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Abstract. Statistical cryptanalysis is one of the most powerful tools to
analyze symmetric key cryptographic primitives such as block ciphers.
One of these attacks, the differential attack has been demonstrated to
break a wide range of block ciphers. Block cipher proposals previously
obtain a rough estimate of their security margin against differential at-
tacks by counting the number of active S-Box along a differential path.
However this method does not take into account the complex cluster-
ing effect of multiple differential paths. Analysis under full differential
distributions have been studied for some extremely lightweight block
ciphers such as KATAN and SIMON, but is still unknown for ciphers
with relatively large block sizes. In this paper, we provide a framework
to accurately estimate the full differential distribution of General Feis-
tel Structure (GFS) block ciphers with relatively large block sizes. This
framework acts as a convenient tool for block cipher designers to deter-
mine the security margin of their ciphers against differential attacks. We
describe our theoretical model and demonstrate its correctness by per-
forming experimental verification on a toy GFS cipher. We then apply
our framework to two concrete GFS ciphers, LBlock and TWINE to de-
rive their full differential distribution by using super computer. Based on
the results, we are able to attack 25 rounds of TWINE-128 using a distin-
guishing attack, which is comparable to the best attack to date. Besides
that, we are able to depict a correlation between the hamming weight
of an input differential characteristic and the complexity of the attack.
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Based on the proposed framework, LBlock and TWINE have shown to
have 178 and 208-bit security respectively.

Keywords: Differential attack, GFS , differential distribution , LBlock,
TWINE

1 Introduction

Block ciphers have been playing an important role in information secu-
rity to achieve confidentiality and integrity. Recently, block ciphers with
lightweight designs start attracting research attention due to their wide
range of potential applications such as RFID, wireless sensor networks
and etcetera. These lightweight block ciphers usually have small block
sizes which are less or equal to 64 bits and a smaller key size, filling in
the gap where the traditional ciphers such as AES are not applicable
anymore. The General Feistel Structure (GFS) is among one of the most
popular designs that have received a lot of analysis. Recently proposed
lightweight ciphers such as LBlock [22] and TWINE [21] belong to this
design category.

Among all the methods to analyze block ciphers, differential attacks
are one of the most powerful methods since its invention back in 1990 [5].
The attack is statistical in nature and its success relies on finding long
differential paths with high probability. For a long time, one single ad hoc-
found path is usually used in the differential cryptanalysis. Thus the study
of the differential path has not received much attention until recently. First
in papers [8] and [9], multiple differential cryptanalysis was theoretically
analyzed to show that the attacker generally has more power in building
the differential distinguisher if he or she has more knowledge in the differ-
ential distribution. Later in paper [1], the author analyzed an extremely
lightweight block cipher, KATAN32 by computing the whole differential
distribution, and indeed it further increased the number of rounds that
can be attacked compared to the previous results. The downside of using
the whole differential distribution is that the attacker is unable to filter
subkey bits, which may cause the complexity to increase. Thus there exists
another branch of research focusing more on the key recovery phase and
key relation such as related key attacks. Representative results include
[6] and [19] which will not be addressed further in this paper since our
focus is only the single key model. The full differential distribution can be
computed if the block size is less than 32 bits, as shown in [1]. However,
for ciphers with large block sizes, it is currently computationally infeasible
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to construct the full distribution. Thus to a large extent, the method to
derive an accurate full distribution remains unexploited.

From the provable security’s point of view, it is desirable to derive a
security bound on the number of rounds that is secure against differential
attack. Currently for block ciphers with S-Box-based design, counting the
number of active S-Box [18], which is the number of S-Box on the differ-
ential path, is the common way to evaluate the security. In the proposal of
both LBlock and TWINE, the number of active S-Box multiplied by the
largest differential probability of the S-Box is used to evaluate security
margin. For more complicated designs which involves MixColumn opera-
tion as in AES, paper [17] provided a tight lower bound for the minimum
number of active S-box for several GFS ciphers. Although counting the
number of active S-Box may be a good approximation for one single path,
the actual differential distribution involves complicated clustering effects
which cannot be addressed by this model. Thus the security margin eval-
uated in this way may not be accurate, or in other words, the lower bound
may be underestimated.

