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Abstract. A term is weakly shallow if each defined function symbol oc-
curs either at the root or in the ground subterms, and a term rewriting
system is weakly shallow if both sides of a rewrite rule are weakly shal-
low. This paper proves that non- E-overlapping, weakly-shallow, and non-
collapsing term rewriting systems are confluent by extending reduction
graph techniques in our previous work [SO10] with towers of ezpansions.

1 Introduction

Confluence of term rewriting systems (TRSs) is undecidable, even for flat
TRSs [MOJO06] or length-two string rewrite systems [SWO08]. Two decidable
subclasses are known: right-linear and shallow TRSs by tree automata tech-
niques [GT05] and terminating TRSs by resolving to finite search [KB70]. Many
sufficient conditions have been proposed, and they are classified into two cate-
gories.

— Local confluence for terminating TRSs [KB70]. It was extended to TRSs
with relative termination [HM11,KH12]. Another criterion comes with the
decomposition to linear and terminating non-linear TRSs [LDJ14]. It re-
quires conditions for the existence of well-founded ranking.

— Peak elimination with an explicit well-founded measure. Lots of works ex-
plore left-linear TRSs under the non-overlapping condition and its exten-
sions [Ros73,Hue80,Toy87,00s95,0ku98,0097]. For non-linear TRSs, there
are quite few works [T095,GOO98] under the non-E-overlapping condition
(which coincides with non-overlapping if left-linear) and additional restric-
tions that allow to define such measures.

We have proposed a different methodology, called a reduction graph [SO10],
and shown that “weakly non-overlapping, shallow, and non-collapsing TRSs are
confluent”. An original idea comes from observing that, when non- E-overlapping,

* The results without proofs are orally presented at IWC 2014 [SOO14].
** This work is supported by JSPS KAKENHI Grant Number 25540003.



peak-elimination uses only “copies” of reductions in an original rewrite se-
quences. Thus, if we focus on terms appearing in peak elimination, they are
finitely many. We regard a rewrite relation over these terms as a directed graph,
and construct a confluent directed acyclic graph (DAG) in a bottom-up manner,
in which the shallowness assumption works. The keys are, such a DAG always
has a unique normal form (if it is finite), and convergence is preserved if we
add an arbitrary reduction starting from a normal form. Our reduction graph
technique is carefully designed to preserve both acyclicity and finiteness.

This paper introduces the notion of towers of expansions, which extends a
reduction graph by adding terms and edges expanded with function symbols
in an on-demand way, and shows that “weakly shallow, non-E-overlapping, and
non-collapsing TRSs are confluent”. A term is weakly shallow if each defined
function symbol appears either at the root or in the ground subterms, and a
TRS is weakly shallow if the both sides of rules are weakly shallow. It is worth
mentioning:

— A Turing machine is simulated by a weakly shallow TRS [Klo93] (see Re-
mark 1), and many decision problems, such as the word problem, termination
and confluence, are undecidable [MOM12]. Note that the word problem is
decidable for shallow TRSs [CHJ94]. The fact distinguishes these classes.

— The non-FE-overlapping property is undecidable for weakly shallow
TRSs [MOM12]. A decidable sufficient condition is strongly non-overlapping,
where a TRS is strongly mnon-overlapping if its linearization is non-
overlapping [OO89]. Here, these conditions are the same when left-linear.

— Our result gives a new criterion for confluence provers of TRSs. For instance,

{d(z,z) = h(x), f(x) = d(z, f(c)),c = f(c), h(z) = h(g(x))}
is shown to be confluent only by ours.

Remark 1. Let @, X and I' (2 X)) be finite sets of states, input symbols and tape
symbols of a Turing machine M, respectively. Let § : QxI" — Qx I x{left, right}
be the transition function of M. Each configuration a---a;qa;41---a, €
I'*QI'*t (where ¢ € Q) is represented by a term g(a;---a1(8$),a;11- - an($))
where arities of function symbols ¢, a; (1 < j < n) and $ are 2, 1 and 0,
respectively. The corresponding TRS Rj; consists of rewriting rules below:

q(z,a(y)) — p(b(z),y) if 0(q,a) = (p, b, right),
q(a'(z),a(y)) — p(z,d'(b(y))) if 6(q,a) = (p, b, left)

2 Preliminaries

2.1 Abstract Reduction System

For a binary relation —, we use <, <+, =1 and —* for the inverse relation, the
symmetric closure, the transitive closure, and the reflexive and transitive closure
of —, respectively. We use - for the composition operation of two relations.



An abstract reduction system (ARS) is a directed graph G = (V,—) with
reduction — C V x V. If (u,v) € —, we write it as © — v. An element u of V
is (—-)normal if there exists no v € V with « — v. We sometimes call a normal
element a normal form. For subsets V' and V" of V, = |y xy» = =N (V' x V).

Let G = (V,—) be an ARS. We say G is finite if V is finite, confluent if
+* =% C =* . «* Church-Rosser (CR) if +* C —* - «* and terminating if
it does not admit an infinite reduction sequence from a term. G is convergent if
it is confluent and terminating. Note that confluence and CR are equivalent.

