSPH method improves the
accuracy of the approximations especially at points near the
boundary of the domain [16]. It uses Taylor series expansion
of function 𝑓(𝑥, 𝑦) as in (1). Similar to the derivations of (2)
and (3), but with different weight functions 𝜕𝑤/𝜕𝑥, 𝜕𝑤/𝜕𝑦,

𝜕𝑤2/𝜕𝑥2, 𝜕𝑤2/𝜕𝑦2, and 𝜕2𝑤/𝜕𝑥𝜕𝑦, the following equations,
as examples, for 𝜕𝑤/𝜕𝑥 and 𝜕𝑤2/𝜕𝑥2, are obtained:

∫
Ω

𝑓
𝜕𝑤

𝜕𝑥
dV = ∫

Ω

𝑓
0

𝜕𝑤

𝜕𝑥
ℎ dV +

𝜕𝑓
0

𝜕𝑥
∫
Ω

𝜕𝑤

𝜕𝑥
ℎ dV

+
𝜕𝑓
0

𝜕𝑦
∫
Ω

𝜕𝑤

𝜕𝑥
𝑘 dV + 1

2

𝜕2𝑓
0

𝜕𝑥2
∫
Ω

𝜕𝑤

𝜕𝑥
ℎ2dV

+
1

2

𝜕2𝑓
0

𝜕𝑦2
∫
Ω

𝜕𝑤

𝜕𝑥
𝑘2dV +

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
∫
Ω

𝜕𝑤

𝜕𝑥
ℎ𝑘 dV,

∫
Ω

𝑓
𝜕𝑤2

𝜕𝑥2
dV = ∫

Ω

𝑓
0

𝜕𝑤2

𝜕𝑥2
dV +

𝜕𝑓

𝜕𝑥
∫
Ω

𝜕𝑤2

𝜕𝑥2
ℎ dV

+
𝜕𝑓

𝜕𝑦
∫
Ω

𝜕𝑤2

𝜕𝑥2
𝑘 dV + 1

2

𝜕2𝑓
0

𝜕𝑥2
∫
Ω

𝜕𝑤2

𝜕𝑥2
ℎ2dV

+
1

2

𝜕2𝑓
0

𝜕𝑦2
∫
Ω

𝜕𝑤2

𝜕𝑥2
𝑘2dV +

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
∫
Ω

𝜕𝑤2

𝜕𝑥2
ℎ𝑘 dV.

(6)

Again the Riemann sum over the support domain Ω is used
to approximate the integrations and a system of five equations
is obtained as

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥

ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥

𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑥
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦

ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦

𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤
𝑖

𝜕𝑦
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥2
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑦2
ℎ
𝑖
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
ℎ
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
𝑘
𝑖
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦

ℎ2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦

𝑘2
𝑖

2
dV
𝑖

𝑁

∑
𝑖=1

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
ℎ
𝑖
𝑘
𝑖
dV
𝑖

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
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𝜕𝑓
0

𝜕𝑦

𝜕2𝑓
0

𝜕𝑥2

𝜕2𝑓
0

𝜕𝑦2

𝜕2𝑓
0

𝜕𝑥𝜕𝑦

}}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}}}
}
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∑
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𝑖
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+
𝑁

∑
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𝑖
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𝑖
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𝑖
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∑
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+
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∑
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𝑖
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𝑁

∑
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𝑖
+
𝑁
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𝑖

−𝑓
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𝑁

∑
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𝑖
+
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𝑓
𝑖
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𝑖
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𝑖
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𝑁

∑
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𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
dV
𝑖
+
𝑁

∑
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𝑓
𝑖

𝜕𝑤2
𝑖

𝜕𝑥𝜕𝑦
dV
𝑖

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(7)

Compared with formula (4), the only difference is the
terms multiplied to both sides of (1). In GFDM, 𝑤2ℎ, 𝑤2𝑘,
𝑤2ℎ2/2, 𝑤2𝑘2/2, and 𝑤2ℎ𝑘 are used instead of 𝜕𝑤/𝜕𝑥,
𝜕𝑤/𝜕𝑦, 𝜕𝑤2/𝜕𝑥2, 𝜕𝑤2/𝜕𝑦2, and 𝜕2𝑤/𝜕𝑥𝜕𝑦 in MSPH. As a
result, GFDM avoids computing the derivatives of the weight
function and hence saves computational efforts and leads to
more choice of the weight function.