In this paper, we contribute mainly in two aspects. Firstly, we ad-
dress the full differential distribution for GFS ciphers with relatively large
block sizes by providing both theoretical and experimental frameworks.
We partition the block according to the length of the S-Box input, which
is the size of data blocks processed by these ciphers. Then we theoretically
model the computation of the full differential distribution for any number
of rounds and verify our evaluation by using a toy GFS cipher to show that
the truncated differential distribution can be used to accurately evaluate
the concrete differential distribution. Furthermore, due to the truncated
differentials, the ability to store all the internal states allow us to per-
form quick computing of the distribution even for large rounds. By taking
advantage of the supercomputer, we can perform the experiment to ob-
tain full differential distributions for every input difference. As a result,
our experiments have provided us with several new findings regarding the
differential attack. Firstly, we discovered that input differences with rela-
tively small hamming weights tend to lead to better distinguishers. Based
on our framework, we evaluate two GFS ciphers LBlock and TWINE to
derive the best differential attack so far. Especially for TWINE-128, we
are able to obtain a comparable result by attacking 25 rounds. Also, we
are able to provide the precise security margins against differential attacks
for the full rounds of both LBlock and TWINE for the first time. This is
by far the most accurate security proof for GFS designs to date.
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Outline of the paper. Section 2 provides the theoretical model to com-
pute the complete differential distribution for truncated GFS with bijec-
tive S-box design. Experiments on the toy model are also provided in
this Section to verify the correctness of the model. In Section 3, concrete
evaluations on LBlock and TWINE are provided. Lastly, we conclude our
paper with some final statements.

2 Differential characteristic revisited

Since the proposal of differential attack in [5], methods to find long differ-
ential paths with high probability becomes the key to the success of the
attack. Matsui in [13] first proposed a branch and bound algorithm to ef-
ficiently search the high probability linear and differential path for cipher
DES. The algorithm applies the greedy strategy to find the best single
path with the highest probability. Since then, researchers began to follow
this strategy when searching for good property paths. As an extension of
the differential attack, the multi-differential attack tries to take advantage
of multiple differential paths to further increase the attacker’s advantage
when distinguishing from random distribution. Works [8] and [9] are two
of the representative ones. For block ciphers with S-Box based design, re-
searchers count the number of active S-Box as a criteria to measure the
security margin against differential attack. It is well known [11] that there
usually exists more than one path that can lead from the same input α to
the output β, so that the probability of the corresponding path is actually
bigger. Unfortunately, researchers usually do not consider this differential
cluster or linear hull effect when searching good paths. [7] recently took
advantage of the differential cluster to further improve the rounds of the
differential paths.

Let’s assume a block cipher E is a markov cipher with n-bit block
size and rf rounds in total. Previously, researchers try to identify one
single r < rf round path α0 → βr−1 with high probability Prob(α0 →
βr−1) > 2−n, so that the attacker does not use up the entire message space.
Usually, r is far from the full rounds rf if the cipher is well designed. If
we continue the search for more rounds, we will end up with a single path
with a tiny probability much smaller than 2−n. On the other hand, if we
assume all the differential paths are randomly distributed, for a full rf -
round cipher, the probability of any differential path Prob(α0 → βrf−1)
should be around 2−n. Obviously, there is a gap between the two results.
From the differential cluster or linear hull effect, we make the following
assumption.
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Lemma 1. For an r-round ideal Markov block cipher E, a single r-round
differential path is defined as (α0 → βr−1)single = (α0, γ1,i1 , γ2,i2 , ..., γr−2,ir−2 ,
βr−1), where Imint ≤ it ≤ Imaxt , 1 ≤ t ≤ r− 2. Here Imint and Imaxt denote
the smallest and largest differential values in round t respectively. Let’s
define its probability to be Prob((α0 → βr−1)single) = pi1,i2,...,ir−2. Then
the total probability of differential path α0 → βr−1 can be computed by

Prob(α0 → βr−1) =

Imax
1∑

i1=Imin
1

· · ·
Imax
r−2∑

ir−2=Imin
r−2

pi1,i2,...,ir−2 ≈ 2−n

which is approximately equal to 2−n. And we call

CS(α0,βr−1) =

Imax
1∑

i1=Imin
1

· · ·
Imax
r−2∑

ir−2=Imin
r−2

1

the corresponding cluster size CS(α0,βr−1).

