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Long-term Knowledge Acquisition in a Memory-based
Epigenetic Robot Architecture for Verbal Interaction

Ferdian Pratama1, Fulvio Mastrogiovanni2, Sungmoon Jeong1 and Nak Young Chong1

Abstract— We present a robot cognitive framework based on
(a) a memory-like architecture; and (b) the notion of “context”.
We posit that relying solely on machine learning techniques
may not be the right approach for a long-term, continuous
knowledge acquisition. Since we are interested in long-term
human-robot interaction, we focus on a scenario where a robot
“remembers” relevant events happening in the environment.
By visually sensing its surroundings, the robot is expected to
infer and remember snapshots of events, and recall specific
past events based on inputs and contextual information from
humans. Using a COTS vision frameworks for the experiment,
we show that the robot is able to form “memories” and recall
related events based on cues and the context given during the
human-robot interaction process.

I. INTRODUCTION

Natural context is involved both when humans interact
with each other and when they interact with their en-
vironment. In humans, context processing is believed to
occur in the hippocampus [2]. Specifically, it refers to those
mechanisms to differentiate a particular situation from other
situations so that the correct behavior or mnemonic output
can be retrieved. Contextual information is considered to be
significant and influences our daily behavior [17], [18].

In order to design a robot that proactively understands its
environment and engages humans in long-term interaction
tasks, the interconnectivity between the various modules
within a memory-based, robot cognitive architecture must
be enforced, specifically integrating the notion of context.

Exhibiting the ability to collect, assess and exploit knowl-
edge progressively in daily interaction with humans is an
ideal trait for robots whose behaviors is based on the
developmental paradigm. To achieve such a goal, however,
few points need to be addressed:

1) currently, no context-based integrated architectures opti-
mized for long-term human-robot interaction tasks (such
as those needed in service scenarios) is available to deal
with the aforementioned capability,

2) in spite of recent research in memory-based architec-
tures [3], [12], [13], which are based on single memory
components, no holistic approach has been devised,
which is a fundamental step to provide robots with the
necessary flexibility to deal with contextual information.
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An analysis of the literature shows that the focus is mainly
on single memory components, such as the Working Memory
(WM) [7], the Episodic Memory (EM) [3]–[6], [8]–[11],
[14], [16] and the Procedural Memory (PM) [15].

In particular, Stachowicz and Kruijff provide an in-depth
explanation of both design requirements and formal concepts
needed to characterize EM and its storage structure [14].
However, the focus of their work is on the notion of event, its
properties, and its use in such processes as event recognition,
event nesting, and event types of complexity. Despite their
claim of having designed an EM-like memory structure, it
is noteworthy that they do not exploit the notion of context,
which is considered of the utmost importance in [17], [18].

When an attempt is made to design a more comprehensive
memory-based robot architecture [3], [12], [13], the goal is
restricted to finding a solution to a very specific problem,
rather than providing the robot with the capability to develop
its own knowledge. Furthermore, neither the relationship
between the different components is explicitly addressed, nor
the mutual influence between components is considered. In
any case, no clear use of the notion of context is provided.

In this paper, we describe how a memory-based architec-
ture can benefit from contextual information in long-term
human-robot interaction tasks. Specifically, we set-up an
interaction scenario where (1) a human shows to a robot
a number of scenes involving objects of different color, size
and shape on a table, (2) the robot extracts the necessary
information to store memory items, and (3) the robot can
recollect specific information from its “memories” upon
requests from a human.

In particular, we propose an architecture based on the
following assumptions.

1) Avoiding the currently widespread mindset that devel-
opmental approaches are to be identified with machine
learning techniques as the core framework, we posit
that continuous knowledge acquisition allows for a
progressive evolution of the stored knowledge and its
representation, which is based on a continuous interac-
tion with humans.

2) Inspired by state-of-the-art studies in Developmental
Psychology [2], [17]–[19], [22]–[24], we argue that an
explicit addressing of the role of memory in human-
robot interaction processes is crucial in robot knowledge
development.

The contribution of the paper is two-fold: on the one
hand, we demonstrate the robot’s ability to recollect memory
elements stored as a result of gaining personal experience,
on the basis of specific cues provided by a human; on the



Fig. 1: A graphical representation of the system architecture

other hand, we show that contextual information (in the form
of specific memory cues), is fundamental for the retrieval
process.

The paper is organized as follows. Section II describes
the main concept of the approach. Section III elaborates the
conducted experiments with a specific, real-world scenario
for the application domain. A discussion and the conclusion
sections follow.