4. Numerical Tests for
Approximation of Derivatives

In previous sections the deviation of GFDM and MSPH is
presented. In this section, to compare the performance of the
two methods, they are used to approximate the derivatives
of certain 1D and 2D functions. For the convenience of
evaluation, a global error measure is defined as follows:

Error
𝑢
=

1

|𝑢|max
√
1

𝑁

𝑁

∑
𝑖=1

(𝑢(𝑒)
𝑖
− 𝑢(𝑛)
𝑖
)
2

, (8)

where 𝑢 can be 𝜕𝑓/𝜕𝑥, 𝜕𝑓/𝜕𝑦, 𝜕2𝑓/𝜕𝑥2, and 𝜕2𝑓/𝜕𝑦2 and
the superscripts (𝑒) and (𝑛) refer to the exact and numerical
solutions, respectively.

The quartic spline function is used as the weight function
𝑤
𝑖
:

𝑤
𝑖
(𝑑) =

{{
{{
{

1 − 6(
𝑑

𝑑
𝑚

)
2

+ 8(
𝑑

𝑑
𝑚

)
3

− 3(
𝑑

𝑑
𝑚

)
4

, 𝑑 ≤ 𝑑
𝑚
,

0, 𝑑 > 𝑑
𝑚
,

(9)

where 𝑑
𝑚
is the kernel radius taken as 2.1Δ𝑥 (Δ𝑥 is the space

interval) which is usually used in meshless methods.

4.1. One-Dimensional Case. Consider the following function:

𝑓 (𝑥) = (𝑥 − 0.5)
4 , 𝑥 ∈ [0, 1] . (10)

Figure 1 shows the first- and second-order derivatives esti-
mated by GFDM and MSPH and the exact results when

the domain is discretized into 21 equally spaced points. It is
seen that GFDM has better performance in both derivatives
especially for the points near boundaries. When the number
of points increases to 51, the results are similar as exhibited in
Figure 2. Error analysis shown in Table 1 indicates that GFDM
has higher accuracy. With increasing number of points, the
global error decreases.

4.2. Two-Dimensional Case. For the function

𝑓 (𝑥, 𝑦) = sin𝜋𝑥 sin𝜋𝑦, 𝑥, 𝑦 ∈ [0, 1] × [0, 1] , (11)

its first- and second-order derivatives together with estima-
tions by GFDM and MSPH are shown in Figure 3. In each
direction 21 points are employed. As expected, GFDM has
higher approximation accuracy than MSPH for both first-
and second-order derivatives as shown in Table 2.

5. Generalized Finite Difference Time Domain
Method for Computational Acoustics

For computational acoustics, the mostly used approach is
the FDTD method, which was originally designed for the
simulation of electromagnetics [1, 2]. As a finite difference
scheme, its applicability to complex problems suffers from
aforementioned difficulties, for which the generalized finite
difference can be a good alternative. In this section, together
with the basics of computational acoustics, a meshless
method is proposed, in which GFDM is used to discretize
the spatial derivatives and the leap-frog algorithm is used to
discretize the temporal derivatives. By analog with FDTD,
it is referred to as generalized finite difference time domain
(GFDTD) method and is expected to have advantages due to
its meshless property.

The governing equations for acoustic wave propagation
problems are

𝜌
0

𝜕k
𝜕𝑡
= −∇𝑝,

1

𝑐2
0

𝜕𝑝

𝜕𝑡
= −𝜌
0
∇ ⋅ k,

(12)
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Figure 1: Estimates of the first derivative (a) and second derivative (b) of function 𝑓(𝑥) = (𝑥 − 0.5)4 with 21 equally spaced points on [0, 1].

Table 1: Approximation errors in the derivatives of the function
𝑓(𝑥) = (𝑥 − 0.5)4.

Error (%) 𝜕𝑓/𝜕𝑥 𝜕2𝑓/𝜕𝑥2

GFDM with 21 points 0.77 5.81
MSPH with 21 points 0.77 6.02
GFDM with 51 points 0.11 1.55
MSPH with 51 points 0.11 1.61

Table 2: Approximation errors in the derivatives of the function
𝑓(𝑥, 𝑦) = sin𝜋𝑥 sin𝜋𝑦.

Error (%) 𝜕𝑓/𝜕𝑥 𝜕𝑓/𝜕𝑦 𝜕2𝑓/𝜕𝑥2 𝜕2𝑓/𝜕𝑦2

GFDM 0.29 0.29 2.87 2.87
MSPH 0.47 0.47 4.71 4.71

where 𝑝 is pressure, k is particle velocity, 𝜌
0
is the density of

the medium, and 𝑐
0
is the speed of sound.