For large number of rounds r, we may assume pi1,i2,...,ir−2 to be tiny
and have the relation pi1,i2,...,ir−2 ∝ CS−1

(α0,βr−1). As a result, the com-
plexity to find the real probability of some specific path is related to the
corresponding cluster size CS(α0,βr−1). As the number of rounds grow,
cluster size becomes bigger which makes it more difficult to compute the
real probability. Also notice that for real cipher, the probability varies
for different paths and the cluster size is related to the input differential
property. This relation will be discussed later in this paper. Next, we will
discuss first how to theoretically evaluate the cluster size and the proba-
bility, and then efficiently compute the full clusters for GFS ciphers based
on bijective S-Box design.

2.1 Theoretical Model to Evaluate the Cluster Size and
Probability

General Feistel Structure (GFS) is one of the most popular and widely
studied design strategies for constructing block ciphers. Recently in paper
[20], the authors studied different permutations and derived the optimized
ones for different parameter settings. Recently proposed lightweight block
ciphers LBlock [22] and TWINE [21] belong to the GFS design.

In GFS, the plaintext is divided into d subblocks P = (x0
0, x

0
1, ..., x

0
d−1),

where |xij |= 2n/d bits in length. The output of the i-th round is derived
as follows:

(xi0, x
i
1, ..., x

i
d−1)← π(xi−1

0 , F i−1(xi−1
0 )⊕ xi−1

1 , ..., F i−1(xi−1
d−2)⊕ xi−1

d−1)
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where π is the permutation, and function F : {0, 1}n/d → {0, 1}n/d is the
only non-linear function in GFS. For S-box based design with large sub-
block size n/d, usually MDS matrix is applied to provide further mixing
within each subblock. However, in recent lightweight designs such as [22]
and [21], n/d is small in size (usually 4 bits), and F is equivalent to a
single S-Box. Figure 1 shows the GFS8 defined in [20] with two corre-
sponding F functions. For the simplicity, in this paper we will stick to the
lightweight version of GFS without the application of MDS.

Fig. 1: GFS8[20]

Below are some definitions that will be used for the theoretical evaluation.
From now on, we use symbol αC and αT to denote a concrete differential
and a truncated differential respectively.

Definition 1. (Structure, Branch Weight, Hamming Weight, Can-
cel Weight). Let αC,i = (αC,i0 , αC,i1 , ..., αC,id−1) denote the concrete differ-
ential states for each of the rounds 0 ≤ i ≤ N − 1. Function Trunc
maps the concrete differential state to the truncated differential state:
αT,i = (αT,i0 , αT,i1 , ..., αT,id−1) ← Trunc(αC,i0 , αC,i1 , ..., αC,id−1), where αT,ij = 1

if αC,ij 6= 0, and αT,ij = 0 if αC,ij = 0. We call

(αT,0, αT,1, ..., αT,r)

a r-round truncated structure, or structure in short. We define the number
of active S-Box of round i

Bi = Bi(α
T,i) = αT,i0 + αT,i2 + · · ·+ αT,id−2
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to be the Branch Weight of the corresponding round. We define the
Hamming Weight of the i-th round differential state to be

Hi = Hi(α
T,i) =

d−1∑

j=0

αT,ij

Finally, we define the Canceling Weight Gi and Non-Canceling Weight
Wi for round i to be

Gi = αT,i0 ∧ α
T,i
1 ∧ ¬α

T−1,i+1
1 + · · ·+ αT,id−2 ∧ α

T,i
d−1 ∧ ¬α

T−1,i+1
d−1

Wi = αT,i0 ∧ α
T,i
1 ∧ α

T−1,i+1
1 + · · ·+ αT,id−2 ∧ α

T,i
d−1 ∧ α

T−1,i+1
d−1

where (αT
−1,i+1

0 , αT
−1,i+1

1 , ..., αT
−1,i+1

d−1 )← π−1(αT,i+1
0 , αT,i+1

1 , ..., αT,i+1
d−1 )

Gi counts the number of instances in round i where αT,ij = αT,ij+1 = 1

while αT
−1,i+1

j+1 = 0, and Wi counts the number of instances in round

i where αT,ij = αT,ij+1 = αT
−1,i+1

j+1 = 1. Now we are ready to have the
following theorem:

Lemma 2. Let αC,0I → αC,rO be a r-round concrete differential path with
I ∈ Ωi and O ∈ ∆o. Ωi and ∆o denotes the concrete differential set
following the i-th input and o-th output truncated difference. Assume we
have in total m structures which have the same truncated input and output
αT,0ΩI

, αT,r∆O
while differing in the middle, we call m the truncated cluster

size of truncated path (αT,0ΩI
→ αT,r∆O

). The jth structure can be presented
as follows (0 ≤ j ≤ m− 1):