II. SYSTEM ARCHITECTURE

The architecture can be represented as a collection of
information-exchanging modules. Figure 1 shows the main
modules of the architecture. It is based on a client-server
architecture and a message passing mechanism. Ovals repre-
sent active elements (i.e., processing nodes), boxes represent
passive elements (i.e., messages being exchanged by the
modules and the Long-Term Memory storage), whereas
arrows represent the information flow within the system.

As it is shown in the right hand side of the diagram, a
vision system is responsible for channeling the visual feed
of raw images into the Visual Stimuli Processor (VSP). This
is where the image processing algorithms infer useful infor-
mation about the captured scene. The bidirectional arrows
connecting the Long-Term Memory (LTM) storage and VSP
represent the ability to recall and consolidate any particular
memories. The visual feed has a continuous nature. The
visual stream is processed and the result (in the form of
specific image features) is compared to memory elements
that are stored in LTM already. This is important for the
whole architecture, due to the fact that storing dynamically
growing knowledge in form of image features is much more
efficient than storing a continuous visual stream.

The left hand side of the diagram in Figure 1 represents
the interaction pipeline using a Human-Computer Interface
(HCI) when the robot is required to provide assertions about
its stored knowledge, which may occur at any time.

In the current system implementation, humans are able
to pose questions regarding any particular events that has

(a) Consolidation of memory elements

(b) Retrieval of memory elements

Fig. 2: A more detailed memory processing schematic

been previously experienced by the robot. The request is
retrieved from LTM and sent back to the Query Server, which
is responsible for retrieving any relevant information inferred
from the request. An example of this process is discussed in
Section II-B.

A. Vision-based memory elements consolidation

Figure 2a depicts the memory consolidation process. Here,
visual inputs are processed using color feature extraction,
gist [25] and visual attention based on the work described in
[26], which are included in VSP. On the one hand, the gist
algorithm allows us to extract shape features for scene-wide
changes detection (i.e., globally) and for each detected entity
(i.e., locally). On the other hand, the visual attention includes
a saliency detection algorithm, which allows us to localize
each entity detected in the image. Scenes are consolidated
based on the absence of movements and, subsequently, the
presence of saliency changes. Saliency detection has been
considered in the architecture given the widespread belief
that it plays a central role in human memory consolidation
process and experience segmentation [31], [32]. The study by
Jeong et. al. [30] provides an evaluation of the relationship
between visual attention and motor action from a cognitive
neurodynamics perspective.

As it has been pointed out in [22]–[24], humans have the
ability to “mentally travel through time” to re-experience
their past during event-recollections. Even though a precise



understanding of this phenomenon is still subject to sig-
nificant research efforts, our framework aims at mimicking
this feature of the human mind, which undoubtedly plays
a central role in everyday purposive behavior. Specifically,
only snapshots of the visual feed (the scenes) are processed
and representation results (the episodes) are generated and
consolidated, instead of remembering the whole stream of
events in a continuous fashion.

The memory model is divided into two main modules,
namely the Working Memory (WM) and the LTM. WM
is designed on the basis of the Baddeley updated model
[19], which includes the Episodic Buffer (EB) component,
in addition to the Central Executive (CE), Phonological
Loop (PL), and Visuospatial Sketchpad (VSSP) components.
LTM is organized as the interplay among three distinct
sub-modules, namely the Semantic Memory (SM), Episodic
Memory (EM) and the Procedural Memory (PM) compo-
nents. Their role is described in the following paragraphs.
CE consolidates memory elements in LTM, by considering
the relation between contextual information in EM, general
knowledge in SM, and movements performed in PM, thereby
yielding interconnections between EM, SM, and PM.

In human memory, CE is responsible for processing in-
formation originating from different sources, coordinating
a number of passive subsystems, as well as performing
selective attention and inhibition strategies [27]–[29]. Here,
we model CE to be able to perform a number of tasks, as
follows.
• Explicitly managing memory encoding and decoding

processes in such LTM components as EM, PM, and
SM, specifically using contextual information.

• Exhibiting familiarity-like information retrieval, i.e.,
how to identify cues to be used, based on logical
processes involving cue analysis and problem awareness
[20], [21].

• Manifesting recollection behaviors, i.e., recalling LTM
memory elements from the results of familiarity re-
trieval processes if they match the desired retrieval cues.

