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Abstract—Recent vehicular communications problems entail
various aspects, such as rapidly changing topologies and large
number of users. We consider massive uncoordinated multiway
relay networks (mu-mRN) that can serve a massive number of
users expecting to fully exchange information among them via
a common multiway relay. Relay vehicular networks is one of
potential applications of the mu-mRN. In this paper, we are
interested in improving normalized throughput T of the network
using multiuser detection (MUD) capability of K > 1 based on
the graph-based random access to flexibly adapt the topology
changes. First, we present a network capacity bound of the
mu-mRN with general K to investigate the theoretical limit of
the networks. Then, we search for many optimal and practical
degree distributions for each theoretical bound. Second, we aim
to improve the normalized throughput by 10× from the maximum
normalized throughput of conventional systems. To achieve the
goal, we propose the mu-mRN applying doubly irregular coded
slotted ALOHA. We also propose an optimal practical encoding
of the mu-mRN to closely approach the target with finite number
of users.

I. Introduction

In the near future, there will be billions of connected
devices driven by the internet-of-things supported by machine-
to-machine communication services. A forecast indicates that
the number will reach 50 billion in 2020 [1]. A common
framework to model various communication systems having
a massive number (more than a hundred) of users is multiway
relay networks (mRN) [2]. The potential applications of the
mRN are, for example, intelligent networks for transportation
systems, vehicle-to-vehicle communications, ad-hoc network
for devastated areas, and satellite communication systems.

Fig. 1 shows (M +1) users expecting to fully exchange data
via a common relay. In the mRN, there are two different phases
of transmission, i.e., multiple access (MAC) phase (where each
user transmits data to the relay) and broadcast (BC) phase
(where the relay broadcasts data to all users) as indicated by
dash-dotted and dotted lines in Fig. 1.

If massive number of users are allowed to transmit during
the MAC phase at one time slot, a very low-rate code is
required, which also requires a high computational complexity
of decoding. As an alternative, a coordinated scheduling
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Fig. 1. Multiway relay networks (mRN) with (M + 1) users.

technique can be used; however, it is also unpreferable due to
the nature of massive number of users. Uncoordinated trans-
missions are preferable to avoid difficulties in transmission
scheduling. In this paper, we discuss an uncoordinated trans-
mission for the mRN serving the massive number of users,
called massive uncoordinated mRN (mu-mRN). Recently, the
notion of the uncoordinated transmission for mRN applying
graph-based random access (RA) is briefly introduced in [3],
[4].

In [3], [4], they define a pair-of-time-slot (PTS) consisting
of MAC phase followed by BC phase. Then, each user
randomly transmits packet1 at a given PTS based on a degree
distribution. At the same PTS, the relay always amplifies and
forwards its received packet using amplify-and-forward (AF)
protocol. These ways enable adoption of irregular repetition
slotted ALOHA (IRSA) [5] and coded slotted ALOHA (CSA)
[6] into the mu-mRN. IRSA and CSA are an RA benefit-
ing from successive interference cancelation (SIC) to resolve
colliding packets. The SIC process can be represented by a
bipartite graph; hence, we refer IRSA or CSA as graph-based
RAs.

The representation of the SIC process assumes that each
user or the relay has prior knowledge to which PTS each
packet is sent. Practically, this can be done by inserting a
pointer to show the position of each packet. The difference
between IRSA and CSA lies on the type of network encoding
(which is defined as packet-oriented linear block code); IRSA

1Instead of data, we refer to packet in the context of the RA.



uses repetition codes, and CSA uses maximum distance sepa-
rable (MDS) codes, e.g., Reed-Solomon (RS) code. IRSA’s
pointer shows to which PTS replicas of a packet are sent
within a frame. CSA’s pointer indicates to which PTS encoded
packets are sent within a frame.

By carefully choosing the degree distribution, IRSA can
asymptotically achieve a normalized throughput T (probability
of successful packet times offered traffic) of 0.97 packets/slot
(p/s). A well-known benchmark for the normalized throughput
T is the maximum normalized throughput of the conventional
slotted ALOHA (SA) TS A, where TS A = 1/e ≈ 0.37 p/s.
Therefore, the fact that the IRSA’s normalized throughput T
can approach one p/s is very encouraging. There are a lot of
works have been devoted towards the graph-based technique
since then, e.g., the CSA (which is the generalization of
IRSA). In this paper, we mainly focus on improving T multiple
times using MUD technique to jointly decode colliding packets
[7].

Our contributions are summarized as follows. (i) To the
best of our knowledge, an mu-mRN applying graph-based RA
with K > 2 has not yet been addressed in any literature. In
this paper, we present a network capacity bound for the mu-
mRN with general K is presented in this paper. (ii) We present
the optimal degree distributions of the mu-mRN applying
graph-based RA, which are not discussed in [3], [4], [7]. (iii)
We aim to achieve multiple times improvement, e.g., T =

10× TS A = 3.7 p/s. This goal can be intuitively achieved with
K = 4. However, we find that as K increases, performances
of the mu-mRN applying IRSA and CSA and their achievable
bounds widen. Accordingly, the mu-mRN applying optimal
IRSA or CSA cannot achieve the goal. To achieve the goal,
we introduce the mu-mRN applying doubly irregular CSA
(dir-CSA). (iv) For K > 2, iterative spatial demapping (IDM)
[8] used in [4] becomes very complex since it considers all
possible symbols for K users. Alternatively, we can adopt the
code-division-multiple-access (CDMA). However, interleave-
division-multiple-access (IDMA) [9] is a strong candidate to
replace the CDMA due to its better performances. Therefore,
instead of IDM and CDMA, we use the IDMA, which is
further combined with the AF protocol in the mu-mRN.
Optimality in physical encoding is also investigated in this
paper to approach multiway relay channel (mRC) capacity [2]
based on extrinsic information transfer (EXIT) chart [10].