(αT,0ΩI
, αT,1,j , ..., αT,r−1,j , αT,r∆O

)

Let’s assume before proceeding round 0 ≤ i ≤ r−1 in the jth structure,
we have Lji concrete differential paths which are resulted from input dif-
ferential αC,0. Then after i-th round, the number of total paths generated
from αC,0 becomes

Lji+1 = Lji ×R
Bj

i × (2
n
d − 1)−G

j
i × (

2
n
d − 1

2
n
d − 2

)−W
j
i

where R is the average branch number of the S-Box, and Lj0 = 1 (initially,
there exists only one state). Then Ljr can be denoted as

Ljr = R
∑r−1

i=0 B
j
i · (2

n
d − 1)−

∑r−1
i=0 G

j
i · (2

n
d − 1

2
n
d − 2

)−
∑r−1

i=0 W
j
i
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Proof. For the jth structure (αT,0ΩI
, αT,1,j , ..., αT,r−1,j , αT,r∆O

), we can easily
compute parameters Bj

i , H
j
i ,W

j
i and Gji for each round i. Assume before

proceeding i-th round, we have Lji concrete differential paths which are
derived from the input differential αC,0 which follows the truncated form
αT,0. Since there are Bj

i active S-Box in this round, the increasing number
of branches for each of the existed path can be computed as RB

j
i . However,

for each of the Gji XOR operation, we know from the next round truncated
pattern, the two input differences will be canceled out. The probability
for this event to happen is (2

n
d − 1)−G

j
i . Also for each of the W j

i XOR
operations, instead of probability 1, we need to exclude the cases where 0
may appear, thus the probability for this event to happen is (2

n
d −1)−W

j
i .

Since we need the concrete paths to follow the truncated pattern, only
the paths that follow the truncated pattern can survive. As a result, we
have Lji+1 = Lji × RB

j
i × (2

n
d − 1)−G

j
i × (2

n
d − 1)−W

j
i number of paths

remaining. By computing this repeatedly, we can derive the total number
of paths Ljr after r-th round. �

Theorem 1. Assume we have 2N concrete input differentials having the
same truncated input difference, and the average single path probability for

the truncated structure is P
∑r−1

i=0 B
j
i

ave . Let the counter Xj denote the num-
ber of hits for any concrete output differences following the same output
truncated difference αT,rΩI

in the j-th structure. Then

Xj

αC,0
ΩI

,αC,r
∆O

∼ B(2N · Ljr, (2n/d − 1)−Hr · P
∑r−1

i=0 B
j
i

ave ) ≈

N
(

2N · Ljr · (2
n
d − 1)−Hr · P

∑r−1
i =0 B

j
i

ave , 2N · Ljr

· (2
n
d − 1)−Hr · P

∑r−1
i =0B

j
i

ave · (1− (2
n
d − 1)−Hr · P

∑r−1
i=0 B

j
i

ave )

)

Denote random variable P j = 1
2N
·Xj be the probability for the concrete

path αC,0ΩI
→ αC,r∆O

, and let Γrj = (2
n
d −1)−

∑r−1
i=0

(G
j
i
+W

j
i

)−Hr

(2
n
d −2)−

∑r−1
i=0

W
j
i

, then

P j
(αC,0

ΩI
→αC,r

∆O
)
∼ N

(
Γrj , (Γrj · (1− (2n/d − 1)−Hr · P

∑r−1
i=0 Bi

ave ))/2N
)

where Pave is the average differential probability of the S-Box. 2N should
satisfy the condition

10

Γrj
≤ 2N ≤ (2

n
d − 1)H0
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Proof. Since the truncated output difference has hamming weight Hr,
the concrete differential space is (2n/d − 1)Hr (excluding the 0 case). For
any αC,r∆O,j

∈ {0, 1}log(2n/d−1)Hr , the probability that it gets hit by the

2NLji paths x times follows the binomial distribution B(2N ·Ljr, (2n/d−
1)−Hr · P

∑r−1
i=0 B

j
i

ave ). Since 2NLji is large, we can approximate it by normal
distribution as shown above. To derive its probability distribution, we
only need to divide by the number of total pairs 2N . After extending
Ljr as above, branch number R is canceled by Pave since for any S-Box,
R · Pave = 1. Replace with Γrj we derive the result. Notice that the mean
of the distribution is not affected by the number of input pairs 2N .