We refer standard terminology in graphs. Let G = (V, =) and G' = (V’, =)
be ARSs. We use Vigr and — ¢+ to denote V' and —', respectively. An edge v — u
is an outgoing-edge of v and an incoming-edge of u, and v is the initial vertex of
—. A vertex v is —-normal if it has no outgoing-edges. The union of graphs is
defined as GUG' = (VU V', — U —'). We say

— G is connected if (u,v) € «<+* for each u,v € V.

— G’ includes G, denoted by G’ D G, if V' 2V and —' D —.

G’ weakly subsumes G, denoted by G’ I3 G, if V' DV and «'" D —.
— G’ conservatively extends G, if V! OV and </ |y v = <.

The weak subsumption relation 3 is transitive.

2.2 Term Rewriting System

Let F be a finite set of function symbols, and X be an enumerable set of variables
with FNX = . T(F, X) denotes the set of terms constructed from F and X
and Var(t) denotes the set of variables occurring in a term t. A ground term is
a term in T(F, ). The set of positions in ¢ is Pos(t), and the root position is .
For p € Pos(t), the subterm of ¢ at position p is denoted by t|,. The root symbol
of t is root(t), and the set of positions in ¢ whose symbols are in S is denoted by
Posg(t) = {p | root(t|,) € S}. The term obtained from ¢ by replacing its subterm
at position p with s is denoted by t[s],. The size || of a term ¢ is |Pos(t)|. As
notational convention, we use s,t,u,v,w for terms, z,y for variables, a,b,c, f, g
for function symbols, p, ¢ for positions, and o, § for substitutions.

We define sub(t) as sub(z) = ) and sub(¢) = {t1,...,tn} il t = f(t1,...,tn).
A rewrite rule is a pair (¢,r) of terms such that £ ¢ X and Var(¢) O Var(r).
We write it £ — r. A term rewriting system (TRS) is a finite set R of rewrite
rules. The rewrite relation of R on T(F,X) is denoted by —. We sometimes
write s % t to indicate the rewrite step at the position p. Let's % t. It is a top

reduction if p = . Otherwise, it is an inner reduction, written as s St

Given a TRS R, the set D of defined symbols is {root(¢) | £ — e R}. The
set C of constructor symbolsis F'\ D. For T C T(F,X) and f € F, we use T;
to denote {s € T' | root(s) = f}. For a subset F’ of F, we use T'|p+ to denote the
union Usep/ T+

A constructor term is a term in T(C, X), and a semi-constructor term is a
term in which defined function symbols appear only in the ground subterms. A
term is shallow if the length |p| is 0 or 1 for every position p of variables in the



term. A weakly shallow term is a term in which defined function symbols appear
only either at the root or in the ground subterms (i.e., p # € and root(s|,) € D
imply that s|, is ground). Note that every shallow term is weakly shallow.

A rewrite rule £ — r is weakly shallow if ¢ and r are weakly shallow, and
collapsing if r is a variable. A TRS is weakly shallow if each rewrite rule is
weakly shallow. A TRS is non-collapsing if it contains no collapsing rules.

Ezample 2. A TRS R; is weakly shallow and non-collapsing.
Ry ={f(z,z) = a, f(z,g9(x)) = b, ¢ — g(c)} Hue80]

Let /1 — r1 and £5 — 79 be rewrite rules in a TRS R. Let p be a position
in ¢ such that ¢1|, is not a variable. If there exist substitutions 61,62 such that
lq]pb1 = €205 (resp. 41,04 §* l505), we say that the two rules are overlapping
(resp. E-overlapping), except that p = € and the two rules are identical (up to
renaming variables). A TRS R is overlapping (resp. E-overlapping) if it contains
a pair of overlapping (resp. E-overlapping) rules. Note that TRS R; in Example 2
is E-overlapping since f(c,c) ?* fle,g(c)).

3 Extensions of Convergent Abstract Reduction Systems

This section describes a transformation system from a finite ARS to obtain a
convergent (i.e., terminating and confluent) ARS that preserves the connectivity.

Let G = (V,—) be an ARS. If G is finite and convergent, then we use a
function |~ (called the choice mapping) that takes an element of V' and returns
the normal form [SO10]. We also use vl instead of |~ (v).

Definition 3. For ARSs G1 = (V1,—1) and G2 = (Va, —2), we say that G1UG»
1s the hierarchical combination of Go with Gy, denoted by G1 > Ga, if =1 C
(Vi \ Vo) x V7.

Proposition 4. Gy > G5 is terminating if both G1 and Gy are so.

Lemma 5. Let G > G2 be a confluent and hierarchical combination of ARSs.
If a confluent ARS G5 weakly subsumes G2 and Gy > G3 is a hierarchical com-
bination, then G1 > Gj is confluent.