II. Graphical Representation of the mu-mRN

Each frame comprises a group of PTSs, and each PTS
consists of an MAC phase and a BC phase, where every
transmission is slot- and frame-synchronous. We assume each
packet is transmitted over erasure channel (error only happens
because of colliding packets). This type of error may also
happen if the transmission power is high enough to combat
noise such that there is no bit-level error occurred.

Each frame can be represented by a bipartite graph G =

(U,S,E) consisting of a set U of M + 1 user nodes (UNs)
representing users, a set S of N slot nodes (SNs) representing
time slots, and a set E of edges. An edge connecting i-th UN

(a) (b)

Fig. 2. An example of the mu-mRN. (a) A circle (©), a square (�), and a
black diamond (_) describe a user, a time slot, and an amplifying factor,
respectively. (b) A bipartite graph representation shown in Fig. 2(a) at each
user. A square (�) here represents a PTS instead of a single time slot.

(a) u1 (K = 1) at the 0th iteration (b) u1 (K = 1) at the 1st iteration

(c) u1 (K = 1) at the 2nd iteration (d) u1 (K = 2) at the 0th iteration

Fig. 3. SIC process with K = 1 and K = 2 at u1 of the example in Fig. 2
with an assumption that replicas of a packet are sent by each user.

and j-th SN represents an encoded packet transmission from
i-th user at j-th time slot.

The mu-mRN using graph-based RA works as follows. At
each frame during MAC phase, each user (denoted as um,
where 1 ≤ m ≤ (M + 1)) randomly transmits encoded packets2

to a common relay based on a degree distribution Λ= {Λh}
C
h=1

at given time slot (denoted as sn, where 1 ≤ n ≤ N). In
the relay, the received packets are always amplified by an
amplifying factor A and forwarded to all users during BC
phase. Fig. 2(a) illustrates the example with M = 3 and N = 4.

Fig. 2(b) shows the bipartite graph shown in Fig. 2(a) at
each user before subtracting its own packets from its received
packets. The bipartite graph shown in in Fig. 2(a) can be
simplified to the bipartite graph shown in Fig. 2(b) since: (i)
the AF protocol is used, (ii) the received packets at the relay
are broadcast to all users, and (iii) a PTS comprises a time
slot in MAC phase followed by a time slot in BC phase.

After subtracting its own packets, each user has different
bipartite graph. The bipartite graph of user u1 is depicted in
Fig. 3(a). Suppose that replicas of a packet are sent instead
of the encoded packets; in other words, IRSA is used. We
also assume K = 1 (without MUD) in this example. The
SIC process in u1 works as follows. In Fig. 3(a), packets that
are sent at s1 and s3 do not collide with other packets. Thus,
packets from u2 and u4 can be resolved during the 1st iteration
as shown in Fig. 3(b). Since packets from u2 and u4 are known

2Note that the encoded packets are the generalization of replicas of packets.



Fig. 4. Transmitter and receiver structures of the mu-mRN with (K + 1) users transmitting at a certain PTS.

at the 2nd iteration, there are no longer colliding packets at s2
and s4. Hence, a packet from u3 can be successfully resolved
as shown in Fig. 3(c). The SIC processes for other users work
similarly. For CSA, encoded packets (which are output packets
of a network encoder) are sent within a frame. For example, if
the encoded packets are output packets of a network encoder
using (3, 2) MDS code, it means that 2 original packets are
encoded into 3 encoded packets. Then, to be able to recover the
original packet, there must be at least 2 non-colliding packets.
In addition, Fig. 3(d) shows the SIC processes having K = 2

III. SystemModel

Fig. 4 describes the transmitter and receiver structures with
MUD capability K, where K << M and M denotes massive
number of users. The left part of Fig. 4 depicts transmitter
structure of the mu-mRN with (K + 1) users transmitting
at the same PTS.3 For network encoder, each user mutually
independently picks a code from a set of C codes denoted as
{((nh, kh),Λh)}Ch=1 with minimum distance at least 2, where nh

shows the number of output packets of the h-th codes, kh shows
the number of input packets of the h-th codes, and Λh shows
a degree distribution of the h-th codes, where

∑C
h=1 Λh = 1

and 0 ≤ Λh ≤ 1. Please note that the code {((nh, kh),Λh)}Ch=1 is
object of our optimization in designing the network encoding.

At a certain PTS t, (K + 1) users transmit their packets. Let
define an ordered set Ut as a set of all users that transmit at
the PTS t, and an element in the set Ut is denoted ut

i, where
1 ≤ i ≤ |Ut |. Then, the code (kh,ut

i
, nh,ut

i
) denotes a code picked

by the ut
i-th user. For indexing purpose, we define variables

1 ≤ ikh,ut
i
≤ kh,ut

i
and 1 ≤ inh,ut

i
≤ nh,ut

i
. Input packet sequence

for the ut
i-th user is denoted as xut

i = {x̄ut
i

1 , x̄
ut

i
2 , . . . , x̄

ut
i

kh,ut
i

}, where

each packet x̄ut
i

ikh,ut
i

has block length L-bit. Either repetition code

for IRSA or RS code for CSA is used to encode kh packets
into nh packets. The nh-packet form output packet sequence
for the network encoder denoted as aut

i = {āut
i

1 , ā
ut

i
2 , . . . , ā

ut
i

nh,ut
i
}.