P j
(αC,0

ΩI
→αC,r

∆O
)
∼

N
(
Ljr · (2

n
d − 1)−H

j
r · P

∑r−1
i =0 B

j
i

ave , (Ljr · (2
n
d − 1)−H

j
r · P

∑r−1
i=0 B

j
i

ave

· (1− (2
n
d − 1)−H

j
r · P

∑r−1
i=0 B

j
i

ave ))/2N
)

=

N
(

(R·Pave)
∑r−1

i=0 Bi ·Γrj , ((R·Pave)
∑r−1

i=0 Bi ·Γrj ·(1−(2n/d−1)−H
j
r ·P

∑r−1
i=0 Bi

ave ))/2N
)

=

N
(

Γrj , (Γrj · (1− (2n/d − 1)−H
j
r · P

∑r−1
i=0 Bi

ave ))/2N
)

The maximum number of pairs 2N is upper bounded by the input
hamming weight H0, while the lower bound can be derived from the con-
dition of good approximation of binomial distribution by using normal
distribution, which requires np > 10 for binomial distribution B(n, p). �

Corollary 1. The distribution of probability (αC,0ΩI
→ αC,r∆O

) after consid-
ering the entire truncated cluster with sizem has the following distribution.

P
(αC,0

ΩI
→αC,r

∆O
)
∼ N

(m−1∑

j=0

Γrj ,
m−1∑

j=0

Γrj/2
N

)

Corollary 1 is straightforward by taking the truncated cluster into
consideration. Notice that for large number of rounds, (1− (2n/d−1)−Hr ·
P

∑r−1
i=0 Bi

ave ) can be approximated to be one, and thus the distribution can
be simplified as stated.
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Since for any S-Box, we know that R ·Pave = 1, thus the expect value
will converge to some stable value

∑
Γ as the number of rounds become

large. Actually, we can see that as the number of rounds becomes large,
the probability of the paths tends to gather around the mean.

2.2 Experimental Verification

The evaluation of the probability for the concrete differential cluster is
the key to the attack. Thus it is necessary to verify the correctness of
the probability calculation, especially, the mean (Γ) of the probability
distribution in Corollary 1. Our experiment has the following settings.

1. We design a toy version of GFS cipher. It has 32-bit block size with 8
4-bit subblocks. TWINE’s S-Box is applied and we apply the optimal
block shuffle No.2 for k = 8 from [20] as the permutation layer to
guarantee good diffusion property. It can be seen as a smaller block
size version of TWINE.

2. We target 7 rounds differential path and choose the truncated input
difference αT,0ΩI

and output difference αT,7∆O, such that the concrete dif-
ferential cluster size evaluated by the theoretical model is close to but
less than 230 so that we can practically collect enough sample data.

3. We compute 104 differential paths with randomly generated input and
output concrete differences αC,0ΩI

and αC,7ΩO
. The probability Prob(αC,0ΩI

→
αC,7ΩO

) is computed by considering every possible differential path from
αC,0ΩI

to αC,7ΩO
.

Even for 7 rounds, the computational cost is high when trying to find
all the paths connecting some specific input and output difference αC,0ΩI

and
αC,7ΩO

. We apply the meet-in-the-middle approach when searching the path
probability. First, we split the 7 rounds into two, 3 rounds + 4 rounds.
Then starting from αC,0ΩI

, we compute every differential path till the mid-
dle point and save them in a hash table along with the corresponding
probabilities. Then starting from αC,7ΩO

, we compute backwards for all the
differential paths, and match the ones in the hash table. Once we find a
match, update the total probability.

As a result, the computational cost is reduced from computing 7
rounds to computing the longer half, which is 4 rounds. The bottleneck
is the memory storage, which is bounded by the hamming weight of the
truncated difference in the matching round. The experimental results are
summarized in Figure 2. From the figure, it shows that the mean of the
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probability distribution is evaluated very accurately. The experimental
mean is 2−31.9984 while the theoretical value is 2−31.9958. From the left
figure, the histogram confirms the normal distribution of the probability.
For this particular case, the normal approximation becomes rather accu-
rate when the number of input pairs reaches around 2N ≈ 237.4042. And
this value also satisfies the condition in Theorem 1, which again confirms
the accuracy of our model.
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Fig. 2: Experimental result for Toy cipher