5.1. Spatial Derivative Approximations by GFDM. The spatial
derivatives on the right-hand side of (12) are approximated
by GFDM. By solving (4) we get the approximations of 𝜕𝑓/𝜕𝑥
and 𝜕𝑓/𝜕𝑦. That is, the derivatives of variable 𝑓 at point
(𝑥
0
, 𝑦
0
) can be approximated by function values at points

inside the support domain centered at (𝑥
0
, 𝑦
0
) as

𝜕𝑓
0

𝜕𝑥
= −𝑚
0
𝑓
0
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝑚
𝑖
,

𝜕𝑓
0

𝜕𝑦
= −𝜂
0
𝑓
0
+
𝑁

∑
𝑖=1

𝑓
𝑖
𝜂
𝑖
,

(13)

where 𝑚
0
and 𝜂

0
are the difference coefficients for center

point and 𝑚
𝑖
and 𝜂

𝑖
are coefficients for other points in the

support domain. AsGFDMcan reproduce constant functions
[4], we have

𝑚
0
=
𝑁

∑
𝑖=1

𝑚
𝑖
, 𝜂

0
=
𝑁

∑
𝑖=1

𝜂
𝑖
. (14)

By taking both 𝑝 and k in (12) as 𝑓, the approximated spatial
operators in (12) are accordingly obtained.

5.2. Explicit Leap-Frog Scheme in GFDTD. Generally, the
temporal derivatives on the left-hand side of (12) can be
integrated by any time marching algorithms. Inspired by
the conventional FDTD method, the second-order accurate
explicit leap-frog scheme is used herein, in which two
variables 𝑝 and k are alternatively calculated. The velocity is
computed at the half time step and the pressure is calculated
at the integer time step [2]. After temporal approximations
the semi-discretization of (12) becomes

𝜌
0

k𝑛+1/2 − k𝑛−1/2

Δ𝑡
= −∇𝑝𝑛,

1

𝑐2
0

𝑝𝑛+1 − 𝑝𝑛

Δ𝑡
= −𝜌
0
∇ ⋅ k𝑛+1/2,

(15)

where superscript 𝑛 represents the time step. The leap-frog
scheme is conditionally stable and the time step Δ𝑡 should
satisfy the Courant-Friedrichs-Lewy (CFL) condition; that is,
Δ𝑡 ≤ Δ𝑥/(√dim ⋅ 𝑐

0
), where dim is the dimension of the

problem.
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Figure 2: Estimates of the first derivative (a) and second derivative (b) of function𝑓(𝑥) = (𝑥 − 0.5)4 with 51 equally spaced points on [0, 1].

Substituting (13) into the right-hand side of (15) as the
approximation of the first-order spatial derivatives, the full
discretized system of equations becomes

k𝑛+1/2
0

= k𝑛−1/2
0

+
Δ𝑡

𝜌
0

⋅ [(𝑚
0
𝑝𝑛
0
−
𝑁

∑
𝑖=1

𝑚
𝑖
𝑝𝑛
𝑖
) ,(𝜂

0
𝑝𝑛
0
−
𝑁

∑
𝑖=1

𝜂
𝑖
𝑝𝑛
𝑖
)]

𝑇

,

𝑝𝑛+1
0
= 𝑝𝑛
0
+ Δ𝑡𝜌
0
𝑐2
0

⋅ [(𝑚
0
𝑢𝑛+1/2
0

−
𝑁

∑
𝑖=1

𝑚
𝑖
𝑢𝑛+1/2
𝑖

)

+(𝜂
0
V𝑛+1/2
0

−
𝑁

∑
𝑖=1

𝜂
𝑖
V𝑛+1/2
𝑖

)] ,

(16)

where the particle velocity is a 2D vector k = [𝑢, V]𝑇.
By analog with FDTD, the full discretization scheme

is referred to as generalized finite difference time domain
(GFDTD) method.

6. Numerical Results

To validate the proposed GFDTD method, it is applied
to one- and two-dimensional wave propagation problems.
Three cases are presented. The first two examine the acoustic
wave propagation in one- and two-dimensional domain,
respectively, and the third one is a real case with different
types of boundary conditions. All the cases use (9) as the
weight function. The other parameters are 𝜌

0
= 1 kg/m3 and

𝑐
0
= 346.4m/s and the time interval Δ𝑡 is set to be 1 𝜇s to

satisfy the CFL condition. FDTD solutions are chosen as the
reference.