Note that each encoded vector āut
i

inh,ut
i

has block length L-bit as

well.
An example with M = 999 and C = 2 is illustrated in Fig. 5.

There are only 2 set of codes (C = 2) with {Λ1,Λ2} = {0.5, 0.5}
and 1000 users in Fig. 5. The 1st, 2nd, . . . , and 500th users
(u1, u2, . . . , u500) are assumed to pick the first code which
is (n1, k1) = (3, 2), and the 501st, 502nd, . . . , and 1000th

3An additional user is a remainder that each user can subtract its own signal
from its received signal.

(a) (b)

Fig. 5. The network encoder of the mu-mRN with {((nh, kh),Λh)}21 =
{((3, 2), 0.5), ((4, 3), 0.5)}, M = 999, and C = 2: (a) the first codes (h = 1),
i.e., (n1, k1,Λ1) = (3, 2, 0.5) and (b) the second codes (h = 2), i.e.,
((n2, k2),Λ2) = ((4, 3), 0.5).

users (u501, u502, . . . , u1000) are assumed to pick the second
code, which is (n2, k2) = (4, 3). Then at a certain PTS, for
example t = 1, the 1st, 5th, 7th, 100th and 547th users transmit
their packets. In this case U1 = {u1, u5, u7, u100, u547}, where
u1

1 = u1, u1
2 = u5, u1

3 = u7, u1
4 = u100, and u1

5 = u547. Since u1
picks the first code, its packet sequences are xu1 = {x̄u1

1 , x̄
u1
2 }

and au1 = {āu1
1 , ā

u1
2 , ā

u1
3 } as shown in Fig. 5(a). Meanwhile,

the packet sequences for u547 are xu547 = {x̄u547
1 , x̄u547

2 , x̄u547
3 } and

au547 = {āu547
1 , āu547

2 , āu547
3 , āu547

4 } as shown in Fig. 5(b).
It is worth noting that for IRSA, kh = 1,∀h, since repetition

codes are used. For CSA, the number of input packets of the
network encoder is constant, i.e., kh = k,∀h, where k ∈ Z+

and k > 1. Here, we briefly introduce dir-CSA, where we let
kh be irregular. This additional irregularity is important since
it makes the dir-CSA has wider class of codes. Consequently,
the dir-CSA has better performances than those of IRSA and
CSA.

In physical encoder, each vector āut
i

inh,ut
i

, is then encoded by

an irregular convolutional code (irCC) [11] into J-tuple {but
i

inh , j
},

where 1 ≤ j ≤ J and J is the block length.4 IrCC comprises
several subcodes, and each subcode in irCC has different rate
R f with 1 ≤ f ≤ F and F is the number of subcodes forming
the irCC. Each subcode, then, encodes L-bit sequence into
(a f × J)-bit encoded sequence, where a f denotes percentage
of the f -th subcode in the J-bit sequence,

∑
f∈F a f = 1 s.t.

0 ≤ a f ≤ 1 for ∀ f . The set of pair {(R f , a f )}Ff =1 is object of
our optimization in the physical encoding.

At each user, the bit sequence but
i is then interleaved by

interleaver Πut
i

to obtain bit sequence cut
i . Since we apply

IDMA, the interleaver Πut
i

must be unique for every user. We
assume that all interleavers are both independent and random.

4Note that without loss of generality, for the physical encoder we use
notation {b

ut
i

inh , j
} instead of {b

ut
i

inh,ut
i
, j}.



Doped-unity-rate convolutional code (DACC) encodes a bit
sequence cut

i into bit sequence dut
i . DACC is a systematic and

recursive convolutional code with generator polynomial (GP)
([3, 2]8) [8]; however, every Q-th bit output is replaced by its
accumulated bit. Because the DACC’s rate is unity, rate for
physical encoder is RI =

∑
f∈F a f R f .

Afterward, the bit sequence dut
i is modulated by binary-

phase-shift-keying (BPSK) mapper M into symbol sequence
yut

i ∈ {1,−1}.5 Each symbol sequence yut
i , where E[|yut

i |2] = 1,
is then transmitted to the multiway relay R over a channel
with gain hut

i . We assume a single carrier transmission in our
system.

The relay always amplifies its received packets during
the MAC phase and forwards them to all users during
the BC phase. The received signal at the relay is rR =∑K+1

i=1 hut
i

√
Put

i yut
i + nR, where nR is zero mean additive white

Gaussian noise (AWGN) with σ2
R and Put

i being variance and
transmit power of the ut

i-th user, respectively. Amplifying
factor A of the relay is expressed by A = PR/|rR|

2 =

PR/(
∑K+1

i=1 (hut
i )2Put

i + σ2
R), where PR is transmit power of

the relay. The received packet in each user after sub-
tracting its own packet from them is denoted as rut

i =

hut
i

BC

√
A
(∑K+1

t=1,t,i hut
i

√
Put

i yut
i

)
+hut

i
BC

√
AnR+nut

i , where hut
i

BC where

hut
i

BC is channel gain of vehicular channel from the relay to ut
i-

th user during BC phase, and nut
i is zero mean AWGN in ut

i-
th with variance σ2

ut
i
. For the sake of simplicity, we assume

all channel gains and all AWGN variances are unity, i.e.,
hut

i = hut
i

BC = 1 and σ2
R = σ2

ut
i

= 1,∀ut
i, and each transmit

power is P.
The receiver consists of an elementary signal estimator

(ESE) [9], interleavers, deinterleavers, and soft decoders for
irCC and DACC. The ESE computes extrinsic log-likelihood
ratio (LLR) for inh -th packet and j-th bit of bit sequence
dut

i , dut
i

inh , j, denoted as LES E
e (dut

i
inh , j). Then, an iterative process

between the ESE and both soft decoders irCC and DACC is
invoked.