3 Statistical Distinguisher and some observations for
LBlock and TWINE

It it well known that when there are only two distributions to distinguish
from, hypothesis testing based on Neyman-Pearson lemma [14] provides
us with the most powerful test. [4] first provided a former analysis on
how to build an optimal distinguisher between two sources, specifically
one from random distribution and one from a real cipher distribution as
in our context. They further derived the complexity to distinguish in the
form of number of observable outputs or the input queries regarding the
block cipher analysis based on the log-likelihood ratio statistics. Several
following papers such as [9] and [1] take advantage of this distinguisher
framework, and after combining with order statistics techniques addressed
in [3], they were able to accurately evaluate the successful probability of
a key recovery of the attack. Also, they were able to apply not only the
traditional differential attack but also multiple, truncated and impossible
differential attacks. The relation between a good statistical distinguisher
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and the number of rounds we can attack is pretty much straightforward.
What may not seem to be trivial is the complexity of the key recovery,
which will rely on the format of the output differential. However, it is
known that if we use multiple differential outputs, the distinguisher be-
haves better and since we are especially interested in the extent to which
we can distinguish theoretically for large rounds of GFS, we omit the key
recovery discussion in this paper. We rearrange the core theorems from
[4] that will be used in our evaluation as follows.

Theorem 2 ([4]). Considering that Z1, Z2, ... is a sequence of iid random
variables of distribution D and that D0 and D1 share the same support,
the log-likelihood ratio statistic follows normal distribution,

Pr[
LLR(Zn)− nµ

σ
√
n

< t]
n→∞−−−→ Φ(t)

where µ = µj with µ0 = D(D0||D1), µ1 = −D(D1||D0) and σ2
j =

∑
z∈Z PrDj [z](log

PrD0
[z]

PrD1
[z])− µ

2
j for j ∈ {0, 1}. And

LLR(Zn) =
∑

a∈Z
N(a|Zn)log

PrD0 [a]

PrD1 [a]

Denote v to be the number of samples need to distinguish between D0 and
D1, then

v =
4 · Φ−1(Pe)

2

∑
z∈Z

(PrD0
[z]−PrD1

[z])2

PrD1
[z]

where Pe is the error probability, and D denotes the Kullback-Leibler dis-
tance

D(D0||D1) =
∑

z∈Z
PrD0 [z]log

PrD0 [z]

PrD1 [z]

Here we assume D1 has the uniform distribution, then PrD1 [z] = 2−n

for ∀z ∈ {0, 1}n. From Corollary 1, we know that PrD0 [zi] follows different
normal distributions. We know that the mean of the distribution is the
unbiased point estimator for PrD0 [zi]. Thus by replacing PrD0 [zi] with
the corresponding mean derived by Corollary 1, we are able to compute
the required number of samples v in order to distinguish.
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3.1 Efficient algorithm to compute D0

Deriving the full distribution D0 is a practical issue. For GFS with 4-bit
nibble and 64-bit block size, the truncated differential domain is shrunk
down to 216. However, the computational cost will still grow exponentially
as the number of rounds grows. Fortunately, we can store all the 216

differential states for each of the rounds, which makes the computational
cost grow linearly regarding the number of rounds. This will dramatically
speed up the computing for D0 regarding large number of rounds.

Algorithm 1 Searching D0 for all input and output truncated differences
1: Input: Input truncated difference αT,0.
2: Output: Full distribution of D0 given αT,0.
3: procedure Dist_search(r ← 0, αT,0)
4: M = {(si, pi)|0 ≤ i ≤ 2n/d} ← ∅
5: Append (αT,0, 1.0) to M .
6: while r! = N − 1 do
7: Mout ←M
8: for ∀(si, pi) ∈M do
9: // Given si, pi, round function returns all the possible output diff and

probabilities
10: {(o0, p

′
0), ..., (ot−1, p

′
t−1)} ← round(si, pi)

11: for ∀(oi, p
′
i) do

12: if oi ∈Mout then
13: pi ← pi + p

′
i

14: else
15: Append (oi, p

′
i) to Mout

16: M ←Mout

17: Output (si, pi) ∈M, 0 ≤ i ≤ 2n/d

For GFS with 4-bit sub-blocks and 64-bit block size, after around 7
rounds,M will include every truncated internal state. We apply the GMP
library [10] when computing the probability so that we do not lose preci-
sion. However, as the number of rounds grow, the bias becomes miniscule,
requiring large amounts of memory to store the precision. When we reach
some large rounds, we cannot produce accurate result due to the mem-
ory limit. The algorithm is still very efficient considering that we need to
perform the search for not only one but all the 2n/d − 1 input difference
αT,0. The following experimental results show the number of rounds we
have achieved with full precision as well as some rounds where precision
was lost partially.
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3.2 Observations on LBlock and TWINE