. / * * 1
Proof. We use (V;,—;) to (.ienote Gi. Let a : v <5 g, U 26,5q, U I
u € V3, only —3 appears in «, and hence v —3-+«35 u” follows from the
confluence of G3. Otherwise, « is represented as u' <35 v' <% u =% v =% .
Since v =7 w' —%-+5 w” 7] v’ for some w’ and w” (from the confluence
of G1 » G3) and G2 C G3, we obtain v’ +3% v/ =7 w' <5 v’ 570" =5 .
Since G > G5 is a hierarchical combination, v = w’ if v € V3, and v/ = o/
3 ) 3
otherwise. Hence, v/ —7 - <4 w’. Similarly either v = w” or v" = u”. Thus,
u =7 -4 «7 u”. The confluence of G3 gives v/ —7 - =% - +% -+ u”, and
!/ * * 1
U = G5Gs " oG U - O

In the sequel, we generalize properties of ARSs obtained in [SO10].



Definition 6. Let G = (V,—) be a convergent ARS. Let v,v’ be wvertices
such that v # v and if v € V then v is —-normal. Then G', denoted by
G — (v = '), is defined as follows (see Fig. 1):

Vu{v},—=-uU{(v,v)}) ifveV andv €V (1)
(V,—= U{(v,v")}) if v, €V oand v L v (2)
V, =\ {(W,v") | v/ ="} U{(v,v")}) if v, €V oand v <* v (3)
(Vu{v, v}, = U{(v,0)}) ifvgV (4)
ayiaormel 4 i norinod v ! Vil ot o gl
o o o o <X s8¢0 a2
o &ﬁe‘r SR O“éf
(1) (2) (3) (4)

Fig. 1. Adding an edge to a convergent ARS

Note that v’ becomes a normal form of G’ when the first or the third trans-
formation is applied.

Proposition 7. For a convergent ARS G, the ARS G' = G — (v — V') is
convergent, and satisfies G' J G.

We represent G —o (vg — v1) —o (v1 = v2) —o -+ —o (Vp—1 — Vp) as G —o
(vo — v1 = -+ = v,) (if Definition 6 can be repeatedly applied).

Proposition 8. Let G = (V,—) be a convergent ARS. Let vg,v1,...,v, satisfy
v; #vj (for i # j), and one of the following conditions:

(1) vo €V, vy is —-normal, and v; € V implies v; <™ vy for each i(< n),
(2) Vo, ** yUn—1 g V.

Then, G' = G — (vg = v1 — -+ — v,) is well-defined and convergent, and
G’ 3 G holds.

4 Reduction Graphs

From now on, we fix C' and D as the sets of constructors and defined function
symbols for a TRS R, respectively. We assume that there exists a constructor
with a positive arity in C, otherwise all weakly shallow terms are shallow.

4.1 Reduction Graphs and Monotonic Extension

Definition 9 ([SO10]). An ARS G = (V,—) is an R-reduction graph if V is
a finite subset of T(F,X) and — C Ex

For an R-reduction graph G = (V,—), inner-edges, strict inner-edges, and

. < < 3
top-edges are given by S =505, i = =\ S, and S5 = 5 NS, re
R R R

spectively. We use G°<, G7¢, and G° to denote (V, €—<>>, (V, 7’$—>5>, and (V,5),



respectively. Remark that for R = {a = b, f(z) — f(b)} V = {f(a), f(b)}, and
= (V,{(f(a), f(b))}), we have G°< = G = G and G7¢ = (V, ).
For an R-reduction graph G = (V,—) and F’' C F, we represent G|p» =
(V,=|pr) where —|pr = —|y|,, xv. Note that —|c = —|y|,xv|, and — =
—|pU—=lviexvic

Definition 10. Let G = (V,—) be an R-reduction graph. The direct-subterm
reduction-graph sub(G) of G is (sub(V'),sub(—)) where

sub(V) = [U,ey sub(t) i

Sub( )—{(8“ ) ‘f(sla"'vsn) — f(tlv"'vtn)v 54 #tiv 1 élgn}
An R-reduction graph G = (V,—) is subterm-closed if sub(G7¢) C G.

Lemma 11. Let G = (V,—=) be a subterm-closed R-reduction graph. Assume
that (1) sltly ©° 5[ty and (2) for any p' < p, if (sltlp)ly <" (5[]l then

(s[tlp) | 5% (s[t'],)]pr. Then t <% t'.

Proof. By induction on |p|. If p = ¢, trivial. Let p = iqg and s = f(s1,...,5n).
Since slt], al s[t'] from the assumptions, the subterm-closed property of G
implies s;[t], >* si[t']y- Hence, t <»* ¢’ holds by induction hypothesis. O

Definition 12. For a set F' (C F) and an R-reduction graph G = (V,—), the
F’-monotonic extension Mg (G) = (V1,—1) is
{Vl ={f(s1,...,sn) | fEF, s1,...,5, €V},
= {(f(s ) ft)) EVIX VL | 85— t)

Example 13. As a running example, we use the following TRS, which is non-
E-overlapping, non-collapsing, and weakly shallow with C' = {¢g} and D = {¢, f}:

Ry = {f(z,9(x)) = ¢°(x), ¢ = g(c) }.
Consider a subterm-closed Rp-reduction graph G = {{c, g(c), g*(c)}, {(c ,g( N}

In the sequel, we use a simple representation of graphs as G = {c - g(c), g%(c)}.
The C-monotonic extension M¢(G) of G is Mco(G) = {g(c) — ¢*(c), ¢3(c)}.