At last, after each âut
i is estimated in physical decoding,

each estimated user’s packet x̂ut
i is further decoded by network

decoder (NE−1), i.e., decoder for repetition code or decoder for
RS code. Note that there is no iteration between the network
and physical decoders.

IV. Physical Encoding
The irCC is formed by F subcodes with each subcode

having rate R f , ∀ f . Each subcode also contributes to (a f × J)-
bit encoded output of the irCC. Designing the irCC is a matter
of how to pick the set of pair {(R f , a f )}Ff =1 such that the EXIT
[10] curve of irCC well matches the EXIT curve of DACC.

A mutual information between bit sequence x and its corre-
sponding LLR L(x) is denoted as I(x; L(x)). Useful notations
at ut

i-th user to draw the EXIT chart are expressed as6

IirCC
A , I(but

i ; LirCC
a (but

i )), IirCC
E , I(but

i ; LirCC
e (but

i )), IDACC
A ,

5Extension to higher order modulation is straightforward.
6The EXIT chart for each user is identic.

I(cut
i ; LDACC

a (cut
i )), IDACC

E , I(cut
i ; LDACC

e (cut
i )). For f−th sub-

code with apriori LLR Ia and extrinsic LLR Ie, the EXIT
chart can be drawn as a transfer function of Ie = T f (Ia).
Transfer function for the irCC is then denoted as T irCC(Ia) =∑

f∈F a f T f (Ia).
All EXIT chart subcodes are drawn from the same mother

code by puncturing. In this paper, we use a mother code with
GP([57, 65, 71, 73, 75]8) having free distance of 22 so that the
code has a steep upward slope at early iterations (0 ≤ IirCC

E ≤

0.1).
We are inspired by [12] to define several acceptable gaps

ε between IDACC
A and IirCC

E . Let define index w, where w ∈
{1, 2, . . . ,W}, and W ∈ Z+. IirCC

E,w and IDACC
A,w denotes as the w-

th sample of IirCC
E and IDACC

A , respectively. Let define IirCC
E,w =∑

f∈F a f IirCC,f
E,w , where IirCC,f

E,w is extrinsic LLR of f -th subcode of
the irCC at w-th sample. Therefore, the optimization problem
is defined as

maximize
∑
f∈F

a f R f

subject to
(∑

f∈F

a f IirCC,f
E,w

)
− IDACC

A,w > ε
R f
w ,∀w and f

0 < a f ≤ 1,∀ f , and
∑
f∈F

a f = 1.

This optimization is carried out using linear programming
(LP). For the sake of simplicity, we define ε

R f
w = εw =

0.001,∀ f . The value of IirCC
A,w , ∀w and f , can be obtained

by a curve matching technique. Furthermore, it is important
to decide allowed number of digits after decimal point, i.e.,
fractional-part number (FP), of the coefficient a f . In this
paper, we define FP = 2.

For the LP, we define W = 100. Then,
we get the optimal set of pair {(R f , a f )}5f =1 =

{( 1
5 , 0.45), ( 2

3 , 0.12), ( 2
5 , 0.09), ( 1

3 , 0.1), ( 3
11 , 0.09), ( 1

2 , 0.15)}.
Its corresponding bit-error-rate (BER) is shown later in
Section VII, which explains our performance results.

V. Network Encoding
A. Asymptotic Analysis

Asymptotic performances are evaluated by setting M → ∞
and N → ∞ and keeping the normalized offered traffic channel
per user (G) constant, where G =

M
∑C

h=1 Λhkh

N .
The asymptotic performance of IRSA, CSA, or dir-CSA

depends on their degree distributions given K being constant.
Evolution of the SIC process in IRSA, CSA, or dir-CSA under
asymptotic assumption for given degree distribution can be
seen using an EXIT chart.7 The EXIT chart displays evolution
of average erasure probabilities emanating from both SNs and
UNs, denoted as p and q, respectively.

Based on [6] and [7]

pi = 1 − eqi−1
G
Rn

K−1∑
j=0

(qi−1
G
Rn

) j

j!
= fs(qi−1), (1)

7Note that there two different type of EXIT charts discussed in this paper,
i.e., the one discussed in Section IV for physical encoding and the one
discussed in this section for network encoding.



where network rate per user for each frame Rn = k̄/n̄,
k̄ =

∑C
h=1 Λhkh, and n̄ =

∑C
h=1 Λhnh. The network rate Rn

indirectly expresses how much total power required to transmit
all packets in a frame. For example, IRSA with the network
rate Rn 0.2 means that a packet is retransmitted 5× in a frame
by each user in average. Therefore, the lower the network rate,
the higher the total transmit power required. We aim to achieve
our target of 0.4 ≤ Rn ≤ 0.6.