LBlock is a 32-round, 64-bit block cipher with Feistel structure proposed
by Wenling Wu et al. in [22]. In each round after the left 32-bit side goes
through a non-linear function F, it is XOR-ed with the right side that has
performed an 8-bit left cyclic shift. TWINE is also a 64-bit block cipher
with GFS structure proposed by Tomoyasu Suzaki, etc in [21]. Different
from LBlock, it supports 80 and 128 bits key length which both have the
same 36 rounds. The F function of LBlock and round operation of TWINE
are shown in Figure 3 and Figure 4.
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Fig. 3: F function for LBlock
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Fig. 4: One round for TWINE

In [21], the authors already identified that both ciphers are very similar
to each other regarding the Feistel structure and the permutation layer.
This is also our motivation to study these two ciphers, first to compare the
security margins and secondly, obtain the observataions for the behavior
of GFS.

As we have pointed out, our framework can be used to exploit all the
distributions under our theoretical model. In order to get a close look at
the strength and weakness of the various differential paths given different
input differences, we need to perform Algorithm 1 for all the 216−1 input
differences for different number of rounds. Figure 5 and Figure 6 show the
experimental results of how many samples are required in order to dis-
tinguish the cipher from a uniformly distributed random source. Particu-
larly, for each of the input differences (hamming weight), we consider all
the possible output differences to derive the corresponding distinguisher.
The experiment was performed on supercomputer Cray XC30 with 700
CPU cores (Intel Xeon E5-2690v3 2.6GHz (Haswell)) running in parallel
for around three days.

Both figures share some similarities which provide us with an insight
into the properties of other GFS with bijective S-Box design. It also pro-
vides us with strategies on how to perform efficient cryptanalysis. Firstly,
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Fig. 5: Distinguisher for LBlock Fig. 6: Distinguisher for TWINE

within the same number of rounds, we notice that the distinguisher will
perform better as the hamming weight of the input differences decre-
ments. Considering many previous researchers such as [16] favor the input
difference with small hamming weight, this result seems to be straight-
forward. However, previous results did not consider the clustering effect
where many small paths could eventually lead to a better cluster. Here
we clarify this situation by showing that input differences with large ham-
ming weight tend to have better randomization property with respect to
the differential distribution, thus an attacker should focus on searching
the paths with small input hamming weight.

Secondly, this trend remains the same for different number of rounds,
with the total number of pairs required to distinguish increasing as the
number of rounds grows. This makes sense according to the Markov cipher
model [15], which has been used to model modern block ciphers. Notice
that for both LBlock and TWINE, starting from round 18, the number of
pairs tends to converge to some threshold. This is due to the insufficient
precision used in the GMP library. We expect that the original trend will
persist no matter the number of rounds if we have enough memory space to
store 216 elements with large enough precision. In the current setting, we
set the precision to be 10000 bits, which gives us a good balance between
the precision of the results, and the experiment speed. Notice that even
for 20 rounds, the results for the low hamming weight are still accurate
and usable.
Distinguishing Attack. Now we give distinguishing attacks for LBlock
and TWINE assuming the usage of the full code book. We have previously
shown that input differences with small hamming weight tends to have
better distinguishability. For any truncated input difference αT,0, the total
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number of differential pairs that conform to the input differential αT,0 is
263+4×HW (αT,0), where HW (αT,0) denotes the hamming weight of αT,0. If
the number of pairs v in order to distinguish derived from the statistical
framework is smaller than 263+4×HW (αT,0), then we are able to launch the
distinguisher attack immediately. However, for larger rounds such as 18
rounds, the experimental result indicates that the input differential with
the best distinguishing effect requires more pairs than the total amount
that the cipher can provide. Therefore, instead of taking advantage of
only one input difference, we can consider multiple input differences. One
straightforward way is to store 216 counters for each of the input difference,
and we extend the distribution domain from 216 to maximum 232 counters.
Let vi denote the number of pairs required for input difference αT,0i , then
the number of pairs v0...i to distinguish can be computed as follows:

v0...i = (
i∑

x=0

1

vx
)−1

This equation can be derived directly from Theorem 2. Notice that we
will proceed with the input difference with small hamming weight first,
thus v is sorted in ascending order based on hamming weight in order to
provide which input difference to use first. In order to check the success
of the attack, we need to be sure that

v0...i <

i∑

x=0

263+4×HW (αT,0
i )