Proposition 14. Let Mp:/(G) = (V',=') be the F'-monotonic extension of an
R-reduction graph G = (V,—). Then,

(1) if G is terminating (resp. confluent), then Mp:/(G) is.
(2) If G is subterm-closed, then for u,v € V|g/, we have (a) u,v € V', and (b)
u v implies u <" v.

(3) sub(Mp/(G)) C G if F' contains a function symbol with a positive arity.

4.2 Constructor Expansion

Definition 15. For a subterm-closed R-reduction graph G, a constructor expan-
sion Mc(G) is the hierarchical combination G|p » Mc(G) (= G|p U Mc(G)).

The k-times application of Mc to G is denoted by Ek(G).



Ezxzample 16. For G in Example 13, the constructor expansions FCZ(G) of G
(i =1,3) are

Me(G) = e = g(e) = 4%(0), 4*(0))

Mc™(G) = {c— g(c) = g*(c) = g°(c) = g*(c), ¢°(c)}-
Lemma 17. Let G be a subterm-closed R-reduction graph. Then,

(1) sub(Mc(G)7) C G, and
(2) =Gz © hpq)e that is, G E G°UMp(G),

Proof. Let G = (V,—). We refer Mc(G) by G' = (V',—'). Thus, for v € V',
root(v) € C. Note that Mc(G) = G|p > Mc(G) = (V' UV, =" U—=|y|,xv)-

(1) Due to sub(M¢(G)7¢) = sub(G7¢|p) U sub(M¢(Q)), it is enough to show
sub(G7¢|p) C G and sub(M¢(G)) E G. The former follows from the fact
that sub(G7¢|p) C sub(G7¢) and G is subterm-closed. The latter follows
from sub(Mc¢(G)) C G.

(2) Obvious from Proposition 14 (2). O

Lemma 18. For a subterm-closed R-reduction graph G,

(1) GE Mc(G),

(2) Mc(G) is subterm-closed, and

(3) Mc(G) is convergent if G is convergent.

Proof. Let G = (V,—). Note that Mc(G) = (G|p » Mc(G)) = (V U

VMC(G)v —>|D U _>MC(G)>~

(1) Since =|y|oxvie € —?Gixle have —|y|,xvi)e C H*MC(G) (by Proposi-
tion 14 (2)), so that G C M¢(G).

(2) By Lemma 17 (1), sub(M¢(G)7¢) C G. Combining this with G T M¢(G),
we obtain sub(Mc(G)7¢) C Mc(G). Thus, Mc(G) is subterm-closed.

(3) If we show G' = (V|c, =|vioxvie) E Mc(G), the confluence of Mc(G) =
G|p » M¢c(G) follows from Lemma 5, since G = G|p > G’ and M¢(G) is
confluent by Proposition 14 (1). Since G is subterm-closed, we have V|c C
Vie(e) and —|yioxvie € <—>*MC(G) by Proposition 14 (2). Hence, G’ C
Mc(G). The termination of Mc(G) follows from Proposition 4, since G|p
and Mc(G) are terminating.

O

Corollary 19. For a subterm-closed R-reduction graph G and k > 0, we have:
(1) GE MG (@),

(2) mk(G) is subterm-closed.

(3) Mc (G) is convergent, if G is convergent.

Remark 20. When an R-reduction graph G is subterm-closed, we observe that

ijic’“(c:) from %GICQH}FMC(G) by Proposition 14 (2).

O GUMe(G)U--UME (G)
Proposition 21. Let G be a subterm-closed R-reduction graph. Then,
M (G) T Mc"(G) form >k > 0.

Proof. By M¢" (G) = ch_k(mk(G)) and Corollary 19 (1) and (2). O



5 Tower of Constructor Expansions

From now on, let GG be a convergent and subterm-closed R-reduction graph. We
call Mp(Mc (G)) a tower of constructor expansions of G for i > 0. We use
Ga, = (Va,,—2,) to denote Mp(Mc'(G)).

5.1 Enriching Reduction Graph

We show that there exists a convergent R-reduction graph G with Mr(G) C G
such that G, is a conservative extension of GGy for large enough .

Lemma 22. For a convergent and subterm-closed R-reduction graph G, there
exist k (> 0) and an R-reduction graph G1 satisfying the following conditions.

i) G1 is convergent, and consists of inner-edges.

i) G1 C Gy,.
i) u 5 v implies u <7 v for each u,v € Vi and i (>0).
iw) Mpr(G) C Gy.

Proof. Let Gy := Mp(G) and k := 0. We define a condition iii)” as “iii) holds
for all i (< k)”. Initially, i) holds by Proposition 14 (1) since G is convergent. ii)
and iv) hold from G; = Mp(G) = Go,, and iii)’ holds from k = 0.

We transform G; so that i), ii), iii)’ and iv) are preserved and the number
|V1/4>7| of connected components of G; decreases. This transformation (G1, k) -
(G', k') continues until iii) eventually holds, since |V; /47| is finite.