The average erasure probability from a UN is expressed as

qi =

C∑
h=1

λh f (nh,kh)
u (pi−1) = fu(pi−1), (2)

where λh = Λhnh/n̄ and index i shows the iteration index
of the SIC. This equation is derived with an assumption that
the proposed physical encoder can decode each non-colliding
packet successfully. The term f (nh,kh)

u (p) is called the average
EXIT function of a type-h UN, which is expressed as

f (nh,kh)
u (p) =

kh−1∑
l=0

(
nh − 1

l

)
(1 − p)l pnh−l−1, (3)

such that

• for IRSA, nh = h and kh,∀h (a special case for IRSA, (2)
can be simplified into qi =

∑C
h=2 λh ph−1 [3])8,

• for CSA, nh = h + k, and
• for dir-CSA, nh = h + kh.

An EXIT chart displays two curves based on (1) and (2),
i.e., 1− fs(q) vs. 1− q and 1− fu(p) vs. 1− p. Since fs(q) = p
and fu(p) = q, both curves can be drawn altogether in one
chart.

The asymptotic threshold of the SIC process G∗ is defined
as the maximum value of G such that if G < G∗, all colliding
packets can be successfully resolved. Furthermore, for all G <
G∗, G∗ is equal to the maximum normalized throughput T in
the asymptotic setting. Therefore, our goal is to achieve the
threshold G∗ = 3.7 p/s in the asymptotic setting.

Using the EXIT chart, G∗ is defined as the maximum value
of G such that the two EXIT curves do not intersect each other.
In other words, the tunnel between the two curves remains
open.

A network capacity bound can also be derived using the
area theorem of the EXIT chart. A necessary condition for
successful decoding is that the tunnel in the EXIT chart must
be kept open, and the areas under the curves should satisfy
Au + As < 1, where Au =

∫ 1
0 fu(p)dp and As =

∫ 1
0 fs(q)dq.9

Then, we can obtain the bound of the mu-mRN with MUD
capability K as

Rn +

(
K

Rn

G
+

K−1∑
j=1

K − j
j!

( G
Rn

) j−1)
e
−G
Rn − K

Rn

G
< 0, (4)

8Note that it is necessary to define Λ1 = 0 for IRSA.
9This inequality is a necessary but not a sufficient condition. In practice,

we also need q < f −1
u (q),∀p, q ∈ (0, 1].

such that G > 0, Rn > 0, and K > 1. For K = 1, the term∑K−1
j=1

K− j
j!

(
G
Rn

) j−1
= 0; thus, the bound becomes Rn + Rn

G e
−G
Rn −

Rn
G < 0 such that G > 0 and Rn > 0.

B. Optimization using Differential Evolution (DE)

From (1) and (2), we can infer that both variable p and q
depend on the set of codes {((nh, kh),Λh)}Ch=1. Thus, it is im-
portant to carefully pick a good set of codes {((nh, kh),Λh)}Ch=1.

We search the optimal set of code {((nh, kh),Λh}
C
1 leading

to a high threshold G∗. The optimization problem given C
number of codes is denoted as

maximize G∗

subject to q < f −1
u (q),∀q ∈ (0, 1]

0 ≤ Λh ≤ 1,∀h, and
C∑
h

Λh = 1.

The inequality q < f −1
u (q),∀q ∈ (0, 1] is to guarantee that

the two EXIT curves do not intersect with each other. This
optimization is carried out using the so-called differential evo-
lution (DE) [13]. We use EXIT-chart-based DE to pick a good
set of codes {((nh, kh),Λh)}Ch=1. The DE setting is described
as follows. We choose 100 initial populations uniformly that
satisfy 0 ≤ Λh ≤ 1,∀h, and

∑C
h Λh = 1. We conduct the

DE with representation ”DE/best/1-with-jitter” and crossover
constant CR = 0.8.10 In choosing a good code, we define the
allowed number of digits after decimal point for the degree
distribution Λ equals 2, i.e., FP = 2, because the higher the
number, the more PTS M or number of users N is required.
Moreover, we prefer to relax the constraint Rn since if we
include the Rn in our constraints, the threshold G∗ given the
same C will be lesser than that if we exclude the Rn.

VI. The Proposed Doubly Irregular CSA (dir-CSA)
First, we want to show an effect of increasing K as shown

in Fig. 6(a).11 Note that this EXIT curve is drawn based on
(1). As K increases the average erasure probability p is not
purely exponential since there is the second level of iteration
for SIC, i.e., the SIC works with iterated K. The second level
of iteration is represented by sum equation on (1). It causes the
EXIT curve for SN to be no longer convex. Consequently, the
optimal IRSA (with K = 4 and C = 16) cannot well match the
curve as depicted in Fig. 6(b). Even for the optimal CSA (with
K = 4, k = 2, and C = 16), which has wider class of codes
than that of IRSA, the gaps are still quite wide, see Fig. 6(c).
By introducing more wider class of codes than those of IRSA
and CSA, the optimal dir-CSA (with K = 4 and C = 8) can
better match the SN EXIT curve as shown in Fig. 6(d).