6.1. One-Dimensional Case. In this case 501 points are equally
spaced in the domain [0, 1]. In themiddle of it, there is a wave
source in Gaussian pulse form:

gp (𝑥) = 𝑒−25|𝑥−0.5|. (17)

As shown in Figure 4, the simulated results at two time
levels 𝑡 = 250 𝜇s and 500𝜇s have good agreement with the
FDTD solutions. Compared with FDTD, the relative errors
concerning the pressure 𝑃FDTD and 𝑃GFDTD are

Error
250
=

󵄩󵄩󵄩󵄩󵄩𝑃
FDTD − 𝑃GFDTD

󵄩󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝑃

FDTD󵄩󵄩󵄩󵄩2
= 0.267 ⋅ 10−2,

Error
500
=

󵄩󵄩󵄩󵄩󵄩𝑃
FDTD − 𝑃GFDTD

󵄩󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝑃

FDTD󵄩󵄩󵄩󵄩2
= 0.519 ⋅ 10−2.

(18)

6.2. Two-Dimensional Case. The Gaussian wave propagation
in two-dimensional domain is simulated in this section. The
length of the square domain is 0.1m and 101 points are
uniformly distributed in each direction. The wave source
starts from the middle of the domain. Figure 5 compares the
solutions of FDTDandGFDTDat 𝑡 = 20 𝜇s.The results along
𝑦 = 0.05m are shown in Figure 5(c). Again, good agreement
is observed and the relative error is less than 2%.

To show the advantage of the proposed GFDTD over the
conventional FDTD, irregular point distribution is examined.
All the points used above are allowed to have ±10% per-
turbation around their original locations to make the distri-
bution irregular, part of which is shown in Figure 6(a) and
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Figure 3: Exact (top) and estimated (a) 𝜕𝑓/𝜕𝑥 and (b) 𝜕2𝑓/𝜕𝑥2 of function 𝑓(𝑥, 𝑦) = sin𝜋𝑥 sin𝜋𝑦 by GFDM (middle) and MSPH (bottom).

the result is shown in Figure 6(b). The comparison of the
result along 𝑦 = 0.05m shown in Figure 6(c) indicates
that, with irregular distribution of computational points, the
Gaussian wave propagates as well as before.

In the GFDTD simulation of wave propagation with
irregular point distribution, the volume associated to each

point had better to be considered as analyzed at the end of
Section 2. In 2D case, the volume associated with a given
point is the area that the point dominates. Here we use
Delaunay triangulation andVoronoi diagram [17] to calculate
the area and the results are shown in Figure 7. The volume of
each point is shown in Figure 7(a). Due to the designed ±10%
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Figure 4: Gaussian wave propagation at two time points: (a) 𝑡 = 250 𝜇s and (b) 500 𝜇s.
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perturbation, the volume fluctuates around 1−6m2. Based on
Delaunay triangulation and Voronoi diagram, the area asso-
ciated with a red point is indicated by the area surrounded by
the blue lines as shown in Figure 7(b). To compare the results
with regular and irregular point distributions, the values on
regularly distributed points have to be firstly interpolated
by the calculated results with irregularly spaced points. The
third-order accurate cubic interpolation method [17] is used
herein. The relative error is

Error =
󵄩󵄩󵄩󵄩󵄩𝑃

iriegular − 𝑃regular
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑃
regular󵄩󵄩󵄩󵄩2

= 1.58 ⋅ 10−2. (19)

The relatively small error is due to the gentle irregular point
distribution.That is, if the point irregularity is small, the effect
of dV
𝑖
is negligible. This is consistent with Benito’s results [9–

11].

6.3. Two-Dimensional Case with Effect of Boundary Con-
ditions. In Sections 6.1 and 6.2, wave propagation inside
a domain is simulated. In this section, to show the effect
of boundaries, which is of high importance in transient
acoustics, sound wave propagation in a rectangular tube is
studied. Two different kinds of boundary conditions includ-
ing reflection and absorbing boundary are considered. At the
left edge of the computational domain there is a Gaussian
pulse as the source term. The upper and bottom boundaries
are reflection layers and the second-order Mur’s absorbing
boundary condition [18] exists at the right side boundary. In
this case, the same 𝜌

0
and 𝑐
0
are used as before and the time

interval Δ𝑡 is 1 𝜇s. Inside the computational domain 64 × 100
points with spatial interval Δ𝑥 = Δ𝑦 = 1mm are evenly
spaced.

6.3.1. Source Term. The left is a wave source with pressure
given by the Gaussian pulse:

gp (𝑡) = 𝑒−{(𝑡−𝑇)/0.29𝑇}
2

, (20)

where 𝑇 = 0.646/𝑓
0
and 𝑓

0
= 10KHz.