• Supervising the PL component (i.e., by analyzing verbal
information related to recalled LTM memory items), the
VSSP component (related to visual information, i.e.,
object shapes, colors or locations as perceived in a
scene), as well as the interconnection between the two
components through the EB.

We can now define the main concepts of the proposed
architecture.

Definition 1 (Scene): A scene is a representation of the
changes occurring in an input visual stream.

A scene represents the occurrence of an event at a partic-
ular time. In short, a scene is an event marker, such that an
event may be bounded by any two arbitrary distinct scenes.
This is in contrast with the definition proposed in [14], where
a scene corresponds to atomic or complex events. Scenes
captured as part of the visual stream are represented as an
episode, and stored in the EM.

Definition 2 (Factor): A factor f ∈ F is a single element
that forms a SM and PM memory item, where F = SM ∪

PM. A factor consists of n cue-value pairs, such as f =
{(r1,v1), . . . ,(rn,vn)}.

SM is represented by five factors of knowledge for a robot
involved in long-term human-robot interaction scenarios,
namely, entity, person, location, time, and lexical informa-
tion. Here, we focus on the entity type only. EM corresponds
to events directly experienced by the robot, represented as
episodes, which contain information about visually detected
entities. PM corresponds to motor skills that are available
for the robot to perform. From the WM perspective, LTM is
only considered a (possibly complex) memory storage, such
that the consolidation and retrieval processes are arranged
and managed by CE.

In a complete sensori-motor process, it is believed that the
consolidation process involves SM, EM and PM [33], [34].
Whilst SM refers to knowledge about perceived entities, EM
is related to scenes, in the sense of Definition 1. In the current
set-up, we focus solely on the contribution provided by SM
and EM (i.e., only sensory information is used, which does
not depend on robot motion processes).

B. Memory elements retrieval

Figure 2b shows a representation of the retrieval process.
From Definition 2, we can clearly define the notion of
context.

Definition 3 (Context): A context c is made up of cue-
value pairs corresponding to a particular factor f , and defined
as c = {(r f1 ,v f1), . . . ,(r fn ,v fn)}, where n is the number of
desired contextual elements provided by a human during the
interaction with the robot.

According to our model, a context can be represented
using the previously introduced knowledge elements, namely
entity, location, person, time and lexical information. When
an event is recollected by retrieving the proper memory
elements, a context has the effect of filtering away irrelevant
scenes, thereby limiting the number of scenes matching with
respect to the context itself. The readers are advised to refer
to [1] for more details about the formal definitions of the
proposed architecture.

As an example, let us assume to have presented the
robot with a scene with three entities, one of which is
a blue box. The memory retrieval process may include
a question like: “What do you know about a blue box
entity when there were three entities presented?”. The ques-
tion would be translated in a query formally defined as
(cue = shape,value = box), whereas the context may be
expressed as (color = blue,count = 3).

The concept of familiarity in humans is exhibited through
the ability to recognize an event or an object, even without
knowing the details associated with the process leading to the
storage of the corresponding memory elements, as well as
the relationships with other relevant elements [35], [36]. In
order to mimic such a capability, we developed a Familiarity
Filtering Index (FFI) module, which is used to assess which
memory elements can be considered relevant for the memory
retrieval process. Specifically, each memory element is in-
dexed with predefined references which represent the whole



contents, and the filtering process during memory retrieval
is based on the index. The module is part of our current CE
implementation, and from a computational perspective, FFI
significantly improves the overall system performance.

It is now possible to discuss how the proposed architecture
addresses the requirements posed beforehand. On the one
hand, the robot is able to encode scenes and consolidate
the associated events into memory elements that can be re-
called afterwards. On the other hand, memory recall exploits
contextual information to retrieve events stored in the robot
memory, on the basis of the robot personal experience. As
long as the robot keeps perceiving new scenes, its memory
is expected to grow, but encoding only relevant events. It is
noteworthy that a mechanism usually associated with mem-
ory storage, namely forgetting, is not considered. In order to
validate our architecture and the associated hypotheses, we
performed tests in a human-robot interaction scenario, where
a robot has to observe changes in a scene due to a human
operating on a number of objects, which are located on a
table. This set-up is described in the next Section.

III. THE TARGET HUMAN-ROBOT INTERACTION
SCENARIO

A. Demo scenario

For a better understanding about how the proposed archi-
tecture works, we set-up a scenario where a human operates
on objects, which are located on a table, and shows these op-
erations to a robot. Objects with different colors and shapes
are inserted and removed from the scene. In this scenario, the
robot is just a passive observer. The robot perceives the scene
using vision. A visual stream is continuously acquired by the
robot as long as a human operates on the scene. Within the
robot Field of View (FOV), actions performed by humans are
visually spotted by the robot through saliency information.