The aforementioned degree distributions in Figs. 6(b-d)
are obtained by using the EXIT-chart-based DE explained in
Section V-B. In addition, we summarize many optimal set
of codes {((nh, kh),Λh)}Ch=1 for IRSA (ΛI,K

C ), CSA (ΛCSA,K
k,C ),

and dir-CSA (ΛDIC,K
C ) in Table I.12 Although we focus on the

10Readers who are interested in this configuration can refer to [13].
11All EXIT charts are drawn by setting G = G∗.
12Since our goal is G∗ = 3.7 p/s, our search is only until K = 4.



TABLE I. Optimal set of codes for IRSA (ΛI,K
C ), CSA (ΛCSA,K

k,C ), and dir-CSA (ΛDIC,K
C ).

K Label {((nh,kh),Λh)}Ch G∗ (p/s) Rn

4

Λ
DIC,4
22

{((22, 21), 0.1), ((22, 20), 0.16), ((23, 19), 0.03), ((22, 17), 0.02), ((8, 2), 0.02), ((30, 23), 0.01), ((22, 13), 0.03), ((29, 19), 0.01),
((14, 3), 0.01), ((35, 23), 0.04), ((16, 2), 0.01), ((31, 16), 0.02), ((30, 13), 0.04), ((29, 11), 0.03), ((21, 2), 0.2), ((22, 2), 0.17),

((29, 8), 0.1)}
3.876 0.45722

Λ
DIC,4
16

{((18, 17), 0.24), ((12, 8), 0.06), ((22, 17), 0.03), ((19, 13), 0.07), ((11, 4), 0.04), ((11, 3), 0.05), ((16, 6), 0.05), ((23, 12), 0.01),
((14, 2), 0.09), ((27, 14), 0.02), ((23, 9), 0.06), ((18, 2), 0.28)}

3.86 0.47887

ΛDIC,4
8 {((10, 9), 0.35), ((5, 3), 0.01), ((5, 2), 0.14), ((10, 6), 0.02), ((8, 2), 0.03), ((16, 9), 0.09), ((10, 2), 0.36)} 3.806 0.53135

ΛCSA,4
2,16

{((3, 2), 0.88), ((6, 2), 0.01), ((9, 2), 0.01), ((10, 2), 0.02), ((11, 2), 0.01), ((12, 2), 0.01), ((15, 2), 0.01), ((16, 2), 0.01), ((17, 2),
0.01), ((18, 2), 0.03)} 3.66 0.4717

Λ
DIC,4
4 {((6, 5), 0.51), ((4, 2), 0.01), ((5, 2), 0.01), ((6, 2), 0.47)} 3.647 0.59129

Λ
CSA,4
4,16

{((5, 4), 0.75), ((6, 4), 0.01), ((7, 4), 0.02), ((8, 4), 0.03), ((9, 4), 0.02), ((10, 4), 0.04), ((11, 4), 0.01), ((12, 4), 0.02), ((15, 4),
0.01), ((19, 4), 0.01), ((20, 4), 0.08)}

3.646 0.56657

Λ
CSA,4
4,8 {((5, 4), 0.81), ((12, 4), 0.19)} 3.562 0.63191

ΛI,4
16 {((2, 1), 0.95), ((16, 1), 0.05)} 3.555 0.37037

Λ
CSA,4
2,8 {((3, 2), 0.85), ((7, 2), 0.02), ((8, 2), 0.02), ((9, 2), 0.02), ((10, 2), 0.09)} 3.54 0.50891

Λ
I,4
8 {((2, 1), 0.95), ((8, 1), 0.05)} 3.438 0.43478

Λ
I,4
4 {((2, 1), 1)} 3.399 0.5

2

Λ
I,2
16

{((2, 1), 0.86), ((5, 1), 0.01), ((7, 1), 0.03), ((9, 1), 0.01), ((10, 1), 0.01), ((11, 1), 0.01), ((12, 1), 0.01), ((13, 1), 0.01), ((15, 1),
0.05)}

1.875 0.30488

Λ
DIC,2
8 {((10, 9), 0.17), ((4, 2), 0.09), ((8, 5), 0.12), ((9, 5), 0.13), ((7, 2), 0.06), ((8, 2), 0.04), ((9, 2), 0.01), ((10, 2), 0.38)} 1.872 0.44671

Λ
I,2
8 {((2, 1), 0.87), ((8, 1), 0.13)} 1.858 0.35971

Λ
CSA,2
2,8 {((3, 2), 0.74), ((4, 2), 0.02), ((5, 2), 0.02), ((8, 2), 0.01), ((9, 2), 0.03), ((10, 2), 0.18)} 1.839 0.43956

Λ
DIC,2
4 {((6, 5), 0.33), ((4, 2), 0.07), ((6, 2), 0.6)} 1.779 0.51024

Λ
I,2
4 {((2, 1), 0.81), ((4, 1), 0.19)} 1.748 0.42017

1

Λ
I,1
16

{((2, 1), 0.5), ((3, 1), 0.11), ((4, 1), 0.22), ((5, 1), 0.01), ((6, 1), 0.02), ((10, 1), 0.01), ((11, 1), 0.01), ((12, 1), 0.01), ((13, 1),
0.01), ((14, 1), 0.01), ((15, 1), 0.06), ((16, 1), 0.03)}

0.949 0.22936

Λ
I,1
8 {((2, 1), 0.51), ((3, 1), 0.26), ((4, 1), 0.01), ((7, 1), 0.01), ((8, 1), 0.21)} 0.938 0.27855

Λ
CSA,1
2,16

{((3, 2), 0.34), ((4, 2), 0.11), ((5, 2), 0.26), ((7, 2), 0.06), ((8, 2), 0.05), ((9, 2), 0.01), ((12, 2), 0.01), ((16, 2), 0.02), ((17, 2),
0.01), ((18, 2), 0.13)}