6.3.2. Reflection Boundary Condition. To simulate reflections
at the upper and bottomwall boundaries, themodel proposed
by Yokota et al. [19, 20] and widely used in room acoustics
is employed herein. In this model, the normal component
of particle velocity and the pressure of the points on the
boundary are supposed to satisfy the following condition:

knorm =
𝑝

𝑍norm
, (21)

where 𝑍norm is the normal acoustic impedance on the
boundary given by

𝑍norm = 𝜌0𝑐0
1 + √1 − 𝛼norm

1 − √1 − 𝛼norm
. (22)

Here the normal sound absorption coefficient 𝛼norm is taken
as 0.2 as in [19].

6.3.3. Absorbing Boundary Condition. At the right boundary,
second-order Mur’s absorbing boundary condition [18] is
applied:

1

𝑐
0

𝜕2𝑝

𝜕𝑥𝜕𝑡
+
1

𝑐2
0

𝜕2𝑝

𝜕𝑡2
+
1

2

𝜕2𝑝

𝜕𝑦2
= 0. (23)

By applying (12) to (23) and performing time integration, (23)
degenerates to

𝜕𝑝

𝜕𝑥
+
1

𝑐
0

𝜕𝑝

𝜕𝑡
−
𝑐
0
𝜌
0

2

𝜕𝑢

𝜕𝑦
= 0. (24)

When GFDTD is used, the discrete form of (24) is obtained
as

𝑝𝑛+1
0
− 𝑝𝑛
0

Δ𝑡
=
𝑐2
0
𝜌
0

2
(𝜂
0
𝑢𝑛+1/2
0

−
𝑁

∑
𝑖=1

𝜂
𝑖
𝑢𝑛+1/2
𝑖

)

− 𝑐
0
(𝑚
0
𝑝𝑛
0
−
𝑁

∑
𝑖=1

𝑚
𝑖
𝑝𝑛
𝑖
) .

(25)

6.3.4. Results. After applying the source term and the two
boundary conditions into our case, the wave is considered
to be propagating from left to right inside a tube and gets
absorbed at the end of it. Figure 8 shows the simulated results
after 200𝜇s with a color map image that clearly depicts the
pressure distribution. In Figure 9, the results after 350 𝜇s are
depicted and the absorbing boundary at the right edge leads
to no reflection.

7. Conclusion

A new derivation of the generalized finite difference method
(GFDM)with Taylor series expansion generates the same for-
mulation as its conventional derivation and clearly demon-
strates its relationship with meshless particle methods.
GFDM has better performance in derivative approxima-
tions than the particle methods. The proposed generalized
finite difference time domain (GFDTD) method has been
successfully applied to one- and two-dimensional acoustic
wave propagation problems with reflection and absorbing
boundary conditions. The numerical results are in line with
the FDTD reference solutions even with irregular point
distribution. The GFDTD method has high potentials in
solving transient acoustic problems with moving boundaries,
which deserves further studies.

Appendix

Conventional Derivation of GFDM

Considering the 2D case, for the sameTaylor expansion in (1),
we consider an energy norm 𝐵:

𝐵 =
𝑁

∑
𝑖=1

[[𝑓
0
− 𝑓
𝑖
+ ℎ
𝑖

𝜕𝑓
0
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+ 𝑘
𝑖

𝜕𝑓
0

𝜕𝑦
+ ℎ2
𝑖

𝜕2𝑓
0

𝜕𝑥2
+ 𝑘2
𝑖

𝜕2𝑓
0

𝜕𝑦2

+ ℎ
𝑖
𝑘
𝑖

𝜕2𝑓
0

𝜕𝑥𝜕𝑦
]𝑤
𝑖
]

2

,

(A.1)
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Figure 8: Soundwave propagation in a two-dimension tube. (a) FDTD results, (b) GFDTD results, and (c) the comparison along 𝑦 = 0.034m
at 𝑡 = 200 𝜇s.
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Figure 9: Soundwave propagation in a two-dimension tube. (a) FDTD results, (b) GFDTD results, and (c) the comparison along 𝑦 = 0.034m
at 𝑡 = 350 𝜇s.
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where 𝑓
𝑖
= 𝑓(𝑥

𝑖
, 𝑦
𝑖
), 𝑓
0
= 𝑓(𝑥

0
, 𝑦
0
), ℎ
𝑖
= 𝑥
𝑖
−𝑥
0
, 𝑘
𝑖
= 𝑦
𝑖
−𝑦
0
,

and 𝑤
𝑖
is weighing function with compact support.

The solution of the derivatives is obtained by minimizing
the norm 𝐵, that is,

𝜕𝐵

𝜕 {𝐷𝑓}
= 0, (A.2)

with

{𝐷𝑓}
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For example, the first equation is
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(A.4)

Equation (A.4) and the other four give the following
system:
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