As the visual stream is active, the system processes the
input, infers useful information about the detected entities
(e.g., color, shape, position, size) using the image processing
module, and consolidates them into LTM. In the experiment,
when a human replaces one object with another one, a scene
change occurs from the perspective of the robot. As a conse-
quence, a new memory element (related to the new spotted
entity) is consolidated inside LTM. Actions performed by the
human in the experiment are aimed at addressing different
memory modules. Specifically, SM is emphasized whenever
a novel entity is detected, EM is related to scenes as a whole,
whereas PM is addressed during the event occurrence.

The following assumptions are posed: (i) no occlusion is
present involving entities in the scene; and (ii) no forgetting
mechanism is employed, which means that the knowledge
gained by the robot develops monotonically.

B. Experimental procedure

The experimental procedure consists of two phases:
knowledge acquisition and memory retrieval process.

Knowledge acquisition. Initially, two entities (namely a
red can and a green marker pen) are presented in the visible
part of the robot workspace (Figure 3a). The robot acquires

TABLE I: Input sets for the experiment

Context

No. Cue Value Pos Shape Color Count

1 Color Red - - - -
2 Color Red - - - 3
3 Pos LeftMost - - Green 3
4 Shape Ball RightMost Ball - 3
5 Shape Ball RightMost Box - -

the scene and consolidates it within LTM. Then, the human
presents a novel entity (i.e., a red marker pen, Figure 3b) to
the robot. Afterwards, the human replaces one entity (the red
pen) with a novel one (a tennis ball, Figure 3c). The exact
sequence is as follows:

1) 〈robot〉 assesses the initial scene with a 〈red can〉 and
a 〈green pen〉

2) 〈human〉 puts a 〈red pen〉 on the table
3) 〈robot〉 assesses the scene
4) 〈human〉 takes away the 〈red pen〉
5) 〈robot〉 assesses the scene
6) 〈human〉 puts a 〈tennis ball〉 on the table
7) 〈robot〉 assesses the scene
During each scene assessment step, the robot remembers

the position, color and shape features for each entity.
Memory Retrieval Process. Using a user interface, the

human inserts cues, their value and several contexts, and
the system retrieves any available data based on both cues
and contextual information. In the performed experiment, the
following questions are posed to the robot.

1) What entities do you know, which are red?
2) Which entities do you know, which are red, when three

entities were present?
3) Which green entity was the leftmost one, when three

entities were present?
4) Was the rightmost entity a ball, when three entities were

present?
5) Was the rightmost entity a ball, when a box was present?
The questions can be formally translated into a set of

contexts, as shown in Table I. It is noteworthy that we
artificiously distinguish between Knowledge Acquisition and
Memory Retrieval Process. In principle, questions can be
posed at any time during the experiment.

Since no a priori knowledge is considered, LTM is initially
empty. As the robot experiences and consolidates new scenes,
the persistent characteristic of LTM allows it to progressively
gather knowledge from its personal experience.

IV. EXPERIMENTAL EVALUATION

A. Experimental set-up

The system has been implemented using the ROS frame-
work. Specifically, each module described in Section II has
been implemented as a separate ROS node, whereas com-
munication between modules is managed using ROS topics.
The experiment is carried out on a Workstation equipped
with Intel c© Core c© i7 CPU 960, 3.20Hz clock frequency



TABLE II: Results for each of the input set

No. Result

1 Red can, red marker pen
2 Scene 2: red can, red marker pen

Scene 3: red can
3 Scene 2: green marker pen

Scene 3: green marker pen
4 Yes, in scene 3
5 No

and 12GB of RAM. The visual stream is obtained using a
standard USB camera.

As briefly mentioned in the previous Section, visual pro-
cessing covers both global and local analysis, in terms of
shape and color information. The visual attention module
includes object detection supported by saliency analysis,
which is performed before local analysis. Shape analysis and
the localization of each detected entity are covered by the
gist algorithm [25] and the visual attention algorithm [26],
respectively. Global analysis determines the occurrence of
scene changes in terms of color and shape. Local analysis
determines both the color and shape of each detected entity
in a statistical measure within a particular scene. The query
client node is implemented as a HCI. It processes given cue
and context, and shows the proper result.

B. Experimental results

Figure 3 depicts the entity detection process based on
saliency maps, as well as the corresponding captured scene.