0.932 0.30211

Λ
DIC,1
16

{((6, 5), 0.15), ((16, 13), 0.04), ((12, 6), 0.01), ((20, 13), 0.02), ((22, 14), 0.02), ((11, 2), 0.17), ((18, 8), 0.04), ((25, 14), 0.01),
((20, 8), 0.06), ((20, 7), 0.07), ((16, 2), 0.08), ((17, 2), 0.18), ((18, 2), 0.15)}

0.93 0.29773

Λ
CSA,1
2,8 {((3, 2), 0.33), ((4, 2), 0.34), ((5, 2), 0.02), ((9, 2), 0.01), ((10, 2), 0.3)} 0.882 0.36101

Λ
DIC,1
8 {((5, 4), 0.13), ((4, 2), 0.07), ((10, 7), 0.08), ((11, 7), 0.05), ((10, 5), 0.04), ((11, 5), 0.04), ((9, 2), 0.18), ((10, 2), 0.41)} 0.88 0.35633

Λ
I,1
4 {((2, 1), 0.5), ((4, 1), 0.5)} 0.868 0.33333

Λ
CSA,1
3,8 {((4, 3), 0.26), ((5, 3), 0.32), ((6, 3), 0.01), ((7, 3), 0.01), ((8, 3), 0.02), ((10, 3), 0.01), ((11, 3), 0.37)} 0.833 0.42254

Λ
CSA,1
2,4 {((3, 2), 0.42), ((5, 2), 0.01), ((6, 2), 0.57)} 0.805 0.42283

Λ
CSA,1
4,8 {((5, 4), 0.21), ((6, 4), 0.31), ((7, 4), 0.02), ((9, 4), 0.02), ((11, 4), 0.03), ((12, 4), 0.41)} 0.784 0.4717

moderate Rn, 0.4 ≤ Rn ≤ 0.6, several set of codes having
Rn < 0.4 or Rn > 0.6 are also presented because we want to
show a fact that as C increases, the achievable network rate per
user Rn of a set of codes having C codes decreases; it means
that a larger transmit power is required, while the increasing
C shows relatively more complex network decoding.13 The
fact is important to show the superiority of dir-CSA than the
others.

As seen in Table I, the optimal IRSA with K = 4 and
C = 16 (ΛI,4

16 ) has the threshold G∗ of 3.555 p/s, which is still
below our target (G∗ = 3.7 p/s). Even for CSA with K = 4,
k = 2 and C = 16 (ΛCSA,4

2,16 ), the achievable threshold G∗ is
3.666 p/s. In fact, we have searched for several different C
and k; none of the results can achieve the threshold G∗ =

3.7 p/s. Increasing irregularity of CSA (dir-CSA) can improve
the performances of IRSA and CSA. With only K = 4 and
C = 8, dir-CSA (ΛDIC,4

8 ) can achieve the threshold G∗ = 3.806
p/s. This superiority becomes clearer since the dir-CSA Λ

DIC,4
8

13In this paper, we justify the complexity by only considering the number
of network codes are required. Practically, we also need to consider the
complexity of each code.

has the highest Rn and the smallest C of the IRSA Λ
I,4
16 and

the CSA Λ
CSA,4
2,16 , which means that the total transmit power

of the dir-CSA is the lowest of the others and the network
decoding of dir-CSA is relatively less complex than the others.
In addition, the network rate per user Rn of dir-CSA Λ

DIC,4
8

lies between 0.4 and 0.6, which fulfills our target.

VII. Performance Evaluation

A. Asymptotic Performances

Relative position of the optimal IRSA, CSA, and dir-CSA
shown in Table I and their bounds obtained from (4) are
depicted in Fig. 7. Using Fig. 7, the superiority of dir-CSA in
achieving the threshold G∗ = 3.7 p/s compared to the others
becomes more apparent since only Λ

DIC,4
22 , Λ

DIC,4
16 , and Λ

DIC,4
8

can achieve G∗ = 3.7 p/s at moderate network rate per user
Rn. In addition, with the same Rn, dir-CSA is asymptotically
better than both IRSA and CSA for 1 ≤ K ≤ 4.

B. Practical Finite-Length Performances

Finite-length simulations are carried out, first, by setting
fixed number of PTSs per frame N. Both maximum number
of SIC iteration and maximum number of iteration in physical



(a) (b)

(c) (d)

Fig. 6. (a) SN EXIT curves showing that as K increases, the curve is no
longer convex, (b) EXIT chart for IRSA with K = 4 and C = 16 (ΛI,4

16 ), (c)
EXIT chart for CSA with K = 4, k = 2 and C = 16 (ΛCSA,4

2,16 ), and (d) EXIT
chart for dir-CSA with K = 4 and C = 8 (ΛDIC,4

8 ).