For current G and k, we assume that i), ii), iii)” and iv) hold. If G; fails iii),
there exist ¢ with i > k and u,v € V; such that u # v and (u,v) € <3, \ <7. We
choose such k' as the least . Remark that G is convergent from i), and Gs,,
is convergent from Corollary 19 (3) and Proposition 14 (1). Let |, and |, , be
the choice mappings of GG1 and Gy, , respectively. Since G; E Gy, from ii) and
Proposition 21, we have (ul,,v,) € 5, and u), # vl,. From the convergence
of Ga,,, we have

{Uh =Ug 2, U1 T2, T2, Ups T2, T2, Up = (Uil)izk,

I I
vl = o 22, V1 =22, " T2, Ums —r2,, 0 72, Um = (Uh)igk/
where (n’,m’) is the smallest pair under the lexicographic ordering such that
Up’ = V. Note that u;’s and v;’s do not necessarily belong to V;. We define a
transformation (Gi,k) F (G, k') with G} to be
G1—o (ug = -+ = uy) if there exists (the smallest) j such that
0<j<n,u; €Vi,and u; $7 u
G1— (vg = -+ = vyr) if there exists (the smallest) j’ such that
0<j ' <m vy eVi, and vjs 45 v
G —o (ug = -+ = Up/) — (Vg = -+ = Upy) otherwise.
Since the condition (1) of Proposition 8 holds, i) is preserved. From G; C G}
iv) holds, and ii) G| € Go,, by Proposition 21. If ¥’ = £, iii)” does not change.
If k" > k, then v <5 v implies u ] v for i with & <4 < &/, since we chose £’
as the least. Hence iii)’ holds. In either case, |V;/4>}| decreases. O



Ezample 23. For G in Example 13, Lemma 22 starts from Mpg(G), which is
displayed by the solid edges in Fig. 2. G; is constructed by augmenting the
dashed edges with k = 1.

c fle,e) = flg(e),c) f(g*(c),0)
! !
g(f) fle,9(e)) = f(g(c),9(c) --» f(g*(c

~—
Q
—~
o
~
=

~
Q
S
—~
(3]
~
—

gQI(C) fle,g*(e)) = flg(c), g%(c)) -=» flg*(c

Fig. 2. 1 constructed by Lemma 22 from G in Example 13

Corollary 24. Assume that Gy = (Vi,—1) and h (> 0) satisfy the condi-
tions 1) to w) in Lemma 22. Let vy, v1,...,v, satisfy v; # vj for j # j' and
Vj—1 (<—>’2‘k ﬂs—;) v; for 1 < j < n. If either (1) vg € Vi and vy is —1-normal,
or (2) vo, -+ ,vn—1 € Vi and v, € Vi, then the conditions i) to i) hold for
Gy =G1 — (vg = vy = -+ = vy) and k' = max(k, h).

Proof. For (1), from iii) of Gy, v; € V4 implies v; <>} vg. For either case, from
i) and iv) of G and Proposition 8, G1+ satisfies i) and iv). Since v;_1 <3, vj,
G1- immediately satisfies ii). Since vy € V; or v, € Vi, G1/ satisfies iii). a

5.2 Properties of Tower of Expansions on Weakly Shallow Systems

Lemma 25. Let R be a non-E-overlapping and weakly shallow TRS. Let G =
(V, =) be a convergent and subterm-closed R-reduction graph, and let { — r € R.

(1) If bo <5, L6, then xo o ‘@ x0 for each variable x € Var(().
C
(2) For a weakly shallow term s with s ¢ X, assume that xo <—>*M ‘@ x0 for
Cc

each variable x € Var(s). If so € Va,, then so <5 _s0 for some k (>1).
(3) If bo <35 wu, then there ewist a substitution 6 and k (> i) such that

€< * O\ k * ;
u (? N<3,)* 40 and xo ~ 5@ 20 for each variable x € Var(¢).

Proof. Note that G, is convergent by Corollary 19 (3) and Proposition 14 (1).

(1) Let £ = f(fr,...,6n). For each j (1 < j <n), o637 . ;0. Since Mc'(G)

1
is convergent by Corollary 19 (3), there exists v; such that ;o _>}k\/Ti(G)
C
vj <_>;\47i(c) £;6. Since M¢'(G) is subterm-closed by Corollary 19 (2) and
(e}
¢; is semi-constructor, we have zo <«

*

= ©) x0 for every x € Var(¢) by

Lemma 11.



(2) First, we show that for a semi-constructor term ¢ if to € Vo there

Mc'(G)’
exists k (> i) such that to <—>”J‘w k@) tf by induction on the structure of
C

t. If t is either a variable or a ground term, immediate. Otherwise, let ¢ =

flty,...,t,) for f € C. Since WCZ(G) is subterm-closed, tjo € Vmi(G)

) t;0 for some k; >

for

each j. Hence, induction hypothesis ensures t;0 <>*
J Mg (

i. Since MC(EI(G)) C MCH_I(G) and Proposition 21, we have to <~ k@)
(e}

t for k =1+ max{ky,..., kn}.

We show the statement (2). Since s € X, s is represented as f(sy,...,Sy)

where each s; is a semi-constructor term in VM—Ci @) Since there exists k

(> i) such that s;o HW’“(G) s;0, we have so HMF(Wk(G)) s0.