As a result of the experiment, four SM and three EM
episodes are maintained after Knowledge Acquisition. The
EM and SM data correspond to each scene captured and
detected entity, respectively. Instead of four, only three EM
memory elements are consolidated. This is due to the fact
that during step 5 in Knowledge Acquisition, the system
assesses the scene and concludes that there are no differences
if compared with the scene consolidated during step 1. Since
the two scenes are exactly the same, in order to avoid
memory duplication, we do not consider two scenes that are
exactly the same but are characterized by a different time
stamp. It is noteworthy that this case is very unlikely to
happen in the real world.

The first question generally asks about red entities. Red
entities that are known to the robot are two, namely a red
can and a red marker pen. The can is always present in the
robot FOV, whereas the marker pen has been detected in
scene 2 (Figure 3). The second is more specific, in that it
asks the robot to recall red objects detected only when three
different objects were present in the scene. Therefore, scene
1 is not considered. Consistently, two objects are recalled
from scene 2 and one object from scene 3. The third question
is related to the qualitative position of the green entity, but
only when other two entities were present. Again, scene 1
is not considered, whereas scene 2 and scene 3 are used to
recall a green marker pen. It is noteworthy that in scene 3,
two green entities are present, namely the marker and the
ball, but the marker is the leftmost one. As a result from

the fourth question, scene 3 is used to recall that a ball was
the rightmost object. Finally, a ball is never the rightmost
entity, when scenes include a box. Table II shows a summary
of these results. It is noteworthy that some information is
omitted, such as all the features of the retrieved objects, e.g.,
color, shape, etc.

C. Interconnectivity analysis

Despite the simplified experiment, we can assess the rela-
tionships between contextual information and the memory
structure entailed by SM and EM, specifically insofar it
impacts on the continuous knowledge acquisition process.
Let us consider the results of each question. The result of
question 1 shows that no given context is related to all the
red entities that are known to SM. This is due to the char-
acteristics of the context that bridges cues and experienced
events. Without a specific context, this information becomes
general knowledge that is stored as memory elements in SM.

Considering the result of question 2, it is recalled that
the red can is present both in scene 2 and scene 3, whereas
the red pen is present in scene 2 only. This means that the
red can is detected inbetween scene 2 and scene 3, subject
to the contextual information related to the fact that three
entities are present. The results showcase the robot ability to
remember any specific entities during past experiences.

Similarly to the previous case, results of question 3 show
that the green pen is detected both in scenes 2 and 3.
However, since color and position information are stored
as sets of (mean,var) couples in hue space and (x,y)
coordinates in the image plane, respectively, it is necessary
to provide such information with labels to use a simplified
grammar when posing questions. For instance, the LeftMost
tag is used to indicate the entity characterized by the lower
x value, whereas green is associated with a specific range of
(mean,var) data in hue space.

Results from questions 4 and 5 emphasize the ability
of the proposed architecture to assert facts provided that a
given context and cue match specific values, if previously
experienced by the robot. In particular, a shape attribute
is given as both context and cue (respectively, associated
with box and ball). In this case, the robot yields a Boolean
response. Furthermore, since shapes are labelled as statistical
measures of shape feature vectors, they are compared with
existing memory elements, specifically using Euclidean dis-
tance in the image plane. It is noteworthy that such a labelling
process may require either an a priori human supervision,
or a specifically designed learning approach.

V. CONCLUSION

In this paper, we present a conceptual design for a
long-term knowledge acquisition framework using contex-
tual information within a memory-based architecture. The
framework is inspired by current studies in developmental
psychology, and adopts a biologically-inspired image pro-
cessing algorithm. The paper emphasizes the advantages of
contextual information through a descriptive, representative
experimental scenario. Experimental results also corroborate



(a) Scene 1, captured during knowledge acquisi-
tion step 1 and 5

(b) Scene 2, captured during knowledge acquisi-
tion step 3

(c) Scene 3, captured during knowledge acquisi-
tion step 7

Fig. 3: (Left) Raw Feed, (Right) Saliency Map of each scene

the interconnectivity of each component of the architecture.
An analysis of the psychological aspects of memories, the re-
sponse retrieval of personal past events based on the context
and how context may influence the interaction with humans,
has been provided. On the basis of these premises, current
work is aimed at implementing the architecture (specifically,
the sensori-motor part, which is not considered in this paper)
on a Baxter dual-arm manipulator as well as integrating a
speech-based interface.
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