Fig. 7. Threshold G∗ shown in Table I vs. network rate per user Rn for IRSA
(ΛI,K

C ), CSA (ΛCSA,K
k,C ), and dir-CSA (ΛDIC,K

C ) with K ∈ {1, 2, 3, 4}.

decoding is 100. For CSA and dir-CSA, we use RS code over
Galois-Field (28). Several 8-bit sequences form a full packet.
Each packet has length of 10, 000-bit (L = 10, 000). Each
user transmits its packet with transmit power P over AWGN
channel with σ2

R = σ2
li

= 1,∀li.
We use IRSA with the set of codes of Λ

I,4
16 , CSA with the

set of codes of Λ
CSA,4
2,16 , and dir-CSA with the set of codes

of Λ
DIC,4
8 . The Λ

I,4
16 IRSA and the Λ

CSA,4
2,16 CSA are considered

good compared to the same type of RA with the same K in

Fig. 8. Average packet-loss-rate (PLR) per user of IRSA (ΛI,4
16 ), CSA (ΛCSA,4

2,16 ),
and dir-CSA (ΛDIC,4

8 ) for K = 4 and P = 4.3 dB.

Fig. 9. Average BER per user over AWGN channel of IRSA (ΛI,4
16 ), CSA

(ΛCSA,4
2,16 ), and dir-CSA (ΛDIC,4

8 ) for K = 4 and N = 1000.

Table I.
Average packet-loss-rate (PLR) simulations in Fig. 8 are

measured in UNs. This simulation is carried out with transmit
power P = 4.3 dB. This value is set such that the BER
for five-way relaying system is less than 10−5 with the fully
coordinated mRN assumption (shown later).

The PLRs are lower than that predicted by previous asymp-
totic analysis G∗. It is reasonable as the results of practical
N (finite N). The higher the number of PTSs N, the closer
the average PLR threshold with the threshold G∗. In addition,
even in this finite length performances, the dir-CSA, both with
N = 500 and N = 1000, outperforms the IRSA and the CSA
with N = 1000.

BER performances in Fig. 9 are measured in UNs. These
simulations are carried out with G = 3.6 p/s to show that dir-
CSA significantly outperforms the others. With G = 3.6 p/s,
the bipartite graph for IRSA is broken because G = 3.6 p/s is



Fig. 10. Average normalized throughput per user over AWGN channel of
IRSA (ΛI,4

16 ), CSA (ΛCSA,4
2,16 ), and dir-CSA (ΛDIC,4

8 ) for K = 4 and N = 1000.

still greater than the threshold G∗ of the IRSA Λ
I,4
16 (G∗ = 3.555

p/s). Meanwhile for the CSA Λ
CSA,4
2,16 the PLR is still high, see

Fig. 8 at G = 3.6 p/s. High PLR indicates the fact that there
are still many unsuccessfully decoded packets. If we want to
have the turbo cliff for the IRSA Λ

I,4
16 and CSA Λ

CSA,4
2,16 , then

we need to lower their offered traffic G, e.g., G = 3.35 p/s for
the IRSA and G = 3.45 p/s for the CSA. Lowering the offered
traffic G equivalently means decreasing the performances.

BER curve of perfect scheduling network shown in Fig. 9
is measured from a five-way relaying system by assuming
that there exist such a smart way to manage scheduling for
massive users (hundred or thousand) so that at every time-slot
there will always be five users are transmitting at the same
time. Therefore, the five-way relaying system can be used
as a BER limit for the mu-mRN since it can be considered
as the fully coordinated mRN, where the transmission is no
longer random but fixed such that all colliding packets can
be perfectly decoded in all frames. In adiition, based on [8]
and [2], the capacity limit for each user in the mu-mRN is

RI = 1
K C

(
PPR

(K+1)P+PR+1

)
, and C(Plim) = log2(1+ Plim). Plim is the

limit power for the five-way relaying system with K = 4.
The gap between the limit and the achievable BER is 0.21

dB and deserves further remark. This gap is reasonable as the
penalty of multiway relay systems serving hundreds of users.

The average normalized throughput T in Fig. 10 are ob-
tained from the PLR simulations in Fig. 8. The normalized
throughput T for the conventional SA is Ge−G. For dir-CSA
Λ

DIC,4
8 , the improvement from the conventional SA is only

9.93×. These results show that our proposed system can
approach the target, whereas the others cannot.

VIII. Conclusions

This paper focussed on the application of graph-based RA,
i.e., IRSA and CSA, to the mu-mRN. In this paper, we
have derived the theoretical network capacity bound for the
mu-mRN with general MUD capability K. We searched for

many optimal degree distributions of IRSA and CSA with
K ∈ {1, 2, 4} working for practical PTSs, such as N = 500 and
N = 1000. We found that the gap between the threshold G∗ of
the optimal IRSA or CSA and their bounds widened as K in-
creased. Correspondingly, the 10× improvement (T = 3.7 p/s)
was not achievable. We introduced an improvement of CSA,
namely dir-CSA having a wider class of codes than that of
the CSA. The mu-mRN applying dir-CSA with K = 4 could
achieve maximum normalized throughput T = G∗ = 3.806
p/s while the optimal IRSA and CSA could not achieve it
even with lower Rn and higher number of codes C (higher
total transmit power and higher complexity). For finite-length
performances, we optimized physical encoding using SCC
comprising irCC and DACC. As a result, 9.93× improvement
was achieved by the mu-mRN applying dir-CSA; this result
shows that the proposed system significantly outperforms the
mu-mRN applying IRSA and CSA. Furthermore, we also
conclude that the proposed techniques are efficient as indicated
by the BER performance of the mu-mRN which is only 0.21
dB away from the BER limit (obtained from the perfect
scheduling network) and 0.4 dB away from the mrC capacity
in AWGN channel.
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