(3) Since G, is convergent, there exists v with fo =3 v <3 u. Here, u —3 v

and Lo —5 v imply u (=, ﬂ?)* v and lo (—,, ﬂ?)* v, respectively.
Since R is non-E-overlapping, fo —35 v has no reductions at Posp(¢). By
a similar argument to that of (1), we have ¢|,0 o @ v|, for each p €
C

Posx (£).

Let = € Var(£). Since M¢'(G) is convergent from Corollary 19 (3), we have
xo = Lo, ~ @) x i@ v|p for each p € Posg,y(¢) by taking 0 as
20 = w0y @) Since ¢ is weakly shallow, by repeating (2) to each step

in vl _>7\40i(G) z6, there exists k with v<>3 (6. We have u (? N3)*
v (? N <3, )" £0 by Proposition 21. O

6 Bottom-Up Construction of Convergent Reduction
Graph

From now on, we assume that a TRS R is non-FE-overlapping, non-collapsing,
and weakly shallow. We show that R is confluent by giving a transformation of
any R-reduction graph G (possibly) containing a divergence into a convergent
and subterm-closed R-reduction graph G4 with Go C G4. The non-collapsing
condition is used only in Lemma 27. Note that non-overlapping is not enough to
ensure confluence as Ry in Example 2. Now, we see an overview by an example.

Ezample 26. Consider Ry in Example 13. Given Gy = {f(g(c),¢) + f(c,c) —
f(e,g9(c)) = ¢3(c)}, we firstly take the subterm graph sub(Gg) and apply the
transformation on it recursively to obtain a convergent and subterm-closed re-
duction graph G. In the example case, sub(Gy) happens to be equal to G in
Example 13, and already satisfies the conditions. Secondly, we apply Lemma 22
on Mp(G) and obtain G; in Example 2. As the next steps, we will merge the
top edges T; in GoUG into Gy, where T} = {f(c, g(c)) = ¢*(c),c = g(c)}. Note
that top edges in G is necessary for subterm-closedness. The union G; U T
is not, however, confluent in general. Thirdly, we remove unnecessary edges
from 77 by Lemma 27, and obtain T (in the example T" = T}). Finally, by



Lemma 28, we transform edges in T into S with modifying G; into G1- so that

Gy =Gr|lpUSU MC(Mic]C (@)) is confluent (k' > k). The resultant reduction
graph Gy is shown in Fig. 3, where the dashed edges are in S and some garbage
vertices are not presented. (See Example 30 for details of the final step.)

¢ fle,e) = flg(e),0) Fg*(e),0)
. 1 1 +
g(e)  [fle,g(0)) = flg(e).g(e)) — Flg*(c),g(c))

! !
l(0) fle,g°(c)) = f(g(e),g%(c)) = f(g*(c),g°(c))
(

!
@)= g'c) — ¢’ - f(g°(0),4%()

92

Fig. 3. G4 constructed by Lemma 29 from Go in Example 26

6.1 Removing Redundant Edges and Merging Components

For R-reduction graphs Gy = (Vi,—1) and 71 = (Vi,—7,), the component
graph (denoted by T7/G1) of Th with G is the graph (V, —y) having connected
components of G as vertices and —7, as edges such that

V= {[v]e;

Lemma 27. Let G; = (Vi,—1) be an R-reduction graph obtained from
Lemma 22, and let Ty = (Vi,—1,) be an R-reduction graph with —p, = i>T1.
Then, there exists a subgraph T = (V1,—71) of Ty with —p C —1, that satisfies
the following conditions.

veVi}, —v={(luleg Vo) | (u,v) € =5r

(1) (1 Uen)" = (1 Uep)"
(2) The component graph T /Gy is acyclic in which each vertex has at most one
outgoing-edge.

Proof. We transform the component graph T;/G; by removing edges in cycles
and duplicated edges so that preserving its connectivity. This results in an acyclic
directed subgraph T' = (V;, =) without multiple edges.

Suppose some vertex in 7'/G has more than one outgoing-edges, say fo —
ro and 0 —, 1’0, where lo <7 00, ro,70 € V; and ¢ — r.0' — ' € R.
Since R is non-E-overlapping, we have £ = ¢ and r = /. By the condition ii) of
Lemma 22, o <5 /0 holds. Since R is non-collapsing, Lemma 25 (1) and (2)
ensure ro <3 r for some j (> k). By the condition iii) of Lemma 22, ro 37 r6.
These edges duplicate, contradicting to the assumption. a

In Lemma 27, if —7 is not empty, there exists a vertex of T'/G; that has
outgoing-edges, but no incoming-edges. We call such an outgoing-edge a source
edge. Lemma 28 converts T to S in a source to sink order (by repeatedly choosing
source edges) such that, for each edge in S, the initial vertex is —;-normal.

Lemma 28. Let Gy, S, and T be R-reduction graphs, where Gy and k satisfy
the conditions i) to iv) of Lemma 22. Assume that the following conditions hold.



v) Vg =Vp = Va,, ¢ = i)g, —r = i>T, and —g N —p = 0.

vi) The component graph (S UT)/G1 is acyclic, where outgoing-edges are at
most one for each vertex. Moreover, if [u].: has an incoming-edge in T/Gy
then it has no outgoing-edges in S/Gj .

vii) u is —1-normal and ussiv for each (u,v) € —4.