For our distinguishing attack, the computational cost is the cost of
the summing the counters, which requires

∑i
x=0 263+4×HW (αT,0

i ) memory
accesses. Under the conservative estimation that one memory access is
equivalent to one round operation cost, which was also used in paper [12],
the computational cost can be estimated as 1

R ×
∑i

x=0 263+4×HW (αT,0
i )

R-round computation, where R is the number of total rounds to attack.
Although for larger number rounds we currently do not have the ac-

curate distribution for all the input differences due to the computational
limitations, the input differences with small hamming weight are still ac-
curate. Therefore, we can take advantage of this accurate region to launch
the attack. For 21 rounds of LBlock, if we take the first 211 input differ-
ences sorted according to vi, then v0...211 ≈ 297.69 which is less than the
total available pairs 2100.67. This means we can actually perform the dis-
tinguishing attack as long as we have enough computing resources. The
time complexity here is thus 293.3 21 rounds LBlock encryptions. TWINE
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behaves almost exactly the same as LBlock for the first 21 rounds. By
applying our framework, we can provide an accurate security bound for
different number of rounds. For example, a 21-round LBlock will theoret-
ically fail to achieve the security level that we claim if we set the key size
to be larger than 94 bits.

Next we summarize the security margin for both LBlock and TWINE
regarding the distinguishing attack. Notice that we choose the distinguish-
ing attack to bound the security since it is usually considered to be weaker
than key recovery attack. So from a designer’s point of view, we have to
set the security parameter (key size) to be conservative in order to re-
sist as many attacks as possible. Due to the limitation of computational
resources, we can only derive the accurate values up to 21 rounds for
both LBlock and TWINE accordingly. However, after observing the first
21 rounds for both LBlock and TWINE, the increase of the computa-
tional cost is log-linear with respect to the number of rounds. Thus the
trend can be well extrapolated by using the least square methods. Fig-
ure 7 and 8 demonstrate the security level for full rounds of LBlock and
TWINE, where the dotted line is the prediction while the solid line is the
experimental results. Our analysis shows that if both ciphers use 80-bit
key setting, then number of rounds considered to be secure is around 19.
However, since TWINE also support 128-bit key, in order to satisfy the
corresponding security, we will need at least 25 rounds. We notice that
in [2], they can achieve 25-rounds key recovery attack for TWINE-128 by
using MitM and impossible differential attack. By using truncated differ-
ential technique, however, they can only attack 23-rounds using dedicated
techniques. Our result complements theirs by revealing a general pattern
after an in-depth analysis of the differential distinguisher. From the differ-
ential characteristic’s point of view, although Table 3 in [2] demonstrates
several paths that are better than evaluated using active S-Box, they still
cannot achieve more than 16 rounds for TWINE.

From the provable security’s point of view, both full rounds LBlock
and TWINE are secure, and our analysis can provide the accurate security
margin which is around 178 bits and 208 bits for LBlock and TWINE
respectively. The reason TWINE is more secure in this sense is that it
has 4 more rounds than LBlock, and they are equivalently secure against
differential attack if given the same number of rounds.
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Fig. 7: Security level for LBlock

10 15 20 25 30 35 40
Number of rounds

0

50

100

150

200

250

S
e
cu

ri
ty
 l
e
v
e
l 
in
 b
it
s 
(m

a
x
 l
e
g
a
l 
ke

y
 s
iz
e
)

TWINE security level 
Least square prediction

Fig. 8: Security level for TWINE

4 Conclusion

In this paper, we revisit the security of GFS with S-Box design regarding
differential cryptanalysis. We evaluate the differential trails taking the full
cluster into consideration by providing both theoretical and experimental
results for the full distribution in truncated form. Our framework provides
a solution for ciphers with relatively large block size to derive the full dif-
ferential distribution. As a concrete application, we evaluate LBlock and
TWINE to demonstrate the relationship between the hamming weight of
the input difference and complexity of the attack. For TWINE-128, our
attack can achieve 25 rounds, which is comparable to the best attacks
up to date. More importantly, our framework enables us to compute the
accurate security bound on full rounds LBlock and TWINE. As far as
we know, this is the first achievement on security proof with exact se-
curity margin provided. This framework can be utilized by future cipher
proposals to determine the minimum security margin of their designs.
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