When —7 # (), there exists a conversion (S,T,Gy,k) F (S, T',Gy/, k') that
preserves the conditions i) to w) of Lemma 22, and conditions v) to vii), and
satisfies the following conditions (1) to (3).

(1) Gy is a conservative extension of Gy.
(2) (cpU)* C(p Usrg Usry)™.
(3) =7 > [=7]

Proof. We design I~ as sequential applications of -y, F,., and . in this order. We
choose a source edge (¢o,ro) (of T/G1) from T. We will construct a substitution
6 such that (¢o)l, (6—}:> N3 )" 00 and (ro)l, (E—;> N3, )" (% N<3,,)" o for
enough large k’. The former sequence is added to G by Fy, the latter is added
to Gy by k., and k. removes (¢o,rc) from T and adds (16,76) to S.

We have lo —7 (€o)], by i), and lo <+3 ({o)|, by ii). From Lemma 25 (3),
there are k¢ > k and a substitution 6 such that zo —*__, 20 for each z €

Mc™(G)

Var (), (bo)d, = uo ? U ? ? un =00, and uj_1 <5 , u; for each j(< n).

(F¢) We define (S,T,G1,k) b (S,T,Gqe, k%) by Gie = Gy —o (ug — +++ — uy,)
to satisfy (fo)], ], €6 such that £6 is G.-normal. Since ug is —1-normal,
the case (1) of Corollary 24 holds, so that k-, preserves i) to iv) for Gi¢ and
k*. (1) and (2) are immediate. From (1), vi) is preserved. Since [(o]: does
not have outgoing edges in S by vi), vii) is preserved.

(k) We define (S,T,Gqe, k%) . (S,T,G1,K'). Let Gye = (Vie,—qe). Since

ro HL’“Z(G) z6 by Proposition 21 and ro € V; ,, we obtain 7o <—>§k, ré for
= ,

some k' > k‘ by Lemma 25 (2). We construct Gy to satisfy (ra)l,e <33, 6.
Since the confluence of G3,, follows from Corollary 19 (3) and Proposition 14
(1), we have the following sequences.

(ro)lie =g =, w1 5, *+* g, Un =,
Tl =vg =y, V1 g, g, Um =,

where we choose the least n satisfying w,, = v,,. There are two cases accord-

ing to the second sequence.

(a) If v; € Vie for some i, we choose ¢ as the least. If i = 0, then Gy = Gy
Otherwise, let G/ := G1¢ — (vg — v1 — --+ — v;). Since Gy satisfies
the case (2) of Corollary 24, b, preserves i) to iv). Since ug <3 , v; and

k
ug, v; € Vie, ug <3, v; by iii). Thus, (ro)le <7, 0.
(b) Otherwise (i.e., v; € Vi« for each i), let
Gy :=Gre —o (ug = up =+ — Uy)
{Gl’ = G1r —o (Vg = V] =+ = Upy)-



Since ug is Gye-normal and u; € Vie implies ug <7, u; (by iii) of Gy,

Gy and k' satisfy 1) to iv) by Corollary 24. Let G1» = (Vi», —1/). Since

v; € Vi for each i ( < m) and v, = u, = v € Vi, Gy» and k' also

satisfy 1) to iv) by Corollary 24. By construction, (ro)l. <>}, r6 holds.
Since S and T do not change, b, keeps v), (1), and (2). Lastly, vi) and vii)
follows from (1).

(Fe) We define (S,T,G1/, k') Fe (S",T',G1r, k'), where Vs = Vg,,, Vpr = Vg,
—g = =5 U{(0,r0)}, and —1 = —r \ {(lo,ro)}. Since (bo,ro) is a
source edge of T/Gy, . preserves vi). Conditions i) to v), (1) and (3) are
trivial. Since o <7, | (Co)ly <3¢, 0 =g 10 &5, (ro)lye €35, ro implies
(lo,r0) € <51,¢,,» we have (2). vii) holds from vi). O

6.2 Construction of a Convergent and Subterm-Closed Graph

Lemma 29. Let Gy = (Vy,—¢) be an R-reduction graph. Then, there exists a
convergent and subterm-closed R-reduction graph G4 with Gy CE Gy.

Proof. By induction on the sum of the size of terms in Vj, i.e., Xyev, |v|. If Gy
has no vertex, we set G4 = Gy, which is the base case. Otherwise, by induction
hypothesis, we obtain a convergent and subterm-closed R-reduction graph G
with sub(Go) C G. We refer to the conditions i) to vii) in Lemma 28.

Let Gy = (Vi,—4) and k be as in Lemma 22. Let T' be obtained from Gy
and T1 = (Vi, =24 U —>G5> by applying Lemma 27.

Let S = (V1,0). For G and k, i) to iv) hold by Lemma 22. vi) holds by
Lemma 27 (2) and —g = 0, and vii) trivially holds. Starting from (S, T, Gy, k),
we repeatedly apply - (in Lemma 28), which moves edges in 7" to S until — = 0.
Finally, we obtain (S, (V1/,0), G1/, k') that satisfies i) to vii) and (1) to (3) in
Lemma 28, where G/ = (V1/,—,,) and Vg = V3. From Lemmas 27 and 28 (1)
and (2), (¢ Usrge Usrge)" = ($31 U )" C (21, Urg)". Note that Gy is
convergent by 1).

Let G5 = (V3,—3) be S"UGy . This is obtained by repeatedly extending G
by G1r —o (u — v) for each (u,v) € =4/, since in each step vii) is preserved; u is
—.-normal and u¢#7,v. Thus, the convergence of G5 follows from Proposition 7.

We show Gy C Gs. Since G C 77 C Gy UT C Gy U S’ (by Lemmas 27
and 28) and Mp(sub(Go)) C Mp(G) C G; C Gy (by sub(Gp) C G and iv)),
GO Q GS U MF(Sub(Go)) E Sl U G1/ = Gg.

Let G4 = (V4,—,) be given by G4 := G3|p > ]\/[c(Miclc (@)). We show
Go C Gy by showing G3 C Gy. Since G1» C G, by ii) where Gg,, contains no
top edges, we have Vi/|[c C Va,,[c and =, |c C (<—>2k, lc)*. Since =, , |c =

— , we have Glf\c C (Vi,0) U MC(MC (@)). Thus, Gy = Gy/|p U
Mo (M&* (@)
Gule C Gylp UMC(MC (G)) By 8’ = 9'|p, we have G3 = S' UGy C

S'lpUGv|p U MC(MC (G)) = Ga.
Now, our goal is to show that G4 is convergent and subterm-closed. The

convergence of G4 = Gs|p > MC(MC (@)) is reduced to that of G3 = G3|p >



(V3lc, —3|c) by Proposition 4 and Lemma 5. Their requirements are satisfied

from (Vz|c, —slc) = (Virle, =1/le) T Mc(mk/ (@)) by ii) and the convergence

of Mc(Mc /(G)) by Corollary 19 (3) and Proposition 14 (1). y
We Wlll prove that Gy is subterm-closed by showing sub(G7°) C MC (G)

and M2" (G) © Gi Note that sub(G7F) = sub((5f|D)# U (Gy|p)?e U

(Mc(mk/(G)))¢s) C sub(S'7¢) Usub(Gy/|p) UMC (G). We have sub(S'7¢) =
(sub(V1/),0). Since Gg,, has no top edges and Gp C Ga,, by ii), sub(Gl/) C

sub(Gl,, ) = sub(Mp (Mg (G))) C Mc" (G). Thus, sub(G75) C NS ().
It remains to show MC (G) C Gy, Wthh is reduced to G|p T G4 from

M70k (G)=G|puy Mc(mk _1(G’)) MC(MC (G)) C Gy, and Proposition 21.
Since G|p € G C G° U Mp(G) by Lemma 17 (2), it is sufficient to show that
G* E G4 and MF(G) E G4.

Obviously, Mp(G) C G1» C G3 £ G4 holds, since Mp(G) C G/ by iv). We
show G° C Gy. Since Vg C Vi, () by Proposition 14 (2), we have Vge = Vg C
Vip(e) © Vir € V3 C Vi. By Lemmas 27 (1) and 28 (2), —¢. C (¢, U<rg)”

holds, and by ii) we have “Gule S HLc(mk,(G)). Hence, = C (<—>G1,|D U

g U )" = ¢, Therefore Gy is subterm-closed. O

Me (M (@)
Ezample 30. Let us consider applying Lemma 29 on G; and T in Example 26,
where £ = 1. The edge ¢ — g¢(c¢) in T is simply moved to S. For the edge
fle,g(c)) = g2(c) in T, k¢ adds f(g°(c),g%(c)) — f(g%(c),g%(c)) to G1. b, adds
g3(c) — g*(c) — g°(c) to Gy and increases k to 3. . adds f(g°%(c), g%(c)) — g°(c)
to S. Since MC(WB(G)) is {g(c) = g%(c) = -+ = g*(c) — ¢°(c), ¢%(c)},
Gy = (SUGH|p) > Mc(Mc (G)) is as in Fig. 3.

Theorem 31. Non-E-overlapping, weakly shallow, and non-collapsing TRSs
are confluent.

Proof. Let uw <5 s —F% t. We obtain G4 by applying Lemma 29 to an R-
reduction graph Gy consisting of the sequence. By Gy C (G4 and the convergence
of G4, ulg, = tlg,. Thus we have u —7% s’ <} t for some s'. O

Corollary 32. Strongly non-overlapping, weakly shallow, and mnon-collapsing
TRSs are confluent.

7 Conclusion

This paper extends the reduction graph technique [SO10] and has shown that
non-E-overlapping, weakly shallow, and non-collapsing TRSs are confluent.

We think that the non-collapsing condition can be dropped by refining the
reduction graph techniques. A further step will be to relax the weakly shallow
to the almost weakly shallow condition, which allows at most one occurrence of
a defined function symbol in each path from the root to a variable.
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